
lEEE TR,4NSAcn0NS ON SOFIWARE ENGtNEERtNG, VOL. 18, NO. 11, NO”EMBER 1992

Seesoft-A Too l For Visualizing
L ine Oriented Software Statistics

Stephen G. Eick, Member, IEEE, Joseph L. Steffen, and Eric E. Sumner, Jr.

Abstmct-The Sees&t@ software visualization system allows
one to analyze up to 50 000 lines of code simultaneously by
mapping each line of code into a thin row. The color of each
row indicates a statistic of interest, e.g., red rows are those most
recently changed, and blue are those least recently changed.
Seesoft displays data derived from a variety of sources, such as

- version control systems that track the age, programmer, and
purpose of the code, e.g., control ISDN lamps, fix hug in call
forwarding;

* static analyses, e.g., locations where functions are called; and
l dynamic analyses, e.g., profiling.

By means of direct manipulat ion and high interaction graphics,
the user can manipulate this reduced repnzsentation of the code
in order to find interesting patterns. Further insight is obtained
by using addit ional windows to display the actual code. Potential
applications for Seesoft include discovery, project management ,
code tuning, and analysis of development methodologies.

Index Terms<hange management systems, code browsing, in-
teractive graphics, l ine oriented statistics, scientific visualization.

I. INTRODUCTION

A DIFFICULT problem in software engineering is under-
standing statistics collected at the source code line level

of detail. This class of statistics includes information such as
who wrote each line, when it was last changed, whether it
fixes a bug or adds new functionality, how it is reached, how
often it is executed, and so on. The problem is hard for large
systems because of the volume of code. A moderately sized
system may have thousands of lines of code and a large system
may have millions of lines resulting in a large statistical data
set. This paper describes a remarkable visualization technique
to analyze line oriented data.

Line level data is available on all large software systems.
It comes from version control systems, static analyzers, code
profilers, and project management tools. This data, however,
is underutilized because it is difficult to analyze. Version
control systems such as the Revision Control System (RCS)
[l], Source Code Control System (SCCS) [2], Change Man-
agement System (CMS) [3], Extended Change Management
System (ECMS) [4], or SABLE [5] contain a complete history
of the code. For each change to the software they typically
capture information such as the affected lines, reason for the
change, date, and responsible programmer. Static analyzers
such as CIA [6] and cscope [7] capture the definitions of
functions, types, macros, external variables, etc., and where

Manuscript received October 1, 1991; revised August 1, 1992. Recom-
mended by k. Selby and K. Torii.

The authors are with AT&T Bell Laboratories. Naoerville. IL 60566
IEEE Log Number 9203763.

.

they occur in the code. Profilers such as lcomp [S] perform
basic block counting, indicating how often individual lines are
executed.

Because of the volume of code it is difficult to gain insight
from line oriented statistics or to get a perspective on the
whole system. Statistical analysis techniques often involve
aggregation. For many purposes, however, there is a need for
finer grain detail. In addition, aggregation techniques discard
the familiar and rich textual representation of the code. Code
browsers, code formatting techniques [9], and version editors
[lo] are useful, but none of these generalizes to study arbitrary
line oriented statistics.

Our approach to studying this class of data is to apply
Scientific Visualization techniques [ll]. We refer to this as
Sofrware khalization. There is a distinguished history of
visualization research starting with Tufte’s seminal work [12].
Previous visualization work has involved traditional statistical
data. Some notable examples include MACSPZN [13], scatter
plot brushing [14], and dynamic graphical methods for analyz-
ing network traffic [151. Unfortunately, none of these methods
is tailored for studying line oriented software data. We know
of no techniques for studying this class of data that takes
advantage of the underlying textual representation of software.

This paper describes a new technique for visualization
and analysis of source code, and a software tool, Seesoft,
embodying the technique. There are four key ideas: reduced
representation, coloring by statistic, direct manipulation, and
capability to read actual code. The reduced representation is
achieved by displaying files as columns and lines of code as
thin rows. The color of each row is determined by a statistic
associated with the line of code that it represents. In several
of our examples the statistic will be the date that the line
was created. The visual impression is that of a miniaturized
copy of the code with color depicting the age of the code.
Then, using direct manipulation and high interaction graphics,
a user manipulates the display to find interesting patterns.
To display the actual code text the user opens up reading
windows and positions virtual magnifying boxes over the
reduced representation.

Fig. 1 shows a display of a directory containing 20 source
code files containing 9 365 lines of code. The height of each
column tells the user how large each file is. Files longer than
one column are continued over to the next column. For the
display, the line color’ shows the age of each line using a
rainbow color scale with the newest lines in red and the oldest

‘In black and white versions of this paper color is to be interpreted as gray
level. Red is equivalent to dark grey, green to medium gay, and blue to light
WY.

01624828/92$03.00 0 1992 IEEE

Fig. 1. Sample Seesoft display. A Seesoft display of a directory with 20 files and 9 365 lines of code. Each file is represented as
a column and each line of code as a colored row. The files are either C code (.c), header (.h), OI configuration management (md)
files. The color of each line is determined by the modification request (MR) that created the line. All MR’s touching any of these
files are shown on the left using a color scale with the oldest in blue and the newest in red.

in blue. On the left there is a scale showing the color for each
of the 461 changes or modification requests (MR’s) to this
directory. The visual impression is that of a miniature picture
of all of the source code with the indentation showing the
usual C control structure and the color showing the age.

In the remainder of this paper we describe Seesoft and
our visualization ideas in more detail. Section II describes
the code display techniques and computer interaction methods
used in Seesoft. Section III walks through a sample code
analysis session to illustrate the types of insights that we
have obtained while using Seesoft. Section IV discusses the
general principles we use in our visualization techniques.
These visualization techniques may be applied to the display
of any ordered database. Section V discusses some software
engineering applications. Section VI talks about our field
experiences using Seesoft to solve some actual problems.
Section VII describes how we implemented Seesoft, and
Section VIII summarizes and concludes.

II. THE SEESOFI SOFTWARE VISUALIZATION TOOL

The Seesoft visualization tool displays line oriented source
code statistics by reducing each file and line into a com-

pact representation. The statistics are displayed with color.
Then, using high-interaction graphics and direct manipulation
techniques [16], the user manipulates the display to discover
interesting patterns in the code and statistics.

For this approach to be effective the initial display must
be informative and clear. With our display, programmers
immediately recognize the files and lines of code because the
display looks like a text listing viewed from a distance. The
statistics are obvious from the row colors as is the spatial
distribution of the statistic in the code. Next there must be
easy and intuitive human interface techniques for the user to
manipulate the display. We find that using direct manipulation
techniques, in particular updating the screen in real-time in
response to mouse actions, allows the user to manipulate
Seesoft easily to find interesting patterns. Finally, there must
be a technique to allow users to read the code. In our system
users may open code reading windows that display the actual
code corresponding to the rows underneath “magnifying”
boxes that track mouse movement. This technique works well
because it allows the user to have both an overview of the
statistic and also read the interesting parts of the code. We
now describe the Seesoft visualization tool in more detail.

Fig. 2. Example MR activa!ion. As rhe user positions !he mouse OY~I an MR, the lines of code that MR created are activated

2.1. Screen Description
The Seesoft screen layout consists of a file display, a mouse

sensitive color scale, buttons, toggles, and a list of statistic
names. Fig. 1 shows that the largest portion of the screen
display consists of files shown as columns containing lines of
code shown as colored rows. Using a 1280 x 1024 standard
high-resolution monitor we can display about 900 lines of code
per column. Files longer than 900 lines wrap and are displayed
as multiple columns. For example, file RTmsgproc. c in
the middle of Fig. 1 has 1 300 lines and is displayed in
two columns. The name of each file is printed above it for
easy identification. The row representation shows clearly the
indentation and length of each line of code. The color of
each line is tied to a line oriented statistic. This statistic is
highlighted on the list of statistic names in the lower right-
hand comer. The rows are just large enough so that block
comments, functions, and control structures such as case and
if statements are visible just by their indentation.

On the left side of the Seesoft display is a mouse sensitive
color scale. Each color on the scale represents one value of the
statistic associated with each line of code. The statistic might
be age, programmer, feature, type of line, number of t imes the
line was executed in a recent test, and so on. We often use the
MR (modification request to a version control system) number

for our statistic. The MR number is an interesting statistic
because it comes in date order, is the smallest unit of program
change, and is associated with programmers, developers, and
features. The MR’s are displayed sequentially with the newest
at the top and oldest at the bottom. Underneath the scale, the
number of activated statistic values and the total are shown,
461/461 in Fig. 1, as well as the number of activated code
lines and total, 9365/9365. The color scale is a generalization
of traditional sliders controlling thresholds. The user may
select discontinuous threshold ranges, as well as the traditional
continuous ranges that normal sliders may select.

At the bottom of the screen there is space for Seesoft to print
the current code line and the statistic value. As the cursor is
positioned over any color in the color scale the value of the
statistic represented by the color is printed at the bottom of
the Seesoft display. In Fig. 1 this is the MR number, abstract
(a short description of the purpose of the MR), and date.
If the cursor is over a row, Seesoft also prints the line of
code associated with that row. We have additional methods of
viewing that we describe below.

2.2. Linking Between the Color Bar and Code Lines
Each statistic value is linked to the lines of code having

that value through a common color. When the user activates

Fig. 3. Source code with no indentation. By turning off indentation 0 is easier to see the age of the code. The oldest lines
are displayed in dark blue and the newest in red. The display shows the relative size of the files, age of the code, and how
many times each file has been changed.

a value by positioning the cursor over it, the associated color
is activated and the corresponding code lines are turned on. In
Fig. 1 all MR’s are activated and thus all code lines were
visible. To obtain Fig. 2 from Fig. 1, first all MR’s are
deactivated and then the cursor is positioned over one MR
in the scale. Activating a line of code activates its MR and
thus any other lines of code created by that MR. Activating
a file activates all of the lines in the file and thus all of the
MR’s used to create them.

2.3. Mouse Operations

The screen is mouse sensitive. As the user moves the mouse
around the screen the entity under the mouse is automatically
activated and the corresponding color and lines turned on.
Activating MR’s and code lines is described above. Activating
a file name activates all lines within that file. When the mouse
is moved away from an entity it is automatically deactivated.
Depressing the left mouse button causes the activation to
be permanent and the middle deactivates previously acti-
vated items. This style of user interaction is called brushing
P71.

2.4. Buttons, Toggles, and Code Reading
At the bottom of the display there are mouse sensitive

buttons and an animate slider. The user may turn off line
indenting by clicking on the Indent button. This causes the
rows to be drawn the full width of each column (see Figs. 3
and 4). TheAnimate button causes the computer to sequentially
display all statistic values, one at a time.

Depressing the Reading window button causes two actions
to occur. A window for displaying C code text is opened,
and a small colored “magnifying” box is created. As the
magnifying box is moved over the colored rows the actual code
is displayed in the reading window (see Fig. 5). The size of
the magnifying box is proportional to the amount of code that
is displayed in the reading window. This enables the user to
understand what fraction of the total code is visible in the code
reading window. The border color on each reading window
matches the color of its corresponding magnifying box.

III. SAMPLE CODE ANALYSIS

This section describes a quick analysis of the change history
in a sample directory using Seesoft. From the version control

961

Fig. 4. A File With Many Changes. File Rl3nsqproc.c has been changed 65 times out of 461 total for this directory. The
changes have occurred consistently over the last several years.

system for each line we obtain the adding MR, whether the
change fixed a bug or added new functionality, the version,
the feature number, the user id of the developer adding each
line, and the developer’s name. The directory has 20 source
code files including a configuration management (.md) and
an include (.h) file that were created by 461 MR’s and 168
developers. In total there are 9 365 lines of code. Fig. 3
shows the code with indentation turned off, and the color
of each line tied to the MR that created it. Turning off
indentation makes it easier to see the age of the lines. The
oldest code dates to 1984 and is shown in dark blue and
the newest code from early in 1991 is shown in red. The
age patterns of the files are striking. Much of the code in
files RTmsgpoc.c, RTcallproc.c, RTgeninit.c,
RTmainrtg.c, and RTginit .c is blue indicating that it
dates to 1984. These files are interesting because along with the
blue code they display many other colors indicating that they
have been changed many times, including recently. There is a
set of small light blue files (RTrmsbusy . c, RTrmsdque. c,
RTrmsidle.c,RTrmsnwcn.c,RTrmsqinit.c,RTrm-
sqto.c, and RTrmsque.c) dating to 1985, and a set of
green files (RTconfig.c, RTdstlmp.c, RTisat-cwl.c,
RTmhgxprc . c, and RTup-lamps . c) dating to 1987. The

light blue and green files have been stable since few changes
are shown.

In this directory there have been 461 changes. To find the
files that have changed the most we turn off all lines and
sequentially touch each of the file names. Fig. 4 shows that
the file RTmsgproc . c has been changed 65 times, and the
pattern of the changes on the MR color scale shows that
changes have been occurring consistently since this file was
created. We investigated the frequent changes and found that
it is the main control flow for the directory. A common
enhancement strategy has been to add a function call to this
file and put the code for the new function definition in another
file. Fig. 5 shows such an enhancement where a new function
was added to fix a bug and a corresponding function call was
inserted in RTmsgproc . c.

By activating files created by common MR’s, there appear
to be three different sets of files in this directory. Figs. 6, 7,
and 8 show the groupings. Fig. 6 shows the set of green files
that were added in 1987. These files were created for a major
enhancement.* Fig. 7 shows the set of light blue files that have

*A SESS expert on this section of the code subsequently told us that these
files were added to provide IDSN capability.

962

Fig. 5. Modular change. A bug is fixed by inserting a function call in RTmsgproc. c, shown in the Code Reading window, and
putting the code for the function in a new file. The Code Reading window may be independently positioned.

been stable since 198.5.3 The heavily changed set of files in
Fig. 8 are the control flow files in the program. In this directory
there is a clear historical work pattern. New functionality is
added by creating new functions and then inserting function
calls in the main files. Through time there have been several
major enhancements that created sets of files.

There are two types of MR’s, new feature MR’s and bug
fixing MR’s. Fig. 9 shows the display with the bug MR’s in
red. Certain files such as the green and light blue files have
had few bug fixes. These files were created at one time with
a small number of MR’s. Other files have multiple bug fixes.

In Fig. 10 the line color is tied to the user id of the program-
mer writing each line. Files RTconfig.c, RTdstlmp. c,
and RTup-lamps . c are written by one individual with a few
changes by other people later to fix bugs. Some of the other
files with lots of colors have been changed by many different
developers. There is a relation between the locations of the
bug fixes in Fig. 9 and the number of developers touching the
files in Fig. 10. Files touched by many developers have more
bug fixes.

3The expert was unaware that these files even existed.

What have we learned in this quick Seesoft session? We
know which files are changed most often, the age of the
code, and when each file was last changed. We also know
that the files in this directory may be clustered into three
groups, each group created by a different set of MR’s. If it
became necessary to divide this directory, files in each cluster
could be kept together. We also know where code has been
changed recently and that recent MR’s have created fewer lines
of code than earlier MR’s. We also found that certain files have
been changed continuously and that the bug fixing MR’s are
concentrated in these files. These files might be candidates to
be restructured or rewritten to reduce maintenance costs.

IV. VISUALIZATION TECHNIQUES

Our approach to visualizing software is to think of source
code files and lines as entities in an ordered database. In
the preceding examples we display statistics associated with
entities obtained from the version control system. For each
entity we have a representation, columns, and rows, chosen so
that we can view a large volume of data on a single screen.
This allows us to gain insight into the overall structure of the
database. Database queries are entered and answered visually.

963 ElCK et 01.: SEESOFTw

Fig. 6. Groupings of filesa significant new feature. A new feature was put into the code in 1987. This code is primarily in
four files and has been stable.

As the user moves the cursor over mouse sensitive portions
of the screen he or she is performing a series of database
queries. Seesoft then activates the lines of code that resolve the
database queries. This approach allows the user to probe the
database by moving the mouse around the screen. When he or
she discovers an interesting pattern, we provide a mechanism
to view the database directly, the reading window in our case,
in addition to the reduced representation.

We are currently in the process of obtaining some addi-
tional ordered databases. Our approach applies to databases
where there is interest in understanding the overall structure
and querying the database based on particular attributes, For
example, one possible application would be to display a text
corpus such as the Bible. Each book could be represented as
a column and each verse as a row. A subject index or the
age of each verse could be used to color the rows. Another
application we are working on is to represent directories as
columns and files as rows. This would allow us to visualize
even more code on a single display.

The Seesoft user interface employs high interaction graphics
and direct manipulation techniques. As the mouse is moved
over the display screen entities are automatically activated and
deactivated. Since there are no “point and click” delays and no

waiting for screen refreshes, a different style of interaction is
possible. Our style of interaction makes it easy for the user to
experiment with different activations and to probe the display
interactively. For example, with Seesoft it is possible to view
each one of several hundred MR’s by running the mouse over
the color scale. Any unusual MR’s will be visually obvious.
This would be infeasible if the user were required to “click”
on every MR.

V. SEESOFT APPLICATIONS

We envision Seesoft being used in several application areas
including

* code discovery,
l new developer training,
l project management,
l quality assurance and system testing,
* software analysis and archeological studies,
l code coverage analysis, and
l code execution optimization.
The code discovery problem is faced by a programmer

attempting to change an unfamiliar portion of the source code.
Programmers, given requests for additional functionality, must

964 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 11, NOVEMBER 1992

nr

Fig. 7. Groupings of files--stable utility functions. By activating files created by common MR’s, we find that there are three
different sets of files in this directory. This set is a stable set of utility functions.

study the current code to determine which files contain the
existing functionality and which lines to change within these
files. This task is often difficult and time consuming. In fact
it may take several weeks of detailed study to change a few
lines with no unwanted side effects. On large, old projects a
significant fraction of a programmer’s time is devoted to code
discovery. Using Seesoft a programmer can easily determine
which lines were created to deliver an existing functionality,
the programmers who created those lines, why they were
created, and the purpose of nearby lines.

New programmer training is a problem faced by all large
software projects. Multiyear projects with large development
staffs have considerable staff turnover. Seesoft can ease the
programmer training problem by providing new trainees with
a global view of the source code. Since Seesoft displays tens of
thousands of lines of code simultaneously, new programmers
can form a mental picture of the code. Using Seesoft it is easy
to answer questions such as:

l How are the files in my program organized?
l When were they last touched?
l Where is the code for this feature?
l What code was written by the person I am replacing?

A class of new programmers might be given Seesoft and
access to a code expert. They would use Seesoft to view
the code and could immediately ask the expert to explain the
interesting things that they discovered.

Project managers monitor a development in order to ensure
that the project is on schedule. Using Seesoft a project manager
can visually track all source code changes done during the
last week or month and can verify that recent changes are
consistent with the schedule. In addition, he or she can identify
potential trouble spots by the presence of a high level of churn
or excessively complex code. A manager can check recent
changes in order to trap quick fixes that are likely to cause
long term difficulties. He or she can also use Seesoft to identify
code that needs to be restructured or rewritten.

Quality assurance inspectors can use Seesoft to determine
if new code meets coding specifications and is in the proper
files. System testers can determine which regression tests to
run by identifying the system functionality embodied in the
files that are changed by recent MR’s.

Analysts may use Seesoft to understand the effect of var-
ious software development environments and processes. For
example, an analyst could compare code developed using C

EICK ef al.: SEESOFTw

Fig, 8. Groupings of filesmain process control flow. Activating files RTmsgpoc. c, RTcallproc. c, and RTgeninit . c
creates this figure. These files control the flow in this directory. They have been changed many times, usually with small changes,
as developers add hooks for new functionality. Many of the MR’s are for bug fixes.

and C++ in order to determine if bug fixes in the Ct+ code
were more localized. Analysis of multiple projects over time
could be used to estimate the effects of project age and size
on programmer efficiency.

Developers optimizing the performance of a program can
use Seesoft to display execution frequency data for each line,
identify hot spots, and then use data from static analyzers and
version control systems to evaluate potential improvements.

VI. SEESOFT FIELD EXPERIENCES

This section describes the experiences of some actual Seesoft
users. The reaction of programmers and managers at all levels
to Seesoft demonstrations has been enthusiastic. Many state
that they wish that Seesoft had been available for some recent
work. Another common scenario is that a department picks up
responsibility for some unfamiliar code and would like to use
Seesoft to help gain familiarity with the software. Since our
visualization techniques are recent, our experiences to date
with actual applications are limited, but preliminary results
are promising.

The results in Figs. 9 and 10 suggest that files changed by
many different developers have more bugs than files written

by one or two developers. These and other results have led
some projects to assign ownership of large sections of code
to individuals who will have responsibility for all changes.
To make the code assignments one developer used Seesoft to
look at the change history of all of the code in her project. She
divided the code into related areas using a clustering technique
based upon the change history, and used Seesoft to review the
results. She then used Seesoft to assess the activity level in
each cluster, and assigned developers sets of clusters intended
to balance the load.

Another Seesoft project involved object-oriented program-
ming. A particular manager was interested in applying object-
oriented programming to developing switching software. She
used Seesoft as an archeological tool to determine which
subsystems would benefit most. She found that in certain
subsystems the embedded code rarely changed-new features
involved adding new files. For these subsystems she concluded
that the object-oriented approach would have limited value.
For other subsystems, however, implementing new features
involved making extensive changes to existing files, suggesting
that using an object-oriented approach might be useful.

There have been several cases where developers were

966 IEEE TRANSACTIONS ON SOFTWARE ENGINEERINF."OL. 18, NO ILNOVEMBER 1992

Fig. 9. Locations of bug fixes. MR’s for fixing bugs are shown in red. Bug fixes are concentrated in a few of the files

interested in looking at their own code. One particular expert
looked at a recent port and discovered that he had made an
error. He had copied a few files from another application and
had intended to add a few lines of his own code to each file in
order to complete the port. When he colored the copied code
in blue, and his own in red, it was immediately obvious that
he had failed to add code to one of the files.

VII. IMPLEMENTATION

Seesoft currently runs on Silicon Graphics Iris workstations,
although we plan to port it to the X Window System [18].
Seesoft is written in C++ [19] and uses the Silicon Graphics
GL graphics library. In total it is about 2 000 lines of
C+t code. To deliver real-time user interaction we require
the graphics capability to rapidly manipulate the displays,
particularly the color map. Seesoft draws each statistic value
and associated code lines in its own color. Activating and
deactivating is done by manipulating the color map. The colors
for the activated statistic values are turned on and for the
deactivated values are turned off. Color map manipulation is
fast on Iris workstations because it is done in hardware.

Our source code history data came from ECMS. We use the
S language for data management and preliminary analysis [20].

To read this data we developed a series of shell scripts to strip
unnecessary information and reformat the data for S input.
S provides a computational environment, static graphics, and
data management that support interactive manipulations. We
link Seesoft into the S executive, perform all data manipulation
in S, and then launch Seesoft from S.

Silicon Graphics Iris workstations come with 19-in color
monitors. Using the column and row representation we find
that we can easily understand 20 000 lines of code and can
understand 50 000 if we are close to the monitor. In each
column we can display about 900 lines and can comfortably
fit 25 columns on a single monitor. With more than 50 000
lines displayed the columns become very narrow.

VIII. DISCUSSION AND CONCLUSION

This paper describes a new technique for visualizing line
oriented statistics associated with source code and a software
tool, Seesoft, embodying the technique. There are four key
ideas: reduced representation, coloring by statistic, direct ma-
nipulation, and capability to read actual code. The reduced
representation is achieved by displaying files as columns
and lines of code as thin rows within the columns. The
color of each row is determined by a statistic associated

EICK e, al.: SEESOF?

Fig. 10. The color shows the users making changes in this directory. Note that the files with lots of bug fixes are the same
files that have been changed by many different developers.

with the line of code that it represents. In our examples we
obtained the statistics from a version control system. The
visual impression is that of a miniaturized copy of the code
with color depicting the spatial distribution of a statistic. Then,
using direct manipulation and high interaction graphics, a user
manipulates the display to find interesting patterns. To display
the actual code text the user opens up reading windows and
positions magnifying boxes over the reduced representation.

Besides analyzing source code statistics, our technique
has application to any ordered database. Examples include
transaction databases, indexed text such as legal writings, a
text corpus such as the Bible, and software documentation.

As with any method there are limitations. Our visualization
technique provides a qualitative view of the distribution of a
statistic in code. As with all graphical methods, the technique
is useful for discovering patterns. After the patterns are discov-
ered, hypotheses may be tested by means of standard statistical
methods. Currently, Seesoft is unable to display more than 50
000 lines of code simultaneously; however, we are working on
other techniques using different abstractions that scale beyond
this limit. A key idea in Seesoft is its interactive use of direct
manipulation techniques and use of color. It is difficult to
describe these in a static monochrome medium such as this

paper.
We developed Seesoft in conjunction with the SESS

@Telecommunicat ions Switch Project, which includes millions
of lines of code developed over 10 years. Because the initial
results are so promising we are creating an U-gigabyte optical
disk based archive of the complete code history of SESS,
including version control data, project management data, and
cscope symbol databases derived from monthly snapshots of
the code.

ACKNOWLEDGMENT

The authors would like to acknowledge helpful conversa-
tions with R. A. Becker, R. Drechsler, G. Nelson, and A. R.
Wilks.

REFERENCES

[l] W. F. Tichy, “KS-A system for version control,” Sofiware4ractice
and Experience, vol. 15, pp. 637454, 1985.

(21 M. J. Rochkind, “The source code control system,“lEEE Trans. Sofhvare
Engineering, vol. SE-l, pp. 364370, 1975.

[3] B. R. Rowland and R. J. Welsch, “Software development system,” Bell
Syst. Tech. .I., vol. 62, part 2, pp. 275-289, 1983.

[4] P. A. Tuscany, “Software development environment for large switching
projects,” in Proc. Inf. Switching Symp., pp. 199-214, 1987.

968 ,EEE TRANSACTIONS ON SO-ARE ENGINEERING, VOL 18, NO. 11, NOVEMBER 1992

151

161

[71

Stephen G. Eick (M’87) received the B.A. de-
gree from Kalamazoo College in 1980, the M.A.
degree in mathematics from the University of Wis-
consin, Madison, in 1981, and the Ph.D. degree
in stat&a from the University of Minnesota in
1985.

PI

[91

W Y

He joined AT&T Bell Laboratories in 1985, where
he has been involved in statistical graphics and
network research. He has developed techniques to
visulaize networks, network performance models,
and network simulations. As a member of the Soft-

ware Production Research Department, he is applying visulaization techniques
to understand software

Dr. Eick is a member of the ACM.

1111

[=I

1131

[I41

LlSl

S. Cichinski and G. S. Fowler, “Product administration through SABLE
and NMAKE,” AT&T Tech. J., vol. 67, pp. 59-70, 1988.
Y. F. Chen, “The C program database and Its applications,” in Proc.
Summer USENIX Co@, 1989.
I. L. Steffen, “Interactive examination of a C program with Cscope,”
in USENIX Dallas 198s Winter Conf: Proc., USENIX Association, pp.
17%175, 1985.
P. J. Weinberger, “Cheap dynamic instruction counting,” AT&T Bell
Laboratories Tech. .I., vol. 63, pp. 1815-26, 1984.
R. Baecker and A. Marcus, Human Factors and Typography for More
Readable Programs. Reading, MA: Addison-We&y, 1990.
A. A. Pal and M. B. Thomuson. “An advanced interface to a switching
sofhvare version management system,” in Proc. 7th Inf. Conf SoJ%ware
Engineering for Telecommunicorions Switching Sysrems, pp. 11&113,
1989.
G. M. Nielson, B. Shriver, and L. J. Rosenblum, Eds., Visualization
in Scientific Computing. Los AIamitos, CA: IEEE Computer Society
Press, 1990.
E. R. Tufte, The Kssual drsplay of Quantitarive Informanon. Cheshire,
CT: Graphics Press, 1983.
A. W. Donoho, D. L. Donoho, and M. Gasko, MACSPIN. A Tool for
Dynamic Display of Mulrivariate Darn. Monterey, CA: Wadsworth &
Brooks/Cole, 1986.
R. A. Becker and W. S. Cleveland, “Brushing scatter plots,” Techno-

Joe St&en received the B.S. degree in electrical
engineering from Purdue University and the M.S.
degree in computer science from the Illinois Institute
of Technology.

[I61

1171

metrics, vol. 29, pp. 127-142, 1987.
R. A. Becker, S. G. Eick, and A. R. Wdks, “Basics of network
visualization,” IEEE Computer Graphics and Applicahons, vol 11, pp.
12-14, 1991.
B. Shneiderman, “Direct manimdation: A ster, bevond uroaramminr
languages,” IEEE Compufer, vol. 16, pp. 576’8, 1983. - -
R. A. Becker, W. S. Cleveland, and G. Weil, “The use of brushing
and rotation for data analysis,” pp. 247-275 in Dynamic Graphics for
Star&rcs, Will iam S. Cleveland and McGill, Eds. Wadsworth, 1988.
V. Ouercia and T. O’Reillv. “X window svstem user’s guide.” O’Reillv
& &sociates, Inc., Seba&pol, CA, 198i.
B. Stroustrup, The C++ Programming Language. Reading MA:
Addison-Wesley, 1987.
R. A. Becker, J. M. Chambers, and A. R. Wilks, The New S Language.
Pacific Grove, CA: Wadsworth & Brooks/Cole, 1988.

He has done considerable work on software tools,
including writing cscope and ctrace, which are part
of UNIX System V, and adding run-time check-
ing of array subscripts and pointer bounds to the
portable C compiler. His current research interests
are configuration mangement for large software sys-
tems and software tools.

Mr. Steffen is a member of the ACM

[I'31

[I91

W I

Eric E. Sumner, Jr. received the A.B. and Ph.D.
degrees in engineering science from Harvard Uni-
versity in 1980 and 1984, respectively.

He joined AT&T Bell Laboratories in 1984 and
is currently Head of the Software Production Re-
search Department, which was formed in 1990
at Indian Hill, the Illinois complex that houses
many large software developme&, including the
SESS@ switch. Prior to assumine his current oosi-
tion, he played backgammon professionally, devel-
oped models of composite materials, built choice

models for AT&T network equipment, and led the development of a tool tor ^ computer-aded eng,neer,ng ot underwater s”rvelttance systems.

