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A Vectorial Algorithm for Tracing
Discrete Straight Lines in

N-Dimensional Generalized Grids
Luis Ibanez, Chafiaa Hamitouche, and Christian Roux

AbstractÐThis paper presents an algorithm to trace discrete straight lines in regular grids of any dimension. Most known line tracing

algorithms have been developed in ZZ2 and ZZ3 orthogonal grids. The contribution of this paper is the definition of a method to trace lines

in nonorthogonal grids in any dimension. This method is not restricted to being used with a specific grid connectivity as other

widespread methods are. Good performance can be achieved because only additions are used during line tracing.

Index TermsÐDiscrete line tracing, digital topology, discrete geometry.

1 INTRODUCTION

THE work presented in this paper was motivated by the
need to perform visualization in 3D medical image data

stored in a noncubic grid. Specifically, our interest is

centered on the use of discrete ray casting in Body Centered

Cubic (BCC) and Face Centered Cubic (FCC) grids [17]. The

search for an algorithm well-suited to these nonorthogonal

grids have led us to construct a general approach for tracing

lines in regular grids in any dimension. Our particular

approach of representing the grid as a discrete vector space

provides a completely general frame in which topological

problems can be analyzed. Recent interest in using higher

dimensional and nonorthogonal grids has emerged, espe-

cially in medical applications [6], [7], [8], [17]. Some of these

grids provide important advantages for increasing perfor-

mance in signal processing tasks [12], [15] and have

geometric symmetries which lead to better topological

properties [11], [13], [14], [18], [16].
In Section 2, the familiar case of tracing lines in square

grids using Bresenham's well-known algorithm is pre-

sented. The problem is expressed in an original vector space

approach. Section 4 shows how it can be applied to the

cubic grid in 3D. A generalization of the procedure to

regular grids of any dimension is presented in Section 6.

Finally, discussion and perspectives are presented in

Section 7.

2 LINE TRACING IN THE SQUARE GRID

2.1 Bresenham's Algorithm

The problem of tracing a line between points A and B in the

classical square grid is illustrated in Fig. 1. Shaded squares
around points A and B represent the concept of pixels used

in image processing and computer graphics, filled and

hollow circles representing grid points as used in discrete
topology. The objective of line tracing is to select the set of

grid points, or pixels, leading to the best path, approximat-

ing the continuous Euclidean line AB. Bresenham's algo-
rithm solves this problem by the following procedure [1]:

1. Determine the dominant direction of the

line:

X axis if the slope is less than 45�, Y axis

otherwise.

2. Take one step along the dominant direc-

tion.

3. Test if a step should be taken in the

secondary direction:

if affirmative: take it.

4. If not yet in point B, go to (2).

Since a discrete line is considered a connected sequence

of grid points, the notion of ªconnectednessº should be
defined. The most usual definitions of connectedness in the

square grid are illustrated in Fig. 2. Four-connectivity

defines that the neighbors of a grid point are only the
nearest points in the same horizontal and in the same

vertical coordinates. Eight-connectivity includes the points

in diagonals as neighbors, too.
We present here the procedure for tracing a 4-connected

line. The only valid directions of movement to pass from

one line point to another are the horizontal and vertical

ones. The criterion to decide if a step should be taken in a

secondary direction is derived from the analytical equation
of the line. Fig. 3 shows the geometrical relations involved

in line tracing. Let �xa1; xa2� be the coordinates of point A,
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�xb1; xb2� those of point B, and �x1; x2� the coordinates of an
arbitrary point P . Vector Vt � ��xb1 ÿ xa1�; �xb2 ÿ xa2�� is
parallel to the line AB, while vector Vp � ��xb2 ÿ
xa2�;ÿ�xb1 ÿ xa1�� is orthogonal to it. The vector VPA �
��x1 ÿ xa1�; �x2 ÿ xa2�� gives the position of point P relative
to point A. The Euclidean distance d from point P to the line
AB can be measured by the scalar product shown in (1).

d�P;AB� � VPA �Vp

Vp













: �1�

This equation can be expressed in terms of coordinates as

d�P;AB� � Vp











 � x1 ÿ xa1� � xb2 ÿ xa2� �
ÿ x2 ÿ xa2� � xb1 ÿ xa1� �:

�2�

Note that all terms on the right side of (2) are integers.
The value of d�P;AB� can be interpreted as the error
involved in using P as one of the points representing the
line AB. The vector norm kVpk and the coordinates of
points A and B are constant. The equation of the continuous
Euclidean line AB is obtained when d is identically null.
That is, the Euclidean line AB is defined as the set of points
P such that d�P;AB� � 0, hence,

x2 �
xb2 ÿ xa2� �
xb1 ÿ xa1� � x1 ÿ xa1� � � xa2: �3�

To avoid noninteger values in the computation, the
product d�P;AB� � kVpk is used instead of the true distance
d�P;AB� when deciding whether a point belongs to the
discrete line or not. This constant factor kVpk does not
change the nature of the problem since we have to look for
grid points P minimizing d�P;AB� in any case. We call

d�P;AB� the Euclidean distance and D�P;AB� the arithme-
tical distance from point P to the Euclidean line AB, the
latter being defined by

D�P;AB� � d�P;AB� � Vp











: �4�

Bresenham's algorithm exploits the fact that �x1; x2� are
integers. A change of �1 in the x1 coordinate produces a
change of ��xb2 ÿ xa2� in D�P;AB�, while a change of �1 in
the x2 coordinate produces a change of ��xb1 ÿ xa1� in
D�P;AB�, as can be deduced from (2) and (4). The value of
D�P;AB� is used as a criterion to decide whether a step
should be taken in the secondary direction or not during the
line tracing process. Bresenham's algorithm computes
D�P;AB� in an incremental way, updating its value at
each step. For example, to trace a line with a slope value
below 45� and 4-connectivity, the dominant direction is the
horizontal and the secondary direction is the vertical one.
The pseudocode for tracing this line is therefore

1. Initialize current point P at position A:
x1 � xa1, x2 � xa2

2. Initialize control variable: D � 0.
3. Take a step in dominant direction X:

add 1 to x1, add 2�xb2 ÿ xa2� to D.
4. Test if a step should be taken in the

secondary direction Y :
if D > xb1 ÿ xa1� � ÿ xb2 ÿ xa2� �� � then
add 1 to x2, add ÿ2�xb1 ÿ xa1� to D

5. If point P is different from point B,
go to Step 3, else end.

Where variable D in the pseudocode stands for 2D�P;AB�
and is named control variable because it determines which
action must be taken.

2.2 Vectorial Approach to Bresenham's Algorithm

The algorithm proposed in this paper is motivated by the
need to trace lines in non orthogonal grids. The first thing
that should be done to manage this kind of grid is to use a
vector basis to represent them. This section addresses the
formalization of Bresenham's algorithm in vectorial terms.

2.2.1 Vector Space Concepts

The simplicity of the square grid makes it unnecessary to
use a vector space description, but its presence is implicit
anyway. When a point P is said to have coordinates x1; x2� �,

Fig. 1. Tracing a line on the square grid with Bresenham's algorithm.

Shaded squares represent pixels; circles represent grid points.

Fig. 2. Connectivity on the square grid. Left: 4-connectivity, one grid

point has four neighbors. Right: 8-connectivity, one grid point has eight

neighbors. Filled circles represent grid points, squares correspond to

pixels.

Fig. 3. Vectorial relations of the line tracing problem.
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this means that the vector P relating point P to the origin is:
P � x1V1 � x2V2, where vectors V1 and V2 are the unitary
vectors in the horizontal and vertical directions, respec-
tively, as shown in Fig. 3.

Vectors V1 and V2 both belong to the IR2 space, while x1

and x2 coordinates both belong to the Z space. For this
reason, it is usual to consider only coordinates �x1; x2� and
place the problem in the ZZ2 space. Nevertheless, this
simplification cannot be done when dealing with non-
orthogonal grids. Vectors V1 and V2 are said to be the
vector basis of the grid. It is useful to define another vector
basis composed of vectors U1 and U2 such that

V1 �U1 � 1; V1 �U2 � 0; V2 �U1 � 0; V2 �U2 � 1:

�5�

The vector basis fU1;U2g is said to be the reciprocal of
fV1;V2g. Every vector V in a grid can be expressed as a
linear combination of the grid basis vectors as:
V � x1V1 � x2V2, where x1; x2 2 ZZ. If a grid vector V is
expressed in terms of the grid basis, any vector orthogonal
to V must be expressed in terms of the reciprocal vector
basis. That is trivial in the square grid because the grid basis
and its reciprocal are the same, but it is not so simple in
nonorthogonal grids.

2.2.2 Connectivity Expressed in Terms of Vectors

The grid connectivity is completely specified by the set of
vectors describing all the possible relative positions of two
neighboring points. For example, 4-connectivity in the
square grid is defined by the vector set T :

T � 1; 0� �; ÿ1; 0� �; �0; 1�; �0;ÿ1�f g: �6�

The relation ªbe neighbor ofº is symmetric, hence, if a
vector V is in the set T , vector ÿV should be too. The set T
of vectors corresponding to 8-connectivity shown in Fig. 2 is

T � 1; 0� �; ÿ1; 0� �; 0; 1� �; 0;ÿ1� �; 1; 1� �;f
ÿ1; 1� �; �1;ÿ1�; �ÿ1;ÿ1�g: �7�

One of the first things to do when tracing lines is to
choose the type of connectivity. The concepts of principal
and secondary directions used in Section 2.1 correspond
simply to the pair of vectors defining which movements are
possible from one grid point to a neighbor. Tracing a
4-connected line implies using only vectors V1 � 1; 0� � and
V2 � 0; 1� � as valid directions.

2.2.3 Quadrant Selection

As is usually done, we consider only one quadrant because
the others can be obtained by symmetry [1], [3], [5], [14],
[22]. The selection of the quadrant in which a line
represented by a vector Vt should be traced corresponds
in vectorial terms to the choice of two vectors out of all
vectors in the set T . The right quadrant is selected by taking
the pair of vectors from T in which vector Vt can be
expressed with components x1 � 0 and x2 � 0, x1; x2 being
as small as possible. This choice will give us the two vectors
which are best aligned with the Euclidean line AB among
all vectors in T . It should be noted that the pair fV1;V2g
must form a vector basis in order to guarantee that a

vector Vt can be expressed with integer components

x1; x2� �. Further simplification can be done to analyze only

the case �x1 � x2� because the other case is obtained by

symmetry. The task of quadrant selection is trivial in the

square grid, but it becomes complex in nonorthogonal and

higher dimensional grids [11], [13], [14], and the vectorial

approach presented here is general enough to face this

complexity.

2.2.4 Vector Component Paradigm

When tracing a line, we want to obtain a connected set of

points. Hence, we are restricted to taking steps following

either V1 or V2. The Vector Vt relating end points A and B

can be expressed in terms of a vector basis V1;V2f g as:

Vt � x1V1 � x2V2. From the components x1; x2� �, we know

that to go from point A to point B, we have to take x1 steps

in direction V1 and x2 steps in direction V2. The problem is

now reduced to establish in which order these steps should

be taken. In order to better approximate the Euclidean line

AB, as defined in (3), we would like to put the points of the

discrete line as near as possible to the line AB.

2.3 Definitions of Discrete Lines

2.3.1 Digital Geometry Definition

A fairly general definition of the 2D digital line has been

proposed by ReveilleÁs [20] and was further extended to

digital planes by AndreÁs [21]. Their approach considers a

band of width Wd around the Euclidean line AB. Grid

points lying inside this band belong to the digital line, as is

shown in Fig. 4, and these points satisfy the following

equation:

0 � Mx1 �Nx2 < w; �8�

where M, N , and w are integers. The term w in (8) is called

the arithmetic width and can be related to the Euclidean

width Wd of the discrete line shown in Fig. 4 by

w � Wd

�������������������

M2 �N2
p

. A relation between line width w and

connectivity has been established as follows [20]:

. w � Mj j � Nj j produces 4-connected lines which are
called standard lines,

. w � max Mj j; Nj j� � produces 8-connected lines,
called naive lines.

Fig. 4. Digital line defined by ReveilleÁs.
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2.3.2 Vector Space-Based Definition

In our method, the concept of a discrete straight line is built
from the notion of connectivity as defined by the set T of
vectors in Section 2.2.2. These vectors describe the relative
positions between two grid points that make it possible to
consider them as neighbors. A discrete curve between grid
points A and B is defined here as a sequence S of grid
points beginning in A and ending in B such that every point
has exactly two neighbors in S except for the end points A
and B which have only one neighbor in S. A similar
definition can be found in [25], but is restricted to square
and cubic grids. A discrete straight line L is a particular case
of a discrete curve S. The notion of straightness [27] leads us
to look for a discrete curve S such that the distances from its
points to the Euclidean line AB are as small as possible. Our
procedure is such that, for any point of the sequence, the
next point is choosen as the closest point to the Euclidean
line among the points that can be reached by movements
defined by the basis vectors of the quadrant.

2.3.3 Procedure for Tracing the Line

The first point P of the discrete curve is placed at point A.
The distance D�P;AB� is zero in this case. The decision
about whether to take the next step in direction V1 or V2 is
taken depending on the outcome of the test:

2 �D�P;AB� < xb1 ÿ xa1� � ÿ xb2 ÿ xa2� �: �9�

If the test's outcome is true, the next step is taken along
the dominant direction V1; otherwise, direction V2 is
preferred. A step taken in directionV1 produces an increase
of xb2 ÿ xa2� � in D�P;AB�, while a step taken in direction
V2 produces an increase of ÿ xb1 ÿ xa1� � in D�P;AB�. The
value of 2 �D�P;AB� is defined as the control variable of the
algorithm. Subsequent steps are taken by iteratively
applying the test of (9). The procedure ends when the
curve passes by point B, which can be guaranteed because
D�B;AB� � 0 and the method advance selecting the points
with minimum D�B;AB�j j.

3 HEXAGONAL GRID CASE

3.1 Introduction

The hexagonal grid is a good case for introducing the line
tracing problem in nonorthogonal grids. This grid can be
defined by vectors V1 � �1; 0� and V2 � �1

2
;
��

3
p

2
� which form

a vector basis. Vector P represents the position of a grid
point P with respect to the origin. It can be expressed as a
linear combination of vectors V1 and V2, defined by
P � x1V1 � x2V2. The integer numbers x1; x2� � are said to
be the components of vector P in the vector basis V1;V2f g.
The basic elements of the line tracing problem in the
hexagonal grid are shown in Fig. 5. In terms of vectors we
have: The position of point A relative to the origin is
A � xa1V1 � xa2V2, the position of point B relative to the
origin is B � xb1V1 � xb2V2, and the position of point B
relative to point A is Vt � xb1 ÿ xa1� �V1 � xb2 ÿ xa2� �V2.
Vector Vt is parallel to the Euclidean line AB.

Differences with respect to square grid begin to appear
when trying to find the vector Vp normal to vector Vt. In
nonorthogonal grids, a normal vector cannot necessarily be

expressed (with integer coefficients) in terms of the grid

vector basis. It can, however, be expressed in terms of the

reciprocal grid vector basis U1;U2f g. These vectors can be

obtained by placing basis vectors V1;V2f g as columns of a

matrix Mv:

Mv � V1 V2� � � 1 1
2

0
��

3
p

2

" #

: �10�

Let the matrix Mu be defined by

Mu � Mv MT
v Mv

ÿ �ÿ1
: �11�

The columns of matrix Mu are the vectors U1;U2f g. This
last equation can be used even if the number of vectors is

inferior to the dimension of the space, that is, if the Vi

vectors span a subspace, for example, two vectors in a

three-dimensional space. A particular case happens when

the number of vectors is equal to the space dimension, in

this case, Mv is a square matrix and the expression can be

simplified to

Mu � MT
v

ÿ �ÿ1
: �12�

In the particular case of the hexagonal grid, the result is

Mu � U1 U2� � � 1 0
ÿ
��

3
p

3
2
��

3
p

3

� �

; �13�

which means that U1 � �1; ÿ
��

3
p

3
� and U2 � �0; 2

��

3
p

3
�.

The vector Vp orthogonal to Vt can be obtained by

commuting the components of vector Vt expressed in the

vector basis V1;V2f g and changing the sign of one of them.

This gives us: Vp � ÿ xb2 ÿ xa2� �U1 � xb1 ÿ xa1� �U2. This

result is crucial for the line tracing process because vector

Vp is used in (1) to compute the distance d�P;AB�. In the

particular case of the example shown in Fig. 5, we have

Vt � 6V1 � 4V2 and Vp � ÿ4U1 � 6U2. Taking into

account (5), it is easy to verify that Vt �Vp � 0.

3.2 Line Tracing

3.2.1 Selecting the Grid Connectivity

In the hexagonal grid, it is natural to choose a

6-connectivity, as shown in Fig. 6. This leads to defining a

set T of vectors as

Fig. 5. Tracing a digital line on the hexagonal grid.
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T � V1;V2;V3;ÿV1;ÿV2;ÿV3f g; �14�

with vector V1 and V2 as defined in Section 3.1 and vector

V3 � �ÿ 1
2
;
��

3
p

2
�.

3.2.2 Determination of the Vector Basis

Once the end points A and B of the line are defined, we look

for the vector basis that is best adapted to describe the

vector Vt connecting points A and B. As stated in

Section 2.2.3, we select from set T the pair of vectors
forming a vector basis such that the components of Vt

satisfy �x1 � 0�, �x2 � 0�; x1; x2� � being as small as possible.

This selection of basis is equivalent to the choice of the

quadrant in the square grid.
The reason for including the above condition for x1; x2� �

can be easily seen from Fig. 5 and Fig. 6. For example, Vt of
Fig. 5 can be expressed in one of the following ways, among

others:

. in terms of vector basis V2;ÿV3f g with components
10; 6� �,

. in terms of vector basis V1;V3f g with components
10; 4� �,

. in terms of vector basis V1;V2f g with components
6; 4� �.

The latter case simply represents the notion of taking the

two vectors in T aligned in the best way with the Euclidean

line AB.

3.2.3 Computation of the Orthogonal Vector

To find the vector Vp orthogonal to Vt we need to first
build the reciprocal vector basis U1;U2f g. This can be done

by the procedure detailed in Section 3.1. This procedure

does not necessarily imply an overhead in computing time

because it can be performed before tracing any specific line.

That is, the reciprocal vector basis can be precomputed for
all possible combinations of vector basis V1;V2f g. In the

hexagonal grid case, the possible combinations are only six.
Once the vector basis is known, the vectorVp can be built

by exchanging the components of vectorVt and changing the

sign of one of them. If we have two vectorsX andY, the first
expressed in terms of the grid vector basis as X �
x1V1 � x2V2 and the second in terms of the reciprocal vector

basis as Y � y1U1 � y2U2, then their scalar product, taking

into account (5), isX �Y � x1y1 � x2y2. Hence, an easy way
to set Y orthogonal to X is to choose y1 � x2 and y2 � ÿx1.

3.2.4 Definition of the Control Variable

During the line tracing process, the distance from grid

points P to the Euclidean line AB is computed using (1). To

avoid noninteger numbers, it can be transformed to

compute 2D�P;AB� instead of d�P;AB� following (2).
Bresenham's algorithm, presented in Section 2.1, can be

used without modification to trace lines in the hexagonal

grid, provided that its terms are interpreted in the context

presented in this section.
The value of distance D�P;AB� for most hexagonal

pixels in the particular case of Vt � 6V1 � 4V2 is shown in

Fig. 7. The process can be described a strategy for going

from pixel A to pixel B, taking steps in either direction V1

or V2, and choosing, at each time, to pass by the pixel with

the lower absolute value D�P;AB�j j.
From this description it is easy to see that an ambiguity

arises if the two possible cases have the same absolute

value, which happens when the components x1; x2� � of Vt

are equal. This is the trivial case of tracing a 45� slope line in
the square grid using 4-connectivity. The question is

whether to move horizontally first or vertically first. The

answer is simply: You can choose. But, the choice should be

the same each time the ambiguity arises again.

3.2.5 The Extension of ReveilleÁs's Definition to the

Hexagonal Grid

The definition of the digital line proposed by ReveilleÁs in

[20] can be easily extended to nonorthogonal grids.

Equation (8) can be used with the difference that the terms

x1 and x2 should be interpreted as the components of the

vector position P of point P expressed in the grid vector

basis V1;V2f g. The terms M and N should be interpreted

geometrically as the components of the vector Vp orthogo-

nal to the Euclidean line. This vector can be expressed in the

reciprocal vector basis U1;U2f g as Vp � MU1 �NU2.
Note that ReveilleÁs definition produces digital lines

which lie at one side of the Euclidean line instead of being

centered over it. This can be corrected by subtracting w=2

from (8) and multiplying by a factor 2 to avoid fractions:

ÿ w � 2Mx1 � 2Nx2 < w: �15�

In the hexagonal grid, it can be proven that the choice of

w � Mj j � Nj j produces 6-connected lines. For the particu-

lar case shown in Fig. 7, we have M � ÿ4, N � 6, and

w � 10, hence, ReveilleÁs's standard line is composed of

hexagonal pixels such that ÿ w
2
� D�P=AB� < w

2
, which

coincides with the line we traced because we have used

6-connectivity.

Fig. 6. Connectivity on the hexagonal grid. Filled circles represent grid

points, hexagons represent pixels. Vectors V1, V2, V3, and their

negatives relate each grid point to its neighbors.

Fig. 7. Values of control variable in each hexagonal grid point (pixel) to

trace a line from point A to point B.
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4 3D CASE

The cubic grid or ZZ3 grid is the most commonly studied 3D
case for line tracing. It has been addressed intensively by
research involved in volume visualization and digital
geometry [2], [4], [10], [22], [25], [28], [33], [31]. A general
approach to rasterize parametric curves, surfaces, and
volumes in the ZZ3 grid is presented in [28]. Some methods
used in the cubic grid have been generalized to the ZZN

space. An N-dimensional Bresenham's algorithm is pre-
sented in [32]. A definition of discrete line in ZZN is
presented in [26] and a definition based on combinatorics
is presented in [29].

4.1 3D Digital Line Definitions Proposed

Kim [25] has defined the digital line in the cubic grid as a
sequence of grid points whose projections on the coordinate
planes are 2D 8-connected digital lines. An algorithm is
proposed to recognize a digital line but not to trace it.
Andres et al. have proposed a definition of the digital line
using the concept of supercover [23], the digital line being
composed of all the grid points whose Voronoi regions are
intersected by the Euclidean line. This approach has the
disadvantage of producing digital lines in which one grid
point can have more than two neighbors in the line,
especially in nonorthogonal grids.

Figueiredo and ReveilleÁs have defined the 3D digital line
as the intersection of two nonparallel digital planes [22].
This definition has recently been used for the implementa-
tion of a discrete ray casting algorithm [30]. The projection
of a point on the plane orthogonal to the line is used to
guide the line tracing process. Their algorithm is restricted
to the ZZ3 grid and 26-connectivity. Digital planes have also
been defined by AndreÁs [21] as a generalization of the
ReveilleÁs 2D digital line [20].

A discrete straight line is defined here as the sequence of
grid points such that the first and the last point of the
sequence are the endpoints of the Euclidean line and, for
each point in the sequence, the next point is the one that is
closest to the Euclidean line among the three points that can
be reached by the possible movements defined in the vector
basis of the selected octant.

4.2 The Vectorial Approach

4.2.1 Introduction

The position of point A with respect to the origin is
represented by vector A � xa1V1 � xa2V2 � xa3V3. The
position of point B with respect to the origin is
represented by vector B � xb1V1 � xb2V2 � xb3V3. The
position of point B with respect to point A is the vector
Vt � xa1 ÿ xb1� �V1 � xa2 ÿ xb2� �V2 � xa3 ÿ xb3� �V3.

4.2.2 Defining Connectivity

To define connectivity, we have to specify the set T of
vectors connecting the positions of grid points considered
as neighbors. Note that this is a choice which must be taken
prior to the line tracing process.

4.2.3 Selecting the Octant

The process analog to choosing the quadrant in the square
grid in 2D is the selection of the octant in the cubic grid or

ZZ3 grid and in a general 3D grid case is the choice of a cell
spanned by three vectors. This corresponds to the choice of
three vectors out of the set T such that they form a vector
basis. The selection of vector basis depends on the line to be
traced. The right basis is the one for which the components
�x1; x2; x3� of vector Vt satisfy �x1 � 0�, �x2 � 0�, �x3 � 0�,
and are as small as possible. This criterion guarantees to get
the combination of vectors that are aligned in the best way
with the line. The direction associated with the maximum
value among x1; x2; x3f g is called the dominant direction, the
others are called secondary directions.

4.2.4 Determination of the Reciprocal Grid

Once the vector basis is chosen, the reciprocal vector basis
should be computed. Let the vector basis be composed of
vectors V1;V2;V3f g. The procedure is analog to the one
developed for 2D in Section 3.1. The 3� 3 matrix Mv is
formed by placing vectors V1;V2;V3f g as columns. The
Matrix Mu is computed using (11). The columns of matrix
Mu are the vectors U1;U2;U3f g forming the reciprocal basis
[13]. They verify the basic relation between a reciprocal
basis and the grid vector basis:

Vi �Uj � 1 if i � j
0 if i 6� j

�

8i; j 2 �1; N�; �16�

where N is the dimension of the grid, in our current case
N � 3.

4.2.5 Computing the Distance to the Line

To compute the distance from a grid point P to the
Euclidean line AB, we now need not only one vector Vp

orthogonal to Vt, as in the 2D cases treated in Section 2 and
Section 3, but two such vectors. Let Up1 and Up2 be two
nonparallel vectors, both orthogonal to vector Vt. These
two vectors, not necessarily orthogonal between them,
define a plane in the space IR3. A Euclidean line AB is a
one-dimensional object. When it is placed in an
N-dimensional space IRN , the distance from a point P to
the line should be calculated in an �N ÿ 1�-dimensional

space IR�Nÿ1�. This space is called here the subspace
orthogonal to the Euclidean line AB. In the particular case
of 3D space (N � 3), the orthogonal subspace is simply the
plane normal to the line. The vectors Up1 and Up2 describe
this subspace in the sense that they can be used as its vector
basis. The position of any point in the orthogonal subspace
can be expressed as a linear combination of Up1 and Up2. It
should be noted that, even though Up1;Up2 2 IR3, the
orthogonal subspace that they represent is a plane.

Computing vectors to describe the orthogonal sub-
space. This section presents how the vectors Up1 and Up2

can be computed in terms of the reciprocal basis vectors
U1;U2;U3f g. The method presented here is not unique, but
it has the advantage of producing two vectors well-suited
for describing the subsequent line tracing process. The line
to be traced is defined by vector Vt � x1V1 � x2V2 � x3V3,
with x1 � xb1 ÿ xa1� �, x2 � xb2 ÿ xa2� �, and x3 � xb3 ÿ xa3� �,
as presented in Section 4.2.1. For the sake of simplicity, we
address here the particular case of x1 � x2 � x3 in which V3

is the dominant direction; the other cases can be solved by
symmetry [14], [22]. We apply a process analog to that used
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in 2D, see Section 3.2.3. Two components of vector Vt are

exchanged, the sign of one of them is commuted, and

both are used as components in the reciprocal vector

basis. The remaining components are set to zero. Hence,

to construct Up1, we take x1 and x3 to form

Up1 � x3U1 � 0U2 ÿ x1U3. To construct Up2, we take x2

and x3 to form Up2 � 0U1 � x3U2 ÿ x2U3. It can be easily

verified from (16) that Up1 �Vt � 0, Up2 �Vt � 0,

Up1 �V2 � 0, and Up2 �V1 � 0. A schematic representation

of vectors Up1 and Up2 is shown in Fig. 8, where the plane

represents the subspace orthogonal to Vt.
In matrix notation, the vectors Up1 and Up2 can be

arranged as the columns of matrix MUp, related to Mu by

MUp � Mu Msp; �17�

where Msp is called subspace projection matrix and is defined

by

Msp �
x3 0

0 x3
ÿx1 ÿx2

2

4

3

5: �18�

In the same way that vector basis V1;V2;V3f g has a

reciprocal basis U1;U2;U3f g, vector basis Up1;Up2

� 	

of the

orthogonal subspace has a reciprocal basis Wp1;Wp2

� 	

.

They satisfy

Wpi �Upj � 1 if i � j
0 if i 6� j

�

8i; j 2 �1; N ÿ 1� �19�

and can be constructed from vectors Up1;Up2

� 	

using the

procedure described in Section 3.1, particularly (11).
Projection of a vector on the orthogonal subspace. Let

M � m1V1 �m2V2 �m3V3 be a grid vector. Let vector Mp

be the projection of M on the orthogonal subspace. It can be

expressed as Mp � mp1Wp1 �mp2Wp2, where the compo-

nents mp1 and mp2 are integers. These components can be

computed from the scalar product of vector M with the

basis vectors of the orthogonal subspace Up1 and Up2:

mp1 � M �Up1 � m1x3 ÿm3x1

mp2 � M �Up2 � m2x3 ÿm3x2:
�20�

It is interesting to note that the projection of V1 on the
orthogonal subspace is x3Wp1

ÿ �

, the projection of V2 is
x3Wp2

ÿ �

, and the projection of V3 is �ÿx1Wp1 ÿ x2Wp2�.
That is, each one of the secondary directions of movements
is projected parallel to one of the reciprocal vectors of the
orthogonal subspace. This property allows us to easily
follow the line tracing process using the projection of the
discrete line points on the orthogonal subspace. In matrix
notation, the components after the projection can be
expressed as:

mp1

mp1

� �

� x3 0 ÿx1

0 x3 ÿx2

� � m1

m2

m3

2

4

3

5: �21�

Using the definition of Msp from (18), this is equivalent to

mp1

mp1

� �

� Msp

ÿ �T
m1

m2

m3

2

4

3

5: �22�

Euclidean distance to the line. Let vector M represent
the position of a point with respect to point A, then
M � �PÿA�. The magnitude of Mp is the Euclidean
distance from the point P to the line AB. This magnitude
can be computed from

Mp













2� Mp �Mp � mp1 mp2� � MT
WpMWp

� � mp1

mp2

� �

; �23�

where MWp is the matrix formed by using the vectors Wpi

as columns

MWp � Wp1 Wp2� �; �24�

in the same way as in Section 3.1 for (10). Then, the matrix
product is

MT
WpMWp �

Wp1 �Wp1 Wp1 �Wp2

Wp2 �Wp1 Wp2 �Wp2

� �

: �25�

The relationship between a vector basis and its reciprocal
implies that

MT
WpMWp � MT

UpMUp

� �ÿ1

; �26�

where

MT
UpMUp �

Up1 �Up1 Up1 �Up2

Up2 �Up1 Up2 �Up2

� �

: �27�

Using (17), we can find that

MT
UpMUp � MT

sp MT
u Mu

ÿ �

Msp �28�

and, using (11), this becomes

MT
UpMUp � MT

sp MT
v Mv

ÿ �ÿ1
Msp: �29�

Hence, we can rewrite (23) as

Mp













2� mp1 mp2� � MT
sp MT

v Mv

ÿ �ÿ1
Msp

� �ÿ1 mp1

mp2

� �

�30�

Fig. 8. The line tracing problem in the cubic grid. A line is traced between

points A and B.
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and, from (22), we arrive finally at

Mp













2

� m1 m2 m3� �Msp MT
sp MT

v Mv

ÿ �ÿ1
Msp

� �ÿ1

MT
sp

m1

m2

m3

2

4

3

5:

�31�

Let's note that the inverse cannot be distributed inside

the parentheses because the matrix Msp is not square. This

expression is equivalent to the quadratic form

Mp













2�
X

i;j

mimj�ij; �32�

where the symmetric matrix � is

� � Msp MT
sp MT

v Mv

ÿ �ÿ1
Msp

� �ÿ1

MT
sp: �33�

Mv is completely defined by the grid vector basis and the

octant in which the line is going to be traced. Msp depends

only on the components of vector Vt. All the possible Mv

matrices can be precomputed once the grid is defined, one

for every possible octant. Matrix Msp is computed once the

endpoints of the line are defined. In this way, when we start

the line tracing process, the elements of matrix � are known

constants.
Once we are tracing a line, the choice of the direction on

which the next step should be taken is made by evaluating

the effect of every possible step on the value Mp













2
. The

direction of movement that results in the minimum value

for Mp













2
will be chosen.

Given that the matrix � is constant for a line AB, it is

possible to compute the value of Mp













2
incrementally. Let's

assume that we know the value of Mp













2
for a certain

point P whose components are mif gwith respect to pointA.

If one of these components, say mk, is incremented by one,

the value M0
p



















2

of the new square distance is given by

M0
p



















2

�
X

i;j6�k

mimj�ij � 2�mk � 1�
X

j6�k

mj�kj � �mk � 1�2�kk

�
X

i;j

mimj�ij � 2
X

j

mj�kj ��kk

� Mp













2�2
X

j

mj�kj ��kk:

Let's define the vector Rp as having components

2
P

j mj�kj on the vector basis UPkf g

RP �
X

k

2
X

j

mj�kj

 !

UPk �34�

and define MR the 1� n matrix composed with its

components

MR �

2
P

j mj�1j

2
P

j mj�2j

. . .

2
P

j mj�nj

2

6

6

4

3

7

7

5

; �35�

the scalar product Rp �Mp is equal to Mp













2
. In some

formalizations, the vector Mp will be called covariant and

the vector Rp will be called contravariant. To update the

value of Mp













2
, we have to increment it by the kth

component ofMR plus the term �kk. The column matrix MR

has to be updated too by adding to it the double of the kth

column from � in order to be ready for the next iteration

M 0
R �

2
P

j mj�1j

2
P

j mj�2j

. . .

2
P

j mj�nj

2

6

6

4

3

7

7

5

� 2

�1k

�2k

. . .

�nk

2

6

6

4

3

7

7

5

: �36�

In this way, by keeping the n� n matrix � and the 1� n

matrix MR as auxiliary data, it is possible to compute the

square distance from one grid point P to the Euclidean line

AB with only �n� 1� additions.

4.3 Line Tracing

To trace the line we must take the sequence S of connected

points which minimizes the distance D�S;AB� as stated in

Section 2.3.2. The distance from a point P to the Euclidean

line AB is now computed by projecting the point P onto the

subspace orthogonal to the line. This subspace is defined by

the vector basis Up1;Up2

� 	

. Since we are considering the

case x1 � x2 � x3, it is clear that the dominant direction of

the line is that of V3. The other two vectors V1 and V2 are

secondary directions. Knowing the octant and the end-

points of the line, we can precompute the matrix �.

Let's consider that we start with the point P coincident

with point A. Vector M � PÿA has components

m1;m2;m3f g all null. The projection ofM on the orthogonal

subspace is Mp. Its magnitude Mp











 is the distance from

point P to the line AB. Our strategy is to always advance to

the next point in the grid that results in the minimum value

of M0
p

















. As the value M
0

p



















2

is computed incrementally

from the value Mp













2
, we can concentrate our test into a

search for the minimum possible increment.
The query for the best next step is then equivalent to the

query for the k that minimizes the expression

2
P

j mj�kj ��kk. In the implementation, the values of the

first term are stored in the column matrix MR, which is

initially null. The values of the second term are the diagonal

of matrix �. The test implies to add the matrix MR and the

diagonal of � and select the kth element for which this sum

is minimum. Then,

k � argi min 2
X

j

mj�ij ��ii

( )

: �37�

In practice, a column matrix MT can be computed as the

sum

MT � MR � diagonal���: �38�
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Once k is identified, a step is taken in that direction by

incrementing the component mk by one. Then the matrix

MR is updated by adding the kth column of � to it. The

actual value of Mp













2
doesn't need to be computed; it is

sufficient to chose the minimal increment at each time.
This criterion acts locally and, for this reason, it cannot

guarantee that the discrete line traced will be the global

optimal line. It produces, however, lines composed by

points that try to adhere to the Euclidean line AB in a local

best effort.

4.4 The Algorithm to Trace 3D Discrete Lines

It is now possible to modify Bresenham's algorithm of

Section 2.1 and apply it to 3D lines. The resulting algorithm

has the following steps:

1. Initialize current point P in position A:
xp1 � xa1, xp2 � xa2, xp3 � xa3.

2. Compute the matrix �.
3. Initialize column matrix MR to zero.

4. Compute the column matrix MT as the sum of

MR and the diagonal of �.
5. Select k as the index of the minimum ele-

ment in MT .
6. Take a step in direction k, that is, incre-

ment mk � mk � 1.
7. U p d a t e m a t r i x MR b y m a k i n g

MR � MR � 2 � columnk���.
8. If point P is different from point B,

go to Step 4, else end.

This algorithm continuously selects the next point for the

discrete line as the one closest to the Euclidean line among

all the possible movements.

5 THE CUBIC GRID CASE

In this section, we present an example of how this algorithm

works for tracing a line in a cubic grid. We first express in

vectorial terms the basic elements needed for tracing a line

from point A to point B in a cubic grid. These elements are

shown in Fig. 8. The cubic grid can be defined by a vector

basis composed of vectors H1 � �1; 0; 0�, H2 � �0; 1; 0�,
H3 � �0; 0; 1�.

5.1 Defining Connectivity

Here, we select 6-connectivity in 3D as shown in Fig. 9.
In this connectivity, two grid points A and B are
considered neighbors if their coordinates satisfy
xb1 ÿ xa1j j � xb2 ÿ xa2j j � xb3 ÿ xa3j j � 1. The T set defining
6-connectivity is T � H1;H2;H3;ÿH1;ÿH2;ÿH3f g.

Let's consider the case of a line from A � �0; 0; 0� to
B � �2; 3; 5�. This line lies in the first octant, so the vector
basis is directly the set

V1 � H1;V2 � H2;V3 � M3f g:

Vector M is equal to 2V1 � 3V2 � 5V3, that is, the
components are x1 � 2, x2 � 3, and x3 � 5.

5.2 Projection on the Orthogonal Subspace

In the cubic grid, the computation for the reciprocal vector
basis leads to the trivial result: U1 � V1, U2 � V2, and
U3 � V3. Using vectors Vi, we can form the matrix Mv,
which turns out to be the Identity matrix. The computation
of matrix � from (33) is reduced to

� � Msp MT
spMsp

� �ÿ1

MT
sp:

For our particular numerical example, Msp is

Msp �
x3 0

0 x3
ÿx1 ÿx2

2

4

3

5 �
5 0

0 5

ÿ2 ÿ3

2

4

3

5

and matrix � turns out to be

� � 1

38

34 ÿ6 ÿ10

ÿ6 29 ÿ15

ÿ10 ÿ15 13

2

4

3

5:

It is easy to verify that

x1 x2 x3� ��
x1

x2

x3

2

4

3

5 � 2 3 5� ��
2

3

5

2

4

3

5 � 0;

which geometrically means that the projection of point B on
the orthogonal subspace is superimposed onto the projec-
tion of point A.

5.3 Running the Algorithm

Let's now run the algorithm for this particular example. The
following tables show the numerical values of the main
elements involved in the line tracing process. For the
purpose of the algorithm, we can ignore the fraction 1=38 in
matrix � because we are only concerned with comparing
values.

Table 1 shows the evolution of column matrix MR. Its
elements are initialized to zero. Table 2 shows the evolution
of column matrix MT , which is, at each stage, the value of
MR plus the diagonal of �. The index k of the minimum
element of MT is selected as the direction for taking the next
step. Matrix MT is updated by adding the column of �

corresponding to the selected index. Table 3 shows the
evolution of point P coordinates; this is the final output of

Fig. 9. Six-connectivity in the cubic grid. The voxel in the center has six

neighbors.
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the algorithm, the sequence of points that compose the

discrete line.

6 GENERAL CASE

The generalization of the line tracing procedure is presented

here for any regular grid of dimension N .

6.1 Definition of the Grid

A regular grid of dimension N is completely characterized

by a set of N linearly independent vectors Hif g; i 2 �1; N �
and each vector Hi 2 IRN . A grid point P is defined by its

position vector P �PN
i�1 xpiHi, where coefficients xpi are

said to be the components of P in the vector basis Hi�1;N

� 	

and satisfy xpi 2 ZZ, 8i 2 �1; N �.

6.2 Selecting Connectivity

Connectivity is a choice to be taken prior to the line tracing

process. It is defined by specifying the set T composed of all

the vectors relating neighbors in the grid. This choice is not

trivial at all, the topological properties of the traced line

depending completely on the vectors in set T . It can be

recommended to use connectivities defined by the grid's

Voronoi regions: Two grid points are neighbors if their

N-dimensional Voronoi regions share a common �N ÿ 1�
dimensional face [8], [10]. However, this is not a require-

ment of our algorithm. Of course, vectors in T are linear

combinations of the vectors Hif g, i 2 �1; N �.
To trace a line from a grid point A at position A �

PN
i�1 xaiHi to a grid point B at position B �PN

i�1 xbiHi, we

have to find the sequence of grid point related by vectors in

T going from point A to point B. The grid vector

representing the line to be traced is Vt � BÿA.

6.3 Selecting the Optimal Vector Basis

The optimal vector basis depends on the discrete line to be

traced. This problem is the generalization of the quadrant

selection problem in the square grid or the octant selection

problem in the cubic grid. The rule is to take a set of

N vectors Vif g, i 2 �1; N�, from the set T such that they

form a vector basis for the grid. The vector Vt representing

the line could be expressed in terms of these vectors with

coefficients xi � 0, 8i 2 �1; N �, as small as possible. Once the

set of vectors Vif g is determined, we can construct matrix

Mv by using the vectors as columns.

6.4 Defining the Orthogonal Subspace

Once the vector basis Vif g, i 2 �1; N�, is selected, the

reciprocal vector basis can be obtained by forming the

N �N matrix Mv with the N vectors Vi placed as columns.

The matrix Mu is computed following (11). The columns of

matrix Mu are the vectors Uif g, i 2 �1; N �, of the reciprocal

vector basis.
It should be noted that the procedure presented in

Section 4.2.5 is not possible if vector Vt has null

components. The solution in this case is to reduce the

dimension N of space to obtain only nonnull components in

Vt. Then, we reconsider the problem in a lower dimen-

sional grid. The simplest example for this case is to trace a

3D line which lies in the plane XY , which is really a 2D

process.
The Euclidean line AB is a 1D object. The orthogonal

subspace to the line is an �N ÿ 1�-D one. In order to define

this orthogonal subspace, we need �N ÿ 1� linearly inde-

pendent vectors Vpi

� 	

, i 2 �1; N ÿ 1�, orthogonal to the

vector Vt.
We renumber the vector basis Vi in order to obtain Vt

components such that xi � xj; 8i < j. In this way, the

dominant direction is the one indicated by vector VN , the

remaining Vi, i � 1; . . . ; �N ÿ 1�, vectors indicate secondary
directions. Vectors Upi

� 	

, i 2 �1; N ÿ 1�, can be defined by

Upi � xNUi ÿ xiUN:

We can then find the generalized subspace projection

matrix Msp as the �N ÿ 1� �N matrix:

Msp �

xN 0 � � � 0

0 xN � � � 0

0 0 . .
.

0

..

. ..
. ..

. ..
.

ÿx1 ÿx2 � � � ÿxNÿ1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

TABLE 1
Evolution of Column Matrix MR

The three components are arranged vertically, their consecutive values
are arranged from left to right. The last row contains the index that is
selected as step direction at each iteration. At each iteration, the matrix
is updated by adding the double of the kth column of �.

TABLE 2
Evolution of Column Matrix MT

The three components are arranged vertically, their consecutive values
are arranged from left to right. At each step, it contains the sum of MR

and the diagonal of matrix �. The last row contains the index that is
selected as step direction at each iteration.

TABLE 3
Evolution of Point P's Position as Represented by Vector M

The last row contains the index that is selected as step direction at each
iteration.

10



The resulting vector basis Upi

� 	

, i 2 �1; N ÿ 1� of the
orthogonal subspace has a reciprocal vector basis Wpi

� 	

,
i 2 �1; N ÿ 1�. In the line tracing process, it is not really
necessary to compute Wpi vectors and they are introduced
here only to express the projections of grid vectors on the
orthogonal subspace.

6.5 Projection of Vectors on the Orthogonal
Subspace

Let M be the grid vector defined by M �PN
i�1 miVi. Let

Mp be the projection of M on the orthogonal subspace. It
can be expressed in terms of the reciprocal vector basis of
the orthogonal subspace as Mp �PNÿ1

i�1 mpiWpi. The
coeff ic ients mpi are computed by mpi � M �Upi,
i 2 �1; N ÿ 1�. It is easy to verify that the projection of
vectors Vi, i 2 �2; N�, corresponding to secondary direc-
tions, is xNWpi, while the projection of the dominant
direction vector V1 is ÿPNÿ1

i�1 x�i�1�Wpi.
In practice, it is enough for us to compute directly the

matrix � using (33), for which we only need the matrices
Mv and Msp.

6.6 The Generalized Algorithm

We present here the generalized algorithm that can be
applied to any regular grid of any dimension.

1. Initialize current point P at position A:
xpi � xai, 8i 2 �1; N �.

2. Compute the matrix �.
3. Initialize column matrix MR to zero.
4. Compute the column matrix MT as the

sum of MR and the diagonal of �.
5. Select k as the index of the minimum ele-

ment in MT th column o.
6. Take a step in direction k, that is, incre-

ment mk � mk � 1.
7. U p d a t e m a t r i x MR b y m a k i n g

MR � MR � 2 � columnk���.
8. If point P is different from point B,

go to Step 4, else end.

Hence, this algorithm traces the N dimensional line, using
only sums.

A C++ implementation of this algorithm is freely
available from http://www.cs.unc.edu/~ibanez/Papers/
LineTracing/Code.

7 CONCLUSION

A general description of the problem of tracing discrete
straight lines on grids of different dimensions has been
presented in this paper. A particular emphasis has been
done on the treatment of nonorthogonal grids.

A vectorial approach has been developed as a formaliza-
tion of the line tracing procedure. The fact that grids are
well-represented in terms of vector basis leads to a natural
treatment of the topological problems embedded on grids.

The basic criterion of our algorithm for tracing the
discrete approximation of the Euclidean line AB is to find at
each step the point that is closest to the Euclidean line AB
among all the possible points allowed by the connectivity of
the grid.

An efficient matricial process has been stablished for

computing the distance from grid points to the Euclidean

line. It allows us to reuse computations in a recursive

framework. Only floating point sums are required for

finding the next point of the line at each step. This fact

stands as the main reason for the high performance of the

algorithm.
The present algorithm can be considered as a general-

ization of Bresenham's to higher dimensional and non-

orthogonal grids.
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