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Abstract- Scale should be recognized as a primary factor 
influencing the architecture and implementation of distributed 
systems. This paper uses Andrew and Coda, distributed file 
systems built at Carnegie Mellon University, to validate this 
proposition. Performance, operability, and security are dominant 
considerations in the design of these systems. Availability is a 
further consideration in the design of Coda. Client caching, 
bulk data transfer, token-based mutual authentication, and hi- 
erarchical organization of the protection domain have emerged 
as mechanisms that enhance scalability. The separation of con- 
cerns made possible by functional specialization has also proved 
valuable in scaling. Heterogeneity is an important by-product 
of growth, but the mechanisms available to cope with it are 
rudimentary. Physical separation of clients and servers turns out 
to be a critical requirement for scalability. 

Index Terms- Scalability, distributed file systems, Andrew, 
Coda, security, performance, availability, heterogeneity, replica- 
tion, caching, large-scale distributed systems, design principles 
for scalability. 

I. INTRODUCTION 

S OFTWARE engineer ing focuses on  programming in the 
large, recognizing that size is a  first-order inf luence on  

the structure of programs. This paper  puts forth the analogous 
view that the scale of a  distributed system is a  fundamental  
inf luence on  its design. Mechanisms which work well in a  
small distributed system fail to be  adequate  in the context 
of a  larger system. Scalability should thus be  a  primary 
considerat ion in the design of distributed systems. 

How does  one  measure “scale”?  One  can interpret the term 
in many  ways. For example, it can  refer to the number  of nodes  
in a  distributed system. Alternatively, it could be  the number  
of users of the system. These definitions are equivalent in a  
distributed workstation environment, where each  workstation 
is dedicated to a  user or is shared by  a  small number  of users. 
Another interpretation is that scale refers to the number  of 
organizational boundar ies encompassed by the system. Human 
limitations necessitate the grouping of users and  equipment 
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into autonomous or semi-autonomous organizat ions for man-  
agement  purposes.  Hence a  distributed system that has  many  
users or nodes  will also span many  organizations. Regardless 
of the specific metric of scale, the designs of distributed 
systems that scale well are fundamental ly different from less 
scalable designs. 

In this paper  we descr ibe the lessons we have  learned 
about  scalability from the Andrew File System and  the Coda  
File System. These systems are particularly appropriate for 
our  discussion, because they have  been  des igned for growth 
to thousands of nodes  and  users. W e  focus on  distributed 
file systems, because they are the most widely used  kind of 
distributed system in existence today, and  because we have  
first-hand exper ience in their design, implementation, and  use. 
But much of this paper  also applies to other kinds of distributed 
services. 

W e  begin our  discussion by  examining why growth occurs 
in distributed systems and  what its consequences  are. W e  then 
give a  brief overview of Andrew and  Coda.  The  bulk of the 
paper  consists of a  detailed examinat ion of specific aspects 
of Andrew and  Coda  that were significantly inf luenced by  the 
need  to scale well. Wherever  possible, we contrast our  design 
choices with those of other related systems. W e  end  the paper  
with a  summary of what we have  learned in the form of a  set 
of design principles. 

II. ORIGIN AND CONSEQUENCES OF SCALE 

There is relentless pressure on  successful distributed sys- 
tems to increase in scale. It is easy to see why. A dis- 
tributed system simplifies communicat ion between users and  
the sharing of information between them. As a  distributed 
system grows, enabl ing more users to communicate and  more 
information to be  shared, it becomes an  increasingly valuable 
resource. At some point in the evolution of the system, access 
to it is v iewed as a  necessity rather than luxury by  the user 
community. There is then considerable incentive to allow users 
who were originally outside the scope of the system to be  
included in it. Growth thus acquires a  momentum of its own. 

The  economic impact of growth is closely related to how 
cost is reflected. The  optimal system design for an  organization 
where all system costs are borne centrally will be  different 
from one  for an  organization where some costs are borne 
centrally and  others are passed on  to the end  users. The  
latter model  is more common and  favors designs in which 
the cost of incremental growth is almost entirely borne by  
the individuals benefit ing from that growth. This in turn 
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implies that incremental growth should minimally impact 
central resources. 

In our  experience, growth also has  other serious conse-  
quences.  For example, per formance and  operability become 
dominant concerns.  Lax  security is no  longer acceptable. 
Precise emulation of single-site interface semantics becomes 
difficult. Heterogeneity of hardware and  software is more 
likely. In general,  algorithms and  techniques that work well 
at small scale degenerate in nonobvious ways at large scale. 

III. OVERVIEW OF ANDREW AND CODA 

The Andrew File System was developed at Carnegie Mellon 
University (CMU) from 1983  to 1989.  Today,  it spans 40  
sites on  the Internet across the U.S. On  the CMU campus 
alone it includes over 1000  workstations and  is used  by  more 
than 3000  regular users. Further development and  commercial 
distribution of this system is now being done  by the Transarc 
Corporation. 

Andrew is des igned for an  environment consisting of a  large 
collection of untrusted clients with local disks. These clients 
are connected via a  high bandwidth network to a  small number  
of trusted servers, collectively called Vice. Users execute 
applications only at clients and  see a  location-transparent 
shared Unix’ file system that appears  as  a  single subtree of the 
local file system. To  improve performance, clients cache files 
and  directories from Vice. Cache management  and  emulation 
of Unix file system semantics is done  at each  client by  a  cache 
manager  called Venus. 

The  design of Andrew has  evolved over time, resulting in 
three distinct versions, called AFS-1, AFS-2, and  AFS-3. In 
this paper  the unqualif ied term “Andrew” applies to all three 
versions of the file system. The  design of a  fourth version, 
AFS-4, is proprietary at the present time and  is therefore not 
d iscussed here. 

As users become more dependent  on  distributed file sys- 
tems, the availability of data in them becomes increasingly 
important. Today,  a  single failure in Andrew can seriously 
inconvenience many  users for significant per iods of time. 
Coda,  whose development began  in 1987  at CMU, strives 
to provide high availability while retaining the scalability of 
Andrew. 

Coda  provides resiliency to server and  network failures 
through the use  of two distinct but complementary mecha-  
nisms. One  mechanism, server replication, stores copies of a  
file at multiple servers. The  other mechanism, d isconnected 
operation, is a  mode  of execut ion in which a  caching site 
temporari ly assumes the role of a  replication site. Disconnected 
operat ion is particularly useful for support ing portable clients. 
Coda  has  been  in serious daily use  by  a  small user community 
for about  a  year, and  substantial growth is anticipated in the 
near  future. 

Both Andrew and  Coda  have  been  descr ibed extensively 
in the literature [6], [7], [9], [18]-[21], [25]. In contrast to 
those papers,  our  discussion here is narrowly focused. In each  
of the following sections we highlight one  aspect  of Andrew 
or Coda  that is a  consequence of scale or contributes sig- 

‘Unix is a trademark of the AT&T Corporation. 

nificantly to scalability. Wherever  plausible alternative design 
choices exist, we evaluate our  choices from the perspect ive 
of scalability. 

IV. SCALE-RELATED ASPECTS OF ANDREW AND CODA 

A. Locat ion Transparency 

A fundamental  issue is how files are named and  located 
in a  distributed environment. Andrew and  Coda  offer true 
locution transparency: the name of a  file contains no  location 
information. Rather, this information is obtained dynamically 
by  clients during normal operation. Consequent ly,  administra- 
tive operat ions such as  the addit ion or removal of servers and  
the redistribution of files on  them are transparent to users. In 
contrast, some file systems require users to explicitly identify 
the site at which a  file is located. For example, Unix United [2] 
uses pathname constructs of the form “l../machinellocalputh” 
and  VaxlVMS [4] uses “muchine::device:loculputh.” 

The  embedding of location information in a  logical name 
space has  a  number  of negat ive consequences.  First, users have  
to remember  machine names to access data. Although feasible 
in a  small environment, this becomes increasingly difficult as  
the system grows in size. It is simpler and  more convenient 
for users to remember  a  logical name devoid of location 
information. A second problem is that it is inconvenient 
to move files between servers. Since changing the location 
of a  file also changes  its name,  file names embedded  in 
application programs and  in the minds of users become invalid. 
Unfortunately, data movement  is inevitable when  storage 
capacity on  a  server is exceeded or when  a  server is taken 
down for ex tended maintenance. The  problem is more acute in 
large systems, because the likelihood of these events is greater. 

Another alternative, used  in Sun NFS [17], is to establish 
an  associat ion between a  pathname on  a  remote machine and  
a  local name.  The  associat ion is performed using the mount  
mechanism in Unix when  a  machine is initialized, and  remains 
in effect until the machine is reinitialized. Although this ap-  
proach avoids pathnames with embedded  server identification, 
it is not as  flexible. If a  file is moved from one  server to 
another it will not be  accessible under  its original name unless 
the client is reinitialized. 

Locat ion t ransparency can be  v iewed as a  binding issue. 
The  binding of location to name is static and  permanent  
when  pathnames with embedded  machine names are used.  
The  binding is less permanent  in a  system like Sun NFS. It 
is most dynamic and  flexible in Andrew and  Coda.  Usage 
exper ience has  confirmed the benefits of a  fully dynamic 
location mechanism in a  large distributed environment. 

B. Client Caching 
The  caching of data at clients is undoubtedly the architec- 

tural feature that contributes most to scalability in a  distributed 
file system. Caching has  been  an  integral part of the Andrew 
and  Coda  designs from the beginning. Today,  every distributed 
file system in serious use  uses some form of caching. Even 
AT&T’s RFS [16], which initially avoided caching in the 
interests of strict Unix emulation, now uses it. In implementing 
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caching one  has  to make three key decisions: where to locate 
the cache,  how to maintain cache coherence,  and  when  to 
propagate modifications. 

Andrew and  Coda  cache on  the local disk, with a  further 
level of file caching by  the Unix kernel in main memory.  Most 
other distributed file systems maintain their caches only in 
main memory.  Disk caches contribute to scalability by  reduc- 
ing network traffic and  server load on  client reboots, a  surpris- 
ingly frequent event  in workstation environments. They also 
contribute to scalability in a  more indirect way by  enabl ing 
disconnected operat ion in Coda.  The  latter feature is critically 
dependent  upon  a  local disk or some other form of local 
nonvolati le storage. Since disconnected operat ion allows users 
to cont inue in the face of remote failures, and  since the latter 
tend to be  more numerous as  a  system grows, caching on  local 
disks can be  v iewed as indirectly contributing to scalability. 

Cache coherence can be  maintained in two ways. One  
approach is for the client to validate a  cached object upon  
use. This strategy, used  in AFS-1 and  Sprite [12], results in 
at least one  interaction with a  server for each  open  of a  file. 
A more scalable approach is used  in AFS-2, AFS-3, Coda,  
and  Echo [5]. When  a  client caches an  object, the server 
hands  out a  promise (called a  callback or token) that it will 
notify the client before allowing any  other client to modify that 
object. Although more complex to implement, this approach 
minimizes server load and  network traffic, thus enhancing 
scalability. Callbacks further improve scalability by  making 
it viable for clients to translate pathnames entirely locally. 

Maintaining cache coherence is unnecessary  if the data in 
quest ion can be  treated as  a  hint [28]. A hint is a  piece of infor- 
mation that can  substantially improve performance if correct, 
but has  no  semantically negat ive consequence if erroneous.  For 
maximum performance benefit a  hint should nearly always be  
correct. Hints improve scalability by  obviating the need  for 
a  cache coherence protocol. Of course, only information that 
is self-validating upon  use is amenable  to this strategy. One  
cannot,  for instance, treat file data as  a  hint, because the use  of 
a  cached copy of the data will not reveal whether it is current or 
stale. Hints are most often used  for file location information 
in distributed file systems. Andrew and  Coda,  for instance, 
cache individual mappings of volumes to servers. Similarly, 
Sprite caches mappings of pa thname prefixes to servers. A 
more elaborate location scheme, incorporating a  hint manager,  
is used  by  Apollo Domain [8]. 

Existing systems use one  of two approaches to propagat-  
ing modifications from client to server. Write-back caching, 
used  in Sprite and  Echo, is the more scalable approach.  
When  operat ing disconnected, a  Coda  client is effectively 
using deferred write-back caching. However,  in the connected 
mode  the current implementation of Coda  uses write-through 
caching. W e  plan to change  this to write-back caching in 
the near  future. Because of implementation complexity and  
to reduce the chances of server data being stale due  a  client 
crash, Andrew uses a  write-through caching scheme. This is 
a  notable except ion to scalability being the dominant design 
considerat ion in Andrew. Sun NFS is another example of a  
system that synchronously f lushes dirty data to the server upon  
close of a  file. 

C. Bulk Data Transfer 

An important issue related to caching is the granularity of 
data transfers between client and  server. The  approach used 
in AFS-1 and  AFS-2 is to cache entire files. This enhances  
scalability by  reducing server load, because clients need  only 
contact servers on  file open  and  close requests. The  far 
more numerous read and  write operat ions are invisible 
to servers and  cause no  network traffic. Whole-fi le caching 
also simplifies cache management ,  because clients only have  
to keep track of files, not individual pages,  in their cache.  
Amoeba [lo] and  Cedar  [23] are examples of other systems 
that employ whole-file caching. 

Caching entire files has  at least two drawbacks.  First, files 
larger than the local disk cannot  be  accessed.  Second,  the 
latency of open  requests is proport ional to file size, and  can be  
intolerable for extremely large files. To  avoid these problems, 
AFS-3 uses partial-file caching. However,  usage  exper ience 
with AFS-3 at CMU has  not demonstrated substantial improve- 
ment in usability or per formance due  to partial-file caching. On  
the contrary, it has  exposed the following unexpected problem. 

By default, Unix uses the file system rather than a  separate 
swap area as  backing store for the code segments of execut ing 
programs. W ith partial-file caching, parts of this backing store 
may not be  present on  the client’s local disk; only the server 
is guaranteed to have  the full image. This image is overwritten 
when  a  new version of a  program is copied into AFS-3. If a  
client started execut ing the program prior to the copy, there is 
a  possibility that page  faults from that instance of the program 
may no  longer be  serviceable. This problem does  not arise with 
whole-file transfer, because a  local copy of the entire program 
is guaranteed to be  present when  execut ion of the program is 
begun.  For partial-file caching to work correctly a  server must 
prevent overwrit ing of a  file as  long as  any  client in the system 
is execut ing a  copy of that file; or, a  server must be  able to 
defer deletion of older versions of executable files until it is 
sure that no  client is execut ing any  of those versions. In either 
case, the cache coherence protocol will be  more complex and  
less scalable. 

Coda  also uses whole-file caching. However,  scalability is 
not the only motivation in this case. From the perspect ive of 
d isconnected operation, whole-file caching also offers another 
important advantage:  remote failures are only visible on  open  
and  close operations. In our  opinion, the simplicity and  
robustness of this failure model  outweigh the merits of partial- 
file caching schemes such as  those of AFS3, Echo, and  MFS 
c31. 

When  caching is done  at large granularity, considerable 
per formance improvement can be  obtained by  the use  of a  
special ized bulk data-transfer protocol. Network communica- 
tion overhead caused by protocol processing typically accounts 
for a  major port ion of the latency in a  distributed file system. 
Transferr ing data in bulk reduces this overhead by amortizing 
fixed protocol overheads over many  consecut ive pages  of a  
file. For bulk transfer protocols to be  effective there has  to 
be  substantial spatial locality of reference within files. The  
presence of such locality has  been  confirmed by empirical 
observat ions of Unix systems. For example, Ousterhout et al. 
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[13] note that most files are read in their entirety after being 
opened.  

Systems that use  whole-file caching are most naturally 
suited to using bulk transfer protocols. Other systems exploit 
bulk transfer in varying degrees.  AFS-3 transfers data in large 
chunks,  typically 64  kilobyte in size. Sun NFS and  Sprite 
do  not use  bulk transfer protocols, but use  large datagrams, 
typically 8  kilobyte in size. It is likely that bulk transfer 
protocols will increase in importance as  distributed file systems 
spread across networks of wider geographic area. 

D. Token-Based Mutual Authentication 

A social consequence of large scale is that the casual attitude 
toward security typical of closely knit distributed environments 
is no  longer viable. The  relative anonymity of users in a  
large system requires security to be  maintained by  enforcement 
rather than by  good  will. This, in turn, raises the quest ion of 
who  can be  trusted to enforce security. Security in Andrew and  
Coda  is predicated on  the integrity of a  relatively small number  
of servers, rather than the much larger number  of clients. 

Many  small-scale distributed systems present a  facade of 
security by  using simple extensions of the mechanisms used 
in a  t ime-sharing environment. For example, authentication 
is often implemented by  sending a  password in the clear 
to the server, which then validates it. Besides the obvious 
danger  of sending passwords in the clear, this also has  the 
drawback that the client is not certain of the identity of the 
server. Andrew and  Coda,  in contrast, perform full mutual 
authentication using a  variant of the Needham and  Schroeder 
private key authentication algorithm [ll]. 

In AFS-1, AFS-2, and  Coda,  this function is integrated with 
the RPC mechanism. To  establish a  secure and  authenticated 
RPC connect ion, a  3-phase handshake  takes place between 
client and  server. The  client supplies a  variable-length iden- 
tifier and  an  encrypt ion key for the handshake.  The  server 
provides a  key lookup procedure and  a  procedure to be  invoked 
on  authentication failure. The  latter allows the server to record 
and  possibly notify an  administrator of suspicious authen- 
tication failures. At the end  of a  successful authentication 
handshake  the server is assured that the client possesses the 
correct key, while the client is assured that the server is capable 
of looking up  his key. The  use of randomized information in 
the handshake  guards against replays by  adversaries. 

A naive use  of the RPC handshake  would require the user 
to supply his password every time a  new connect ion had  to 
be  established. The  obvious improvement of having the user 
type in his password once  and  storing it in the clear at the 
client is risky. The  approach used in Andrew and  Coda  is 
to provide a  level of indirection using authentication tokens. 
When  a  user logs in to a  client, the password he  types in is 
used  as  the key to establish a  secure RPC connect ion to an  
authentication server. A pair of authentication tokens are then 
obtained for the user on  this secure connect ion. These tokens 
are saved by  the client and  are used  by  it to establish secure 
RPC connect ions on  behalf of the user to file servers. To  bound  
the period during which lost tokens can cause damage,  tokens 
expire after a  finite time (typically 24  h). 

Like a  file server, an  authentication server runs on  physically 
secure hardware.  To  improve availability and  to balance load, 
there are multiple instances of the authentication server. Only 
one  instance accepts updates;  the others are slaves and  respond 
only to queries. To  improve accountabil ity, the master main- 
tains an  audit trail of changes  to the authentication database.  

For reasons of standardization, AFS-3 uses the Kerberos 
authentication system [26]. Kerberos provides functionality 
equivalent to the authentication mechanism descr ibed above,  
and  resembles it in design. 

E. Hierarchical Groups and  Access Lists 

Controll ing access to data is substantially more complex 
in large-scale systems than it is in smaller systems. There is 
more data to protect and  more users to make access control 
decisions about.  This is an  area in which the Unix file system 
model  is seriously deficient. The  Unix protection model  was 
obtained by  simplifying the Multics protection model  to meet 
the needs  of small t ime-sharing systems. Not surprisingly, 
the Unix model  becomes inadequate when  a  system is scaled 
up. To  enhance  scalability Andrew and  Coda  organize their 
protection domains hierarchically and  support  a  full-fledged 
access-list mechanism. 

The  protection domain is composed of users and  groups. 
Membership in a  group is inherited, and  a  user’s privileges are 
the cumulative privileges of all the groups he  or she  belongs 
to, either directly or indirectly. New addit ions to a  group G, 
automatically acquire all privileges granted to the groups to 
which G  belongs. Conversely, when  a  user is deleted, it is 
only necessary to remove him from those groups in which he  is 
explicitly named as a  member.  Inheritance of membership con- 
ceptually simplifies the maintenance and  administration of the 
protection domain, a  particularly attractive trait at large scale. 
At least two other systems, CMU-CFS [l] and  Grapevine [22], 
have  also used  a  hierarchical protection domain. 

Andrew and  Coda  use an  access-list mechanism for file 
protection. The  total rights specif ied for a  user are the union 
of the rights specif ied for him and  the groups he  or she  belongs 
to. Access lists are associated with directories rather than 
individual files. The  reduction in state obtained by  this design 
decision provides conceptual  simplicity that is valuable at large 
scale. Although the real enforcement of protection is done  on  
the basis of access lists, Venus super imposes an  emulation of 
Unix protection semantics by  honor ing the owner  component  
of the Unix mode  bits on  a  file. The  combinat ion of access 
lists on  directories and  mode  bits on  files has  proved to be  an  
excellent compromise between protection at fine granularity, 
scalability, and  Unix compatibility. 

The  ability to rapidly revoke access privileges is important 
in a  large distributed system. Revocat ion is usually done  by  
removing an  individual from an  access list. But that individual 
may be  a  direct or indirect member  of one  or more groups 
that give him or her  rights on  the object. The  process of 
discovering all g roups that the user should be  removed from, 
performing the removal at the site of the master authentication 
server, and  propagat ing it to all s laves may take a  significant 
amount  of time in a  large distributed system. Andrew and  Coda  
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simplify rapid and  selective revocation by  allowing access lists 
to specify negat ive rights. An entry in a  negat ive rights list 
indicates denial of the specif ied rights, with denial overriding 
possession in case of conflict. Negative rights thus decouple 
the problems of rapid revocation and  propagat ion of group 
membership information. 

The  loss of accountabil i ty caused by  the shared use  of a  
pseudo-user  id (such as  “root” in Unix systems) by  system 
administrators is a  serious problem at large scale. Conse-  
quently, administrative privileges in Andrew and  Coda  are 
obtained by  membership in a  dist inguished group named 
“System:Administrators.” This improves accountabil ity, since 
system administrators have  to reveal their true identity dur ing 
authentication. 

F. First Versus Second-Class Replication 

The  use of two distinct mechanisms for high availability 
in Coda,  server replication and  disconnected operation, is an  
indirect consequence of Coda’s desire to scale well. Systems 
such as  Locus [29] that rely solely on  server replication have  
poor  scaling characteristics. Since disconnected operat ion is 
almost free, while server replication incurs additional hardware 
costs and  protocol overhead,  it is natural to ask why the 
latter mechanism is needed  at all. The  answer to this quest ion 
depends  critically on  the very different assumptions made  
about  clients and  servers in Coda.  These assumptions, in turn, 
reflect the usage  and  administrative characteristics of a  large 
distributed system. 

Clients are like appl iances: they can be  turned off at will and  
may be  unat tended for long periods of time. They have  limited 
disk storage capacity, their software and  hardware may be  tam- 
pered with, and  their owners may not be  diligent about  backing 
up  the local disks. Servers, in contrast, have  much greater disk 
capacity, are physically secure, and  are carefully monitored 
and  administered by  a  professional staff. It is therefore ap-  
propriate to distinguish between first-class replicas on  servers 
and  second-class replicas on  clients (i.e., cached copies). 
First-class replicas are of higher quality-they are more persis- 
tent, widely known, secure, available, complete, and  accurate. 
Second-class replicas, in contrast, are inferior a long all these 
dimensions. Only by  periodic revalidation with respect to a  
first-class replica can a  second-class replica be  useful. 

The  function of a  cache coherence protocol is to combine 
the performance and  scalability advantages of a  second-class 
replica with the quality of a  first-class replica. When  discon- 
nected the quality of the second-class replica may be  degraded,  
because the first-class replica upon  which it is cont ingent 
is inaccessible. The  longer the durat ion of disconnection, 
the greater the potential for degradat ion. Whereas  server 
replication preserves the quality of data in the face of fail- 
ures, d isconnected operat ion forsakes quality for availability. 
Hence server replication is important, because it reduces the 
f requency and  durat ion of d isconnected operation, which is 
properly v iewed as a  measure of last resort. 

G. Data Aggregat ion 

In a  large system, considerat ions of operability and  system 

T 

administration assume major significance. To  facilitate these 
functions, Andrew and  Coda  organize file system data into 
volumes [24]. A volume is a  collection of files located on  one  
server and  forming a  partial subtree of the Vice name space.  
Volumes are invisible to application programs and  are only 
manipulated by  system administrators. The  aggregat ion of data 
provided by  volumes reduces the apparent  size of the system 
as perceived by  operators and  system administrators. Our  
operational exper ience in Andrew and  Coda  confirms the value 
of the volume abstraction in a  large distributed file system. 

Virtually all administrative functions in Andrew and  Coda  
are done  at the granularity of volumes. For example, volumes 
are the unit of read-only replication in Andrew, and  read-write 
replication in Coda.  Balancing of the available disk space 
and  utilization on  servers is accompl ished by  redistributing 
volumes across one  or more servers. These modifications can 
be  made  during normal operat ion without disrupting service 
to users. Disk storage quotas are specif ied and  enforced on  
individual volumes 

Volumes also form the basis of the backup and  restoration 
mechanism. To  backup a  volume, a  read-only c lone is first 
made,  thus creating a  frozen snapshot  of the constituent files. 
Since cloning is an  efficient operation, users rarely notice any  
loss of access to that volume. An asynchronous mechanism 
then transfers this c lone to a  staging machine from where it 
is dumped  to tape. The  clone is also made  available on-line. 
This substantially reduces the number  of restoration requests 
received by  operators, since users can themselves undo  recent 
deletions by  copying data from the clone. 

H. Decentral ized Administration 

A large distributed system is unwieldy to manage  as a  
monolithic entity. For smooth and  efficient operation, it is es- 
sential to delegate administrative responsibility a long lines that 
parallel institutional boundaries.  Such a  system decomposit ion 
has  to balance site autonomy with the desirable but conflicting 
goal of system-wide uniformity in human and  programming 
interfaces. The  cell mechanism of AFS-3 [30] is an  example 
of a  mechanism that provides this balance. 

A cell corresponds to a  completely autonomous Andrew 
system, with its own protection domain, authentication and  
file servers, and  system administrators. A federation of cells 
can  cooperate in present ing users with a  uniform, seamless 
file name space.  Although the presence of multiple protection 
domains complicates the security mechanisms in Andrew, 
Venus hides much of the complexity from users. For example, 
authentication tokens issued in a  cell are only valid within 
that cell. To  preserve t ransparency when  accessing files from 
different cells, Venus maintains a  collection of tokens for the 
cells of interest. A user is aware of the existence of cells only 
at the beginning of a  session, when  he  or she  authenticates 
himself to individual cells to obtain authentication tokens. 
After this initial step, Venus uses the appropriate tokens when  
establishing a  secure connect ion to a  file server. 

I. Functional Specialization 

When  implementing a  distributed realization of an  interface 
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originally def ined for a  single site, one  often finds that scala- 
bility and  exact interface emulation make conflicting demands.  
One  way to improve scalability is to relax the accuracy with 
which the interface is emulated. This strategy is particularly 
attractive if there is a  natural partitioning of applications 
based  on  their use  of the interface. Each equivalence class 
of applications can then use  a  distributed realization of the 
interface tuned to its critical requirements. 

In Andrew and  Coda,  propagat ing modifications only upon  
close operat ions violates strict Unix semantics, but is irrel- 
evant  to most Unix applications. The  use of caching and  bulk 
data transfer presume substantial temporal and  spatial locality 
of file accesses.  The  use of an  optimistic replication strategy 
in Coda  is based  on  the assumption that sequential write 
sharing is relatively rare. But the assumptions on  which these 
techniques are based  usually fail to hold for databases.  Poor 
locality, fine granularity of update and  query, and  frequent 
concurrent and  sequential write-sharing are the norm rather 
than the except ion in databases.  

Rather than compromise scalability in an  attempt to support  
databases,  Andrew and  Coda  partition the problem into two 
orthogonal components-f i le access and  database access-and 
only address the former. Support  for database access has  to be  
provided by  a  separate mechanism. This two-pronged strategy 
is in contrast to the unified strategies of t ime-sharing Unix file 
systems, where all accesses (from databases or otherwise) are 
supported on  the same interface. 

Functional specialization also characterizes the mechanism 
in Andrew for support ing personal  computers (PC’s) such 
as  the IBM PC and  Apple Macintosh. Such machines differ 
from full-fledged Andrew clients in that they do  not run Unix, 
typically possess limited amounts  of memory,  and  often do  not 
possess a  local disk. Caching of whole files, or large chunks 
of files, is not a  viable design strategy for such machines. 
However,  since a  significant number  of Andrew users also use  
PC’s, we felt it essential to allow PC users to access Vice 
files. This functionality is provided by  a  mechanism called 
PCServer [15] that is orthogonal to the Andrew file system. 

PCServer runs on  an  Andrew client and  makes its file system 
appear  to be  a  transparent extension of the file systems of a  
number  of PCs. Since Vice files are transparently accessible 
from the client, they are also transparently accessible from the 
PC. The  client thus acts as  a  surrogate for Vice. The  protocol 
between PCServer and  its clients is tuned to the capabilities 
of a  PC. From the point of view of Venus, it appears  as  if the 
PC user had  actually logged in at the client running PCServer. 
The  decoupl ing provided by  PCServer allows the Andrew file 
system to exploit techniques essential to good  performance 
at large scale, without distorting its design to accommodate 
machines with limited hardware and  software capability. 

J. Heterogeneity 

As a  distributed system evolves it tends to grow more 
diverse. One  factor contributing to diversity is the improve- 
ment in per formance and  decrease in cost of hardware over 
time. This makes it likely that the most economical  hardware 
configurations will change  over the period of growth of the 

system. Another source of heterogeneity is the use  of different 
computer  platforms for different applications. For example, the 
same individual may use a  supercomputer  for simulations, a  
Macintosh for document  processing, a  Unix workstation for 
program development,  and  a  laptop IBM PC while traveling. 
Easy access to shared data across these diverse platforms 
would substantially improve usability. 

Andrew did not set out to be  a  heterogeneous comput ing en-  
vironment. Initial p lans for it envis ioned a  single type of client, 
running one  operat ing system, with the network constructed 
of a  single type of physical media. Yet heterogeneity appeared 
early in its history and  proliferated with time. Some of this 
heterogeneity is attributable to the decentral ized administration 
typical of universities, but we are convinced that much of it is 
intrinsic to the growth and  evolution of any  distributed system. 

Coping with heterogeneity is inherently difficult, because 
of the presence of multiple computat ional environments, each  
with its own notions of file naming and  functionality. Since 
few general  principles are applicable, the idiosyncrasies of 
each  new system have  to be  accommodated by  ad  hoc  mech-  
anisms. The  distributed file system community has  gained 
some exper ience with heterogeneity. For example, Pinkerton 
et al. descr ibe an  experimental file system at Washington [14] 
that focuses on  heterogeneity. TOPS [27] is a  product offered 
by  Sun Microsystems which allows shared-fi le access across 
the MS-DOS and  Macintosh operat ing systems. PC-NFS, also 
from Sun, allows MS-DOS applications to access files on  
an  NFS server. PCServer, descr ibed in the previous section, 
performs a  similar function in the Andrew environment. 

V. DESIGN PRINCIPLES FOR SCALABILITY 

The essence of the Andrew and  Coda  strategy is to de-  
compose a  large distributed system into a  small nucleus that 
changes  relatively slowly, and  a  much larger and  less static 
periphery. From the perspect ives of security and  operability, 
the scale of the system appears  to be  that of the nucleus. But 
from the perspect ives of per formance and  availability, a  user 
at the periphery receives almost stand-alone service. It is the 
thesis of this paper  that such a  strategy is feasible and  effective. 

A consequence of this strategy is that clients and  servers 
need  to be  physically distinct machines. This seemingly minor 
detail turns out to be  critical. W ithout this dichotomy, one  
cannot  make different security and  administrative decisions 
about  clients and  servers, nor  can  one  optimize their hardware 
and  software configurations independently.  Although the need  
to have  physically distinct clients and  servers is not a  problem 
at large scale, it is an  expensive proposit ion at small scale. It is 
therefore tempting to make the cl ient-versus-server distinction 
only a  logical one,  so  that the start-up cost of a  small 
installation is low. Unfortunately, systems such as  NFS and  
Locus that have  chosen this approach have  foundered on  the 
rock of scalability. Growth in these systems is unwieldy, and  
none  of them appears  capable of growth to thousands of sites. 
One  is therefore forced to conclude that the client-server 
distinction is a  fundamental  one  from the perspect ive of 
scalability, and  that a  higher initial cost is the price one  pays 
for a  system that can  grow gracefully. 

-- 
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Besides this high-level principle, we have  also acquired 
more detailed insights about  scalability in the course of 
building Andrew and  Coda.  W e  present these insights here 
as  a  collection of design principles: 

l Clients have  the cycles to burn 
Whenever  there is a  choice between performing an  

operat ion on  a  client and  performing it on  a  server, it 
is preferable to pick the client. This will enhance  the 
scalability of the design, since it lessens the need  to 
increase central resources as  clients are added.  

The  only functions performed by servers in Andrew 
and  Coda  are those critical to the security, integrity, or 
location of data. Further, there is very little interserver 
traffic. Pathname translation is done  on  clients rather 
than on  servers in AFS-2, AFS-3, and  Coda.  The  parallel 
update protocol in Coda  depends  on  the client to directly 
update all accessible servers, rather than updat ing one  of 
them and  letting it relay the update.  

l Cache whenever  possible 
Scalability, user mobility, and  site autonomy motivate 

this principle. Caching reduces content ion on  central ized 
resources, and  transparently makes data available wher- 
ever it is being currently used.  

AFS-1 cached files and  location information. AFS-2 
also cached directories, as  do  AFS-3 and  Coda.  Caching 
is the basis of d isconnected operat ion in Coda.  

l Exploit usage  propert ies 
Knowledge about  the use  of real systems allows better 

design choices to be  made.  For example, files can often be  
grouped into a  small number  of easily identifiable classes 
that reflect their access and  modification patterns. These 
class-specific propert ies provide an  opportunity for inde- 
pendent  optimization, and  hence  improved performance, 
in a  distributed file system design. 

Almost one-third of file references in a  typical Unix 
system are to temporary files. Since such files are seldom 
shared, Andrew and  Coda  make them part of the local 
name space.  The  executable files of system programs are 
often read, but rarely written. AFS-2, AFS-3, and  Coda  
therefore support  read-only replication of these files to 
improve performance and  availability. Coda’s use of an  
optimistic replication strategy is based  on  the observat ion 
that sequential write-sharing of user files is rare. 

9  Minimize system-wide knowledge and  change  
In a  large distributed system it is difficult to be  aware 

at all t imes of the entire state of the system. It is also 
difficult to update distributed or replicated data structures 
in a  consistent manner.  The  scalability of a  design is 
enhanced  if it rarely requires global information to be  
monitored or atomically updated.  

Clients in Andrew and  Coda  only monitor the status 
of servers from which they have  cached data. They do  
not require any  knowledge of the rest of the system. 
File location information on  Andrew and  Coda  servers 
changes  relatively rarely. Caching by  Venus, rather than 
file location changes  in Vice, is used  to deal with move-  
ment of users. 

Coda  integrates server replication (a relatively heavy-  
weight mechanism) with caching to improve availability 
without losing scalability. Knowledge of a  caching site is 
conf ined to those servers with cal lbacks for the caching 
site. Coda  does  not depend  on  knowledge of system-wide 
topology, nor  does  it incorporate any  algorithms requiring 
system-wide election or commitment. 

Another instance of the application of this principle 
is the use  of negat ive rights. More rapid revocation is 
possible by  modifications to an  access list at a  single 
site rather than by  a  system-wide change  to a  replicated 
protection database.  

l Trust the fewest possible entities 
A system whose security depends  on  the integrity of the 

fewest possible entities is more likely to remain secure as  
it grows. 

Rather than trusting thousands of clients, security in 
Andrew and  Coda  is predicated on  the integrity of the 
much smaller number  of Vice servers. The  administrators 
of Vice need  only ensure the physical security of these 
servers and  the software they run. Responsibil ity for 
client integrity is delegated to the owner  of each  client. 
Andrew and  Coda  rely on  end-to-end encrypt ion rather 
than physical link security. 

l Batch if possible 
Grouping operat ions together can improve throughput 

(and hence  scalability), a l though it is often at the cost of 
latency. 

The  transfer of files in large chunks in AFS-3 and  in 
their entirety in AFS-1, AFS-2, and  Coda  is an  instance of 
the application of this principle. More efficient network 
protocols can be  used when  data is transferred en  masse 
rather than as  individual pages.  In Coda,  the second phase  
of the update protocol is deferred and  batched. Latency 
is not increased in this case, because control can  be  
returned to application programs before the complet ion 
of the second phase.  

VI. CONCLUSION 

The central message of this paper  is that growth is an  in- 
evitable characteristic of successful and  long-lived distributed 
systems. Designers should therefore prepare for growth a  
priori, rather than treating it as  an  afterthought. Our  exper ience 
with Andrew and  Coda  has  taught us  much about  building 
scalable distributed systems. W e  now have  a  collection of 
mechanisms that have  been  shown to enhance  scalability, and  
a  set of general  principles to guide future design choices. 
But there is always the danger  that system designers, like old 
generals, are fighting the last war. Each quantum increase in 
scale is likely to expose new ways in which the old tricks fail 
to work. It is with some trepidation, therefore, that we await 
the chal lenges posed  by  the next generat ion of large-scale 
distributed systems. 
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