

Graphics, Visualization & Usability Center
College of Computing
Georgia Institute of Technology

Compressed Progressive Meshes

Renato Pajarola and Jarek Rossignac

Technical Report GIT-GVU-99-05 January 1999

Compressed Progressive Meshes

Renato Pajarola and Jarek Rossignac
Graphics, Visualization & Usability Center

Georgia Institute of Technology

Technical Report GIT-GVU-99-05

Abstract

Most systems that support the visual interaction with 3D models use shape repre-
sentations based on triangle meshes. The size of these representations imposes limits on
applications, where complex 3D models must be accessed remotely. Techniques for sim-
plifying and compressing 3D models reduce the transmission time. Multi-resolution for-
mats provide quick access to a crude model and then refine it progressively.
Unfortunately, compared to the best non-progressive compression methods, previously
proposed progressive refinement techniques impose a significant overhead when the full
resolution model must be downloaded. The CPM (Compressed Progressive Meshes)
approach proposed here eliminates this overhead. It uses a new “patching” technique,
which refines the topology of the mesh in batches, which each increase the number of
vertices by up to 50%. Less than 4 bits per triangle encode where and how the topologi-
cal refinements should be applied. We estimate the position of new vertices from the
positions of their topological neighbors in the less refined mesh using a new estimator
that leads to representations of vertex coordinates that are 50% more compact than pre-
viously reported progressive geometry compression techniques.

1. Introduction

Although many representations have been proposed for 3D models [Ros94], polyhedra (or more pre-
cisely triangular meshes) are the de facto standard for exchanging and viewing 3D data sets. This
trend is reinforced by the wide spread of 3D graphic libraries (OpenGL [NDW93], VRML
[CBM97]), and of 3D graphics adapters for PCs that have been optimized for triangles. Therefore,
triangle count is a suitable measure of a model’s complexity. Common representations of triangu-
lated meshes usually store the coordinates of each vertex as 3 floating-point numbers per vertex and
the incidence relation between triangles and vertices as 3 integer vertex-references per triangle. Such
a simple representation requires 18 bytes per triangle (there are roughly twice more triangles then
vertices in a typical model), not counting color and texture information.

The complexity of 3D models in CAD, AEC, GIS, and medical applications has been rising
steadily, fueled by the improvements in interactive 3D design tools, in data acquisition technologies,
and in the storage, processing and graphics capabilities of personal workstations. Early designers and
scientist were deliberately limiting the accuracy of their data sets to what could be stored and manip-
ulated on their workstations. Today, the more complex models used by the automotive, aerospace,
construction, petroleum, and architecture industries contain millions or even hundreds of million tri-
angles. Their complexity will continue to increase rapidly in response to a need for higher accuracy
during analysis, planning, and inspection.

The internet and the intranet provide a convenient medium for posting 3D databases on-line for
general or restricted access. However, users who need to access these databases are often equipped
with personal computers and standard telephone line connections. They do not have enough storage
to locally cache all the models they wish to interact with and lack automatic consistency mainte-

Introduction

2

nance procedures for keeping such local copies updated. Consequently, most PC users must down-
load the 3D models each time they wish to inspect or use them. A transmission cost of 18 bytes per
triangle over a 56kbauds line implies a transmission rate of 400 triangles per second, or equivalently
only 1.5M triangles per hour.

Because the exact representation of the visible geometry is not always required to produce an
image of sufficient accuracy for navigation or inspection, geometric simplification and compression
techniques may be invoked to reduce the transmission and rendering time. Geometric compression
reduces the number of bits used to encode a geometric model. Simplification techniques reduce the
number of triangles in an object’s representation, and may be viewed as a form of lossy compression.
Progressive transmission permits to first send a coarse model and then send information sufficient to
refine the representation of the entire model or of specific features of the model.

This paper introduces several novel techniques, which significantly improve upon previously
reported compression and progressive transmission approaches [Hop96, TGHL98, LK98]. The com-
parison of progressive transmission solutions often involves subjective (visual) criteria and may not
be safely reduced to the comparison of a single scalar measure. We suggest the use of error/time
curves (Figure 1), which express how the accuracy of the model increases with time, or more gener-
ally with the total number of transmitted bits. For simplicity, we assume that it takes

a

 bits to trans-
mit the crude model in all cases shown in Figure 1 left.

FIGURE 1.

Accuracy vs. time in progressive transmission

Non-progressive approaches are often unacceptable, because they require the user to wait a long
time before the entire model is decoded. A simple alternative would be to precompute a crude model,
send it first, and then send the full resolution model independently, not taking advantage of the infor-
mation received as part of the crude model. The user may start navigating the crude model immedi-
ately, but will have to wait more than the full transmission time of the complete model to see a more
accurate resolution. For reference, this approach is shown by the dashed blue curve in Figure 1 left,
the crude model is used until a full resolution model is received at time

c

.

Fine-grain compression techniques, which refine the model by inserting one vertex at a time may
offer increasingly better accuracy early on, but require significantly longer to reproduce the full reso-
lution model, and thus tie up the communication channel for longer than needed. The green curve in
Figure 1 left shows an ideal fine-grain progressive transmission, which immediately starts improving
the crude model, but takes much longer (

e

 bits) than a non-progressive technique to download the
entire model. This penalty results from the overhead of encoding the refinement steps individually.

0

100

200

300

400

500

0 50000 100000 150000

approximation

time (bits transmitted)

better
ab c d e

error

worse

error

bits

Prior art

3

Techniques that group refinements into batches strike an optimal compromise. Although the
accuracy remains constant while the next batch of upgrades is received and decoded, the overall
waiting time is reduced, because batched upgrades may be compressed more efficiently than individ-
ual upgrades. In Figure 1 left, the red staircase curve illustrates the approach presented in this paper,
which groups the refinements in batches, and hence achieves a better compression. This technique
may at times show higher error values than the fine-grain one, and take slightly longer to download
the full model than a non-progressive approach. Still it offers the best compromise.

The novel techniques introduced here encode each batch of refinements more efficiently than
previously reported solutions [TGHL98, LK98]. As a result, they provide a whole series of accuracy
refinements with little or no effect on the overall transmission time for the full resolution model,
when compared to previous single-resolution compression techniques [Dee95, TR98, GS98]. The
actual error curve produced by the CPM method for the

Bunny

 model of Table 1 is shown in Figure 1
on the right in red.

The following section reviews the relevant prior art in geometric compression and progressive
refinement. Then we provide a short overview of the CMP technique in Section 3. Next follow
detailed descriptions of the CPM format (Section 4), of the compression algorithm (Section 5), and
of the decompression process (Section 6). We analyze the storage cost in Section 7, and discuss our
experimental results in Section 8. Finally, the paper is concluded with a summary in Section 9.

2. Prior art

We distinguish between loss-less, lossy, and progressive compression. Previously reported loss-less
compression techniques include:

•

A bit-efficient encoding of the connectivity graph, which captures triangle-vertex incidence
from which other incidence and adjacency relations may be derived. See for example
[Dee95, TR98, GS98, TG98]. A more comprehensive survey may be found in [Ros98] and
in [TR98b]. In practice, these approaches produce a compressed format with less than 2 bits
per triangle for the connectivity information alone.

•

A predictor-based compression of the vertex locations: These solutions encode the correc-
tions between the actual and the estimated location of each vertex. If the predictions are
accurate, the corrective vectors are short and their integer coordinates may be efficiently
encoded using entropy coding [Huf52, CNW87]. In [TR98] each vertex is predicted using a
linear combination of its ancestors in a vertex spanning tree. In [Hop96], if a vertex

v

 is split
into an edge,

v

 is used as a predictor for the two ends of the new edge. The approach in
[TG98] constructs a chamfered parallelogram to estimate the location of the free vertex of a
new triangle that is adjacent to a known triangle.

Additional compression may be achieved through the following lossy approaches:

•

Vertex locations may be quantized by expressing the vertex coordinates as

k

-bit integers in a
normalized coordinate system derived from a minimum axis-aligned bounding box [Dee95,
PH97, TR98]. The origin is placed at one vertex of the box and the units are selected so that
the all coordinates span the range . The choice of

k

 is dictated by the absolute preci-
sion required by the application and by the size of the bounding box. Often

k

 may be kept
below 12 [Dee95, THLR98], which makes the entropy coding of the corrective vectors, dis-
cussed above, very effective, bringing the vertex location storage to about 12 bits per vertex
for uniform tessellations of smooth surfaces [THLR98].

0..2k[]

Overview

4

•

The mesh may be simplified by coalescing vertices [RB93], by decimating them [SL96,
SZL92], or by collapsing edges [HRD

+

93, RR96, GH97]. A more complete discussion may
be found in [HG97]. Most of these techniques remove vertices one at a time in an order that
attempts to maximize the accuracy of the approximating model at each stage. Saving inter-
mediate results generates a series of approximations at several levels of detail. The differ-
ences between the various techniques lie principally in the error metric they use.

When the bandwidth precludes the transmission of the full resolution model, a crude model may
be used initially, and then refined when necessary by downloading higher levels of detail [FS93] or
by downloading upgrades which contain information sufficient to refine the current model. Refine-
ments [Hop96, XEV97] which insert vertices one at a time, provide a fine-grain control of the accu-
racy and support view-dependent (non-uniform) refinements. However, this flexibility limits the
compression ratio significantly and such progressive models require about 13 bits per vertex to
encode the mesh connectivity. Grouping refinements into larger batches reduces the flexibility, but
results in an economy of scale. For example, the

Progressive Forest Split

 (PFS) technique
[TGHL98], cuts the triangulated surface at a subset of its edges. The connected components of the
cuts open up to become the boundaries of holes. The cuts and the internal triangulations of these
holes may be encoded efficiently using the Topological Surgery compression [TR98]. The amortized
connectivity encoding takes 10 bits per vertex. The geometry is encoded with about 30 bits per ver-
tex.

Because simplified models are crude approximations of the original model, their vertices may be
quantized with fewer bits without significantly increasing the geometric error. Thus, upgrades should
combine mesh refinements and the encoding of the higher precision bits for vertex coordinates
[LK98].

3. Overview

The CPM approach introduced here is based on the notion of a global upgrade. As in

Progressive
Meshes

 (PM) [Hop96], a crude model is transmitted first and then refined progressively through a
series of vertex splits, which are the inverse of the edge collapse operations introduced in [HRD

+

93],
see Figure 2 for an example.

FIGURE 2.

Edge collapse and vertex split

The cost of encoding each vertex split operation in the Progressive Meshes approach [Hop96]
has three components:

1.

 bits are needed to identify the vertex

v

 to be split, where

n

 is the number of previ-
ously recovered vertices.

2.

 bits are used to identify two amongst all the

x

 edges incident upon vertex

v

.

3.

31 to 50 bits are used to encode the displacements of the new vertices with respect to

v

.

The CPM approach, based on several original research contributions, improves on all three com-
ponents:

edge collapse

vertex split

n()2log

x x 1–() 2⁄⋅()2log

CPM format

5

1.

We group the vertex splits into batches, which each split about 50% of the previously
decoded vertices. We traverse the triangulated mesh, and specify split-vertices by marking
vertices with one bit only instead of naming them explicitly as it was done in [Hop96]. The
amortized cost of the marking is less than 3 bits per vertex for the transmission of the entire
model – compared to more than 10 bits needed by the PM approach when compressing an
average model. In [SvK97] a triangle-tree traversal is used to avoid expensive point location
tests for incremental 2D Delaunay triangulations, whereas in CPM a vertex-tree traversal is
used to reduce the storage space needed to specify progressive refinements in 3D meshes.

2.

We encode the identifiers of the two cut-edges for each split-vertex as a choice of two out of

d

 incident edges. This method requires less than 5 bits per split-vertex on average.

3.

We use a novel prediction for the displacement of the new vertices. It reduces the average
length of the corrective vectors and results in a compressed format of less than 20 bits per
vertex location (for 10 bit coordinate quantization). Our vertex displacement prediction
could be viewed as a reverse variant of the edge-split

Butterfly subdivision

 scheme [DLG90,
ZSS96].

In order to reduce the total cost of marking the split vertices, we seek to maximize the ratio of
split-vertices at each batch. On the other hand, we must ensure a clear separation of the different cut-
edges, so that each pair – belonging to a vertex split – may be encoded without ambiguities with a
minimum number of bits. Our solution, detailed in Section 5.1, is the most effective compromise
amongst all the variations that we have considered.

As a result, the CPM format takes 50% less storage than the PM format. In fact, our experimen-
tal results show that, thanks to the combination of the three new techniques mentioned above, the
CPM format is competitive to previously reported

non-progressive

 compressed formats [TR98,
TG98, GS98, Dee95]. Thus the benefits of progressive refinements come at little or no additional
cost.

The CPM method compares favorably with other progressive transmission schemes. For exam-
ple, the PFS experiments in [TGHL98] report 10 bits per vertex for the connectivity and about 30
bits or more per vertex for the geometry, which correspond to respectively 25% and 50% larger stor-
age or transmission costs than our CPM format. Similarly, [LK98] requires bits per vertex
for connectivity, which is 50% more than our CPM format for average meshes.

4. CPM format

The CPM compressed format is organized as follows. The crude model,

M

0

, is stored using a single
resolution compressed format [Ros98]. The vertex geometry in

M

0

 is stored at a reduced resolution
optimized for

M

0

 using [LK98].

M

0

 usually contains 5% to 10% of the number of triangles of the
entire model. The second part of the CPM format contains the missing least significant bits of the
vertex coordinates of

M

0

. (For simplicity, we chose not to implement the full progressive coordinate
encoding scheme by [LK98].)

The third part of the CPM format contains the sequence of the refinement batches. These may be
downloaded systematically, or only when needed, and create the sequence of increasingly precise
approximations

M

1

,

M

2

, …,

M

∞

. For instance, if the model’s screen representation remains small,
only

M

0

 may be needed. Each batch

M

i

→

M

i

+1

 includes the split-vertex marking bits in

M

i

, the cut-
edges encoding for every split-vertex, and the entropy encoded prediction correction vectors of the
split-vector.

n 6+()2log

Compression algorithm

6

5. Compression algorithm

5.1 Batched simplification

The full resolution mesh,

M

∞

, is simplified in batches, creating a series of meshes

M

∞

,

M

∞

-1

, …,

M

i

+1

,

M

i

, …,

M

1

,

M

0

of decreasing accuracy. The simplification stops at a crude model

M

0,

when a
given error threshold or mesh complexity is reached. This model

M

0

is then used as the initial base
mesh for reconstruction, and encoded using an efficient single-resolution mesh compression method,
such as [Ros98, TG98, TR98]. In each simplification batch

M

i+1 → Mi, the number of triangles is
decreased by . The ratio τe denotes the fraction of edges of Mi+1 that can be collapsed in
the same batch.

Figure 3 shows three out of the eight different levels of detail produced by the CPM method,
where the triangles inserted by the previous refinement batch are indicated in red. The batches are
created by the CPM compression process by selecting, at each batch about 11% of the model’s
edges, by collapsing them, and by encoding the information necessary to reverse these steps.1

FIGURE 3. Batches of edge collapses

To optimize coding, CPM attempts to maximize the selection ratio τe of collapsed edges. How-
ever, to be able to uniquely identify independent vertex splits in the refined mesh Mi, the following
two restrictions for collapsing edges in Mi+1 must be fulfilled:

• at most two vertices may be collapsed into one
• at most two edges may be collapsed into one

These two restrictions are depicted in Figure 4. To prevent the simultaneous collapse of three
vertices, no edge incident to one that will be collapsed can itself be collapsed in the same batch.
Additionally, to avoid collapsing three edges into one, no face-adjacent triangles of the collapsed tri-
angles may be part of another edge collapse in the same batch.

As a result, in the simplified mesh Mi a split-vertex will yield a single edge, and no cut-edge is
used for more than one vertex split.

1. Collapsing 11% of the edges reduces the number of vertices by 33% because there are about three times more edges than vertices.
A 33% reduction during simplification results in a 50% relative increase during refinement.

3 τe Mi 1+⋅ ⋅

Compression algorithm

7

FIGURE 4. CPM edge collapse restrictions

To achieve good approximations at each stage, the CPM method uses an error metric to evaluate
the error introduced by every single edge collapse. However, the CPM approach is independent of
the error metric which may be selected so as to satisfy the application requirements. The error metric
used in our current implementation is discussed in Section 5.4. Based on that error metric, the CPM
method selects a subset of the less expensive edges that do not violate the two constraints defined
above. These will be collapsed in the next batch. Different selection strategies might be applied to
achieve an optimum with respect to the approximation error introduced per batch. In fact, the batch-
wise processing of simplifications in CPM cannot anymore guarantee the same order as proposed in
[Hop96] or [GH97].

Without maintaining a dynamic heap of collapsible edges based on the approximation error, the
current CPM implementation greedily selects edges in increasing error order, as long as they do not
conflict with the topological restrictions mentioned above. Maintaining a heap is not necessary
because all affected edges are incident to an edge collapse and cannot be collapsed within the same
batch, see also Figure 4. Thus it is both necessary and sufficient to compute the approximation errors
and sort the edges accordingly after every batch. One can also avoid the sorting by selecting edges
iteratively with increasing threshold until no more can be selected due to topological restrictions.
Choosing a good initial and incremental threshold will result in few iterations.

All selected edges are collapsed to their midpoint.

5.2 Connectivity coding

The encoding of the connectivity information needed to restore Mi+1 from Mi can be summarized as
follows:

• We construct and traverse a vertex spanning tree of Mi and mark vertices that are the results
of an edge collapse. For every marked split-vertex v, we encode its cut-edges as follows:
1. We compute the indices of the two cut-edges in the sorted list of the incident edges on v,

clockwise, starting with the edge from v to its parent in the vertex spanning tree
(Figure 5).

2. Given the degree d of the split-vertex in mesh Mi, the two edge numbers are identified as
one possible choice out of for selecting the cut-edges, we encode this choice using
exactly bits.

Since the degree d of a split-vertex in Mi is known by the encoder and the decoder, Step 2 can use
a table look-up mechanism for the conversion between the two cut-edge numbers and the index out
of . The variable length coding of CPM uses exactly bits to encode such a pair of cut-

prohibited for simultaneous collapse

selected edge collapse
face-adjacent triangles

d
2 

 
d
2 

 
2log

d
2 

  d
2 

 
2log

Compression algorithm

8

edges in Step 3. Figure 5 illustrates a vertex spanning tree (thick black and red lines) and the corre-
sponding vertex enumeration order. Four vertices are marked as split-vertices (7, 10, 13 and 15). The
corresponding cut-edges are drawn in red. The two cut-edges of a split are identified by a pair of
numbers as explained above. For example, 0 means that the first cut-edge is the edge to the parent in
the tree.

FIGURE 5. CPM vertex split encoding

5.3 Geometry prediction and coding

To complete the compression we encode the geometry coordinates of the original vertices of the col-
lapsed edges. In CPM we apply the prediction error coding model used for image compression
[Kou95] to 3D geometry coordinates. The basic idea is to predict an unknown vector from known
vertices and to encode the prediction error. The decompression process uses the same prediction and
reconstructs the correct vector by applying the decoded correction.

1. We estimate the originally collapsed vertex locations by A’ and B’, based on the split-vertex
V and cut-edges e and f in mesh Mi.

2. We calculate the prediction correction vector between the estimated and
actual vertex locations, see Figure 6.

3. We encode E using an entropy coding scheme.

FIGURE 6. Geometry prediction

CPM uses a prediction method inspired by the Butterfly subdivision [DLG90, ZSS96] to estimate
the original non-collapsed vertex locations. The basic idea of the method is that a vertex A can be
approximated by a linear combination of its immediate neighbors ai, with topological distance 1 on
the triangulation graph, and the vertices cai at topological distance 2 as shown in Figure 7. The
approximation A’ of A is:

(EQ 1)

2

3

4

5

6

7

8

9
10

11

12

13

15

16

17

18
14

cut-edges

1
{0,2}

{1,4}

{0,2}

{2,4}

split-vertex numbering

E BA B'A'–=

edge collapse

vertex split

A’

B’

e f
V

A

B

Mi+1 Mi

A' α=
aii 1=

k∑
k

------------------⋅ 1 α–()
caii 1=

k∑
k

---------------------⋅+

Compression algorithm

9

Specifying a value of less than 1 for the parameter α denotes a weighted averaging between the
two crowns, and a value of more than 1 expresses an extrapolation based on the difference between
the two crowns for estimating A. The value of α is computed for each model and is consistently close
to 1.15.

FIGURE 7. Vertex prediction

Using the vertex prediction model of Equation 1 and the notations of Figure 8, we can combine
this prediction formula for the two original vertices A and B of an edge collapse and estimate them
as:

(EQ 2)

(EQ 3)

Based on the collapsed vertex and the split-vector , we have
 and . Therefore, we can express both Equations 2 and 3 in terms of an esti-

mated split-vector D’. To simplify the expressions, we introduce and
 (for SB and CB respectively). Thus using D, Equations 2 and 3 can

be rewritten as:

(EQ 4)

(EQ 5)

A

a1

a2

ai-1

ai

ai+1

ak-1

ak

ca1

ca2

cai-1
cai

cai+1

cak-1

cak

A' α=
aii 1=

ka∑ v1 v2 B'+ + +

ka 3+
--⋅ 1 α–()

caii 1=

ka 1+
∑ b1 bkb

+ +

ka 3+
--⋅+

B' α=
bii 1=

kb∑ v1 v2 A'+ + +

kb 3+
---⋅ 1 α–()

cbii 1=

kb 1+
∑ a1 aka

+ +

kb 3+
--⋅+

V A B+() 2⁄= D B A–=

A V 0.5D–= B V 0.5D+=

SA aii 1=

ka∑ v1 v2+ +() ka 3+()⁄=

CA caii 1=

ka 1+
∑ b1 bkb

+ +() ka 3+()⁄=

V 0.5D'– α SA
V 0.5D'+

ka 3+
-----------------------+ 

 ⋅= 1 α–() CA⋅+ 0.5– D⋅ 'A⇒
ka 3+() 1 α–()CA αSA+() α ka 3––()V+

ka 3 α+ +
---=

V 0.5D'+ α SB
V 0.5D'–

kb 3+
-----------------------+ 

 ⋅= 1 α–() CB⋅+ 0.5 D'⋅ B⇒
kb 3+() 1 α–()CB αSB+() α kb– 3–()V+

kb 3 α+ +
---=

Compression algorithm

10

FIGURE 8. CPM Butterfly prediction

At decompression time everything is known but the split-vector D, for which we want to have a
short encoding. Based on the estimates A’ and B’, Equations 4 and 5 provide two different predic-
tions for D’: D’A and D’B,. Therefore, we estimate , , and thus

. Since D’ is known at compression and decompression time, we can encode the
prediction error only. At decompression, D is reconstructed by adding the decoded cor-
rection vector E to the estimate D’.

One can observe that prediction errors have a probability distribution that decreases exponen-
tially with the absolute value of the prediction error. We approximate the actual prediction error his-
togram with a Laplace probability distribution:

For symmetric error distributions, the mean µ is 0, and the variance υ uniquely defines the
Laplace distribution. For each batch of vertex splits the variance of the prediction errors,

, is computed and encoded with the compressed batch. The mean predic-
tion error µ is assumed to be 0.

Given this probability distribution, entropy coding methods compress the quantized coordinate
prediction errors. Based on the variance υ and the probability distribution L(x), we compute a Huff-
man code [Huf52] for each batch to compress the corresponding prediction errors. In contrast to
other geometry compression approaches, CPM does not store the complete Huffman coding table for
each batch, but only the variance value υ. This is sufficient for the decompression algorithm to
reconstruct the required Huffman coding table.

The CPM experiments in Section 8 demonstrate that this prediction error coding model indeed
produces short codings for the geometry coordinates of the tested models.

5.4 Error metric

Most attempts at estimating the error that results from using approximations to nominal shapes for
graphics are either limited to view-independent geometric deviations [RB93, HRD+93, KT96,
GH97] or to heuristic measures focused on preserving image characteristics, such as the location of
silhouettes or highlights [Hop97, LE97]. In the current CPM implementation we chose to use a vari-
ation of the Quadric Error Metrics [GH97], enhanced by a normalization factor for every error quad-
ric – the number of planes.

A

B

V

a1

a

b1

bi
b

v2

v1

ca1

cai

ca

cb1

cbi

cbi+1

cbkb+1
kb

ka+1
ka

A' V 0.5D'A–= B' V 0.5D'B+=

D' 0.5 D'A D'B+()=

E D D'–=

L x() 1

2υ
-----------e

2
υ
--- x µ––

=

υ Ei µ–()2
i

Ei batch∈
∑ batch⁄=

Decompression algorithm

11

6. Decompression algorithm

The decompression algorithm performs the inverse operations of the compression process to recon-
struct the sequence of meshes M0, M1, …, M∞−1, M∞. Geomorphs [Hop96] may be used to eliminate
the popping effect of each update. Therefore, at the beginning, prior to the actual CPM method, the
base mesh M0 is decompressed. Thereafter, the individual refinement batches Mi → Mi+1 are decom-
pressed from the CPM file as needed. In each batch, the number of triangles is increased by
on average. The decompression builds a vertex spanning tree of Mi and uses the same vertex traversal
order as the compression algorithm to read and process the CPM vertices. Within each batch, the fol-
lowing steps are performed for every visited vertex in the vertex tree traversal of Mi:

• Read bit of CPM data. If 0, the vertex is not marked to split. If 1, the vertex has to be split,
and we extract the additional vertex split information as follows:
1. Read bits of CPM data, where d is the degree of the current marked vertex in

Mi and use these bits to identify the corresponding two cut-edges in Mi.
2. Decompress the prediction error vector E from the CPM data and use it to estimate the

split vector D’ in Mi using Equations 4 and 5. We use that vector to reconstruct the cor-
rect split vector as for the current split-vertex.

Note that in Step 1 all cut-edges are numbered with respect to mesh Mi. Therefore, the actual
mesh refinements of one batch have to be performed only after all cut-edges of that batch have been
identified in Mi.

At the beginning of each batch, the variance υ is read from the CPM data, and the corresponding
Huffman table is constructed in the same way as in the compression algorithm. Using that Huffman
code, the prediction errors E can exactly be decompressed in Step 3.

7. Amortized storage cost analysis for connectivity

We want to express the number of bits used to encode the connectivity of a triangle mesh as a func-
tion of the size of the final mesh. For this, we first consider only one batch of refinement steps that
increase the number of triangles from in the coarser model to in the finer model. Assume
that, in each batch, we can select vertices to be split, thus we have . Fur-
thermore, to encode such a refinement we need bits (B bits per triangle in Mi), which means

 bits per triangle in Mi+1.

Now we can examine a sequence of refinement batches, each of which increases the number of
triangles by a factor of 1 + τv. Expressing the overall cost based on the finest mesh M∞ we derive the
following recursive cost function:

.

This recursive cost function can be rewritten as a geometric sum with , as:

.

When the number k of refinement batches is large and because , this cost can be bounded as
follows:

(EQ 6)

τv Mi⋅

d
2 

 
2log

D D' E+=

Mi Mi 1+

τv Mi⋅ Mi 1+ 1 τv+() Mi=

B Mi⋅
B 1 τv+()⁄

C M∞() B M∞ 1–⋅ C M∞ 1–()+ B
M∞

1 τv+
-------------- C

M∞

1 τv+
-------------- 

 += =

δ 1 1 τv+()⁄=

C M∞() Bδ M∞ Bδ2 M∞ …+ + Bδ M∞ 1 δ δ2 …+ + +() B δ M∞
δk 1–
δ 1–
--------------⋅= = =

δ 1<

C M∞() B
δ

1 δ–
----------- M∞⋅≤ B

1
τv
---- M∞⋅=

Experimental results

12

Therefore, the overall cost to transmit a series of refinement batches can be expressed as
bits per triangle. Thus the coding scheme depends strongly on the fraction τv of split-vertices that are
selected in every batch, and on the encoding of one single batch expressed as B bits per triangle of
the batch’s input mesh.

The relationship of split-vertices in the coarse mesh Mi to the corresponding edge-collapses in
the refined mesh Mi+1 can be expressed as and . For example:

,

,

.

Considering the simplified mesh Mi and the corresponding vertex split operations, one can
observe that an independent set of vertices in Mi is always a valid result of a set of independent edge
collapses in Mi+1 (see also Figure 4). Therefore, the 4-coloring theorem of planar graphs provides a
lower bound for the ratio of simultaneous vertex splits in Mi, and thus also for the ratio

 of edge collapses in Mi+1.

Given the vertex split selection ratio τv the overall cost for transmitting the connectivity informa-
tion of one batch is one bit per vertex, and bits for every vertex split, thus

 bits per triangle in Mi. Using Equation 6 to calculate the amortized cost,
and expressing the cost as bits per triangle in the full resolution mesh M∞, CPM achieves the follow-
ing connectivity encoding cost per triangle:

For practical situations our experiments have shown that is less than 5 bits on average,
and that split ratios of are achievable. Overall, the experiments show that CPM can encode
the connectivity of the complete mesh M∞, including all intermediate incremental meshes M0, …,
Mi, …, M∞ in about 3.5 bits per triangle of the original mesh M∞.

8. Experimental results

In all the experiments presented in this section the base mesh M0 is encoded using the Edgebreaker
coding method [Ros98]. Therefore, we use 2 bits per triangle to encode the connectivity, and 3 times
the number of quantization bits per vertex for the coordinates without using any geometry compres-
sion. In the tables, we use the notation C / ∆ and G / ∆ to denote the number of bits needed per trian-
gle for connectivity and geometry. The different meshes that result from incrementally applying the
CPM refinement batches, starting with the base mesh M0, are also called levels of detail (LODs).

Examples for a selection of different models and LODs, produced by the CPM method, are pre-
sented in Figures 9 and 10.

Table 1 shows the detailed coding and compression results of the CPM method, applied to a
Bunny model with 4833 vertices, quantized to 10 bits per coordinate. The CPM simplification was
stopped at a base mesh M0 containing approximately 5% of the number of input vertices. With selec-
tion ratio of on average, the CPM method generated a sequence of 10 refinement batches.
The rows Mi → Mi+1 show the number of new vertices per batch, the connectivity and geometry bits
per batch, and also per triangle. Row M10 presents the cumulative costs of the CPM method (includ-
ing all batches and M0). The CPM representation requires 3.6 bits per triangle for the bunny and
between 3.5 to 3.7 bits per triangle for other models for encoding the connectivity. The vertex coordi-

B τv⁄

τv 3τe 1 3τe–()⁄= τe τv 3 3τv–()⁄=

τe 1 15⁄= τv 1 4⁄=⇔

τe 1 12⁄= τv 1 3⁄=⇔

τe 1 9⁄= τv 1 2⁄=⇔

τv 1 4⁄≥
τe 1 15⁄≥

d
2 

 
2log

B 1 2⁄ 1 τv
d
2 

 
2log⋅+()⋅=

1
2
--- 1

τv
---- d

2 
 

2log+ 
 ⋅

d
2 

 
2log

τv 1 3⁄≥

τv 1 3⁄>

Experimental results

13

nates are encoded using about 5 bits each which is equivalent to 7.7 bits per triangle. The timings
reported here include file I/O for the data and for the intermediate results. The error, i.e. the Hausdorf
distance, between the original model and the different LODs produced by the CPM method were
estimated using the Metro tool [CRS96]. The error graph is plotted in Figure 1 on the right.

The CPM connectivity coding is 25% more efficient than the PSF method [TGHL98] which
requires about 5 bits per triangle on average, whereas CPM uses about 3.5 (Tables 1, 2 and 3). The
PSF experiments use only 6 bits for coordinate quantization, and apply a sophisticated smoothing
operation to avoid visual artifacts. This makes it difficult to directly compare the geometry compres-
sion results. Still, even using a much finer quantization of 10 instead of only 6 bits per coordinate, the
CPM method outperforms the PSF method in terms of geometry compression. CPM only needs 7 to
10 geometry bits per triangle, whereas PSF requires about 15 to 20 bits per triangle.

A comparison to state-of-the-art single-resolution mesh compression methods is given in Table 3
for two 8-bit quantized models. The column C+G denotes the overall data size in bytes, and the col-
umn LODs shows how many different meshes, LODs, are created with the CPM method. The num-
bers of the two comparing compression methods are replicated from the tables in [TG98]. One can
observe that the CPM method mainly suffers in terms of connectivity encoding compared to the sin-
gle-resolution methods. In some cases, the geometry compression is even better than the proposed
method in [TR98]. However, in contrast to the single-resolution methods, the CPM algorithm pro-

TABLE 1. 10bit quantized Bunny model

meshes error vertices C bits C/∆ G bits G/∆ C+G/∆
decode

time
encode

time

M0 413 243 972 2 7290 15 17

M0→M1 324 56 516 4.6 1344 12 16.6 0.05 s 0.06 s

M1→M2 245 88 712 4.1 1888 10.7 14.8 0.06 s 0.06 s

M2→M3 185 115 943 4.1 2320 10.1 14.2 0.06 s 0.11 s

M3→M4 138 163 1279 3.9 3120 9.6 13.5 0.07 s 0.12 s

M4→M5 100 234 1752 3.8 4248 9.1 12.9 0.10 s 0.16 s

M5→M6 70 331 2467 3.7 5584 8.4 12.1 0.11 s 0.24 s

M6→M7 48 469 3416 3.6 7392 7.9 11.5 0.12 s 0.33 s

M7→M8 29 692 4976 3.6 10472 7.6 11.2 0.16 s 0.46 s

M8→M9 15 998 7081 3.6 13504 6.8 10.4 0.23 s 0.68 s

M9→M10 0 1444 10316 3.6 17744 6.1 9.7 0.33 s 1.12 s

M10 4833 34430 3.6 74906 7.7 11.3

TABLE 2. 10bit quantized models

meshes vertices C bits C / ∆ G bits G / ∆ C+G / ∆ LODs
fohe 3620 25545 3.5 73332 10.1 13.7 7

fandisk 6475 48289 3.7 99626 7.7 11.4 9

Experimental results

14

vides different LODs, and produces good approximations of the final shape of the model at early
stages during decompression.

In Figure 9, a complete sequence of meshes demonstrates the progressive mesh refinements
achieved by the CPM method. A vertex split ratio of could be achieved, resulting in 9 differ-
ent LODs M0, …, M8. The bits indicated for Mi denote the cumulative bits for transmitting all
batches up to Mi, including all intermediate meshes Mj<i .

FIGURE 9. CPM sequence of meshes

Figure 10 provides on overview of CPM compression results using a representative set selected
from our test set of 3D models. The rightmost column shows the original quantized models, the num-
ber of vertices, and the number of bits needed to store it using a standard binary encoding (three ver-
tex indices per face and three times the number of quantization bits per vertex). We show also an
estimated timing for transmitting the meshes over a 56Kbit per second communication line. The
other three columns show the base mesh M0, an intermediate mesh, and the full resolution mesh. The
ratio of the number of vertices to the original model is given with each image. The number of bits
shown is the accumulated cost needed by the CPM method, thus the bits for mesh Mi include all the
meshes Mj<i too. Furthermore, in the full-resolution models of the CPM method (column 3 of
Figure 10), the triangles selected by the first batch of the simplification are shown. All edge collapses
and the corresponding two triangles are highlighted in red. Note that the CPM method not only saves
time and space to transmit or store the complete model compared to a standard binary representation
but also provides good approximations already at small fractions of time, or number of bits, used for
the full-resolution model.

TABLE 3. 8bit quantized model comparison

Topological Surgery
[TR98]

Touma & Gotsman
[TG98] CPM

model vertices C/∆ G/∆ C+G C/∆ G/∆ C+G C/∆ G/∆ C+G LOD
triceratops 2832 2.2 5.2 5196 1.1 4.1 3701 3.5 5.8 6527 9

shape 2562 1.1 7.1 5291 0.1 4.7 3038 3.5 6.9 6637 10

τv 0.43≈

M0, 163 vertices M1, 231 vertices M2, 335 vertices M3, 480 vertices M4, 684 vertices

M5, 988 vertices M6, 1400 vertices M7, 1997 vertices M8, 2832 vertices

4564 bits 6202 bits 8503 bits 11504 bits 15512 bits

21045 bits 28356 bits 38441 bits 52215 bits

Summary of research contributions

15

9. Summary of research contributions

The CPM method introduced here transmits 3D models through a series of progressive refinements.
The total transfer time is comparable to – and sometimes even better than – the time required to
transfer only the original model when using the best non-progressive 3D techniques reported so far.
However, instead of having to wait until the entire transmission is over, a crude but often sufficient
approximation of the model is already available after the initial 5 to 10% of this period. Furthermore,
that crude approximation is refined incrementally during the transfer through a series of 7 to 15
steps, and its accuracy drastically increased by the first few refinements, often reducing the need to
ever transfer the final batches of refinements.

The significant improvements in compression ratios offered by CPM over previously reported
compression and progressive transmission techniques result from a new approach which combines
three new ideas that were introduced in this paper:

1. Split vertices are identified using a single bit per vertex, rather than bits, as needed by
the original PM solution [Hop96].

2. The two cut-edges amongst the d edges incident upon a given split-vertex are identified
using an optimal code and a look-up table. The table is defined by the value of d, which is
known to both the compression and decompression algorithms, for each split-vertex.

3. The location of the pair of vertices produced by each vertex split is predicted unprecedented
accuracy by our new Butterfly estimator, which takes into account the vertices in the topo-
logical vicinity of the split-vertex.

We have derived simple validity conditions, which govern the simplification steps of the CPM
compression algorithm. These conditions guarantee that our 1-bit-per-vertex marking method is
unambiguous and still offer sufficient flexibility for our greedy and simple algorithm to achieve a
25% or more vertex reduction for each batch. Furthermore, because at each batch CPM first marks
all the edges that must be collapsed and then collapses them all at once, there is no need, nor benefit,
from maintaining a priority queue of the edge candidates. The compression algorithm is thus signifi-
cantly simpler and more efficient.

The CPM algorithm and format are independent of the chosen complexity and of the particular
technique used to compress the initial crude approximation and of the particular error metric used to
select the best edge candidates for simplification at each batch. These may be selected based on the
particular application needs.

Our experimental results conducted on a variety of models exhibit a 50% improvement over pro-
gressive compression ratios reported elsewhere [Hop96, TGHL98]. The average cost per triangle for
transmitting the entire mesh using our progressive method is 3.6 bits for the connectivity and 7.7 for
the vertex location (for the bunny model). For the same model, the PM approach would require 8 bits
for the connectivity and between 15 and 25 for the geometry. According to the experiments reported
in [TGHL98] the PFS method would require 5 bits for connectivity and about 20 bits for geometry.

n2log

Summary of research contributions

16

FIGURE 10. CPM experimental results

4833 V, 521964 bits100% ∆, 109336 bits50% ∆, 60691 bits4% ∆, 8262 bits

6475 V, 699300 bits100% ∆, 147915 bits25% ∆, 44898 bits10% ∆, 22134 bits

3620 V, 390960 bits100% ∆, 98877 bits40% ∆, 45771 bits18% ∆, 21556 bits

2832 V, 288864 bitsCPM, 52215 bits50% ∆, 28356 bits6% ∆, 4564 bits

2562 V, 261324 bits100% ∆, 53091 bits50% ∆, 29450 bits5% ∆, 3752 bits

M8 = 1.1 secM0 = 0.15 sec

M0 = 0.38 sec

M0 = 0.4 sec

M0 = 0.08 sec

M0 = 0.07 sec

M10 = 1.9 sec

M6 = 1.8 sec

M8 = 2.6 sec

100% ∆M8 = 0.9 sec

M9 = 0.9 sec

M3 = 0.8 sec

M3 = 0.8 sec

M6 = 0.5 sec

M7 = 0.5 sec

binary = 9.3 sec

binary = 7.0 sec

binary = 12.5 sec

binary = 5.2 sec

binary = 4.7 sec

Acknowledgments

17

Acknowledgments

This work was supported by the Swiss NF grant Nr. 81EZ-54524 and US NSF grant Nr. 9721358.
We would like to thank Andrzej Szymczak for helping with coding schemes, Peter Lindstrom for dis-
cussions on geometric predictors and subdivision and for providing geometric models, and Davis
King for input on accuracy matching vertex quantization.

References

[CBM97] R. Carey, G. Bell, and C. Martin. The Virtual Reality Modeling Language ISO/IEC DIS 14772-1. http://
www.vrml.org/Specifications.VRML97/DIS, 1997.

[CRS96] P. Cignoni, D. Rocchini and R. Scopigno. Metro: Measuring error on simplified surfaces. Technical Report B4-
01-01-96, Instituto I.E.I.-C.N.R., Pisa, Italy, 1996.

[CNW87] John G. Cleary, Radford M. Neal, and Ian H. Witten. Arithmetic coding for data compression. Communica-
tions of the ACM, 30(6):520–540, June 1987.

[Dee95] Michael Deering. Geometry compression. In Proceedings SIGGRAPH 95, pages 13–20. ACM SIGGRAPH,
1995.

[DLG90] N. Dyn, D. Levin and J. A. Gregory. A butterfly subdivision scheme for surface interpolation with tension con-
trol. ACM Transactions on Graphics, 9(2):160–169, 1990.

[FS93] T. Funkhouser and C. Sequin. Adaptive display algorithm for interactive frame rates during visualization of com-
plex virtual environments. In Proceedings SIGGRAPH 93, pages 247–254. ACM SIGGRAPH, 1993.

[GH97] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. In Proceedings SIG-
GRAPH 97, pages 209–216. ACM SIGGRAPH, 1997.

[GS98] Stefan Gumhold and Wolfgang Strasser. Real time compression of triangle mesh connectivity. In Proceedings
SIGGRAPH 98, pages 133–140. ACM SIGGRAPH, 1998.

[HRD+93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Mesh optimization. In
Proceedings SIGGRAPH 93, pages 19–26. ACM SIGGRAPH, 1993.

[Hop96] Hugues Hoppe. Progressive meshes. In Proceedings SIGGRAPH 96, pages 99–108. ACM SIGGRAPH, 1996.

[Hop97] Hugues Hoppe. View-dependent refinement of progressive meshes. In Proceedings SIGGRAPH 97, pages 189–
198. ACM SIGGRAPH, 1997.

[Huf52] D. A. Huffman. A method for the construction of minimum redundancy codes. In Proc. Inst. Electr. Radio Eng.,
pages 1098–1101, 1952.

[KT96] A.D. Kalvin and R.H. Taylor. Superfaces: Polyhedral approximation with bounded error. IEEE Computer Graph-
ics & Applications, 16(3):64–77, May 1996.

[Kou95] Weidong Kou. Digital Image Compression: Algorithms and Standards. Kluwer Academic Publishers, Norwell,
Massachusetts, 1995.

[LE97] David Luebke and Carl Erikson. View-dependent simplification of arbitrary polygonal environments. In Proceed-
ings SIGGRAPH 97, pages 199–208. ACM SIGGRAPH, 1997.

[LK98] J. Li and C.C. Kuo. Progressive coding of 3D graphic models. In Proceedings of the IEEE, pages 1052–1063.
IEEE, 1998.

[NDW93] J. Neider, T. Davis, and M. Woo. OpenGL Programming Guide. Addison Wesley, Reading, Massachusetts,
1993.

[PH97] Jovan Popovic and Hugues Hoppe. Progressive simplicial complexes. In Proceedings SIGGRAPH 97, pages 217–
224. ACM SIGGRAPH, 1997.

[RR96] . Ronfard and J. Rossignac. Full-range approximation of triangulated polyhedra. IEEE Computer Graphics
Forum, 15(3):C67–C76, August 1996.

References

18

[Ros98] Jarek Rossignac. Edgebreaker: Compressing the incidence graph of triangle meshes. Technical Report GIT-
GVU-98-17, http://www.cc.gatech.edu/gvu/reports/1998, GVU Center, Georgia Institute of Technology, Atlanta,
GA, 1998. (to appear in IEEE Transactions on Visualization and Computer Graphics)

[Ros94] Jarek Rossignac. Through the cracks of the solid modeling milestone. In S. Coquillart, W. Strasser and P. Stucki,
editors, From Object Modelling to Advanced Visualization, pages 1–75. Springer-Verlag, 1994.

[RB93] Jarek Rossignac and Paul Borrel. Multi-resolution 3d approximations for rendering complex scenes. In Bianca
Falcidieno and Tosiyasu L. Kunii, editors, Modeling in Computer Graphics, pages 455–465. Springer-Verlag,
Berlin, 1993.

[SvK97] Jack Snoeyink and Marc van Kreveld. Good orders for incremental (re)construction. In 13th Symposium on
Computational Geometry, pages 400–402. ACM, 1997.

[SL96] M. Soucy and D. Laurendeau. Multiresolution surface modeling based on hierarchical triangulation. Comput.
Vision Image Understanding, 63():1–14, January 1996.

[SZL92] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle meshes. In Proceed-
ings SIGGRAPH 92, pages 65–70. ACM SIGGRAPH, 1992.

[TG98] Costa Touma and Craig Gotsman. Triangle Mesh Compression. In Proceedings Graphics Interface 98, pages 26–
34, 1998.

[TGHL98] Gabriel Taubin, André Guéziec, William Horn and Francis Lazarus. Progressive forest split compression. In
Proceedings SIGGRAPH 98, pages 123–132. ACM SIGGRAPH, 1998.

[THLR98] Gabriel Taubin, William Horn, Francis Lazarus and Jarek Rossignac. Geometric coding and VRML. In Pro-
ceedings of the IEEE, pages 1228–1243. IEEE, 1998.

[HG97] Paul S. Heckbert and Michael Garland. Survey of polygonal surface simplification algorithms. In Siggraph 97
Course Notes 25. ACM SIGGRAPH, 1997.

[TR98] Gabriel Taubin and Jarek Rossignac. Geometric compression through topological surgery. ACM Transactions on
Graphics, 17(2):84–115, 1998.

[TR98b] Gabriel Taubin and Jarek Rossignac. 3D geometric compression. In Siggraph 98 Course Notes 21. ACM SIG-
GRAPH, 1998.

[XEV97] Julie C. Xia, Jihad El-Sana and Amitabh Varshney. Adaptive real-time level-of-detail-based rendering for
polygonal models. IEEE Transactions on Visualization and Computer Graphics, 3(2):171–183, April-June 1997.

[ZSS96] Denis Zorin, Peter Schröder, and Wim Sweldens. Interpolating subdivision for meshes with arbitrary topology.
In Proceedings SIGGRAPH 96, pages 189–192. ACM SIGGRAPH, 1996.

