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Abstract—

Complex repetitive scenes containing forests, foliage,
grass, hair or fur, are challenging for common modeling and
rendering tools. The amount of data, the tediousness of
modeling and animation tasks, and the cost of realistic ren-
dering have caused such kind of scene to see only limited
use even in high-end productions. We describe here how
the use of volumetric teztures is well suited to such scenes.
These primitives can greatly simplify modeling and anima-
tion tasks. More importantly, they can be very efficiently
rendered using ray tracing with few aliasing artifacts. The
main idea, initially introduced by Kajiya and Kay [KK&89],
is to represent a pattern of 3D geometry in a reference vol-
ume that is tiled over an underlying surface much like a
regular 2D texture. In our contribution, the mapping is in-
dependent of the mesh subdivision, the pattern can contain
any kind of shape, and it is pre-filtered at different scales
as for MIP-mapping. Although the model encoding is vol-
umetric, the rendering method differs greatly from tradi-
tional volume rendering: a volumetric texture only exists in
the neighborhood of a surface, and the repeated instances
(called tezels) of the reference volume are spatially deformed.
Furthermore, each voxel of the reference volume contains a
key feature which controls the reflectance function, that rep-
resents aggregate intra-voxel geometry. This allows for ray-
tracing of highly complex scenes with very few aliasing arti-
facts, using a single ray per pixel (for the part of the scene
using the volumetric texture representation). The major
technical considerations of our method lie in the ray-path
determination, and in the specification of the reflectance
function.

Keywords— volumetric textures, complex geometry, levels
of detail.

I. INTRODUCTION

The usual approach to geometric modeling consists of in-
teractively specifying component object meshes or surfaces,
trajectories, deformations and materials. This approach is
suitable for scenes of low to moderate complexity, but it
becomes problematic for complex, natural scenery due to
the enormous amount of data to specify. This work is also
tedious for the modeler because the data may be repeti-
tive, and requires unnecessarily precise knowledge, such as
the position of each grass blade on a hill. Special-purpose
procedural tools exist to generate some families of shapes,
but these are often inflexible in the control the user has
over a model.

More importantly, the usual rendering methods tend to
be very inefficient for highly complex scenes because ren-
dering cost is proportional, sometimes polynomially, to the
number of primitives. Furthermore, the small size of prim-

itives, often occupying a small fraction of a pixel, creates
high-frequency signals that lead to very noticeable aliasing
artifacts and which are costly to avoid: there should be
at least as many rays launched per pixel as the number of
primitives which project onto a pixel. Some recent works
propose solutions for walkthroughs at interactive rates, us-
ing image caching dynamically [SLST96] or precomputed
[SDB97]. These methods are not well adapted to the high
quality rendering of complex scenes poorly structured (e.g.
forest), where parallax effects and specular highlights are
reluctant to be cached.

Conversely, some dedicated procedural rendering tools
such as particle systems [Ree83], [RB85] can be used to
efficiently render some complex shapes, at the expense of
using a limited repertoire of shading or reflectance models.

Volumetric textures can provide a good trade off between
generality and efficiency: the key concept, from the user’s
point of view, is the mapping of a replicated volumetric pat-
tern onto an underlying surface. Such a pattern encodes a
sample of the geometric material to be represented, such
as a patch of grass, foliage, fur, etc. This texturing pro-
cess naturally distinguishes several scales of specification:
the local or fine scale is specified by the 3D pattern, the
medium scale is given by the mapping function, and the
smooth or coarse scale corresponds to the underlying sur-
face shape (as shown in Fig. 1). The family of shapes han-
dled by this approach are objects that sit within a layer in
the neighborhood of a surface like a thick skin, representing
a kind of repetitive complexity. The approach appears to
be a good fit for a variety of natural objects, as illustrated
by our results.

reference
volume

Fig. 1. The mapping of texels.



The seminal work on volumetric textures by Kajiya and
Kay [KK89] was matched in their implementation to the
modeling of fur. The texture mapping process was restric-
tive, in that each texel fits exactly on a bilinear patch of
the surface. More importantly, the rendering computations
were prohibitively expensive because of the volume traver-
sal at full resolution. We review this model in Section II.

The motivations for our representation are introduced
in section III. As described in section IV, our represen-
tation permits the encoding of any kind of shape in the
volumetric pattern (as shown in Fig. 2), and it provides a
multiscale representation akin to MIP-mapping which fa-
cilitates pre-filtering at different scales (see also [Ney95b]).
As explained in Section V, it offers a much less restricted
mapping from texture elements onto a surface in a man-
ner that is independent of the mesh subdivision, just as
for regular 2D textures (see also [Ney96a]). In this section,
we also mention some technical issues such as how to deal
with color, and how to decrease apparent periodicities in
texture replication. We describe in Section VIII how to
convert shapes from their usual (geometric) representation
to texels (see also [Ney96a]), and in Section VII how to ex-
tend the approach to the animation of complex scenes (see
also [Ney95a]). The material in this paper derives from
the author’s Ph.D. thesis [Ney96b] (in French), and con-
solidates and expands on the results presented in [Ney95a],
[Ney95b], [Ney96a).
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Fig. 2. Sketch of our alternate geometry encoding: 5 blades of grass,
encoded at various resolutions (the rendering will choose the one
to be used according to the distance). The bottom figures show
what is stored: an opacity and a normals distribution function
(NDF) in each voxel. The integration of the Phong illumination
model on the normals distribution gives the reflectance, so that
one can say that the distribution controls the way the light is
reflected. For clarity, the top figures retain illustrations of the
corresponding virtual geometry.

II. PRrREvVIOUS WORK

Some of the basic principles of volumetric textures, for
which our work can be seen as an extension, have arisen in
three lines of research:

- The texture mapping concept applied using an explicit
3D pattern was introduced by Kajiya and Kay [KK89] in
1989, and extended by various authors. The terminology
volumetric texture and tezel also derives from this work.
We present these early representations in II-A.

- MIP-map texture multiscaling scheme has been intro-
duced for 2D color textures by [Wil83]. We discuss the
MIP-mapping approach and its limitations in II-B.

- Local reflectance modeling, especially in the scope of
representing the photometric behavior of subpixel ge-
ometric scales, has been previously studied for haze
[Bli82] and surfaces [PF90], [Fou92], as we will see in
II-C.

A. FEarly volumetric textures

Kajiya and Kay introduced volumetric textures in 1989
[KK89] in order to model fur. The key idea was to repre-
sent the 3D material (fur) by a cubic reference volume, to
be mapped onto a surface (like a thick skin). The copies
of the reference volume, named texels, are fitted upon the
bilinear patches of the surface, and are deformed in order
to stick to each other (see Fig. 1). A texel is thus a trilin-
ear deformation of the cubic reference volume. The volume
itself is a 3D array of voxels. Each voxel encodes the local
geometry (a hair) by specifying an opacity, a frame, and a
canonical reflectance function (here the one of a cylinder).
As there are nothing but parallel hairs in the volume, the
frame and the reflectance function are constant, so that
only the opacity is really stored in the volume. The comb-
ing of the fur is achieved using texels deformation. The
authors present a seminal image of a Teddy Bear, which
required a dozen of CPU hour on a IBM3090 mainframe at
that time.

Shinya proposed an anisotropic opacity by storing in each
voxel the opacity along the 3 canonical directions [Shi92],
to be maintained on a multiscale way. However the paper
does not explain explicitly how to deal with the reflectance
information. Noma applies non deformed texels to encode
at various scale procedurally generated trees consisting in
sparse facets [Nom95], using a multiscale scheme able to
switch from real geometry to texels as a function of the
viewing distance.

B. Mip-mapping and its limitation for relief data

The MIP-mapping scheme has been introduced by
Williams in 1983 [Wil83] in the purpose of filtering 2D
image textures, however it can be generalized to other sur-
face attributes. It consists in precomputing the surface
attribute data (e.g. a color) at multiple resolutions. The
color to be seen in a screen pixel results of the integration
of whatever is visible in the cone starting from the eye and
passing through this pixel. This cone covers an area on
the shape to be rendered, so that the correct shading is
obtained by integrating the local illumination equation on
this surface. The idea of pre-filtering consists of factoring
the illumination equation (usually the Phong model): as-
suming that only the considered parameter variates within
the pixel area and that this parameter appears on a linear
form in the equation, one can put the constant term out
of the integral, so that one has only to integrate this pa-
rameter on the given area. For the color, this means that
integrating Phong with the color varying along the sur-
face area which corresponds to a screen pixel is (almost)



equivalent to using the average color in one single Phong
evaluation. Then the integrals corresponding to different
scales are pre-computed, and directly used at rendering
time, thus providing a quasi correct image - and conse-
quently anti-aliased - with a single ray per pixel. For the
MIP-mapping technique, the area of integration is approxi-
mated by its bounding square, and the precomputed scales
are the power of two reductions of the texture resolution.
When the optimal scale to be used falls between two com-
puted scales, one has to interpolate between the two pre-
computed images of parameters (i.e. two smoothed color
images in the original paper).

Prefiltering in the fashion described above presupposes
that integrating the data to obtain a multiscale representa-
tion is easily accomplished. That was the case for color or
transparency texture with which MIP-mapping is usually
used, because one has just to pre-integrate the colors as
explained above, as it is a linear parameter of the Phong
local illumination model. But if one would want to use a
map containing geometrical data such as normals or depth,
this would no longer works as these parameters are not lin-
ear in the equation (averaging normals or depth would give
a smoother relief, which is not the same than a smoother
image of the original relief. Typically, a rough surface is
darker than a smooth one).

As a remark, the MIP-mapping technique is convenient
and easy to program (it is even available on some graphics
hardware). It does not provide a perfect filtering however,
as it assumes a square filtering kernel, whereas many situ-
ations mandate non-isotropic kernels. For instance on the
border of a sphere, the texture is compressed a lot in one
direction and not in the other one. This implies that more
pixels of texture are covered in the compressed direction
(the one that vanish behind the sphere) so the kernel should
be larger in this direction, and also that the weight of the
compressed texture pixels should be smaller. More compli-
cated pre-filtering methods like SAT [Cro84] or NIL [FF88]
exist to address some of the deficiencies of the MIP-map
filter. Buchanan [Buc91] also specifically deals with the fil-
tering in the 3D case (i.e. volumes of texture). We do not
discuss these methods as they does not fit our needs, which
are the ability to filter data that is not simply a color, and
the necessity of minimal computation at rendering time.

The multiscale reference volume representation we use
can be considered in some respects to be analogous to 3D
MIP-mapping. However we store a kind of geometrical
information in the voxels of our volumetric texture, rather
than a color. Thus we are out of the trivial case, which
implies that we will have to define how to filter this voxel
content.

C. Reflectance representation

Kajiya suggests in [Kaj85] to adapt the model which rep-
resents the details according to the distance, using explicit
geometry for close points of view, a texture for intermediate
points of view, and a reflectance model for distant points
of view. Thus, the reflectance can be used to represent
subpixel geometry: a very small object, such as a single ice

crystal in snow, can be observed through its reflective be-
havior, despite the fact that it is too small to see its shape.
As a remark, this implies that polygonal decimation is not
a good strategy in the scope of realistic rendering: from a
distant point of view, the shape of a corrugated iron sheet
looks like a flat sheet, while the illumination is still quite
different than that of a flat sheet because of the normals.
The same occurs for a rough surface, which geometry is
close to the one of a smooth surface, while the reflectance
is not (the former being darker). Becker and Max have
proposed in [BM93] such kind of transition between geom-
etry texture and reflectance for bumpy surfaces. However
this cannot easily apply to free 3D details, which cannot
be expressed as height-fields.

In this spirit of representing geometry by reflectance,
Blinn has computed the reflectance of a haze made of mi-
croscopic spheres [Bli82], Poulin has encoded anisotropic
surface with areas of microscopic parallel cylinders [PF90],
and Fournier has represented the BRDF' caused by micro-
geometry using a local set of ‘Phong peaks’ which can be
filtered according to distance [Fou92].

In the same spirit, we represent the subpixel geometry by
a feature controlling the reflectance, stored in each voxel of
the volume?. To encode this reflectance, a 4D BRDF table
is too expensive in terms of memory, while microprimitives
such as spheres or cylinders are too specific. The trade off
will be to choose a parameterized family of functions which
are generic enough, and require few parameters to specify.

III. MULTISCALE GENERIC VOLUMETRIC TEXTURES

In this section, we present the motivations for our repre-
sentation, and we precise our main choices as prepared in
the previous sections.

The limitations of the early volumetric texture model
[KK89] were:

- hardcoded and specific reflectance functions, e.g. for
fur;

- full-resolution volume data, making rendering costly
and prone to aliasing;

- strong assumptions about the mesh subdivision;

- no or few descriptions of how to specify the reference
volume content;

- no specification of texel animation;

- the representations deal with shapes, but not with col-
ors.

In order to cope with all these issues, and thus to
turn the early volumetric textures into an efficient and

I The Bidirectional Reflectance Distribution Function gives the pro-
portion of energy coming from a given direction that is reflected in
another given direction, thus having 4 degrees of freedom.

2Kajiya and Kay’s texels store an analytical reflectance function.
However, this function is only used to represent the microgeometry
finer than the volume resolution (while we use it at each scale of the
octree), it is not really stored in the voxels as we do but rather com-
mon to the whole volume, furthermore this function is quite specific
(it simulates the reflectance of a cylinder, as the microscopic data is
supposed to be fur).



generic model, we have applied a MIP-map-like multiscal-
ing scheme to this 3D data, and we have extended both
the microscopic aspect (the reflectance function) and the
macroscopic aspect (the mapping).

reference volume
( octree )

. opacity

N aﬁé NDF (controling
1 the reflectance)

useful voxel size
according to ray thickness
voxel size at the

U finest resolution

‘1

Fig. 3. Reference volume octree encoding. The space is subdivided
only where the data lies, at a level depending of the data vari-
ations. Coarser resolutions of the data are also stored in the
octree. The ray will consider the pyramid level for which voxels
fit the pixel size once projected on screen, or coarser voxels if the
data is not available at that resolution.

The MIP-mapping scheme consists of precomputing the
data at multiple resolutions. For a volume, this leads to
an octree structure as shown in Fig. 3. Tracing a ray
through the reference volume requires accessing the voxel
information at the appropriate level of detail. As for MIP-
mapping, this is done by selecting the two levels corre-
sponding to voxel sizes which bound the ray thickness, and
then interpolating the two results. Thus the rendering can
be compared to a cone-tracing, as all the data within the
ray cone is taken into account to compute the color of a
pixel. The filtering abilities of the method goes from the
scale where one texture pixel projects on one screen pixel
(if the viewpoint is closer, the lack of resolution of the tex-
ture will be visible), up to the scale where the whole texture
pattern projects on a single screen pixel (if the viewpoint is
farther, aliasing will occur, and several rays will have to be
launched per pixel in such a way that each pattern receive
at least one).

Each voxel stores opacity and a feature controlling the
reflectance function. For each level in the octree, the in-
formation is obtained by filtering (on a way to be defined
later) the equivalent information from the level below. For
compacity, we want to model the reflectance by a parame-
terized family of functions. Such a family needs to have a
group structure: the filtering of eight functions at low-scale
has to be represented by one function of the same family
at larger-scale. This is not directly possible for the func-
tion used in [KK89], namely the function that simulates
the reflectance of a cylinder (because the sum of the re-
flectance of two non-parallel cylinders cannot be expressed
as the reflectance of a mean cylinder). Thus, making the
reflectance function more generic is also necessary in order
to apply the MIP-mapping scheme.

We describe in Section IV how to choose, render and
filter a good reflectance function family, which is the key
point of the method, as this allows to concentrate in a voxel

the average photometric behavior due to smaller scales,
thus making possible the multiscale scheme.

We present in Section V the way to map texels on
surfaces the same way than regular 2D textures, with-
out constraining the mesh (thus extending the Kajiya and
Kay’s [KK89] method, where the mesh is made of bilinear
patches). We also deal there with color encoding. Once
the pattern encoding and the mapping, the kernel of the
representation is complete. This will be the right place to
sum-up our volumetric texture specification.

We sketch in Section VI the whole volumetric textures
rendering scheme.

To turn the representation into a usable tool, we have to
define ways to model the pattern content and to animate
the texels. The animation specification is dealt with in
Section VII. Thanks to the texturing philosophy, modeling
and animation can be described at three different scales:
the geometric scale (related to the underlying surface), the
mapping scale (related to texels deformation), and the mi-
croscopic scale (related to the voxel content), which is the
spirit of the hierarchy of details [Kaj85].

We show in Section VIII how to build a volumetric tex-
ture pattern from various kind of existing geometric de-
scription. Once again, despite the use of an octree which
evokes classical volumetric representation, one has to keep
in mind that the nature of the voxel content makes the
problems quite different.

IV. THE REFLECTANCE MICRO-PRIMITIVE
A. Choosing a primitive

The reflectance primitive to be represented in a voxel
simulates the photometric behavior of the subpixel® geom-
etry which lies in this area of space, and the opacity coeffi-
cient represents the probability for a ray to be stopped. We
require a family of reflectance functions generic enough to
represent the geometry within a voxel, but having few pa-
rameters because they will need to be stored in each voxel.
Particularly, it is convenient to define a 2D normals distri-
bution function (NDF) rather than a 4D BRDF. Moreover,
normals having a geometric nature, this form can also eas-
ily handle modifications of the shape to be represented,
such as deformations (one has just to multiply the normals
by the transpose of the deformation Jacobian). Using a pa-
rameterized family of distributions allows to compress even
more the representation. We have chosen to encode the
normals distribution by an ellipsoid, i.e. we consider the
normals of a given ellipsoid [Ney95b], or to state it another
way, we store the ellipsoid which NDF represents well the
wanted NDF, instead that wanted NDF itself. The BRDF
can be obtained back by integrating the Phong model on
this normals distribution, it’s what will be done at render-
ing time. So our ‘feature’ is this ellipsoid, which purpose
is to encode the reflectance behavior of each voxel.

The subpixel (and subvoxel) geometry, that is the part
of the scene clipped in the voxel, referred here as the ‘local

3i.e. it represents the behavior of the voxel content, which scale is

chosen to fit the size of a pixel once projected on screen.



shape’, is either a small object (e.g. a section of grass) or
a surface element (e.g. a facet). An oriented ellipsoid cen-
tered on origin has only 6 parameters, allowing us to encode
efficiently various kind of local shapes, including planes,
cylinders, spheres, etc. We choose to store as parameters
the two smallest ellipsoid axis, the third one being defined
as orthogonal and having a unit length (the ellipsoid scale
carries no information for our purpose). A quadratic form
corresponds to this ellipsoid, which can be represented by
a 3 x 3 matrix ) (M is on the ellipsoid if M!QM = 1). The
value of the distribution A in direction N is given from Q
by: fo(N) =det(Q")/(N'Q~'N)? (see the proof in Ap-
pendix 1). We will see that we can define the filtering of
this primitive. It is important to remind that our ellipsoid
is not a real object (it has no size or exact location, for
instance), but only a representation for a local distribution
of normals.

To be noted that an ellipsoid is symmetric, while the nor-
mal distribution of an object clipped in the voxel may not
be, especially for large objects for which the voxel mainly
contains a surface element. However the innexisting rep-
resented normals are oriented toward the inside of such
object, so they will not be visible (excepted on the horizon
of the shape at very low resolution, as one can see in Fig.
4). The main limitation of the ellipsoid is of course the few
degrees of freedom it has, which limits its acuity in fitting
details in distributions: if the normal distribution has two
strong peaks (e.g. when summing two facets), the ellipsoid
will simulate a single smoothed one in the middle direction.
Thus details are blurred, this is the price for a compact rep-
resentation. We present in Fig. 18 in Appendix 2 the plots
of the NDF of various ellipsoids.

B. Rendering the primitive

At rendering time, when a ray will go through the vox-
els according to the global rendering scheme described
in Section VI, we will have to cumulate the illumination
and opacity of each visited voxel. We define here how
to compute this ‘atomic illumination’ of an ellipsoid at-
tached to a voxel. The illumination is the ratio of en-
ergy received from a light source and scattered towards the
eye by an object. The ellipsoid we consider here encode
the normal distribution A/(V), which induced illumination

[ o d DN Nd) LN
ig —Hauss where d is the
: N(N)(N.d)I(n.4>0dN
eye direction, () is the local illumination model (we use

Phong) and (N.d) is the visibility?. Because the visibility
of a normal is the same whether it is taken on the ini-
tial shape clipped in the voxel or on the ellipsoid, this is
equivalent to simply integrate the illumination of the ellip-
soid as if it was the shape to be rendered: illumination =
mfempse Y(N(M),d, L)(N(M).d)I(y.450)dS so that

we never need to explicitly use the expression fo(NN). Thus

4]I(emp) is the indicator of the expression exp which is 1 when exp
is true otherwise 0.

Fig. 4. Rendering of a texel containing two spheres. left: resolution
323, right: resolution 1283. Note how each voxel reflects the
light as if the real geometry were there, because of the reflectance
encoding.

we have the illumination of a voxel, which simulates the
subpixel geometry as shown in Fig. 4.

Because integrals on ellipsoids seldomly have a closed
form, we use a uniformly-sampled numerical integration
with 16 samples. The rectangle which bounds the appar-
ent ellipse is easy to obtain: its dimensions correspond to
the eigenvalues of the ellipse quadratic form @', which is
obtained from the quadratic form @ of the ellipsoid and the
eye direction d by Q' = Q — Qdd'Q/d'!Qd . Each sample
on the ellipsoid is obtained by solving the second degree
polynomial corresponding to the ray-ellipsoid intersection
(see Fig. 5) as detailed in [Ney95b].

ellipsoid
apparent ellipse

Fig. 5. Numerical integration of the ellipsoid illumination.

We also use the ellipsoid to estimate the variations of the
opacity depending on the direction. This anisotropic part
is obtained by dividing the apparent surface of the ellipsoid
relatively with its mean apparent surface. The real opacity
is then the mean opacity (stored in the voxel) times this



ratio. The apparent surface is 7 times the surface of the
bounding rectangle computed above. The mean apparent
surface is approximated by the average from the 3 mains
axis r;, i.e. g(’l‘ﬂ“z + rorg + T1T3).

The light arriving at the voxel where the ellipsoid stand
is obtained by launching a shadow ray that is treated the
same way than a regular ray (i.e. it is also a cone). We
use a lower resolution, i.e. a rougher level in the MIP-
map, by multiplying the computed ray aperture by a user-
defined coefficient (usually 2 in our images). This allows to
save computation time (shadow rays volume traversal can
be very important, especially when the sun is low on the
horizon), and also to get easily smoothed shadows, which
is better for the image quality.

C. Filtering the primitive

sum (or mean) of ellipsoids
— in the normal space:

(ie:

@%Q%

normal distributions
of the two ellipsoids.

sum of normal distributions of ellipsoids)

D
CE

is the normal dlstrlbutloﬁ
associated to an ellipsoid.

— in the shape space:
ie: ‘sum’ according to the normal distributions)

N-0-0-0

the shape aSSOClated
with the exact sum of
normal distributions

is an elllp501d

Fig. 6. ‘Sum’ of ellipsoids in the geometric and in the normal spaces.
Maple 2D and 3D plots are available in Appendix 2.

When several child voxels are merged to obtain the av-
erage information for their parent in the octree, one has to
integrate the voxels contents. This is simple in the case of
opacity (we cumulates the values, that represent the mean
opacity®), but not so for the reflectance. Ideally the nor-
mals distributions should be added, but our representation
requires that the result should also be encoded by an el-
lipsoid. We thus need to define the ‘sum’ of ellipsoids in
terms of their normals distributions. This correspond to
finding the quadratic form matrix @) such that fg is clos-
est to fo, + fo, (see [Ney95b] and Fig. 6).

By using a first-order Taylor series approximation, we
can determine that fg is ‘almost-additive’ with respect to
Q™! (we will see below error considerations). We thus de-

5The apparent surface of ellipsoids controls the anisotropic varia-
tion of the opacity, so we expect that the resulting ellipsoid will also
represents not too bad the sum of anisotropic variations.

fine the ‘sum’ of ellipsoids as the ellipsoid for which the
inverse quadratic form is the sum of the inverse quadratic
forms of the contributing ellipsoids: Q! := Q' + Q> .
More precisely, the summed ellipsoids are weighted by their
opacity. The axis of the resulting ellipsoid are recovered
from the eigenvectors and eigenvalues of the quadratic form
matrix (). For two similar ellipsoids separated by an angle
of 8, the error obtained with this definition of the sum is
0(6?) (i.e. we have % — foot+q_, = cst.sin?(6)).
This implies than when there are two perpendicular shapes
in an area of space, there is a significant loss of information
when the whole area is reduced to a single voxel. However
the approximation is quite correct when orientations are
similar within a neighborhood (e.g. blades of grass in a
lawn, or surface elements along a large shape). The plots
of the exact and approximated sums of ellipsoids with var-
ious angles are presented in Fig. 19 in Appendix 2.

V. MODELING THE SCENE BY MAPPING THE TEXELS
A. Mapping specification

The early form of volumetric textures by Kajiya and Kay
had a restricted mapping. The surface was composed of
bilinear patches, which served to define the texel instances.
A height vector defined on each mesh vertex was used to
specify the vertical edges of the 3D patterns, thus allowing
the texels to be aligned and ‘combed’ in a desired direction.

In [Ney96a], we have presented a way to map texels with
the same freedom as for regular 2D textures. We attach
texture coordinates (u, v, w) to each vertex and as well as to
the tip of the height vector® (see Fig. 7). The texture space
is thus independent to the mesh subdivision, although this
complicates the rendering somewhat, as we will see in the
next section.

Our model of volumetric texture is thus defined by:
- a cubic reference volume (the 3D pattern);
- a regular surface to be textured;
a material descriptor (setting the colors, cf V-B);
a height vector on each vertex, which the length gives
the thickness of the volumetric skin;

- a mapping function that define the texture coordinates
on each vertex at the bottom and at the top of the height
vector.

From this point on, we shall refer to a box as the piece of
volumetric skin above a polygon of the surface and bounded
by the height vectors at the vertices. We retain the name
texel for a copy of the reference pattern. Note that for the
[KK89] model, boxes and texels are identical.

B. Colors

The reference volume is a purely geometrical representa-
tion, and therefore contains no color information. A ma-
terial descriptor thus needs to be associated with the vol-
umetric texture, which specifies the Phong parameters to
be used. This is also what is assumed by the early texels

8In our implementation the u and v are constant along this vector,
so that we specify a dw on the vertex rather than extra coordinates
at the top of the height vector.



Fig. 7. Top left: the boxes corresponding to each faces, delimited
by the height vectors on the faces vertices. Bottom left: the
reference volume used. Top right: Kajiya and Kay’s mapping:

one texel fits exactly to one face which is a bilinear patch (for
clarity we have only mapped the middle box). Bottom right: our
general mapping defined by the (u, v, w) at the eight box vertices,
or at the six ones if the face is a triangle (only the middle box is
mapped). We figure isovalues of u, v and w.

models [KK89], [Shi92], [Nom95]. However, it may be not
sufficient to have only one material within the volume: the
user may want to associate different colors to different com-
ponents of the 3D pattern stored in the reference volume,
or even to use some shades of color inside the volume.

We address this problem in two ways. First, we allow for
the superimposition in the same space of several patterns,
each associated with their own material (e.g. green grass
and red flowers). Second, we can also associate classical
color textures with the texels, such as a projected picture
or a solid procedural noise, which define the color at any
location in space. These two modalities are illustrated on
Fig. 8.

C. Mapping jittering

Volumetric textures tend to look too much regular if
mapped using a simple mapping function. In order to in-
troduce some variations, the mapping has to be jittered.
This can be done in one of several ways, depending on of
the constraints occurring for the 3D pattern.

If the texture pattern is continuous (torus topology), one
is restricted to applying a continuous perturbation, such as
that obtained by jittering the texture coordinates, the layer
thickness, or the combing (i.e. the height vectors).Perlin
noise is well suited for this purpose as shown in Fig. 9
top. If the pattern contents do not cross its bounds, there
are few constraints: one can change the pattern content
or color, or rotate move or scale the pattern, etc. This is
illustrated in Fig. 9 bottom.

Fig. 8. Top and left: merging of two volumetric patterns with
different colors. Right: one texel textured with Perlin noise (the
surface is textured with another one). The texels resolution is
1282, The surfaces are not part of the texels. As a remark, the
distorted square inside the right texel is obtained by using w
values that are not parallel to the underlying surface.

Fig. 9. Top: continuous perturbations: jittering of texture coordi-
nates, vectors direction, vectors length. Bottom: discrete pertur-
bations: displacing, rotating, scaling.

VI.

We describe here the global rendering scheme, which
computes the color or each ray, possibly traversing a volu-
metric texture layer mapped upon a surface of the scene.

For a classical texture, three scales are involved in the
rendering process:

- the scene scale determines the surface a ray hits and its
point of intersection (called hit point);

- the texture scale determines the texture coordinates of
the hit point, from its local coordinates within the hit
polygon;

- the local scale computes the color according to a local
lighting model such as Phong, using the parameters ob-
tained from the texture for this point.

RENDERING SCHEME

For the volumetric textures, this scheme becomes a bit
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Fig. 10. Ray traversal inside the volumetric layer, traversing the

boxes, then the texels, then the voxels at the adapted size. The
mapping of the texture space inside the volumetric skin is con-
trolled by the (u,v,w) values at the boxes corners.

more complicated as one obtains a ‘hit segment’ within
the volumetric skin rather than a hit point. In Kajiya
and Kay’s implementation, the local coordinates of the two
ends of the ‘hit segment’ are directly used to transpose the
segment of ray inside the volumetric pattern space, along
which the local illumination is collected. Because of the
high number of voxels in the volume, a stochastic sampling
was done along the ray.

In our implementation (detailed in [Ney96a]), the key ren-
dering steps can be summarized as follows (see Fig. 10):

- the scene level ray-tracing gives an intersection point
on the top surface of the volumetric layer, which serves
as an entry point of the ray cone into a box;

- the box out point is determined (for a triangular face
the associated box is a prism, which the 5 faces are
tested), and will become the entry point into the next
box along the ray (if there is one);

- the entry and out points local coordinates are converted
into texture coordinates, and the ray aperture is used to
compute the ray thickness within the texture;

- the texture space (defined by the (u,v,w) values at the
corners of the box) is tiled with repeated copies of the
pattern, and is thus traversed using a Bresenham-like
algorithm along the (u,v,w) space’;

- we are now in the reference pattern; the ray thickness
is used to select the appropriate resolution in the octree
(more exactly the two bounding resolutions, for which
the results of the voxels shading are interpolated). The
reference volume is traversed along the ray as for classi-
cal volumetric rendering® until the out point is reached
or the cumulated transparency becomes opaque;

"To be noted that the ray should become curved once in texture
space. As long as the curvature is not too high, one can considers that
the ray is still a straight line (as for all the previous volumetric texture
methods). Otherwise, one can take into account this ray curvature, at
least at the box level, by numerically solving the intersection between
the ray and an iso-u (or iso-v or iso-w) of the texture (see [Ney95c]),
which converges very quickly as the curvature is never very high.
Taking also into account the ray curvature inside one texel (i.e. a
tile) would increase the cost too much.

8The octree structure allows to proceed a recursive traversal, rather
than a step-by-step one, by determining for each visited voxel which
child to visit.

- for each voxel, the local illumination is computed using
the reflectance function encoded by the local ellipsoid,
on the way explained in Section IV-B. The local color
(using Phong material parameters) and the local trans-
parency are accumulated with the ray’s current color
and transparency.

Fig. 11. The deformation affects not only the shape but also the
reflective properties. The illumination is not simply deformed as
if it was painted onto the surfaces, because the normals trans-
formation is not the same as the points transformation.

Another important feature, not explicit in [Ney96a], re-
quires careful attention. The normals distribution function
which is encoded by the ellipsoid in each voxel cannot be
used directly in Phong, because of space distortions due
to the mapping. The illumination of a deformed shape is
not equal to the deformation being applied after the il-
lumination has been computed in the undeformed space.
This is illustrated in Fig. 11. This means that the nor-
mals encoded by the ellipsoid in the texture space (i.e. the
undeformed space) cannot be used directly to compute the
illumination. We must first deform this local normals dis-
tribution according to the mapping and then integrate the
Phong model over the distribution [Ney95c]. To do so, we
need the Jacobian J of the mapping transformation, which
consists of a transformation from world coordinates to lo-
cal coordinates and a transformation from local to texture
coordinates. The second deformation is trilinear, so it is
easy to compute. The first is the reciprocal of a trilinear
deformation, and is thus more costly (an iterative scheme
is needed). To avoid an excessive computational cost, we
evaluate this Jacobian only once per box. The quadratic
form 3 x 3 matrix @ to use for the local rendering as de-
scribed in Section TV-B is thus Q = BB, were B = SFJ,
with § = (Tii(s,-j)ij, F= (TiiRij)ij, ri = ||B;|l, B: being
the ellipsoid axis. d;; is the Kronecker symbol which is 1 if
i = j otherwise 0.

VII.

Scenes are potentially animated along the time. Specify-
ing the animation of a complex scene may be as tedious as
its modeling because of the large amount of components.
In this section we propose a convenient scheme for ani-
mating complex scenes modeled using volumetric texture,
following the same multiscaling approach [Ney95a].

One can imagine several ways of animating the volu-

ANIMATING VOLUMETRIC TEXTURES



metric textures, as shown in Fig. 12. For a deformable
surface such as cloth, the texels layer naturally follows the
deformed surface (using the surface normals as height vec-
tors for the texels). Fig. 15 shows a metallic flag animated
using this method.

For a rigid surface, explicit motions can be generated by
a force field acting on the height vectors, thus deforming
the texels. The force field can be for instance a Laplace
field [WH91], a stochastic flow [SF92], or a mass-spring
[TF88] network connecting the tip of the height vectors.
Fig. 16 left shows a lawn under the wind animated by this
way (the force field we use is a mix of a moving periodic
function and a stochastic function).

Successive steps of a simple motion, such as oscillations
of leaves in foliage, can be selected and encoded in few
distinct volumes, cyclically used over time on a cartoon-
like way.

These three methods correspond to three different scales,
much like the three scales used to model complex scenes:
the geometric scale, the mapping scale and the texture pat-
tern scale. A realistic complex object animation would
probably need specifications at these three scales: the fur
on the skin of a running animal follows the deformation of
the animated body, it also makes waves according to ac-
celeration and inertia, and it also likely that hairs locally
oscillate inside the texels. Similarly for a tree in the wind,
the surface of each main branch is geometrically deformed
and consequently the associated bough, foliage waves with
the wind, and leaves locally oscillate inside the texels. If
the user considers that the hairs (or the leaves) should look
the same all along the object (beyond combing and color
that can differ), a single texel can be used per time step.
The local oscillation being approximately cyclical, this can
be encoded in few precomputed texels. The results of these
animations are detailed in Section IX and in [Ney95al.
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Fig. 12. The three ways of animating texels, which are also three
scales of animation specification to be mixed.

VIIIL

To design the 3D pattern, it would be convenient to use
an existing modeling tool then to convert the result into
a volumetric texture. However, this task is not a simple
voxelization in the usual meaning of this word. Since in
our case each voxel contains an opacity and a normals dis-
tribution function.

Conveniently, most existing representations can be con-
sidered primitive-based. It is quite easy to define a sim-
ple primitive by an implicit function corresponding to the
distance to its surface. We can also choose this distance
function such that it is negative inside the shape. Thus
we can determine if a voxel is occupied (and how much)
according to the value of the distance function in its area,
and we can determine the normals from the gradient of
this function. A Warnock-like algorithm can thus draw the
shapes in the octree: if the distance function at a voxel
center is more than the voxel radius, the voxel is clearly
inside or outside the shape, otherwise the voxel is splitted
and each child is tested. For instance, a sphere {C,r} is ob-
tained with the distance function d(M, sphere) = |MC|-r,
which gives the amount of inclusion criterion §(1 — ;—4—)
that is greater than 1 if the voxel is outside the shape, less
than 0 if the voxel is inside, and in the interval [0, 1] if the
voxel contains the frontier (see Fig. 13). If the maximum
resolution is reached, this value is stored as the opacity®.
As a remind, this is a mean opacity, since the ellipsoid that

MODELING A VOLUMETRIC TEXTURE PATTERN
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Fig. 13. Recursive volumetric construction of a shape (figured in 2D)

models the NDF will encode the variations depending on
the viewpoint. Since normals are given by the gradient of
the distance, the ellipsoid can be obtained by fitting its dis-
tribution of this gradient inside the voxel. For efficiency,
in our implementation we only consider the value of the
gradient at the voxel center, which will be used as one of
the axis, and we build the two other axis from an estimated
curvature of the local surface (we know what is the kind of
the primitive currently drawn).

CSG, polygonal meshes, implicit functions, particles sys-

9Strictly speaking, this is a density of occupation. We suppose
it approximates not to bad the average ray occultation. Too small
values for very thin objects are avoided thanks to the bias of our
sampling, such as testing only the distance to the voxel center.



tems and L-systems [FvDFH90], [RB85], [PLH88] can be
considered as primitive-based techniques: these representa-
tions design a shape by combining simple shapes. Respec-
tively, these primitive shapes are a solid, a facet, a skeleton
element, a trajectory segment, and a terminal symbol. For
a megh, for instance, the distance function is simply the
distance between the voxel center and a triangle. We have
detailed in [Ney96a] which distance function to use in each
case (see Fig. 14 top).

Some other representations are truly volumetric, such
as MRI scanner data and hypertextures [PH89], for which
all the voxels have really to be parsed. Fig. 14 bottom
illustrates these cases.

Once a shape is drawn in the octree at the highest res-
olution allowed, a filtering pass is proceeded afterward in
order to compute the multiple lower resolutions of the oc-
tree [Ney95b], using the filtering method described in Sec-
tion IV-C. Finally, a compression pass is done in order
to clean up the octree, deleting empty leaves and constant
areas (that are well represented by the coarser levels). In
total, the construction of the octree needs a few seconds.

Fig. 14. Top: texel conversion of : CSG, L-system, particles systems,
mesh, implicit surface. Bottom: texel conversion of hypertex-
ture (left) and tomographic image (middle); cyclic hypertexture
pattern (right). Texels resolution is 1282, excepted for the car
for which it’s 2562. The memory is 1.3 Mb for the tree, 6.6 for
the rope, 6.5 for the car (it was 11 before the compression pass).
The crane initial data resolution is 64 X 64 x 96. The frames are
part of the texels content, the floor not.

IX. RESULTS

Our implementation has been used to implement several
animations of very complex scenes having up to hundreds
of millions of primitives. They were ray-traced at video
resolution (768x576), with little or no apparent aliasing,
despite the fact that only a single ray per pixel was used.
The computation time was 20 minutes per frame on av-
erage for an SGI Indy with a 200MHz R4400 processor.
It variates from 10 minutes for the flag animation up to
almost 1 hour for the last forest, because of the numer-
ous shadow rays due to the low elevation of the sun (these
shadow rays that cross again the texel layer should be fac-
tored, as a lot of them have the same path). The other
forests needed about 20 minutes. 60 to 70 frames were
computed for the first animations which are cyclical, and
respectively 409 and 323 for the two forests fly-by. The im-
ages and the mpeg animations can be viewed at the URL

http://www-rocq.inria.fr/syntim/research/neyret/
index-eng.html .

The first scene is a waving flag constructed using a
fine lattice of scaffolding, as shown on Fig. 15 left. The
texel containing the scaffolding pattern is shown on the
right. The flag is animated using a non-linear mass-spring
model'®. The texel layer thickens the flag, and continu-
ously follows its deformations.

The second scene is a lawn, shown in Fig. 16 left, cov-
ering a hill made of 1400 bilinear patches. The mapping is
made irregular by jittering the height vectors. Each texel
contains 16 blades of grass, and a few of them also contain
a flower. Two texels are generated, one with the blades (5
Mb) and one with a flower (0.25 Mb). The first is mapped
everywhere (the pattern is cyclical), while the second is su-
perimposed at random locations, using different colors. In
the complete scene there are 22000 blades and 700 flowers.
The blades are generated using parabolic trajectories sim-
ilarly to particles systems, with the cross-section having a
‘V’ shape. A 1283 resolution is used for the reference vol-
ume. The motion is generated by an animated force field
acting on the normals. This field F(M,t) models a gust of
wind combined with a random jittering, translated by the
wave propagation equation [Ney95a].

The third scene shown in Fig. 16 right represents 512
sparse trees in a flat field. The trees are modeled using 6
iterations of an L-system, yielding 2154 branches and 6336
leaves. The reference volume contains one isolated tree.
Because the camera is very close to some of the trees, we
have employed a 5122 resolution. Fortunately the volume
compresses by more than 99.9% thanks to octree represen-
tation that does not encode empty space. A single tree
model is used, and is instantiated in different versions by
changing the size, the orientation, the position and the ma-
terial (i.e. the color). Two texels are generated, one for the
trunk and one for the foliage. Note the continuous transi-
tion between the distant and nearby trees.

The fourth example, shown in Fig. 17 left, is a forest cov-
ering mountainous terrain. 25000 trees are mapped on a
surface with 1404 bilinear patches. The forest is dense and
continuous, so the ‘forest texture pattern’ cannot contains
only a single isolated tree: the reference volume has cyclic
contents, consisting of two trees clipped along the edges
of the cube. Texture coordinates and height are slightly
jittered (not enough, indeed). The trees are observed from
a distant point of view most of the time, but the camera
sometimes gets closer, thus mandating a 256° resolution
for the reference volume. Once again two texels are gener-
ated, one for the trunk (11 Mb) and one for the foliage (18
Mb), in order to tune independently the materials (i.e. the
color). The animation is a fly-by through the valley, pass-
ing very close to the trees when turning back. Note that
the scene contains around 200 millions primitives (branches
and leaves), reproduces fine shadows, gives smooth transi-
tions while zooming, with very little aliasing, using a single

10Thanks are due to Xavier Provot [Pro95] for his flag animation
model.



ray per pixel.

The last scene shown in Fig. 17 right, contains the same
forest pattern applied on another terrain, using more jit-
tering. An important issue for the resulting look is that the
surface!! is made of 12210 triangular faces on which 253
trees lie. On the previous image a patch was covered by
about 18 trees, while here there is one tree per 48 triangles.
Thus in the first case the perturbations defined at the patch
corners were smoothly interpolated along the trees inside
the patch, while in the second case the perturbations vary
inside a single tree because mesh vertices are dense enough
compared to the size of the pattern to precisely define the
texture space. This illustrates that with enough perturba-
tions, any visible characteristics of a regular pattern can
be made to vanish.

X. CONCLUSION

The volumetric texture model that we have presented in
this paper is an efficient representation for complex repet-
itive scenes. Using this representation, it is possible to
ray-trace scenes containing hundreds of millions of prim-
itives in a time (20 minutes) for which usual ray-tracing
techniques achieve the rendering of simple scenes. More-
over the resulting images show very little aliasing artifacts.
Compared to the ray-tracing of classical (i.e. geometrical)
data, we save orders of magnitude in computation once the
ray is in the skin layer, by gaining on 3 issues:

- no oversampling at all to achieve, as the data is pre-

processed;

- no ray hit to test and to sort, as the data is totally

orderer;

- no intersection to compute, as at the finest stage the

voxel data is no longer of geometric kind.

One may also mention that time can also be saved on shad-
ows by using a coarser resolution, which moreover has the
nice effect of smoothing them. On the other hand, the local
shading is more costly (including 16 Phong evaluations).

The model is also a convenient tool to design and an-
imate complex repetitive scenes, using distinct scales of
specification. The modeling scheme is quite similar to reg-
ular texture mapping: the user first models an underlying
surface, then builds a texture pattern that is a cubic sam-
ple of the 3D material to be mapped, and lastly defines
a mapping of the texture upon the surface. The fact that
the texture pattern is a 3D shape rather than a color image
introduces three more issues: the design of the geometry
in the reference volume, its color, and the extra degree of
freedom provided by the ‘combing’ of the texture. The
scene and animation design is thus greatly simplified, as
long as the constraints inherent with mapping approaches
and space deformation tools apply to the user goals.

We provide two key contributions with respect to Ka-
jiya and Kay’s early volumetric texture method. First, our
reference volume representation allows for the rendering
efficiency stated above. Second, our tool is complete, lead-
ing to the workflow summarized in the previous paragraph.

U Thanks are due to Pascal Fua for his real terrain data.

Our representation is multiscale, and contains an opacity
and a reflectance function in each voxel at each level of the
octree. This reflectance function is encoded by a normals
distribution function, itself encoded by an ellipsoid repre-
sented by 6 parameters. We have explained how to filter
this data, and how to compute its illumination. At render-
ing time, the appropriate resolution of the octree is used.
Our method has fewer mesh restrictions, and allows the
mapping specification to use regular texture coordinates.
It provides solutions for animating the complex object, to
bring shapes into the reference volume, and to specify the
colors.

Complex repetitive scenes are quite easy to model and
relatively inexpensive to render in this framework. Anima-
tions are affordable to compute, even for a simple test. This
may also alter the user behavior: complex layers can now
be used quite systematically upon surfaces, and numerous
trials can be performed to tune complex scenes. An in-
teresting property is the approximately constant-time ren-
dering of volumetric textures: distant points of view show
numerous texel instances with low resolution, while near
points of view show few texels in full detail. This is linked
to the idea that the rendering cost now corresponds to the
visual complexity, rather to the geometrical complexity.



Fig. 15. A scaffolding flag. Right: The corresponding texel.

Fig. 16. Left: a lawn under the wind. Right: an orchard.

Fig. 17. Two forests.



XI. APPENDIX 1

We sketch here the proof that the normal distribution of

an ellipsoid centered at origin and characlterized by a3 x3
. . _ _det(Q7)

matrix @ is N (N) = fo(N) = QN

By construction, a point M is on the ellipsoid if
M'QM = 1.
The normal to the ellipsoid at point M is got from the
gradient of the bilinear form M!@QM, hence

N = QM
QM|
So N'Q !N = , which implies that QM =
o TanT? P ¢
—  and M.N = /NtQ-1N
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Thus we have
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Another remark is that for any two vectors v and w,

=M M

Q71
det(Q™1)
where X is the cross product.

By definition N'(N) = ||%%||, N being associated to a
surface element dS on the Gaussian sphere, and M depend-
ing of N (i.e. M is the location on the ellipsoid where the

normal is N). If N is indexed by the polar coordinates 6
and ¢ on the Gaussian sphere, one has

QuxQuw= (v x w) (2)
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——df x —d
o Vx5 ™ 3
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Using 1, we can observe that
oM _ 19 ON
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Thus by expanding %—]g and 96

in 3 using 4, then
using 2, one get!'?

oM _
05 —

factoring Q1

N
det(Q)(N'Q"N)*

As ||N|| = 1, by computing the norm ||%—]g|| we get the
result N'(N)
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Fig. 18. Normals distribution function (NDF) of various ellipsoids.
The radius are, from top to bottom: 1x1x2, 1x2x2, 1x2x4. To
be noted that the absolute size has no meaning: each distribution
has to be normalized so that the integral is 1 (thus the NDF can
be seen as the probability to get a normal in a given direction).

Fig. 19. Sum of ellipsoids, considering their NDF. Top: superimposi-
tion of the NDF of two 1 x 2 X 2 ellipsoids separated by a 37/16
angle. Middle: sum of these two NDF. Bottom: our approxima-
tion of this sum, that is the NDF of the ellipsoid associated to the
matrix (Ql_1 + Qz_l)—l, with @; the 3 X 3 matrix associated to
the ellipsoid 4 (if the ellipsoid is parallel to the canonical frame,
the diagonal of this matrix contains the inverse of the squared
radius).



Fig. 20. zy slice of the NDF at z = 0 (apart the scale, this slice is the
same for any value of the radius along z). The ellipsoids NDF
are in grey, their sum is in black, our approximation is dashed.
The angle between the ellipsoids is w/8 of top, 3w/16 on middle,
/4 on bottom. The approximation is worst for a /2 angle, as
it would be a circle while the real sum is a quadripolar curve.
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