
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 1, JANUARY lYY2

The Influence o f Scale on Distribu ted
F ile System Design

M&a&v Satyanarayanan, Member, IEEE

Abstract- Scale should be recognized as a primary factor
influencing the architecture and implementation of distributed
systems. This paper uses Andrew and Coda, distributed file
systems built at Carnegie Mellon University, to validate this
proposition. Performance, operability, and security are dominant
considerations in the design of these systems. Availability is a
further consideration in the design of Coda. Client caching,
bulk data transfer, token-based mutual authentication, and hi-
erarchical organization of the protection domain have emerged
as mechanisms that enhance scalability. The separation of con-
cerns made possible by functional specialization has also proved
valuable in scaling. Heterogeneity is an important by-product
of growth, but the mechanisms available to cope with it are
rudimentary. Physical separation of clients and servers turns out
to be a critical requirement for scalability.

Index Terms- Scalability, distributed file systems, Andrew,
Coda, security, performance, availability, heterogeneity, replica-
tion, caching, large-scale distributed systems, design principles
for scalability.

I. INTRODUCTION

S OFTWARE engineer ing focuses on programming in the
large, recognizing that size is a first-order inf luence on

the structure of programs. This paper puts forth the analogous
view that the scale of a distributed system is a fundamental
inf luence on its design. Mechanisms which work well in a
small distributed system fail to be adequate in the context
of a larger system. Scalability should thus be a primary
considerat ion in the design of distributed systems.

How does one measure “scale”? One can interpret the term
in many ways. For example, it can refer to the number of nodes
in a distributed system. Alternatively, it could be the number
of users of the system. These definitions are equivalent in a
distributed workstation environment, where each workstation
is dedicated to a user or is shared by a small number of users.
Another interpretation is that scale refers to the number of
organizational boundar ies encompassed by the system. Human
limitations necessitate the grouping of users and equipment

Manuscript received January 27, 1988; revised September 10, 1991. Recom-
mended by M. Evangelist. This work was supported by the Defense Advanced
Research Projects Agency under Contract No. F33615.90-C-1465, ARPA
Order No. 7597 (Avionics Laboratory, Wright Research and Development
Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-
Patterson AFB), by the National Science Foundat ion under Contract No. CCR-
X657907, by the IBM Corporation (Andrew Project, Faculty Development
Award, Research Initiation Grant), by the Digital Equipment Corporation
(External Research Project Grant), and by Bellcore (Information Networking
Research Grant).

The author is with the School of Computer Science, Carnegie Mel lon
University, Pittsburgh, PA 15213.

IEEE Log Number 9104757.

into autonomous or semi-autonomous organizat ions for man-
agement purposes. Hence a distributed system that has many
users or nodes will also span many organizations. Regardless
of the specific metric of scale, the designs of distributed
systems that scale well are fundamental ly different from less
scalable designs.

In this paper we descr ibe the lessons we have learned
about scalability from the Andrew File System and the Coda
File System. These systems are particularly appropriate for
our discussion, because they have been des igned for growth
to thousands of nodes and users. W e focus on distributed
file systems, because they are the most widely used kind of
distributed system in existence today, and because we have
first-hand exper ience in their design, implementation, and use.
But much of this paper also applies to other kinds of distributed
services.

W e begin our discussion by examining why growth occurs
in distributed systems and what its consequences are. W e then
give a brief overview of Andrew and Coda. The bulk of the
paper consists of a detailed examinat ion of specific aspects
of Andrew and Coda that were significantly inf luenced by the
need to scale well. Wherever possible, we contrast our design
choices with those of other related systems. W e end the paper
with a summary of what we have learned in the form of a set
of design principles.

II. ORIGIN AND CONSEQUENCES OF SCALE

There is relentless pressure on successful distributed sys-
tems to increase in scale. It is easy to see why. A dis-
tributed system simplifies communicat ion between users and
the sharing of information between them. As a distributed
system grows, enabl ing more users to communicate and more
information to be shared, it becomes an increasingly valuable
resource. At some point in the evolution of the system, access
to it is v iewed as a necessity rather than luxury by the user
community. There is then considerable incentive to allow users
who were originally outside the scope of the system to be
included in it. Growth thus acquires a momentum of its own.

The economic impact of growth is closely related to how
cost is reflected. The optimal system design for an organization
where all system costs are borne centrally will be different
from one for an organization where some costs are borne
centrally and others are passed on to the end users. The
latter model is more common and favors designs in which
the cost of incremental growth is almost entirely borne by
the individuals benefit ing from that growth. This in turn

0098-5589/92$03.00 0 1992 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 1, JANUARY 1992

implies that incremental growth should minimally impact
central resources.

In our experience, growth also has other serious conse-
quences. For example, per formance and operability become
dominant concerns. Lax security is no longer acceptable.
Precise emulation of single-site interface semantics becomes
difficult. Heterogeneity of hardware and software is more
likely. In general, algorithms and techniques that work well
at small scale degenerate in nonobvious ways at large scale.

III. OVERVIEW OF ANDREW AND CODA

The Andrew File System was developed at Carnegie Mellon
University (CMU) from 1983 to 1989. Today, it spans 40
sites on the Internet across the U.S. On the CMU campus
alone it includes over 1000 workstations and is used by more
than 3000 regular users. Further development and commercial
distribution of this system is now being done by the Transarc
Corporation.

Andrew is des igned for an environment consisting of a large
collection of untrusted clients with local disks. These clients
are connected via a high bandwidth network to a small number
of trusted servers, collectively called Vice. Users execute
applications only at clients and see a location-transparent
shared Unix’ file system that appears as a single subtree of the
local file system. To improve performance, clients cache files
and directories from Vice. Cache management and emulation
of Unix file system semantics is done at each client by a cache
manager called Venus.

The design of Andrew has evolved over time, resulting in
three distinct versions, called AFS-1, AFS-2, and AFS-3. In
this paper the unqualif ied term “Andrew” applies to all three
versions of the file system. The design of a fourth version,
AFS-4, is proprietary at the present time and is therefore not
d iscussed here.

As users become more dependent on distributed file sys-
tems, the availability of data in them becomes increasingly
important. Today, a single failure in Andrew can seriously
inconvenience many users for significant per iods of time.
Coda, whose development began in 1987 at CMU, strives
to provide high availability while retaining the scalability of
Andrew.

Coda provides resiliency to server and network failures
through the use of two distinct but complementary mecha-
nisms. One mechanism, server replication, stores copies of a
file at multiple servers. The other mechanism, d isconnected
operation, is a mode of execut ion in which a caching site
temporari ly assumes the role of a replication site. Disconnected
operat ion is particularly useful for support ing portable clients.
Coda has been in serious daily use by a small user community
for about a year, and substantial growth is anticipated in the
near future.

Both Andrew and Coda have been descr ibed extensively
in the literature [6], [7], [9], [18]-[21], [25]. In contrast to
those papers, our discussion here is narrowly focused. In each
of the following sections we highlight one aspect of Andrew
or Coda that is a consequence of scale or contributes sig-

‘Unix is a trademark of the AT&T Corporation.

nificantly to scalability. Wherever plausible alternative design
choices exist, we evaluate our choices from the perspect ive
of scalability.

IV. SCALE-RELATED ASPECTS OF ANDREW AND CODA

A. Locat ion Transparency

A fundamental issue is how files are named and located
in a distributed environment. Andrew and Coda offer true
locution transparency: the name of a file contains no location
information. Rather, this information is obtained dynamically
by clients during normal operation. Consequent ly, administra-
tive operat ions such as the addit ion or removal of servers and
the redistribution of files on them are transparent to users. In
contrast, some file systems require users to explicitly identify
the site at which a file is located. For example, Unix United [2]
uses pathname constructs of the form “l../machinellocalputh”
and VaxlVMS [4] uses “muchine::device:loculputh.”

The embedding of location information in a logical name
space has a number of negat ive consequences. First, users have
to remember machine names to access data. Although feasible
in a small environment, this becomes increasingly difficult as
the system grows in size. It is simpler and more convenient
for users to remember a logical name devoid of location
information. A second problem is that it is inconvenient
to move files between servers. Since changing the location
of a file also changes its name, file names embedded in
application programs and in the minds of users become invalid.
Unfortunately, data movement is inevitable when storage
capacity on a server is exceeded or when a server is taken
down for ex tended maintenance. The problem is more acute in
large systems, because the likelihood of these events is greater.

Another alternative, used in Sun NFS [17], is to establish
an associat ion between a pathname on a remote machine and
a local name. The associat ion is performed using the mount
mechanism in Unix when a machine is initialized, and remains
in effect until the machine is reinitialized. Although this ap-
proach avoids pathnames with embedded server identification,
it is not as flexible. If a file is moved from one server to
another it will not be accessible under its original name unless
the client is reinitialized.

Locat ion t ransparency can be v iewed as a binding issue.
The binding of location to name is static and permanent
when pathnames with embedded machine names are used.
The binding is less permanent in a system like Sun NFS. It
is most dynamic and flexible in Andrew and Coda. Usage
exper ience has confirmed the benefits of a fully dynamic
location mechanism in a large distributed environment.

B. Client Caching
The caching of data at clients is undoubtedly the architec-

tural feature that contributes most to scalability in a distributed
file system. Caching has been an integral part of the Andrew
and Coda designs from the beginning. Today, every distributed
file system in serious use uses some form of caching. Even
AT&T’s RFS [16], which initially avoided caching in the
interests of strict Unix emulation, now uses it. In implementing

SATYANARAYANAN: INFLUENCE OF SCALE ON DISTRIBUTED FILE SYSTEM DESIGN 3

caching one has to make three key decisions: where to locate
the cache, how to maintain cache coherence, and when to
propagate modifications.

Andrew and Coda cache on the local disk, with a further
level of file caching by the Unix kernel in main memory. Most
other distributed file systems maintain their caches only in
main memory. Disk caches contribute to scalability by reduc-
ing network traffic and server load on client reboots, a surpris-
ingly frequent event in workstation environments. They also
contribute to scalability in a more indirect way by enabl ing
disconnected operat ion in Coda. The latter feature is critically
dependent upon a local disk or some other form of local
nonvolati le storage. Since disconnected operat ion allows users
to cont inue in the face of remote failures, and since the latter
tend to be more numerous as a system grows, caching on local
disks can be v iewed as indirectly contributing to scalability.

Cache coherence can be maintained in two ways. One
approach is for the client to validate a cached object upon
use. This strategy, used in AFS-1 and Sprite [12], results in
at least one interaction with a server for each open of a file.
A more scalable approach is used in AFS-2, AFS-3, Coda,
and Echo [5]. When a client caches an object, the server
hands out a promise (called a callback or token) that it will
notify the client before allowing any other client to modify that
object. Although more complex to implement, this approach
minimizes server load and network traffic, thus enhancing
scalability. Callbacks further improve scalability by making
it viable for clients to translate pathnames entirely locally.

Maintaining cache coherence is unnecessary if the data in
quest ion can be treated as a hint [28]. A hint is a piece of infor-
mation that can substantially improve performance if correct,
but has no semantically negat ive consequence if erroneous. For
maximum performance benefit a hint should nearly always be
correct. Hints improve scalability by obviating the need for
a cache coherence protocol. Of course, only information that
is self-validating upon use is amenable to this strategy. One
cannot, for instance, treat file data as a hint, because the use of
a cached copy of the data will not reveal whether it is current or
stale. Hints are most often used for file location information
in distributed file systems. Andrew and Coda, for instance,
cache individual mappings of volumes to servers. Similarly,
Sprite caches mappings of pa thname prefixes to servers. A
more elaborate location scheme, incorporating a hint manager,
is used by Apollo Domain [8].

Existing systems use one of two approaches to propagat-
ing modifications from client to server. Write-back caching,
used in Sprite and Echo, is the more scalable approach.
When operat ing disconnected, a Coda client is effectively
using deferred write-back caching. However, in the connected
mode the current implementation of Coda uses write-through
caching. W e plan to change this to write-back caching in
the near future. Because of implementation complexity and
to reduce the chances of server data being stale due a client
crash, Andrew uses a write-through caching scheme. This is
a notable except ion to scalability being the dominant design
considerat ion in Andrew. Sun NFS is another example of a
system that synchronously f lushes dirty data to the server upon
close of a file.

C. Bulk Data Transfer

An important issue related to caching is the granularity of
data transfers between client and server. The approach used
in AFS-1 and AFS-2 is to cache entire files. This enhances
scalability by reducing server load, because clients need only
contact servers on file open and close requests. The far
more numerous read and write operat ions are invisible
to servers and cause no network traffic. Whole-fi le caching
also simplifies cache management , because clients only have
to keep track of files, not individual pages, in their cache.
Amoeba [lo] and Cedar [23] are examples of other systems
that employ whole-file caching.

Caching entire files has at least two drawbacks. First, files
larger than the local disk cannot be accessed. Second, the
latency of open requests is proport ional to file size, and can be
intolerable for extremely large files. To avoid these problems,
AFS-3 uses partial-file caching. However, usage exper ience
with AFS-3 at CMU has not demonstrated substantial improve-
ment in usability or per formance due to partial-file caching. On
the contrary, it has exposed the following unexpected problem.

By default, Unix uses the file system rather than a separate
swap area as backing store for the code segments of execut ing
programs. W ith partial-file caching, parts of this backing store
may not be present on the client’s local disk; only the server
is guaranteed to have the full image. This image is overwritten
when a new version of a program is copied into AFS-3. If a
client started execut ing the program prior to the copy, there is
a possibility that page faults from that instance of the program
may no longer be serviceable. This problem does not arise with
whole-file transfer, because a local copy of the entire program
is guaranteed to be present when execut ion of the program is
begun. For partial-file caching to work correctly a server must
prevent overwrit ing of a file as long as any client in the system
is execut ing a copy of that file; or, a server must be able to
defer deletion of older versions of executable files until it is
sure that no client is execut ing any of those versions. In either
case, the cache coherence protocol will be more complex and
less scalable.

Coda also uses whole-file caching. However, scalability is
not the only motivation in this case. From the perspect ive of
d isconnected operation, whole-file caching also offers another
important advantage: remote failures are only visible on open
and close operations. In our opinion, the simplicity and
robustness of this failure model outweigh the merits of partial-
file caching schemes such as those of AFS3, Echo, and MFS
c31.

When caching is done at large granularity, considerable
per formance improvement can be obtained by the use of a
special ized bulk data-transfer protocol. Network communica-
tion overhead caused by protocol processing typically accounts
for a major port ion of the latency in a distributed file system.
Transferr ing data in bulk reduces this overhead by amortizing
fixed protocol overheads over many consecut ive pages of a
file. For bulk transfer protocols to be effective there has to
be substantial spatial locality of reference within files. The
presence of such locality has been confirmed by empirical
observat ions of Unix systems. For example, Ousterhout et al.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 1, JANUARY 1992

[13] note that most files are read in their entirety after being
opened.

Systems that use whole-file caching are most naturally
suited to using bulk transfer protocols. Other systems exploit
bulk transfer in varying degrees. AFS-3 transfers data in large
chunks, typically 64 kilobyte in size. Sun NFS and Sprite
do not use bulk transfer protocols, but use large datagrams,
typically 8 kilobyte in size. It is likely that bulk transfer
protocols will increase in importance as distributed file systems
spread across networks of wider geographic area.

D. Token-Based Mutual Authentication

A social consequence of large scale is that the casual attitude
toward security typical of closely knit distributed environments
is no longer viable. The relative anonymity of users in a
large system requires security to be maintained by enforcement
rather than by good will. This, in turn, raises the quest ion of
who can be trusted to enforce security. Security in Andrew and
Coda is predicated on the integrity of a relatively small number
of servers, rather than the much larger number of clients.

Many small-scale distributed systems present a facade of
security by using simple extensions of the mechanisms used
in a t ime-sharing environment. For example, authentication
is often implemented by sending a password in the clear
to the server, which then validates it. Besides the obvious
danger of sending passwords in the clear, this also has the
drawback that the client is not certain of the identity of the
server. Andrew and Coda, in contrast, perform full mutual
authentication using a variant of the Needham and Schroeder
private key authentication algorithm [ll].

In AFS-1, AFS-2, and Coda, this function is integrated with
the RPC mechanism. To establish a secure and authenticated
RPC connect ion, a 3-phase handshake takes place between
client and server. The client supplies a variable-length iden-
tifier and an encrypt ion key for the handshake. The server
provides a key lookup procedure and a procedure to be invoked
on authentication failure. The latter allows the server to record
and possibly notify an administrator of suspicious authen-
tication failures. At the end of a successful authentication
handshake the server is assured that the client possesses the
correct key, while the client is assured that the server is capable
of looking up his key. The use of randomized information in
the handshake guards against replays by adversaries.

A naive use of the RPC handshake would require the user
to supply his password every time a new connect ion had to
be established. The obvious improvement of having the user
type in his password once and storing it in the clear at the
client is risky. The approach used in Andrew and Coda is
to provide a level of indirection using authentication tokens.
When a user logs in to a client, the password he types in is
used as the key to establish a secure RPC connect ion to an
authentication server. A pair of authentication tokens are then
obtained for the user on this secure connect ion. These tokens
are saved by the client and are used by it to establish secure
RPC connect ions on behalf of the user to file servers. To bound
the period during which lost tokens can cause damage, tokens
expire after a finite time (typically 24 h).

Like a file server, an authentication server runs on physically
secure hardware. To improve availability and to balance load,
there are multiple instances of the authentication server. Only
one instance accepts updates; the others are slaves and respond
only to queries. To improve accountabil ity, the master main-
tains an audit trail of changes to the authentication database.

For reasons of standardization, AFS-3 uses the Kerberos
authentication system [26]. Kerberos provides functionality
equivalent to the authentication mechanism descr ibed above,
and resembles it in design.

E. Hierarchical Groups and Access Lists

Controll ing access to data is substantially more complex
in large-scale systems than it is in smaller systems. There is
more data to protect and more users to make access control
decisions about. This is an area in which the Unix file system
model is seriously deficient. The Unix protection model was
obtained by simplifying the Multics protection model to meet
the needs of small t ime-sharing systems. Not surprisingly,
the Unix model becomes inadequate when a system is scaled
up. To enhance scalability Andrew and Coda organize their
protection domains hierarchically and support a full-fledged
access-list mechanism.

The protection domain is composed of users and groups.
Membership in a group is inherited, and a user’s privileges are
the cumulative privileges of all the groups he or she belongs
to, either directly or indirectly. New addit ions to a group G,
automatically acquire all privileges granted to the groups to
which G belongs. Conversely, when a user is deleted, it is
only necessary to remove him from those groups in which he is
explicitly named as a member. Inheritance of membership con-
ceptually simplifies the maintenance and administration of the
protection domain, a particularly attractive trait at large scale.
At least two other systems, CMU-CFS [l] and Grapevine [22],
have also used a hierarchical protection domain.

Andrew and Coda use an access-list mechanism for file
protection. The total rights specif ied for a user are the union
of the rights specif ied for him and the groups he or she belongs
to. Access lists are associated with directories rather than
individual files. The reduction in state obtained by this design
decision provides conceptual simplicity that is valuable at large
scale. Although the real enforcement of protection is done on
the basis of access lists, Venus super imposes an emulation of
Unix protection semantics by honor ing the owner component
of the Unix mode bits on a file. The combinat ion of access
lists on directories and mode bits on files has proved to be an
excellent compromise between protection at fine granularity,
scalability, and Unix compatibility.

The ability to rapidly revoke access privileges is important
in a large distributed system. Revocat ion is usually done by
removing an individual from an access list. But that individual
may be a direct or indirect member of one or more groups
that give him or her rights on the object. The process of
discovering all g roups that the user should be removed from,
performing the removal at the site of the master authentication
server, and propagat ing it to all s laves may take a significant
amount of time in a large distributed system. Andrew and Coda

SATYANARAYANAN: INFLUENCE OF SCALE ON DISTRIBUTED FILE SYSTEM DESIGN 5

simplify rapid and selective revocation by allowing access lists
to specify negat ive rights. An entry in a negat ive rights list
indicates denial of the specif ied rights, with denial overriding
possession in case of conflict. Negative rights thus decouple
the problems of rapid revocation and propagat ion of group
membership information.

The loss of accountabil i ty caused by the shared use of a
pseudo-user id (such as “root” in Unix systems) by system
administrators is a serious problem at large scale. Conse-
quently, administrative privileges in Andrew and Coda are
obtained by membership in a dist inguished group named
“System:Administrators.” This improves accountabil ity, since
system administrators have to reveal their true identity dur ing
authentication.

F. First Versus Second-Class Replication

The use of two distinct mechanisms for high availability
in Coda, server replication and disconnected operation, is an
indirect consequence of Coda’s desire to scale well. Systems
such as Locus [29] that rely solely on server replication have
poor scaling characteristics. Since disconnected operat ion is
almost free, while server replication incurs additional hardware
costs and protocol overhead, it is natural to ask why the
latter mechanism is needed at all. The answer to this quest ion
depends critically on the very different assumptions made
about clients and servers in Coda. These assumptions, in turn,
reflect the usage and administrative characteristics of a large
distributed system.

Clients are like appl iances: they can be turned off at will and
may be unat tended for long periods of time. They have limited
disk storage capacity, their software and hardware may be tam-
pered with, and their owners may not be diligent about backing
up the local disks. Servers, in contrast, have much greater disk
capacity, are physically secure, and are carefully monitored
and administered by a professional staff. It is therefore ap-
propriate to distinguish between first-class replicas on servers
and second-class replicas on clients (i.e., cached copies).
First-class replicas are of higher quality-they are more persis-
tent, widely known, secure, available, complete, and accurate.
Second-class replicas, in contrast, are inferior a long all these
dimensions. Only by periodic revalidation with respect to a
first-class replica can a second-class replica be useful.

The function of a cache coherence protocol is to combine
the performance and scalability advantages of a second-class
replica with the quality of a first-class replica. When discon-
nected the quality of the second-class replica may be degraded,
because the first-class replica upon which it is cont ingent
is inaccessible. The longer the durat ion of disconnection,
the greater the potential for degradat ion. Whereas server
replication preserves the quality of data in the face of fail-
ures, d isconnected operat ion forsakes quality for availability.
Hence server replication is important, because it reduces the
f requency and durat ion of d isconnected operation, which is
properly v iewed as a measure of last resort.

G. Data Aggregat ion

In a large system, considerat ions of operability and system

T

administration assume major significance. To facilitate these
functions, Andrew and Coda organize file system data into
volumes [24]. A volume is a collection of files located on one
server and forming a partial subtree of the Vice name space.
Volumes are invisible to application programs and are only
manipulated by system administrators. The aggregat ion of data
provided by volumes reduces the apparent size of the system
as perceived by operators and system administrators. Our
operational exper ience in Andrew and Coda confirms the value
of the volume abstraction in a large distributed file system.

Virtually all administrative functions in Andrew and Coda
are done at the granularity of volumes. For example, volumes
are the unit of read-only replication in Andrew, and read-write
replication in Coda. Balancing of the available disk space
and utilization on servers is accompl ished by redistributing
volumes across one or more servers. These modifications can
be made during normal operat ion without disrupting service
to users. Disk storage quotas are specif ied and enforced on
individual volumes

Volumes also form the basis of the backup and restoration
mechanism. To backup a volume, a read-only c lone is first
made, thus creating a frozen snapshot of the constituent files.
Since cloning is an efficient operation, users rarely notice any
loss of access to that volume. An asynchronous mechanism
then transfers this c lone to a staging machine from where it
is dumped to tape. The clone is also made available on-line.
This substantially reduces the number of restoration requests
received by operators, since users can themselves undo recent
deletions by copying data from the clone.

H. Decentral ized Administration

A large distributed system is unwieldy to manage as a
monolithic entity. For smooth and efficient operation, it is es-
sential to delegate administrative responsibility a long lines that
parallel institutional boundaries. Such a system decomposit ion
has to balance site autonomy with the desirable but conflicting
goal of system-wide uniformity in human and programming
interfaces. The cell mechanism of AFS-3 [30] is an example
of a mechanism that provides this balance.

A cell corresponds to a completely autonomous Andrew
system, with its own protection domain, authentication and
file servers, and system administrators. A federation of cells
can cooperate in present ing users with a uniform, seamless
file name space. Although the presence of multiple protection
domains complicates the security mechanisms in Andrew,
Venus hides much of the complexity from users. For example,
authentication tokens issued in a cell are only valid within
that cell. To preserve t ransparency when accessing files from
different cells, Venus maintains a collection of tokens for the
cells of interest. A user is aware of the existence of cells only
at the beginning of a session, when he or she authenticates
himself to individual cells to obtain authentication tokens.
After this initial step, Venus uses the appropriate tokens when
establishing a secure connect ion to a file server.

I. Functional Specialization

When implementing a distributed realization of an interface

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 1, JANUARY 1992

originally def ined for a single site, one often finds that scala-
bility and exact interface emulation make conflicting demands.
One way to improve scalability is to relax the accuracy with
which the interface is emulated. This strategy is particularly
attractive if there is a natural partitioning of applications
based on their use of the interface. Each equivalence class
of applications can then use a distributed realization of the
interface tuned to its critical requirements.

In Andrew and Coda, propagat ing modifications only upon
close operat ions violates strict Unix semantics, but is irrel-
evant to most Unix applications. The use of caching and bulk
data transfer presume substantial temporal and spatial locality
of file accesses. The use of an optimistic replication strategy
in Coda is based on the assumption that sequential write
sharing is relatively rare. But the assumptions on which these
techniques are based usually fail to hold for databases. Poor
locality, fine granularity of update and query, and frequent
concurrent and sequential write-sharing are the norm rather
than the except ion in databases.

Rather than compromise scalability in an attempt to support
databases, Andrew and Coda partition the problem into two
orthogonal components-f i le access and database access-and
only address the former. Support for database access has to be
provided by a separate mechanism. This two-pronged strategy
is in contrast to the unified strategies of t ime-sharing Unix file
systems, where all accesses (from databases or otherwise) are
supported on the same interface.

Functional specialization also characterizes the mechanism
in Andrew for support ing personal computers (PC’s) such
as the IBM PC and Apple Macintosh. Such machines differ
from full-fledged Andrew clients in that they do not run Unix,
typically possess limited amounts of memory, and often do not
possess a local disk. Caching of whole files, or large chunks
of files, is not a viable design strategy for such machines.
However, since a significant number of Andrew users also use
PC’s, we felt it essential to allow PC users to access Vice
files. This functionality is provided by a mechanism called
PCServer [15] that is orthogonal to the Andrew file system.

PCServer runs on an Andrew client and makes its file system
appear to be a transparent extension of the file systems of a
number of PCs. Since Vice files are transparently accessible
from the client, they are also transparently accessible from the
PC. The client thus acts as a surrogate for Vice. The protocol
between PCServer and its clients is tuned to the capabilities
of a PC. From the point of view of Venus, it appears as if the
PC user had actually logged in at the client running PCServer.
The decoupl ing provided by PCServer allows the Andrew file
system to exploit techniques essential to good performance
at large scale, without distorting its design to accommodate
machines with limited hardware and software capability.

J. Heterogeneity

As a distributed system evolves it tends to grow more
diverse. One factor contributing to diversity is the improve-
ment in per formance and decrease in cost of hardware over
time. This makes it likely that the most economical hardware
configurations will change over the period of growth of the

system. Another source of heterogeneity is the use of different
computer platforms for different applications. For example, the
same individual may use a supercomputer for simulations, a
Macintosh for document processing, a Unix workstation for
program development, and a laptop IBM PC while traveling.
Easy access to shared data across these diverse platforms
would substantially improve usability.

Andrew did not set out to be a heterogeneous comput ing en-
vironment. Initial p lans for it envis ioned a single type of client,
running one operat ing system, with the network constructed
of a single type of physical media. Yet heterogeneity appeared
early in its history and proliferated with time. Some of this
heterogeneity is attributable to the decentral ized administration
typical of universities, but we are convinced that much of it is
intrinsic to the growth and evolution of any distributed system.

Coping with heterogeneity is inherently difficult, because
of the presence of multiple computat ional environments, each
with its own notions of file naming and functionality. Since
few general principles are applicable, the idiosyncrasies of
each new system have to be accommodated by ad hoc mech-
anisms. The distributed file system community has gained
some exper ience with heterogeneity. For example, Pinkerton
et al. descr ibe an experimental file system at Washington [14]
that focuses on heterogeneity. TOPS [27] is a product offered
by Sun Microsystems which allows shared-fi le access across
the MS-DOS and Macintosh operat ing systems. PC-NFS, also
from Sun, allows MS-DOS applications to access files on
an NFS server. PCServer, descr ibed in the previous section,
performs a similar function in the Andrew environment.

V. DESIGN PRINCIPLES FOR SCALABILITY

The essence of the Andrew and Coda strategy is to de-
compose a large distributed system into a small nucleus that
changes relatively slowly, and a much larger and less static
periphery. From the perspect ives of security and operability,
the scale of the system appears to be that of the nucleus. But
from the perspect ives of per formance and availability, a user
at the periphery receives almost stand-alone service. It is the
thesis of this paper that such a strategy is feasible and effective.

A consequence of this strategy is that clients and servers
need to be physically distinct machines. This seemingly minor
detail turns out to be critical. W ithout this dichotomy, one
cannot make different security and administrative decisions
about clients and servers, nor can one optimize their hardware
and software configurations independently. Although the need
to have physically distinct clients and servers is not a problem
at large scale, it is an expensive proposit ion at small scale. It is
therefore tempting to make the cl ient-versus-server distinction
only a logical one, so that the start-up cost of a small
installation is low. Unfortunately, systems such as NFS and
Locus that have chosen this approach have foundered on the
rock of scalability. Growth in these systems is unwieldy, and
none of them appears capable of growth to thousands of sites.
One is therefore forced to conclude that the client-server
distinction is a fundamental one from the perspect ive of
scalability, and that a higher initial cost is the price one pays
for a system that can grow gracefully.

--

SATYANARAYANAN INFLUENCE OF SCALE ON DISTRIBUTED FILE SYSTEM DESIGN

Besides this high-level principle, we have also acquired
more detailed insights about scalability in the course of
building Andrew and Coda. W e present these insights here
as a collection of design principles:

l Clients have the cycles to burn
Whenever there is a choice between performing an

operat ion on a client and performing it on a server, it
is preferable to pick the client. This will enhance the
scalability of the design, since it lessens the need to
increase central resources as clients are added.

The only functions performed by servers in Andrew
and Coda are those critical to the security, integrity, or
location of data. Further, there is very little interserver
traffic. Pathname translation is done on clients rather
than on servers in AFS-2, AFS-3, and Coda. The parallel
update protocol in Coda depends on the client to directly
update all accessible servers, rather than updat ing one of
them and letting it relay the update.

l Cache whenever possible
Scalability, user mobility, and site autonomy motivate

this principle. Caching reduces content ion on central ized
resources, and transparently makes data available wher-
ever it is being currently used.

AFS-1 cached files and location information. AFS-2
also cached directories, as do AFS-3 and Coda. Caching
is the basis of d isconnected operat ion in Coda.

l Exploit usage propert ies
Knowledge about the use of real systems allows better

design choices to be made. For example, files can often be
grouped into a small number of easily identifiable classes
that reflect their access and modification patterns. These
class-specific propert ies provide an opportunity for inde-
pendent optimization, and hence improved performance,
in a distributed file system design.

Almost one-third of file references in a typical Unix
system are to temporary files. Since such files are seldom
shared, Andrew and Coda make them part of the local
name space. The executable files of system programs are
often read, but rarely written. AFS-2, AFS-3, and Coda
therefore support read-only replication of these files to
improve performance and availability. Coda’s use of an
optimistic replication strategy is based on the observat ion
that sequential write-sharing of user files is rare.

9 Minimize system-wide knowledge and change
In a large distributed system it is difficult to be aware

at all t imes of the entire state of the system. It is also
difficult to update distributed or replicated data structures
in a consistent manner. The scalability of a design is
enhanced if it rarely requires global information to be
monitored or atomically updated.

Clients in Andrew and Coda only monitor the status
of servers from which they have cached data. They do
not require any knowledge of the rest of the system.
File location information on Andrew and Coda servers
changes relatively rarely. Caching by Venus, rather than
file location changes in Vice, is used to deal with move-
ment of users.

Coda integrates server replication (a relatively heavy-
weight mechanism) with caching to improve availability
without losing scalability. Knowledge of a caching site is
conf ined to those servers with cal lbacks for the caching
site. Coda does not depend on knowledge of system-wide
topology, nor does it incorporate any algorithms requiring
system-wide election or commitment.

Another instance of the application of this principle
is the use of negat ive rights. More rapid revocation is
possible by modifications to an access list at a single
site rather than by a system-wide change to a replicated
protection database.

l Trust the fewest possible entities
A system whose security depends on the integrity of the

fewest possible entities is more likely to remain secure as
it grows.

Rather than trusting thousands of clients, security in
Andrew and Coda is predicated on the integrity of the
much smaller number of Vice servers. The administrators
of Vice need only ensure the physical security of these
servers and the software they run. Responsibil ity for
client integrity is delegated to the owner of each client.
Andrew and Coda rely on end-to-end encrypt ion rather
than physical link security.

l Batch if possible
Grouping operat ions together can improve throughput

(and hence scalability), a l though it is often at the cost of
latency.

The transfer of files in large chunks in AFS-3 and in
their entirety in AFS-1, AFS-2, and Coda is an instance of
the application of this principle. More efficient network
protocols can be used when data is transferred en masse
rather than as individual pages. In Coda, the second phase
of the update protocol is deferred and batched. Latency
is not increased in this case, because control can be
returned to application programs before the complet ion
of the second phase.

VI. CONCLUSION

The central message of this paper is that growth is an in-
evitable characteristic of successful and long-lived distributed
systems. Designers should therefore prepare for growth a
priori, rather than treating it as an afterthought. Our exper ience
with Andrew and Coda has taught us much about building
scalable distributed systems. W e now have a collection of
mechanisms that have been shown to enhance scalability, and
a set of general principles to guide future design choices.
But there is always the danger that system designers, like old
generals, are fighting the last war. Each quantum increase in
scale is likely to expose new ways in which the old tricks fail
to work. It is with some trepidation, therefore, that we await
the chal lenges posed by the next generat ion of large-scale
distributed systems.

ACKNOWLEDGMENT

The Andrew file system was built by the File System Group
of the Information Technology Center at Carnegie Mellon Uni-

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 1, JANUARY 1992

versity. The membership of this group over time has included
T. Anderson, S. Chutani, J. Howard, M. Kazar, S. Menees
Nichols, D. Nichols, M. Satyanarayanan, R. Sidebotham, M.
West, and E. Zayas. Contributions to the early design of
Andrew were also made by D. Gifford and A. Spector.

Coda is being built in the School of Computer Science at
Carnegie Mellon University. Contributors to Coda include J.
Kistler, P. Kumar, H. Mashburn, B. Noble, M. Okasaki, M.
Satyanarayanan, D. Steere, E. Siegel, and W. Smith.

The views and conclusion expressed in this paper are those
of the author, and should not be interpreted as being those of
the funding agencies or Carnegie Mellon University.

Ill M. Accetta, G. Robertson, M. Satyanarayanan, and M. Thompson, “The
design of a network-based central file system,” Dept. Computer Sci.,
Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-80-134,
1980.

121

131

I41

[51

I61

171

PI

I91

1101

[I21

[I31

D. R. Brownbridge, L. F. Marshall, and B. Randell, “The Newcastle
connection,” Software Pratt. &per., vol. 12, pp. 1147-1162, 1982.
M. Burrows, “Efficient data sharing,” Ph.D. diss., Computer Lab., Univ.
Cambridge, Dec. 1988.
“VMS system software handbook,” Digital Equipment Corp., Maynard,
MA, 1985.
A. Hisgen, A. Birrell, T. Mann, M. Schroeder, and G. &art, “Avail-
ability and consistency trade-offs in the Echo distributed file system,” in
Proc. 2nd IEEE Workshop on Workstation Operating Syst., Sept. 1989.
.I. H. Howard etal., “Scale and performance in a distributed file system,”
ACM Trans. Comput. Syst., vol. 6, no. 1, Feb. 1988.
J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the
Coda file system,“ACM Trans. Comput. Syst., vol. 10, no. 1, Feb. 1992.
P. H. Levine, “The Apollo DOMAIN distributed file system,” in NATO
ASI Series: Theory and Practice of Distributed Operating Systems, Y.
Paker, J.-P. Banatre, and M. Bozyigit, Eds. New York: Springer-
Verlag, 1987.
J. H. Morris et crl., “Andrew: a distributed personal computing environ-
ment,” Commun. ACM, vol. 29, no. 3, Mar. 1986.
S. .I. Mullender, G. van Rossum, A. S. Tanenbaum, R. van Renesse,
and H. van Staveren, “Amoeba: a distributed operating system for the
199Os,” IEEE Trans. Computer, vol. 23, pp. 4653, May 1990.
R. M. Needham and M. D. Schroeder, “Using encryption for authen-
tication in large networks of computers,” Commun. ACM, vol. 21, no.
12, Dec. 1978.
M. N. Nelson, B. B. Welch, and J. K. Ousterhout, “Caching in the Sprite
network file system,“ACM Trans. Comput. Syst. vol. 6, no. 1, Feb. 1988.
J. Ousterhout et al., “Trace-driven analysis of the Unix 4.2 BSD file
system,” in Proc. 10th ACM Symp. on Operating System Principles,
Dec. 1985.

1141

[I51

C. B. Pinkerton, E. D. Lazowska, D. Notkin, and J. Zahorjan, “A hetero-
geneous remote file system,” Dept. Computer Sci., Univ. Washington,
Seattle, Tech. Rep. 88-08-08, Aug. 1988.
L. K. Raper, “The CMU PC Server project,” Inform. Techn. Ctr.,
Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-ITC-051, Feb.
1986.

[161 A. P. Rifkin et al., “RFS architectural overview,” in Proc. Usenix
Conference (Atlanta, GA), 1986.

1171 R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design
and implementation of the Sun network filesystem,” in Proc. Usenix
Con& (Portland), 1985.

REFERENCES

WI

1191

@I

[211

[7-4

1231

1241

[251

P61

[271

Vsl

1291

[301

M. Satyanarayanan et al., “The ITC distributed file system: principles
and design,” in Proc. 10th ACM Symp. on Operating System Principles,
Dec. 1985.
M. Satyanarayanan, “Integrating security in a large distributed system,”
ACM %ns. ?omput. Sys;, vol. I, no. 3, Aug. 1989.
M. Satvanarayanan et al., “Coda: a highly available file system for a
distributed workstation environment,” IEEE Trans. Comput&s, vol. 39,
no. 4, Apr. 1990.
M. Satyanarayanan, “Scalable, secure, and highly available distributed - .
file access,” iEEE Computers, vol. 23, no. 5, May 1990.
M. D. Schroeder. A. D. Birrell, and R. M. Needham, “Exuerience with
Grapevine: the growth of a distributed system,” ACM Trl?ns. Comput.
Sys;, vol. 2, no. 1, pp. 3-23, Feb. 1984:
M. D. Schroeder, D. K. Gifford, and R. M. Needham, “A caching
file system for a programmer’s workstation,” in Proc. 10th Symp. on
Operating System Principles, Dec. 1985.
R. N. Sidebotham, “Volumes: the Andrew file system data structuring
primitive,” in Proc. Eur. Unix User Group Conf, Aug. 1986 (also
available as Information Techn. Ctr., Carnegie Mellon Univ., Pittsburgh,
PA, Tech. Rep. CMU-ITC-053).
D. C. Steere, .I. J. Kistler, and M. Satyanarayanan, “Efficient user-level
file cache management on the Sun Vnode interface,” in Proc. Usenix
Co@ (Anaheim, CA), June 1990.
J. G. Steiner, C. Neumann, and J. I. Schiller, “Kerberos: an authentica-
tion service for open network systems, ” in Proc. Usenix Con& (Dallas,
TX), Feb. 1988.
G. Stroud, “Introduction to TOPS,” Sun Techn., vol. 1, no. 2, Spring
1988.
D. B. Terry, “Caching hints in distributed systems,” IEEE Trans.
Sofhvare Eng., vol. SE-13, Jan. 1987.
B. Walker, G. Popek, R. English, C. Kline, and G. Thiel, “The LOCUS
distributed operating system, ” in Proc. 9th Symp. on Operating System
Principles, Oct. 1983.
E. R. Zayas and C. F. Everhart, “Design and specification of the cellular
Andrew environment,” Inform. Techn. Ctr., Carnegie Mellon Univ.,
Pittsburgh, PA, Tech. Rep. CMU-ITC-070, June 1988.

Mahadev Satyanarayanan (S’S@M’82) received
the Bachelor’s degree in electrical engineering and
the Master’s degree in computer science from the
Indian Institute of Technology, Madras. He received
the Ph.D. degree in computer science from Carnegie
Mellon University, Pittsburgh, PA, in 1983.

He is an Associate Professor of Computer Science
at Carnegie Mellon University, where his research
addresses the general problem of sharing access
to information in large-scale distributed systems.
In his current work on the Coda File System, he

is investigating techniques to provide high availability without significant
loss of performance or usability. An important aspect of this work is
providing distributed file access to portable computers that may operate
disconnected for significant periods of time. Earlier, he was one of the
principal architects and implementors of the Andrew File System, a location-
transparent distributed file system that addressed issues of scale and security.
His work on Scylla explored access to relational databases in a distributed
workstation environment. His previous research included the design of the
CMU-CFS file system, measurement and analysis of file usage data, and
the modeling of storage systems. He has been a Consultant to industry and
government.

Dr. Satyanarayanan is a member of the ACM and Sigma Xi. He was made
a Presidential Young Investigatur by the National Science Foundation in 1987.

