TABLE OF CONTENTS

1. INTRODUCTION verennensesaeaene 2
2. MEETING THE REQUIREMENTScovueuunene 5
3. SOFTWARE ENGINEERING MODELS (SEM)cccomreeieecnenisecseesscssncssnssnsssnsessesstressssosssssstsssssensmnsassesans 9
3.1. Modeling MECRANISINISeeveeriacenceeermienrrsassssasesssstessossassessasasasesssssussntsstansessssnessossnstansassasessnans 9
3.1.1. Inter-Object ReIAHONSHIPS ...c.voveeecerrrceiiisiriisnisiesrisnsssesesnasaraassstssssstsssissisiisesssssasansasnanss 10
3.1.2. Dynamic Viewpoints and Selective Inheritancececceeaeineeas erteeesesserssrenessanssnsenins 13
3.2 Principles of SEMs...... eeveestesmeesreecseserebersreeesantastasaseasanttssttiebs teneebeaaesRneraesaRnan e naes 14
3.3.Planning and Characterizing...... ceesessecsenassrainns 15
3.4 Modeling for the Design Phase of Project EXCCULION ...cceeurierccnsisscsncsnssssnsessnssnsnssnsesasssencsnsnsosnes 16
4. GQMS...urencninisrississinsesensessssssssssssssssssssssssssssssssssesssassessins seevereessses s e saeaset s ines 19
4.1. Modeling Principles B SO SV U URUR U PIIPIOPUORPTR TN 20
4.2. Construction and INSIANHAONc.ccvereerrrerrressrecencssnssssssesassaessssnsasnsssssasassestssorstssssmssssnssmensonanans 22
4.3. Product GOAl EXAMIPIE.....ccceeieuereeteetircersessisssisressesssstassssnssasnsastessesatsttsssessesssssassssasssnsasassansasas 25
5. CONCLUSIONS............ NeesesesessessensrenarsrateraseseraateasetressresentttastLRttnetnteretanessesonetststantitsternantatanansass 27
ACKNOWLEDGEMENTS ..cceuvteeetreecsscesnnssecssssrsasasssarnsssssssssssasssssssesssnesssssassssssssssssesssssssssssssnsssrssssssssissstoass 28
REFERENCES eetesssesrareasestassnnenarrentantntttittarasesesennristtaresereretaresartotnessntsatenestrtararnsatetistesstietatattas 28

Representing Software Engineering Models:
The TAME Goal Oriented Approach!

Markku Oivo? and Victor R. Basili?

Abstract

This paper describes a methodology as well as a knowledge representation and reasoning framework for
top down goal oriented characterization, modeling and execution of software engineering activities. A
prototype system (ES-TAME) is described which demonstrates the underlying knowledge representation
and reasoning principles. ES-TAME provides an object-oriented meta-model concept in order to provide
effective support for tailorable and reusable software engineering models. It provides the basic
mechanisms, functions and attributes for all the other models. It is based on inter-object relationships,
dynamic viewpoints and selective inheritance in addition to traditional object-oriented mechanisms.
Descriptive software engineering models (SEMs) include representations for basic software engineering
activities like life cycle models, project models, resource models, design methods, quality models etc.
They are controlled and made operational by active GQM models which are built by a systematic
mechanism for defining and evaluating project and corporate goals and using measurement to provide
feedback in real-time. A rule-based data-driven mechanism is defined for constructing and instantiating
generic GQM templates into hierarchical GQM models. Support for the RT-SA/SD method is used as a

case study of modeling the design phase of real-time software development.

1 This work has been supported in part by Air Force grant AFOSR 90-0031, Technical Research Centre of Finland, Tekniikan
Edistamisaatio foundation and Tauno Tonningin Saatio foundation.

2 M. Oivo is with the Instimte for Advanced Computer Studies, University of Maryland, College Park, MD 20742 on leave from the
Technical Research Centre of Finland, Computer Technology Laboratory, Oulu, Finland.

3 V. Basili is with the Department of Computer Science and the Institute for Advanced Computer Studies, University of Maryland
College Park, MD 20742

1. Introduction

There is a great deal of software engineering research going on, i.e., people are building technologies,
methods, models, etc. However this research is mostly bottom-up, done in isolation. It cannot be logically
or physically integrated. It is not aimed at solving the big problem. It is not evaluated or analyzed via
experimentation. It is not refined and tailored to the application environment. It cannot be easily
transferred into practice. We cannot understand the relationships between various models of the processes
and products. What is needed is a top down framework in which research can be focused, logically and
physically integrated to produce quality software productively, and evaluated and tailored to the

application environment.

TAME [4] is meant to serve as a framework for research and development activities by providing an
integrating umbrella for various software engineering research projects, offering a focus and a laboratory
environment for experimentation, and supporting the efficient transfer of technology into practice. It is an
attempt at defining a measurement-based, closed-loop process for software development and

maintenance.

TAME's specific goals are to provide a framework for (1) defining an integrated set of measurable
software process and product models and goals relative to the project and the organization, (2) provide a
quantitative basis for selecting the appropriate methods and tools and tailoring them to the needs of the
project and the organization, (3) support the evaluation of the quality of the process and product relative
to the specific project and organizational goals, and (4) provide an organizational structure to support

building, analyzing, refining, and using experience models.

The key components upon which TAME is based include an evolutionary improvement paradigm tailored
for the software business, called the Quality Improvement Paradigm [2], a paradigm for establishing
project and corporate goals and a mechanism for measuring against those goals, called the
Goal/Question/Metric Paradigm [4], and an organizational approach for building software competencies

and supplying them to projects, called the Experience Factory {5].

-3-

The Quality Improvement Paradigm (QIP) is defined by the following steps:

. Planning: an iterative process involving characterizing the current project and its
environment, setting the quantifiable goals for successful project performance and
improvement over past performance, and choosing the appropriate process model and

supporting methods and tools for this project.

. Execution: a closed-loop project cycle which involves executing the processes, constructing
the products, collecting and validating the prescribed data, and analyzing it in real-time to

provide feedback for corrective action on the current project.

. Analysis and Packaging: a post mortem analysis of the data and information gathered to
evaluate the current practices, determine problems, record findings, and make
recommendations for future project improvements, and a packaging of the experience gained
in the form of updated and refined models and other forms of structured knowledge gained
from this and prior projects and the storing of the packages in an experience base so it is

available for future projects.

The Goal Question Metric Paradigm (GQM) is a mechanism for defining and interpreting operational
and measurable software goals. It combines models of an object of study, e.g., a process, product, or any
other experience model and one or more focuses, e.g., models aimed at viewing the object of study for
particular characteristics that can be analyzed from a point of view, e.g., the perspective of the person
needing the information, which orients the type of focus and when the interpretation/information is made
available for any purpose, e.g., characterization, evaluation, prediction, motivation, improvement, which

specifies the type of analysis necessary to generate a GQM model relative to a particular environment.

The Experience Factory is a logical and/or physical organization that supports project developments by
analyzing and synthesizing all kinds of experience, acting as a repository for such experience, and
supplying that experience to various projects on demand. It packages experience by building informal,
formal or schematized, and productized models and measures of various software processes, products,

and other forms of knowledge via people, documents, and automated support.

The Experience Factory requires an experience base that supports accumulating experiences (learning)
via recording and analysis of experience, off-line generalizing and tailoring of experience; and

formalizing of experience, storing experience models in a variety of modeling notations that are

-4.

tailorable, extendible, understandable, flexible and accessible, and accessing and modifying packages of
experience to meet the needs of the current project (reuse). An effective experience base must contain
accessible and integrated set of analyzed, synthesized, and packaged experience models that captures the

local experiences.
Requirements overview

To formalize the QIP, each of the various steps needs to be better defined and integrated. The experience
base acts as the mechanism of information and integration. These next items implicitly define the

genuine requirements for the experience base:

. We need to build and store models of various software engineering experienées that
characterize the project and the organizational environment, e.g., products, processes,
TeSOUrces.

. We need to integrate these models based upon the various relationships between them, e.g.
what resource model is appropriate for a particular class of products.

. The model definitions need to be able to evolve, be modified or refined based upon leaming,
e.g., we need to be able to modify a resource model by adding new project data, refine a
process model by recognizing a different set of activities that need to be performed based
upon a specific project characteristic.

. The model definitions need to be instantiated with specific project characteristics, e.g., we
need to instantiate the parameters of a resource model based upon actual project values, map
process activities into a process model according to the actual life cycle model .

. Models need to be classified and subclassified based upon type so that the appropriate types
of models can be combined in a GQM, e.g., that product evaluation qualities such as
coupling or cohesion are applied to products defined in the appropriate notation such as RT-
SA/SD.

. Some models may need to be applied to available data, so the experience base must permit
access to a data base containing the current project and historical data. e.g. an evaluated
GQM model. ‘

. We need to initialize and evolve various versions of the experience base for different

organizations.

Fundamental to the TAME concept is the ability to formally define software engineering models so that
they can be integrated for evaluation, re-configured based upon particular project needs, and stored for

future use. This requires a more formal definition of the components of the QIP, including the GQM and

-5-

the definition of an experience base that contains useful models and supports the configuration of models
as needed.

Knowledge-based techniques have shown promise in modeling various aspects of software engineering
[71,[12],[15],[16],[17]. In this paper we describe a methodology and a knowledge representation and
reasoning framework for the experience base [5]. We will first describe the fundamental requirements of
TAME and the experience base (section 2). We present a meta-model concept which implements the
basic requirements and supports tailorable and reusable models (section 3). It provides a foundation for
software engineering models (SEMs) and GQM models. The knowledge representation mechanisms for
SEMs are discussed in section 4. The modeling techniques are based on an enhanced set of inter-object -
relationships, dynamic viewpoints, and selective inheritance. Finally, section 5 presents a goal oriented
top-down method and a rule-based construction tool for building active GQM object hierarchies which

are used to control and make the mostly passive knowledge of SEMs operational.

TAME is a very large concept and too huge a task to be implemented in one step. We have implemented
a domain specific version, called ES-TAME, to provide more comprehensive support for building
embedded systems. It uses RT-SA/SD (Real-Time Structured Analysis and Design [20]) method as a case
study of modeling the design phase of building software for embedded systems.

2. Meeting the Requirements

Obviously the previous requirements call for numerous models for representing all the relevant aspects
and knowledge needed to build a viable software engineering environment. However, despite the large
variety of requirements we can identify several principles, attributes and functionalities which are
common to most of the models. Consequently, we introduce a meta-model concept for defining an overall
knowledge representation and reasoning framework for all the models. It is an object-oriented model
which specifies the basic mechanisms, functions and attributes for all the other models. The meta-model
includes support for characterizing, planning and packaging activities as well as user interface issues. It
provides all the necessary functions and attributes for building and maintaining the actual tailorable
models. Essentially it is a virtual model which has to be refined and augmented to implement the TAME
models. Furthermore, it provides a uniform mechanism to link the models to various additional tools like
spreadsheets, project management tools, database management systems and metrics software, and

combines their data under a rigorous object-oriented formalism.

We have classified our models into two categories: software engineering models (SEMs) and GQM

models (figure 1). Both are generic models which are defined using the meta-model as a basis for their

-6-

specification. SEMs include representations for the basic software engineering activities like life cycle
models, project models, resource models, design methods, quality models etc. They involve mostly
descriptive knowledge which is known and available during the characterization and planning activities
of a project life cycle. GQMs involve mainly procedural knowledge which is used to make the
descriptive knowledge of SEMs operational. They manipulate and use the knowledge of SEMs in setting

goals, answering questions and collecting data.

Meta Model
- tailoring
- characterizing
- packaging
- reuse
- viewpoints

SEM GOM

- Process models
- Project models Message | - Goals

- Quality models | passing - azfsgons
- Resource modeis | —) -

- Product modeis

- Design methods

Figure 1. The basic models.

By making a clear distinction between the SEMs and GQMs we can create a highly modular system
architecture and achieve far better support for representing knowledge in a reusable form. The descriptive
knowledge of SEMs can be created and maintained without having to know how they are used and made
operational by the more complicated GQMSs. On the other hand, the constructing of GQMs is simpler
because the user can concentrate on the essential features of GQMs without having to worry about the

vast amount of knowledge involved in the SEMs.

The meta-model with the SEM and GQM models constitute a generic meta-tool environment which has
to be tailored for each organization and project (figure 2). Note that figure 2 does not imply any static
relationships. The taﬂoﬁng diamonds stand for concurrent processes which relate the basic TAME
environment to various corporations and in each corporation to various projects. All the entities in the

figure are constantly evolving as we learn more about the changing environment and requirements. New

-7-

features are introduced and existing ones are modified by evolving the objects and their relationships
inside the TAME meta-tool.

[= Entity
<> = Relationship

TAME Legend:

Organization

Organization
characteristics

Project
characteristics

| ——

Evolves

Evolves

Figure 2. TAME instances tailored for various needs.

\

Figure 3 describes the overall architecture of ES-TAME. It depicts the usage of ES-TAME to support the
design activities of software development. Other activities and their corresponding documents would be
represented in a similar way. For example, testing would have its own user interface controlled by the
viewpoint manager and test documents would be stored in the Model Base in an analogous way as the
design documents. The main parts of ES-TAME include the Model Base, Model Management, User
Interface Manager, Reuse Repository and Analyzing and Packaging Unit. This paper focuses on the most
essential concepts of the Model Base, Model Management and User Interface Manager. Furthermore, we
demonstrate the modular Designer Interface with a support system for the RT-SA/SD method.

Reuse Repository
- SEM building blocks / B Software
- SEM's) development
- GQM templates Analyzing and «—P pr ”.pss
- GOM's packaging unit

- measurements
~ design elements etc.

GQM construc- £
tion manager

Model Base

User Interface Manager

Legend: ————JP» Interface with ail modules of a unit
———> Interface with one module

Figure 3. ES-TAME architecture for design support.

Model Base implements the main knowledge representation techniques and models in the system. It
includes all the Software Engineering Models (SEMs) and design documents (see section 4) as well as
GQM models (see section S). SEMs and GQMs interact in terms of both relationship links between
models and by GQMSs using and making the descriptive knowledge of SEMs operational. Because the
Model Base includes elements which are developed and modified during the software development, it is

considered as a part of the development process which includes additional elements and activities.

SEMs and GQMs are created and managed by a set of tools in the Model Management unit (GQM
Template Editor, GQM Construction Manager and SEM Manager). The relationships between the various
SEM and GQM models are established and maintained by a Relationship Manager.

The user interface consists of two main units. The first unit, the ES-TAME User Interface, provides the
main functions which are relatively independent of the design methods. It includes three modules. The
Browser offers graphical tools to view and manipulate the various relationship hierarchies. The System

Manager controls the analysis of the software development process and the packaging of the results into

-9-

the experience base. Viewpoint Manager provides several different perspectives to the system using the
Browser and the Designer Interface as tools for viewing the system. The second main unit is the Designer
Interface. It is a plug-in module which can be changed to other design method tools without much effect

on the rest of the system.

The Reuse Repository consists of a Reuse Manager which stores and retrieves SEMs and GQMs in the
Repository. The Analyzing and Packaging Unit measures, collects and packs data from the software
development process. The knowledge representation principles of these systems are essentially analogous
to the principles presented in this paper. A discussion of the reuse management and measurement issues
related to TAME can be found in [2], [4], [6].

We have built an ES-TAME prototype system to demonstrate the ideas of this paper. The run-time
environment is a 20 Mhz 386 PC with 6MB of RAM and 80 MB of hard disk. The development tools
include Kappa expert system development environment, ToolBook, Excel and C all running under
Windows 3.0.

3. Software Engineering Models (SEM)

The software engineering models (SEMs) provide the essential means for characterizing the current
project and its environment as well as representing the knowledge involved in them. Their underlying
object-oriented structure supports tailorability and reusability. SEMs consist of mainly passive objects

which serve as a basis for project execution and are governed by the active objects of GQMs.
3.1. Modeling mechanisms

In order to have a better understanding of the underlying modeling principles of ES-TAME, we will first
study the major feawres needed to model the SEMs. The model building is based on object-ériented
modeling, inter-object relationships and a dynamic viewpoint mechanism with a highly selective
inheritance. Object-oriented modeling is the basis of most of the technical topics. Since the basic object-
oriented techniques are well documented in the literature (8], [11], [14], [18], [21] they are not described
explicitly in this paper. Inter-object relationships are used to construct models consisting of various types
of objects and define the relationships between them. Dynamic viewpoints with selective inheritance are

used to view the models from various perspectives and to control their inheritance via the relationships.

-10 -
3.1.1. Inter-Object Relationships

In addition to the basic Is-A hierarchy found in object-oriented systems, the meta-model provides a set of
predefined relationships for building various model hierarchies and networks. By offering a limited
collection of relationships we can maintain consistent models and provide automated support for
managing the models. The basic inheritance hierarchies or lattices (Smalltalk-80, Eiffel, KEE, C++ etc.)
are not enough for modeling SEMs and GQMs. On the other hand, using attributes* to store relationships
without a rigorous set of rules can easily lead to a spaghetti-like relationship network which is very
difficult to maintain in a large modeling application. With a well-defined set of relationships we can

build models which are flexible and yet manageable.

The relationships offered by ES-TAME are Is-A/Children, Instance-Of/Instances, Part-Of/Has-Parts,
Compatible-Objects, Dynamic-Attribute and a Counterpart relationship. The principle of having all the
relationships in pairs is important because of the emphasis of using ES-TAME to build reusable objects.
Each object can be taken out of its original hierarchy and subsequently be stored into the reuse repository
for future use. It must retain knowledge not only of its descendants in the hierarchy but also of its
possible ancestors, parts if it is a composite object, to which context it belongs and information on how
its relationships can be used in new applications. It is a reusable object with relationships as connectors

which can plug into other objects both upwards and downwards in any of the relationship hierarchies.

The relationships are created and managed internally by the Relationship Manager module in the Model
Management unit (figure 3). The graphical user interface to the relationship is provided by the Browser
which is controlled by the Viewpoint Manager.

The Is-A / Children and Instance-Of | Instances relationships are the standard class/subclass and
class/instance relationship offered by most object-oriented and frame-based systems [8], [10], [11], [14].
They are the only relationships which empioy the conventional inheritance in ES-TAME. However, we
do not provide traditional multiple inheritance. Instead we provide dynamic linking of the Is-A
relationships. Each object can have a potential Is-A relationship to séveral super classes but only one of
them is active at any point in time. All the attributes of the active super class are inherited, whereas
inheritance via the other Is-A relationships is highly selective and must be explicitly defined. This is the
foundation of the dynamic viewpoints described in section 4.1.2. The children relationship is used to

catalogue all the subclasses or instances of a given class.

4 We will use attribute as a collective synonym for instance variables of objects and slots of frames.

-11-

The fact that we do not currently use multiple inheritance does not mean that we would argue that it is
useless in the context of software modeling and construction. On the contrary, it is easy to identify
numerous céses where objects are conceptually related to more than one parent. However, the multiple
viewpoints and selective inheritance offer many of the benefits of multiple inheritance and avoid name
collision and repeated inheritance problems {8], [18], [21]. The optimal strategy for ES-TAME would be

to use mainly the current mechanisms and carefully use multiple inheritance in selected cases.

The dynamic manipulation of the Is-A links is done at the meta-model level in order to assure the
propagation of the viewpoint to all the pertinent elements. During a link change, all the application level
local values of an object, i.e. instance values which are not inherited from the old parent, must be
maintained in the object in order to be accessible also under the new parent. All the attributes selected by
the user to be inherited and ported under the new parent must also be maintained. Attributes without a
local value and which are not explicitly defined to be maintained by the user can be removed in the
object level because if the IS-A link is changed to point back to the old parent the attributes are
automatically inherited again from the old parent. The following algorithm describes the principle of the
attribute manipulation of an object Object during dynamic changing of an Is-A link from Old-Parent to

New-Parent:

FOR EACH attribute inherited from the Old-Parent in the Object
IF attribute has a local value in the Object
OR attribute is selected by the user to be inherited THEN
Make attribute local in Object and maintain the local values
ELSE
Remove attribute from Object
Change IS-A link of Object to the New-Parent

The Part-Of / Has-Parts relationship pair is used to describe compound objects. A composite object is a
collection of objects which can be managed as a single entity. However, we do not require a composite
object to be instantiated in a top down fashion [1] because of the emphasis on reusable components and
paraliel design in large projects. For example, we may want to design a reusable door control unit which
can be integrated, using a Part-Of relationship, into several different types of elevator control systems
that use this type of door. Each component of a composite object can be independently defined in its own
class hierarchy and used as a component in several compound objects (e.g. a door control can be Part-Of
a simple elevator control system for low-rise buildings as well as a Part-Of a high speed elevator control
system). This allows us to define objects in their most natural logical class hierarchies and use them in
various compound objects without having to define the similar objects in different compound objects.
Part-Of relationships can also be used for performing system level operations on compound objects and

for broadcasting messages to all the components of a subsystem. For example, if a successful

-12-

development team gets a raise in salary we can automatically propagate the change to every SEM object
representing a member of the team via the Part-Of relationships and consequently automatically update
the relevant cost estimation model. This can't be done using the Is-A hierarchy because team member
objects and team objects are defined in different class hierarchies. Team members belong to teams (Part-
Of relationship), they are not subclasses of teams (Is-A relationship). Furthermore, if we want to change
an attribute in all the modules of an elevator control system we can automatically propagate the change
to every object representing the module via the Part-Of relationship (e.g. DoorControl is a Part-Of the
ElevatorControl).

The Compatible-Objects relationship is used to describe objects which can be used together, e.g. the
function point method might be compatible with MIS projects but not with real-time projects. This
information is used to assure that the objects which we include from the meta‘model in the company and

project level models are compatible with each other.

Furthermore, Compatible-Objects provide a mechanism for reuse-oriented model building (see section
4.3) and system design. By navigating in the compatibility network, picking from the list of compatible
objects for each element, we can configure a system using the most appropriate objects from the reuse
repository. This mechanism results in a procedure for building a hierarchical system design, starting with

the root of the design model tree and successively adding nodes selected from the compatibility network.

With the Dynamic-Attribute we provide a way of associating an object's attribute with the attribute of
another object; e.g. if we have estimated the number of source lines (SLOC) in the product
characterization and given it as an aitribute to the product model, we can link the corresponding SLOC
attributes of the resource estimation and defect slippage models to the product model's SLOC attribute.
Thus we maintain the SLOC estimate in one place only and changing the estimate can be automatically
updated in the other models. This would be impossible to implement with multiple inheritance because

these models are conceptually totally different and belong to different class hierarchies.

The Counterpart relationships are provided for creating various domain specific relationships and links
between objects. They are normally used to define relationships between objects which are used in the
same context to build a larger scheme. Counterpart relationships have some similarities with the
association relationships [8]. Counterpart relationships are also used for establishing links between SEMs
and GQMs. By counterpart relationships the user can create, edit and browse any kind of application
specific hierarchies. Naturally, each object can also be viewed from all the standard viewpoints provided
by ES-TAME. Wé could, for example, establish a Counterpart relationship between data flow diagram

-13-

models and design level coupling models. They are independent objects but they are both used in the
same context in assessing the quality of the system design. These relationships are used to manage the
interconnections and interactions between the related objects, including message passing, constraint

reasoning and value propagation.
3.1.2. Dynamic Viewpoints and Selective Inheritance

We introduce a mechanism for attaching a generic viewpoint mechanism for any of the models or model
components and their relationships. It is provided by the Viewpoint Manager which controls the Browser
and the Design Method Tools according to the choice of the user (figure 3). Normally each user has a
default viewpoint to the system. For example, the system designer is mainly interested in the design
models and their features, and views other models as different perspectives of systems, subsystems and
objects. On the other hand, management is more interested in budgets, resources, cost, project schedule,
etc. and can have models tailored according to the management perspective. The manager may impose a
schedule for the whole project using the project model. The system designer may estimate cost and effort
from the viewpoint of design models by taking a cost estimation viewpoint on the design models and

using the tools of the cost estimation model on the design models.

Each model or component of a model is defined as an object. Each object is defined with attributes which
are relevant to itself as a class or as an instance of a class. For example, a data flow diagram is defined
with its relevant attributes in the context of structured analysis and design. However, as a part of the
meta-model it inherits the capability of having several viewpoints. If the user wants to examine the
quality aspects of a particular data flow diagram, he/she would change the viewpoint of that object to a
particular quality model. As a result, the data flow diagram would be dynamically linked to that quality
model and inherit its features and functionality. Note that this is different from multiple inheritance.
Linking is dynamic and inheritance is applied only while the object is linked to the viewpoint. When
changing the viewpoint again, only those attributes which are instantiated during the old viewpoint, i.e.
those that have been modified or given local values, are ported into the new viewpoint.

One of the advantages of the dynamic viewpoint mechanism and selective inheritance is it limits the
amount of information in each object. Because most of the objects can be viewed from a variety of
predefined perspectives (quality models, cost estimation, testing, design, implementation etc.), use of
straightforward multiple inheritance or implementing the attributes and functions as part of the objects
would yield excessive information and obscure the user's understanding of the object itself and its
conceptual relationships to other objects. With dynamic viewpoints we can focus our attention on the

features which are relevant to our current interest.

-14 -
3.2.Principles of SEMs

The main purpose of the SEMs is to formalize various software engineering experiences and their
relationships. The experience or knowledge associated with SEMs is recorded in various forms, including
model level and object level descriptive knowledge and atributes, inter-class relationships, rules,
procedures, spreadsheets and diagrams. The recorded experience can be accessed fgom several viewpoints
both by browsing the meta-model and by general purpose queries. Informal knowledge is accessed
mainly by browsing whereas access to formalized knowledge is more automated. SEMs are internally
created by the SEM Manager and they are maintained in the Model Base (figure 3). Their relationships to
the GQM:s are maintained by the Relationship Manager. The user can use the Browser and the Viewpoint
Manager to create, modify and view the SEM hierarchies.

Basically, the SEMs are built as class/subclass hierarchies using the Is-A relationship. Descriptive
knowledge is stored in the attributes of the objects and can be shared among objects using inheritance or
the Dynamic link relationship. Descriptive knowledge includes mainly textual, graphical and numerical
characterization of the SEM objects. The Is-A classification hierarchy is extensively enhanced using the
Part-Of, Compatible-Objects and Counterpart relationships. These links often have no specific value in
the generic classes. They may have constraints for attribute or link values. For example, a link might be
allowed to be established only to subclasses or instances of certain classes. The undefined attribute values
and links are defined in the lower levels of the object hierarchies, most often at instance level. Rules,
procedures, spreadsheets and diagrams are defined with methods which either fully implement the

functionality or provide an interface to a tool which offers the service.

The meta-model defines the building blocks and their relationships for creating the actual models and
environments for each project. For example, the waterfall model can be constructed using the Is-A and
Part-Of relationships (figure 4). It is defined as a subclass of a generic life cycle models class with Part-
Of relationships constrained to possible process activity classes (analysis, design, coding, test,
maintenance, etc.) or their descendants which are defined as their own independent object models. The
process activity objects can be used as building blocks for constructing different life cycle models. A
tailored waterfall model is defined in three phases. First we define a customized waterfall model which is
refined as a subclass or an instance of waterfall models. For example, we might specify the model as
having separate phases for product design and detailed design instead of having only one design phase.
As a second step, in the design activities, we might choose to represent the data structure, software

architecture and procedural design in terms of entity relationship diagrams, data flow diagrams, state

-15-

transition diagrams and structured English respectively. As a third step the tailored process activities> are
defined to be parts of the customized waterfall model. Thus the customized waterfall model is a
compound object which is a subclass of waterfall models and its component objects are subclasses of the
process activities. This same approach applies for most of the SEM models. The meta-model defines
independent reusable building blocks and mechanisms for customization and interconnection. The actual
environment is established by tailoring the classes and defining the relationships described in the-

previous section.

Is-A hierarchy

Objedt Browser

= Hidden object hierarchy =l

3 S h e T

Part-Of hierarchy

Figure 4. Is-A and Part-Of relationships of the waterfall model.
3.3.Planning and Characterizing

This section provides an overview of how the meta-model supports the planning steps of the QIP. It does
not, however, include the detailed goal construction techniques which are described in section 5. The

characterizing is based on refining and augmenting the generic SEM objects and components as well as

5 These process activities can be reused as parts of other life cycle models, either as is or modified for the particular model.

-16 -

building larger models and compound objects by combining the template objects with pertinent

relationships.

The meta-model can be tailored for various organizations by refining and augmenting the objects,
relationships and, more importantly, by using several viewpoints into the system and combining the
model hierarchies according to the interest of the user. Selective inheritance can be used for picking up
relevant attributes and functionalities from various object classes without the burden of inheriting too
much information from several sources. Initial tailoring of the meta-model is performed during the

project planning activities. The meta-model can be further modified at any point during the project.

ES-TAME encourages reuse of previously defined models and objects in the planning and characterizing
phase as well as in building the actual application software. Using a compatibility relationship network it
can suggest objects and object hierarchies from the experience base that can be used in building and
tailoring the models for the current project. With a sufficiently large reuse repository this works like a

chain reaction.

We normally start the planning from a previously built meta-model which is tailored either for the
company or for the type of project that we are going to run. Thus, the starting point is a template model
which has components with several compatibility relationships whose values are constrained to classes or
class hierarchies which can‘be directly linked to this component. These compatible components are
offered by the Reuse Manager (see figure 3). By retrieving a component from the repository we obtain a
component which can suggest other components from the repository which are compatible with the
current one. These in turn can suggest new components and so on. The procedure is like building a tree
with nodes which can further suggest new nodes or sub-trees below themselves. The tree can be any of
the relationship hierarchies supported by ES-TAME. We can, for example, start with a node and pick up
from the list of potential Part-Of components building a Part-Of hierarchy. At any moment we could
change our approach and start picking up from the list of potential subclasses of a class level component.
This procedure can be repeated until we have exhausted the list of potential components from the various

compatible components.
3.4.Modeling for the Design Phase of Project Execution

Execution in the context of the QIP is defined as a closed-loop process of executing the processes,
constructing products, collecting and validating data and giving feed-back in real-time. This section
describes the aspect of defining the SEMs to support these activities. We will use design activities of the

-17-

project life cycle as an example of the modeling support for project execution. The process of making

these models executable also involves the GQM models.

In order to be able to support the activities after the initial project planning phase, we have to support the
methodology chosen by the user to model the system being built. Normally the design involves the
decomposition of the system into subsystems and further into more detailed subsystems in a hierarchical
manner. Our approach can be applied for functional decomposition as well as object-oriented
decomposition. The main assumption is that the method supports some mechanism for decomposing the
system into subsystems or class hierarchies. In functional decomposition, the design is internally
represented with Part-Of relaﬁon§hips by ES-TAME.

For our first prototype of ES-TAME we have chosen RT-SA/SD (Real-Time Structured Analysis and
Design) as the case study for the system modeling and implementation oriented models [16], [20].
However, most of the principles in the following examples can be applied to other methods, often simply

by replacing the name RT-SA/SD with the corresponding method name.

RT-SA/SD serves as a starting point for software developers to view various aspects of the product and
process via muitiple viewpoints of the ES-TAME models. The amount of information associated with
each RT-SA/SD element in a real world ES-TAME would be overwhelming (both RT-SA/SD related
information and more general information related to each sub-system in the RT-SA/SD models, including
quality attributes, cost attributes, schedules, implementation, testing etc.). Multiple viewpoints of the
system help avoid cognitive overload of the user. For example, the user can choose to view the RT-
SA/SD model from the point of view of testing and access information of the testing methods, test data,
test results, etc. which are relevant to the particular RT-SA/SD model. Multiple viewpoints can be active
at the same time providing features like checking the quality model and testing features of a specific RT-
SA/SD model.

The entity relationship diagram in figure S shows the relationships of the various viewpoints of a
subsystem in an imaginary elevator control system. It describes the viewpoints to a FancyDoor control
system in an elevator control system and its relationship to the simplified product model. FancyDoor
control subsystem has an Is-A (subclass) relationship to the RT-SA/SD diagram element which in turn has
an Is-A relationship to the more general Method element. The Method element object has a property of
being able to provide several viewpoints to itself. Each viewpoint (resource model, quality model etc.) is
dynamically linked to the Method element providing the user 1 to n different viewpoints into the Method

-18 -

element. The FancyDoor control inherits all the different viewpoints from the Method element via Is-A

relationships and consequently has a capability of providing several viewpoints to itself.

The left side of the diagram illustrates how the FancyDoor element is related to the simplified product
model of the elevator control system. FancyDoor is conceptually a subclass of a more general class of
Automatic doors which in turn is a subclass of a Door control class. The Elevator control has several

parts, one of which is the Door control class.

Linking the different viewpoints into the generic method element provides an important independence of
the design method. The mechanism for changing viewpoints is defined and implemented in the generic
method element object and inherited by the elements in different methods. The first ES-TAME prototype
can be enhanced by linking corresponding elements from other design methods (JSD, SADT, SDL....) to
the generic method element thus providing similar viewpoints for each method. The enhancement is
implemented by creating an object-oriented model of each method (conceptually similar to the RT-
SA/SD model). It will then inherit all the viewpoints, atributes and functionalities of the generic method
element which are further refined to meet the needs of each method. We have demonstrated this idea
with a design level quality model example which was initially built for RT-SA/SD and was used for.JSD

with very few modifications.

Elevator
control
: Method
s Door element
T Controi
Drive yramic
system @ viewpoints
RT-SA/SD ':\m_
Auct’omatic diagram JSD 1|
oor \ iy
elent element r L 2
Resource
model

SimpleDoor FancyDoor

Figure 5: The relationship between the product hierarchy and multiple viewpoints.

-19 -

4. GQMs

GQMs are the primary means of making our models operational. They provide information to the
analysis and packaging activities using data collection, metrics, analysis and packaging procedures
incorporated in the objects either as methods or as interface links to appropriate tools. GQMs are the

main execution and analysis "engine" of the system.

GQM models are an organized collection of active objects which can perform functions on their own
without explicit activation by the ‘user or other objects. SEMs, on the other hand, are a collection of
passive objects which are used for formalizing and packaging software engineering knowledge and they

perform functions only when activated by the user or by GQM objects.

The constructing of GQMs consists of two concurrent processes (figure 6). P1: Creating, tailoring and
reusing GQM template objects to create a GQM model base which is used by the software development
projects (GQM Template Editor in figure 3). P2: Rule-based construction and instantiation of the GQM
model base into a collection of operational GQMs (GQM Construction Manager in figure 3). These
processes are concurrent rather than sequential in order to support iterative development of the GQM
models. The first process is actually a part of the characterization and planning phase of the QIP. It
involves the construction of GQM object templates and the creation of a generic model using template
objects as building blocks. The second process includes refining and augmenting the often incomplete

objects and instantiating them into operational objects.

-20-

GQM templates .
- goal templates

- question templates

- metrics templates

Reuse, tailor and Legend:
1 create GQOM templates

{ @ @ (O Classes (evolution)

[C] Instances

Generic GQM
models

Rule-based construction
and instantiation

T

P2

Refined GQM objects
and their instances
combined intoc an
operational

GQM model

Figure 6. Constructing GQM models.
4.1. Modeling Principles

GQM:s are modeled as hierarchies of goals, questions and metrics for various types of constituents and
products of the software engineering process. As a case study, we have created GQM hierarchies based
on the classification of the GQM:s into four classes [9]:' project entities, requirements analysis entities,
implementation entities and delivery related entities (figure 7). The particular classification is not
important from the point of view of our system; it could be any hierarchical classification of the software
development activities. Actually, the principle of tailorability encourages classifications which are most

suitable for the organization. On the other hand, the principle of building GQM hierarchies is very

MetaModel

-21-

important. According to the naming convention in the figure, the objects with a name beginning with
"G." define goals (or sub-goals when they are under another goal object in the hierarchy). Objects with a
name beginning with "Q." define questions. They inherit the goal definition from their ancestors in the
hierarchy. Lastly, the objects whose name start with "M." define metrics or data collection procedures.
They inherit both the goals (from "G." objects) and the questions (from "Q.“ objects). Consequently, they
include a complete chain of definitions of a portion of a GQM or a GQM template including goal,

question and metric level definitions.

:)) Q.Dwation
:nu ; suu: Q.Effost —————
SE. Models 8.Projoct o Q.Staifi .
MetsExperienca] {GQM . &.Process e '
Q.OveraliE xposion<_
axm—-<
7 Q ApplicationExpe<__ .’
-_ObjectName = Hidden object hierarchy Q.AccoptanceQ -
ut— M. EsroieKLOC
6.Quality — <Q.omy..qm—-—u.$£mumc
6.Feedback Q. M_ME valuation

Figure 7. Upper level classes in the GQM hierarchies.

Top-down construction of a GQM model starts with a formulation of an overall top level goal object. It

can be subsequently defined by lower level sub-goal objects. The goal objects at the lowest levels in the
goal hierarchy are characterized by attaching question level attributes to the objects yielding more
specific goal/question objects needed for achieving the goals. Each goal can generate one or more
questions. Each question in turn is defined by one or more metrics. Metrics can be either automated
measurement, data collection and interpretation procedures, or interactive information gathering sessions
with the user. They can also be combinations of these activities. Each question can be used in the

definition of several goals and each metric can be used to answer several questions (figure 8).

-22.
® @2
| y
Goals @ @ @ Questions @ ® Metrics
@® @ @

Figure 8. Entity relationship diagram of goals, questions and metrics.

GQM models are basically compound objects consisting of goals, questions and metrics which are
normally modeled as structured objects. Each object is defined using a template driven editor. The
templates have a predefined structure but the interpretation of the attributes can be different for various
objects and object hierarchies. Moreover, attribute definitions and template. values can be inherited via
the GQM hierarchy. A free form way of defining goals, questions and metrics is also provided by ES-
TAME but automated support for them is limited.

4.2. Construction and Instantiation

GQM construction and instantiation is the final step of planning and characterizing before the project
execution. The purpose of these activities is to perform the final refinement and augmenting of the GQMs

in order to make them operational (P2 in figure 6).

The formal semantics of the GQMs allow us to infer the underlying functionality of each aturibute of a
GQM model or its component. This feature is used extensively in assisting in the process of constructing
goals, questions and metrics. The user starts with a goal template (see figure 9), refining and augmenting
its attributes according to the needs of the project. Each new piece of knowledge prompts the system to
determine if it can automatically deduce the necessary elements for the definition of the goal or the
subsequent questions and metrics. Thus, the process of iteratively defining goals, questions and metrics
can activate functions which are associated with the particular object. If a GQM model is not yet fully
defined, a user input into the template can activate the automatic generation of questions for goals or
metrics for questions. If a particular GQM model is fully specified when the auributes are filled in, the
template can automatically activate the corresponding data collection procedures which interact with the
user and the SEMs.

-23-

The construction of the GQMs is performed using a rule-driven GQM generator. It is a tool which uses
forward chaining, data-driven rules to help in the process of creating GQMs. When the user creates a goal
he/she is uses an editor to fill in and instantiate a goal template. The semantics of the templates are
defined by rules. When an attribute of a template is filled in, it can fire one or several rules. These rules
can infer more information and fire additional rules in a forward-chaining manner. Fired rules can
generate more information based on the given initial data, they can fill empty attributes of the template,

suggest or generate questions based on the data, and so on.

The same rule-driven construction principle applies to creating questions. Normally the user has to be
involved in defining the questions, although in some cases the questions can be created automatically
based on the goal by the GQM generators rule-base. The construction includes choosing, filling and

instantiating question templates according to the information from the goal definition.

Finally, the user chooses and defines the metrics and data collection procedures with the help of the
GQM rules. This procedure uses the SEMs in the meta-model in an object-oriented way. For example, if
the cost of a sub-system is not known and it is needed to answer a question of a GQM then a message is
sent to the corresponding sub-system object in 2 SEM. The SEM object calculates the cost, possibly
asking further questions of the user if sufficient information is not available. On the other hand, if the
cost is already available in the SEM, either by previous calculations or as previously given by the user,
then the method in the SEM object simply returns the value of the cost to the GQM. Furthermore, the
mechanism for calculating the cost depends on the context of the object. It may be calculated by
summing up the cost of sub-systems, based on recorded and user provided data, or estimated by a given
formula (e.g. Cocomo). In all cases, the GQM model is the same and does not have to know anything
about how the corresponding SEM gets the value. The differences are defined in the corresponding SEMs
(product model, project model, cost model etc.) and can be hidden from the objects who ask for the

information.

GQMs and SEMs typically communicate using the metrics level objects of the GQMs. Goal and question
level objects normally refer to lower level objects in the GQM hierarchy to obtain information. The links
between the SEMs and GQMs are established during the construction and instantiation of the operational
GQM:s, either automatically or with user assistance. The rules and constraints for the relationships are

defined in the GQM template objects by the person who is responsible for the ES-TAME system.

For example, consider a GQM which needs information on the experience of the manager in order to

evaluate the development team, i.e. the GQM involves several questions and one of them is "What is the

-z

-4 -

experience of the manager?”. The GQM is initially constructed from a template object (P1 in figure 6)
which defines that its manager link (defined as a Counterpart relationship) must point to an Instance-Of
managers class in the SEMs. When a GQM object needs the experience information for the first time, it
doesn't know who the manager is. However, based on the manager link constraint, it knows that it must
be an instances of the manager class. Consequently, it asks for the name by giving a list of instances of
the manager class to the user. When the user selects the name of the manager in the menu, the system
automatically initializes the Counterpart relationship between the GQM and the selected manager object
in the SEM and all future references to the manager use this link. When tﬁe link is established, the GQM
object sends a message to the manager instance asking for the experience of the manager. If the
information is not available in the manager object, it activates characterization procedures which provide
the user with a form editor for defining the necessary facts for the manager object. When the
characterization is done the manager object returns the experience data to the GQM object. Naturaily, the
manager instance saves this new information from the form editor during the characterization process and
can immediately return the experience data, as well as any other characteristics defined in the

characterization, without any user interaction during the next requests.

The communication between the GQMs and SEMs is analogous to the previous example when the
information flow is reversed, i.e. when the GQMs are manipulating the information of the SEMs. For
example, when a meitrics method of a GQM has measured the error density it will send the results as a
message to the corresponding quality model (SEM). The establishment of the link is also similar. The
template objects provide the allowable quality models which can be linked to the particular GQM and the
final establishment of the link is done either automatically or interactively during the construction and

instantiation of the GQMs.

By having separate SEMs and GQM models we can have a clear interface between the general principles
of creating GQMs and the project specific information defined and stored in the SEMs. All the

complexities and implementation details can be hidden in the corresponding models.

The actual usage of fully specified GQM:s is performed by backward chaining rule-based reasoning. The
goal part of a GQM is used as a high level goal® in the backward chaining process. The reasoning process
will establish questions and finally metrics as backward chaining sub-goals. When metric level goals are

established in the reasoning they will activate the corresponding metrics procedures.

6 Notice the dual meaning of the word goal. It is used 1o refer both to the goal part of a GQM and to the goal of a backward chaining
reasoning process. The context of the word should clarify the meaning.

-25.
4.3. Product Goal Example

Consider an example where we want to analyze the quality of a sub-system in our product. We initiate
the process by formulating our overall goal with the template driven editor. ES-TAME provides us with
purpose and perspective templates where we have several slots to be filled. Figure 9 illustrates the
purpose and perspective aspects of the goal objects. The selections for our example are highlighted. Note
that the elements of the template are intemnally modeled in a hierarchical GQM model (see figure 6).
Figure 9 merely illustrates the principle of a simplified template driven editor which can be applied to

assist the user in constructing GQM:s.

PURPOSE: analyze process lunderstand
characterize product evaluate
evaluate the model in order to_|manage it |
predict - metric engineer
motivate ‘ testing leam
other ... review improve

other ... other ...
PERSPECTIVE: cost

effectiveness developer
quality manager

[with respect to | correctness from the point of view of __{customer
defects corporate
changes ‘ other...
product metrics
other ...

Figure 9: Simplified GQM templates.

We can choose either pre-defined options for the slots or choose other... and provide our own definitions.

In our case study we will choose:

analyze the product in order to improve it

with respect to quality from the point of view of developer.

If we select one of the predefined options in the templates then ES-TAME is capable of choosing the
most potential options for the corresponding sub-goals and questions. For example, choosing keyword
analyze and product would trigger rules which would suggést sub-goals for analyzing the whole product,
hardware, software, sub-systems, etc. At the same time the system automatically creates a Counterpart

relationship in the GQM and constrains its value so that it is allowed to point either to product model or

-26 -

to the parts of the product. The relationship also includes a definition for its semantics, i.e. the link
indicates the potential target objects of the quality analysis.

Let us select the software sub-system called FancyDoor which internally instantiates our Counterpart
relationship between the goal object and the FancyDoor object. Since we select quality in the perspective
template and because we have already chosen to study a software sub-system for the product, ES-TAME
triggers rules which will suggest coupling, cohesion, defects, etc. as aspects of quality. Again, the system
creates the corresponding Counterpart relationships automatically in the background. The user can select
from the options offered by the system or can make his/her own choice. Finally the rule driven
construction process generates several sub-goals for analyzing the quality of the product and one of the

goals is:

analyze the sub-system DoorControl in order to improve it

with respect to coupling from the point of view of developer.

Now that we have generated all the goals with pre-defined options related to our initial goal, ES-TAME
can suggest questions and metrics to achieve the goals. Choosing analyze-product options in the
templates activates the forward chaining GQM building rules to suggest a product related questionnaire
which is already stored in the meta-model. Methods in the product questionnaire object suggest
appropriate metrics if the attributes are not already known by the user. In the coupling example, the
coupling sub-goal changes the viewpoint of the FancyDoor into the coupling models for that specific
type of design and activates the methods for evaluating the coupling. For design level coupling it
activates general purpose coupling routines which sends messages to the FancyDoor design objects to

obtain the coupling information.

The above process creates several relationship networks. The Counterpart relationship network is used
extensively in sending messages between the objects and actually making the GQM operational.
Furthermore, the definition of the goals, questions and metrics creates a GQM hierarchy. The highest
node is the most general statement of the goal (analyze the product in order to improve it with respect to
quality from the point of view of developer). The lowest levels in the GQM hierarchy are the most
specialized definitions (analyze the 'sub-system DoorControl in order to improve it with respect to
coupling from the point of view of developer). In practice the process would create several mid-level

objects and various branches in the hierarchy.

-27-
5. Conclusions

We have described a methodology, a knowledge representation, and a reasoning framework for the top
down goal oriented characterization, modeling and execution of software engineering activities. This is
done in the context of the Quality Improvement Paradigm (QIP). The QIP is an evolutionary
improvement paradigm tailored for the software business defined by three steps: (1) planning, (2)
execution, and (3) analysis and packagihg. The Experience Factory concept provides an environment for

the organizational approach for building software competencies and supplying them to projects.

A prototype system (ES-TAME) is described which demonstrates the underlying knowledge
representation and reasoning principles. Support for the RT-SA/SD method is used as a case study of
modeling the design phase of building software for real-time systems. ES-TAME provides an object-
oriented meta-model concept which supports tailorable and reusable software engineering models. It
provides the essential mechanisms, functions and ahributes for building other models. Modeling is based
on inter-object relationships, dynamic viewpoints and selective inheritance in addition to the traditional
object-oriented techniques. This extended object-oriented approach has proven to be effective in
implementing the two types of highly modular and tailorable ES-TAME model categories: descriptive
SEMs which consist of mainly passive objects and procedural GQMs which consist of active objects. By
defining SEMs and GQMs as two clearly separate models, we can create a highly modular system and a

far betier support for representing knowledge in a reusable and easily maintainable form.

SEM models include representations for the basic software engineering activities. They involve mostly
descriptive knowledge defined in the characterization and planning activities of a project life cycle.
SEMs are used and made operational by the active GQM models which are defined by a systematic
mechanism for defining and evaluaﬁng goals and using measurement to provide feedback in real-time.
GQM:s provide a paradigm for establishing project and corporate goals and a mechanism for measuring
against those goals. A rule-based forward chaining mechanism provides a user friendly, incremental and

flexible way of constructing the GQM templates into GQM object hierarchies.

The current implementation of ES-TAME provides a framework for creating and maintaining tailorable
SEMs and GQM:s. It demonstrates the main knowledge representation and reasoning mechanisms of the
Model Base, Model Management and ES-TAME User Interface unit including the Viewpoint Manager
(figure 3) and an interface to Design Method Tools. However, it does not include automatic support for
the Analysis and Packaging Unit and these functions must be carried out manually. Furthermore, the

Reuse Repository needs additional research to be useful in practical environments.

.28 -

Potential directions for future research include comprehensive support for building and managing the
reuse repository, using reverse engineering techniques for creating and maintaining the experience base
for an organization, using case-based reasoning techniques for packaging information into the experience

base and supporting GQM management with deep knowledge.

Acknowledgements

The authors wish to thank Lionel Briand, Gianluigi Caldiera and Robert France for their constructive and

valuable comments.

References

{11 Banerjee, J. , Chou, H.T., Garza, J.F., Kim, W., Woelk, D., Ballou, N., Data Model Issues for
Object-oriented Applications, ACM Transactions on Office Information Systems, January 1987.

[2] Basili, V.R. , Quantitative Evaluation of Software Engineering Methodology, Keynote address,
First Pan Pacific Computer Conference, Melbourne, Australia, September 1985 also available as
Technical Report, TR-1519, Dept. of Computer Science, University of Maryland, College Park,
July 1985].

[3] Basili, V.R. , Rombach, H.D., TAME: Integrating Measurement into Software Environments,
Computer Science Technical Report Series, (CS-TR-1764), University of Maryland at College
Park, College Park, Maryland, June 1987.

[4] Basili, V.R. , Rombach, H.D. The TAME Project: Towards Improvement-Oriented Software
Environments, [EEE Transactions on Software Engineering, vol. SE-14, no. 6, June 1988, pp. 758-
773.

[5] Basili, V.R., Software Development: A Paradigm for the Future, Proceedings of the Thirteenth
Annual International Computer Software & Applications Conference, Orlando, Florida, September
1989, pp. 471-485.

[6] Basili, V.R., Rombach, H.D., Support for Comprehensive Reuse, IEE Software Engineering
Journal, September 1991,

[7] Bennet, K., White, D. ,The Knowledge-Based Software Assistant, overview. Proceedings of the
Second Annual Knowledge-Based Software Assistant Conference. Rome Air Development Centre,
New York, January 1988, pp. 13 - 24.

{81 Booch, G., Object-Oriented Design with Applications, Benjamin/Cummings Publishing Company,
Redwood City, CA, 1991, 580 p.

[9]1 Caldiera, G., personal communication, 1991.

[10] Fikes, R., Kehler, T. , The Role of Frame-Based Representation in Reasoning. Communications of
the ACM, Vol. 28, No. 9, September 1985, pp. 904 - 920.

[11] Goldberg, A. , Robson, D., Smalltalk-80: The Language and its Implementation, Reading,
Massachusetts, Addison-Wesley Publishing Company, 1983.

(12] Hahn, U., Jarke, M., Rose, T. Teamwork Support in 2a Knowledge-Based Information Systems
Environment, IEEE Transactions on Software Engineering, No 17, May 1991, pp. 467-482.

[13] Kim, W., Object-Oriented Databases: Definition and Research Directions. [EEE Transactions on
Knowledge and Data Engineering, Volume 2, No. 3, September 1990, pp. 327-341.

[14] Meyer, B,, Object—oriemed Software Construction, Prentice Hall, New York, 1988.

[15]

[16]
(7
[18]
[19]

[20]
[21]

-29-

Mi, P., Scacchi, W., A Knowledge-Based Environment for Modeling and Simulating Software
Engineering Processes. IEEE Transactions on Knowledge and Data Engineering, Vol.2, No. 3,
September 1990, pp. 283-294. -

Oivo, M., Knowledge-Based Support for Embedded Computer Software Analysis and Design.
Espoo, Finland, Technical Research Centre of Finland, VTT Publications 68, 1990, 82 p.

Rich, C., Waters, R., The Programmer’s Apprentice. Reading, MA: Addison-Wesley, and
Baltimore, MD: ACM Press, 1990.

Stefik, M., Bobrow, D., Object-Oriented Programming: Themes and Variations, A Magazine,
Volume 6, No 4, Winter 1986, pp. 40-62.

Stroustrup, B.: The C++ Programming Language, Addison Wesley, Reading, Massachusetts, 1986.
Ward, P., Mellor, S., Structured development for Real-time Systems, Vol 1...3, New York, 1984.

Wegner, P., Concepts and Paradigms of Object-Oriented Programming, Expansion of Oct 4
OOPSLA-89 Keynote Talk, OOPS Messenger, Vol I, Number 1, August 1990, pp.7-87.

