RSD-TR-9-86

TRANSLATION AND EXECUTION
OF DISTRIBUTED ADA PROGRAMS:

IS IT STILL ADA?"?

by

Richard A. Volz
Trevor N. Mudge

Gregory D. Buzzard
Padmanabhan Krishnan

Robotics Research Laboratory
College of Engineering
University of Michigan

Ann Arbor, Michigan 48109

CENTER FOR RESEARCH ON INTEGRATED MANUFACTURING
Robot Systems Division
COLLEGE OF ENGINEERING

THE UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN 48109

'Ada is a registered trademark of the Department of Defense.

2This work was partially sponsored by Land System Division of General Dynamics, Grant No. DEY-
601540 and NASA, Grant No. NAG 2-350.

RSD-TR-9-86

ABSTRACT

Distributed execution of a single program is becoming increasingly important for
embedded real-time systems. The single program approach to distributed pro-
gramming allows the advantages of language level software engineering develop-
ments to be fully realized across machine boundaries. This paper examines some
of the fundamental issues and trade-offs involved in the translation and execution
of programs written in the Ada language and intended for distributed execution.
A set of principal dimensions to the problems are identified and the impact of
these dimensions discussed. A set of possible elements of the language which
might be distributed are identified and the consequences of their distribution dis-
cussed. Library subprograms and library packages are identified as natural distri-
butable units of the language. The importance of the program-to-

processor/memory mapping is also discussed.

RSD-TR-9-86

TABLE OF CONTENTS

1. INTRODUCTIONccccocvvvmmiriniiinicninicnnnes
2. PRELIMINARIESccccovvviiniininniiicninnen.
2.1. Distributed Ada Programs
2.2. Units of Distributioncc.cueeeneee.
2.3. Dimensions of Distribution

2.4 Criteria for Comparisoncceeu.e.

...

--

..

..

3. UNIT OF DISTRIBUTION CONSIDERATIONSccccooovniiiiiinnnnns

3.1. Implied Distributed Object Access ...

...

3.2. Object Visibility and Recursive Executioncccccceeviinnnniins

3.3. Task Terminationcceccevvrnuennen
3.4. Distribution of Typesccccceeueenen

3.5. Units of Distributioncccevvuveennnee.

...

...

4. IMPACT OF TRANSLATIONAL DIMENSIONS ON

DISTRIBUTED EXECUTION

ooo

4.1. Distribution and Binding Specificationsccccceieeiennenee

4.1.1. Run-time specification of distribution and binding

4.1.2. Distribution and binding specification at

link time or before

4.2. Implications of Memory Architecture

--

oo

10

12

14

16

19

23

29

30

30

33

34

RSD-TR-9-86

4.3. Impact of Heterogeneitycccccoeovviiiiviiiciiiiiiciinieiecccnneen. 37

5. CONGCLUSIONSoiiiictiirieerertrerenteeenceesestecesutesssnresesetessseesssseesneseenes 39
ACKNOWLEDGEMENTScoooiiiiiiiiiiitiinteneitcitceenreseeeeee e 41
REFERENCES ...ttt tssstesstsesascensesesaeeseesensessnnene 42

RSD-TR-9-86

1. INTRODUCTION

There has been considerable work done on the subject of parallel program-
ming (see the excellent survey of [1]). The bulk of this work has concerned itself
with shared memory architectures. In contrast, little has been done in the case of
programs that run on distributed systems {2]. However, distributed execution of
a single program is becoming increasingly important for embedded real-time sys-
tems as such systems are increasingly implemented with distributed microcom-
puters. The single program approach to programming closely coordinated actions
of multiple computers allows the advantages of language level software engineer-
ing developments, (e.g., abstract data types, separate compilation of specifica-
tions and implementations, and extensive compile time error checking), to be
fully realized across machine boundaries. As yet, however, there are few imple-

mentations which allow distributed execution of a single program.

While most efforts directed toward distributed programming have
emphasized developing communication mechanisms and designing languages to
accommodate distribution, we take the approach of adopting Ada and investigat-
ing its implications. We take this approach because Ada seems destined to
become a major factor in embedded software systems, the Ada Language Refer-
ence Manual [3] indicates that distributed execution of Ada programs was in the
minds of the language designers, and there is growing interest in the use of Ada

for distributed systems. This paper examines some of the fundamental issues and

Is It Still Ada? 1

RSD-TR-9-86

trade-offs for distributed execution of a single program written in the Ada
language.

A few distributed Ada systems have been proposed and/or are in the process
of being constructed. Cornhill [4] [5] describes the Ada Program Partitioning
Language (APPL) for distributing an Ada program among a set of processors.
This system permits the distribution of a wide variety of Ada elements. Jessop
[6] advocates the use of a package type to allow programs in the language to
dynamically create nodes. The extension to Ada implemented by Intel also
includes a package type [7]. The package type, however, is a modification of the
language. Armitage and Chelini [8] present a general description of four
approaches to programming distributed systems in Ada. The approaches are
described in general terms and no implementations or detailed designs are indi-
cated. Indeed, Armitage and Chelini’s fourth approach does not really qualify for

distributed program execution.

The most comprehensive study to date is by Tedd, et al. [9]. They advocate
an approach based upon virtual nodes. Full Ada is supported on each virtual
node, which must support shared memory. Communication between virtual
nodes is allowed only by task rendezvous. They describe an extensive system for
constructing distributed programs at link time, i.e., the mapping of the programs
onto processors is done after the program is written, providing greater flexibility
in the construction of the execution system. However, it is necessary for the pro-

grammer to plan for the distribution by carefully designing the original program.

2 Is It Still Ada?

RSD-TR-9-86

Mayer, et al., [10] describe some basic timing problems in cross processor
task entry calls and describe a pretranslator approach which uses pragmas to
specify the distribution. An important feature of this approach is that it can use
existing compilers to perform the.compilation. Based on the idea of [10], an Ada
subset translation system for distributed execution has been implemented and is

in operation at The University of Michigan.

Each of the above systems has either adopted a limited viewpoint or
presented only a very general discussion lacking in detail. In this paper we exam-
ine some of the fundamental issues involved in transiation for, and distributed
execution of, Ada programs and the relation of these to the definition of the
language. We conclude that in the context of distributed program execution

several aspects of the language definition need refinement.

2. PRELIMINARIES

Ada programs which are intended for distributed execution must deal with
several forms of heterogeneity: heterogeneity of addressing program objects,
heterogeneity of processing resources, and heterogeneity of the environment of
the individual processors making up the distributed system. This section proposes
that to account for this heterogeneity, a program definition must include some
information on the distribution of the program. It further argues that the units
of the language which may be distributed should be more precisely specified in
the language definition. Finally, the major dimensicns to the problem are identi-

fied and criteria which should be wused in evaluating proposed

Is It Still Ada? 3

RSD-TR-9-36

translation/execution systems presented.

2.1. Distributed Ada Programs

Computer programs are written to produce output of some kind or have
some effect on the environment. Embedded systems particularly emphasize the
latter. However, programs do not, in and of themselves, have an effect; it is only
their execution which produces an effect. When a program is executed on a
uniprocessor, this distinction is generally unimportant and one often thinks of the
program alone as producing the effect. However, when a program is executed in
a distributed manner on a set of processors, the effect of the execution is
impacted by an additional fundamental component, the mapping of the program
onto the cooperating processors and memory. We will call the program/mapping

pair an ezecution object.

It is thus the execution object which defines the effect which will result. For
example, consider the control of a six degree of freedom robot by seven comput-
ers, one controlling each joint of the robot and one providing overall coordination
of joint movement. Suppose that a task is assigned to the control of each joint.
While the individual computers and interfaces may be identical, the effect of exe-
cuting the program for two different mappings of tasks to processors will cer-
tainly be different; the robot would, in general, have drastically different
motions. While the mapping details would certainly be hidden at higher levels of
abstraction, it is also clear that the mapping must be explicit at some low level of

abstraction as discussed in [11]. On the other hand, in many cases the effect of

4 Is It Still Ada?

RSD-TR-9-86

an execution object can be independent of the mapping component of the object.

It is also the case that translators whose outputs are intended for distributed
execution must have some knowledge of the mapping. In general, the mapping
can be static or dynamic, implicit or explicit, and come into existence and be
used at any of several points in the program/compile/link/execute sequence. We
next extract from the mapping the essential ingredients which, in combination
with the program, both define the effect of an execution object and provide suffi-
cient information to allow compilation to be reasonably performed. To accom-
plish this, we divide the mapping into two parts. In the first part, elements of a
program are designated as being distributable, without binding them to a specific
machine, and certain characteristics of the mapping (roughly, the type of address-
ing required to access objects and the processor types which are to be able to exe-
cute fragments of code -- see Sec. 4) specified. We call this part a distribution
specification. The second part assigns elements of a program to specific
machines. We call this the bi’nding specsfication. The mapping is thus the pair
(distribution specification, binding specification).

We will then define a Distributed Ada program to be an Ada program
together with its distribution specification, and the portions of the binding specif-
ication necessary to define the effect of executing the corresponding execution
object. The distinction between an execution object and a distributed Ada pro-
gram is thus the bindings which are unessential to describe the effect of the exe-
cution. We will call the combination of the translation system, the distribution

and binding specification mechanisms and the run time system which supports

Is It Still Ada? 5

RSD-TR-9-86

the translation and execution of distributed Ada programs a distributed Ada sys-

tem.

The above definitions are only concerned with the content needed to allow
program translation and to define execution behavior. Execution objects can be
represented in many different ways. The distribution and binding specifications
could be made explicit in a program, e.g., via pragmas or specially defined
packages, they could be explicated by completely separate specifications, or they
could be determined implicitly by the run-time system. The translation system
mentioned in [10] is an example of the first, while the APPL system introduced
by Cornhill [4] is an example of the second. The remainder of this paper will
explore some of the fundamental characteristics of distribution which must be

taken into account by any distributed translation system.

2.2. Units of Distribution

The choice of units of the language which are allowed to be distributed sig-
nificantly impacts both the translation process required and the execution effi-
ciency obtainable. The selection of distributable units is thus important. The
Ada Language Reference Manual (RM) takes a step toward making the definition
of distributable units a part of the language definition, but is not entirely precise.
It is the opinion of the authors that a more complete statement in the definition
of the language is necessary to allow implementors to determine what they may

and may not do.

6 Is It Still Ada?

RSD-TR-9-86

The RM explicitly states that parallel tasks may be distributed, and further,
that any ‘‘parts of the actions of a given task’” may be distributed if the effect of
the program can be guaranteed by the implementation to not be altered. The
latter would clearly imply that individual statements and even expressions could
be distributed (which is highly desirable for parallel processing of some opera-
tions). It would seem that subprograms could be distributed. However, internal
data objects and packages are not themselves actions or parts of actions. One
might infer, therefore, that they may not be distributed, though this is not expli-
citly forbidden. Library packages are not mentioned at all; since their distribu-
tion is not explicitly forbidden, it might be inferred that they may be distributed.
On the other hand, since what the RM does say about units of distribution is to
explicitly permit some distribution, it might be inferred that anything not men-

tioned may not be distributed. Clarification is needed.

It is clear that the RM does not require distribution of anything. Nor does it
imply that because an implementation chooses to distribute one kind of unit it
must also allow distribution of other distributable units. It is not stated whether
or not it is required that an implementation which allows a unit to be distributed
in some circumstances must do so in all circumstances. For example, is it permis-
sible to limit the distribution of statements to non-recursive contexts? Similarly,
there is no indication of whether or not an implementation can choose to restrict
the language in some way to accomplish the distribution, e.g., disallowing data
objects in the specification of packages which have tasks that are to be distri-

buted.

Is It Still Ada? 7

RSD-TR-9-88

The latter two possibilities seem inconsistent with the philosophy of
language uniformity apparent in Ada. Indeed, there are two principles which we
feel should underlie the choice of distributable units: 1) the definition should be
fixed and not a function of the dimensions of the problem, and 2) language uni-

formity should be maintained.

In Section 3 we explore the implications of the units of distribution on trans-
lation difficulty, efficiency of code execution, language uniformity and distributed
programming expressibility in order to provide more complete background for the

decisions which must be made regarding the above issues.

2.3. Dimensions of Distribution

There are three major dimensions which parameterize a distributed Ada sys-
tem and which will impact both the translation and execution phases of the sys-
tem, but which are not part of the language specification. These, together with

some of their typical values are:

e the memory interconnection architecture of the system upon which the
distributed Ada programs are to execute,
- shared memory systems
- distributed memory systems
- mixed shared & private memory systems

- massively parallel systems

e the binding time of the distribution,

- prior to compile time

8 Is It Still Ada?

RSD-TR-9-88

- between front end and back end compilation phases
- zt linking time
- at run-time
o the degree of homogeneity of the processors involved.
- identical processors and system configurations
- identical processors and different configurations
- different processors, but similar data representations

- completely heterogeneous

There are three major impacts of the memory architecture on the distributed
translation system, the access time to objects, information which must be
included in the distribution specification and the addressing strategies which

used. Figures 1 and 2 illustrate two of the possible system architectures. Of

— —

Memor ~ :

: [emory i

/-L\\

' \'\

CPU CPU \

CPU 3
1

. //'J\\\\
. Digital A
. Communications \ ‘ /
N

System

CPU
N-2 "
CPU
N
Memory

Figure 1

Is It Still Ada? 9

RSD-TR-9-86

particular interest is the mixed shared/private memory scheme of Figure 2 since
it both has a richer set of possible distribution modes requiring more complex

implementation.

Only certain times for specifying the distribution and binding are reasonable,
and depending upor the times chosen, several new utilities are needed for the

compiler environment.

The impact of heterogeneity can be viewed in several different ways. First,
it can be viewed as requiring transiations between the data and code representa-
tions of the different processors. Second, it could be viewed as part of the

semantics of the program. Or, the two views could be combined.

2.4. Criteria for Comparison

The comparisons of alternatives is based upon one concept, access to remote
objects. Based upon this, three different, and sometimes competing criteria arise,
corresponding respectively, to the programmer’s, the transiator’s and the run-

time system’s view of the distributed programming problem. These are:
o distributed program exprwsibility

e translation difficulty

e execution efficiency

Distributed program expressibility is concerned with the mechanisms for
specifying the distribution of a program among a set of processors and memory.
Are there external tools for expressing the distribution of the program? Or is the

distribution expressible directly as part of the program? Does the notation used

10 Is It Still Ada?

- RSD-TR-9-86

Metwork Tontrater

Shared
Mem

Local bus

170 | CPy | [cru]

e] [T]

Shared
Memory

Local bus

Network

Figure 2

in a program explicitly indicate, in some way, that reference to a remote object
requires communication with a remote processor and thus will be appreciably

slower than references to local objects?

In the case of translation difficulty, the measure is the complexity of the
constructs which must be included in the compiled code to ensure that access to
remote objects can be accomplished while maintaining all of the other charac-
teristics of Ada. For example, how much context information must be transmit-
ted with remote object reference to allow correct address determinations to be
made while retaining Ada scoping rules with recursive procedure calls crossing
machine boundaries? How are task terminations to be handled? How does one
handle operations associated with remotely defined types? How is addressing of

remote objects handled?

Is It Still Ada? 11

RSD-TR-9-86

Execution efficiency, particularly for real-time operations, is perhaps the
most important criteria. It is likely to be most influenced by the object location

and addressing mechanisms for object references.

3. UNIT OF DISTRIBUTION CONSIDERATIONS

When we speak of a unit of distribution (or sometimes distributable unit),
we will mean a unit of the language which is allowed to be placed at any one of a
set (of at least two) of memories. We therefore begin by examining the ways in
which program elements can be assigned. There are three distinct kinds of loca-
tion assignments to be made in the program mapping: 1) the memory unit to
which data is assigned, 2) the memory unit to which code is assigned, and 3) the
processor which is to execute the code. This classification is necessitated, in par-
ticular, by the mixed private/shared memory of Figure 2. Since each processor in
this configuration has direct access to two memories, specifying a processor which
is to execute code does not imply the memory to which either the data or code
must be assigned. Similarly, since the shared memory can be accessed by multi-
ple processors, assigning the code to shared memory does not imply which proces-

sor is to execute the code.

There are three types of addressing which will be called privately address-
able (memory accessible only by the processor making the reference), shared
addressable (shared memory) and remotely addressable (must be accessed via
communication with another cpu). We will use the term directly addressable to

mean that the addressing may be either shared or privately addressable. We

12 Is It Still Ada?

RSD-TR-9-86

require one rule of reasonableness, that the memory on which a code segment
resides be directly addressable from the processor which is to execute the code.
For most memory architectures this implies that the second and third cases col-
lapse into one. It is only in the mixed private/shared case that the distinction

must be made.

It will sometimes be desirable to consider a combination of data and code as
a unit e.g. if we consider a package as a unit of distribution, by which we will
mean that the memories on which these are stored, while possibly being distinct,

must be directly addressable from the processor executing the code portion.

The comparison of units of distribution will be framed on four major issues
that arise, in one form or another, for most of the possible choices for units of

distribution. These are:

° Implied remote object access
° Object visibility and recursive execution
° Task termination problems

° Distributed types

The impact of the different choices for units of distribution on these issues will be
discussed. Much of this analysis will be based upon interactions that are allowed
among different elements of the language. It is important to note that all
allowed interactions must be examined in considering the possible units of distri-
bution, whether or not they correspond to good programming practice, since all

interactions defined in the RM will have to be implemented.

Is It Still Ada? 13

RSD-TR-9-86

An argument will be made that library subprograms and library packages
are reasonable choices for the basic units of distribution. It will also be shown
that to obtain reasonable execution speeds with this basic choice it will be neces-
sary to distribute data objects corresponding to type definitions, and certain

operations corresponding to these types.

3.1. Implied Distributed Object Access

Unless restricted in some way not currently specified in the language, the
choice of packages, subprograms, tasks or blocks as units of distribution leads to
a requirement that the programmer be able to reference distributed data objects,
subprograms, tasks and type definitions. This follows because in the cases cited
in Sec.2.2 some executable object is distributed from either the context in which
it is defined or the context in which it is made visible via a with. Thus, either it
must be able to reference the kinds of objects which can occur in the specification
of that context, or, entities in its specification must be able to be referenced from
that context. In particular, if a library package is a unit of distribution, then any
subprogram or package including that package via a with must be able to refer-

ence any data objects, types, subprograms or tasks defined within it.

This implies a fine granularity of access, ie., to individual data items.
Except in the case of the mixed memory architectures, the time required for this
access will involve both a communication channel delay and processing time on
both processors involved. This delay will almost certainly be several orders of

magnitude slower than accessing directly addressable objects, and will thus not

14 Is It Still Ada?

RSD-TR-0-86
be desirable for most applications.

There have, therefore, been suggestions that one avoid this delay by placing
restrictions on what can be included in declarative regions or specifications to be
distributed, e.g., disallowing data object or subprograms in the specification of a
package to be distributed. There are two reasons why such restrictions are
inadvisable. First, distributed access to data objects is highly desirable in some
instances. For example, if one has a large database which is to be accessed in a
number of different ways by tasks residing on different processors, a useful
heuristic is to distribute the database in such a way that the individual data
items reside in memory directly addressable by the processor which will most fre-
quently operate on them. This implies a need for shared variables across
machines. Even the distribution of small data objects makes sense in the context
of a mixed private/shared memory. Second, such restrictions would be a change
in, and disrupt the uniformity of, the language definition. One should not, for
instance, allow packages in their full generality under some circumstances and

disallow packages to contain data objects in others.

There is an important consequence of remote access to objects other than
tasks with respect to translator implementation. Access to data objects or sub-
programs by code during its execution is part of the normal flow of control and
normally given no special recognition with respect to the sharing of the processor,
le., such accesses are not points at which the scheduler would normally be
invoked. Since remote access involves sizable (in comparison to cpu instruction

times) delay, remote references should be treated as points at which the scheduler

Is It Still Ada? 15

RSD-TR-9-86

is invoked so that other tasks may use the referencing cpu while the referencing
thread of control awaits completion of the reference. Similarly, receipt of a mes-

sage completing a remote reference should also be treated as a scheduling point.

3.2. Object Visibility and Recursive Execution

It is necessary to distinguish between the distribution of an object and distri-
buted access to it. As noted above, distributed access to an object can be
required as a consequence of distributing a larger item, such as a package. Distri-
bution of an object itself means placing the object at a location different from
the location containing the context surrounding the definition. While both imply
a need for distributed access to the data object, the latter carries other implica-
tions as well. First, due to the possibility of recursive procedure calls, it implies
the need for passing context information in some way with all references to the
distributed object. Second, the implications of the program may be less clear to

the programmer. We illustrate both points.

Suppose that the unit which creates an object (henceforth referred to as the
C-unit), and the unit which refers to it (the R-unit) are at different sites. If the
C-unit can be recursively called, many instances of it and its variables can co-
exist. It then becomes necessary to export the context of the C-unit to all R-
units accessing the objects in the C-unit to ensure that the correct version of the
object is referenced. For example, consider the following pair of procedures

involved in recursive calls:

16 Is It Still Ada?

RSD-TR-9-86

procedure P1 is -- Suppose this is the C-unit and is on machine M1
X:INTEGER;
I
procedure P2is - Suppose this is on machine M2negM1
|
begin
I
X:i=... -- a remote reference
P1; -- a recursive call
|
end P2;
begin -- P1
|
P2;
|
end P1;

Since there will be many instances of the variable X, some mechanism must
be developed to provide P2 with appropriate context information so that it can
reference the correct instance of X, most likely by passing context information as
an implicit parameter with the call to P2. In [10] P1 and P2 each have an agent
on the opposite machine from which they reside, and communicate via a system
of mailboxes. Each invocation of P1 instantiates a new version of P2’s agent and
creates a new mailbox through which P2 and its appropriate agent communicate.
The mailbox id is passed to P2 upon its call, and essentially provides the proper
context. This scheme has the advantage of being implementable with a pre-
translator which allows existing Ada compilers to be used, but has the disadvan-
tage of required an extra message to be passed at the exit of each call to P2 to

tell its agent that it is done.

Similar problems of maintaining the proper context arise with the distribu-

tion of data objects, functions, tasks or blocks. This can result in a large number

Is It Still Ada? 17

RSD-TR-9-86

of messages between the sites and a corresponding loss of time if the C-unit and
the R-units do not share a common memory. The cause of this difficulty is
recursive subprogram calls in which some part of the recursive subprogram is
remote from the rest. While it is generally inadvisable to write programs in such
a way as to require this type of remote referencing within recursively called sub-
programs, if subprograms, tasks, blocks or data objects are themselves distribut-
able (as opposed to being distributed as part of a coarser object such as a pack-

age), an implementation is obliged to implement mechanisms to allow such usage.

If only library subprograms and library packages are allowed as units of dis-
tribution, all instances of recursively created objects will reside at the same loca-
tion as all units which reference them, with the possible exception of objects
created via the new allocator. In the latter case, however, explicit address infor-
mation is available and the problem will not arise. Thus, the use of library sub-
programs and library packages as units of distribution both simplifies translator
implementation and eliminates one possibility for programmers to construct
unnecessarily complex implicit inter-processor communication. In those situa-
tions, as indicated above, in which it is desired to distribute data objects, the
objects to be distributed may be encapsulated into a package, and the package

then distributed.

A further consideration in the distribution of data, subprogram and task
objects is distributed programming expressibility. It has been frequently stated
that it is the philosophy of Ada is to make explicit as much of the operation of a

program as possible. Since remote access is much more time consuming than

18 Is It Still Ada?

RSD-TR-9-86

local access, it may, in some cases, be necessary to have control over the access
time, i.e., to take alternative action if an access is not completed within a given
time. Ada provides the timed entry call mechanism which can, in theory at least,
be used for this purpose for task entry calls, although [10] discusses a number of
problems in the implementation of distributed timed entry calls. However, there
is nothing comparable for other forms of remote access, e.g., remote data or sub-
program references. It would, therefore, seem to be desirable to at least make
remote accesses explicit in a program so that the programmer or someone reading
a program could easily distinguish remote and local accesses. With the distribu-
tion of data, subprogram or task objects, there is no such labeling mechanism
available. Packages, however, must be explicitly imported into a program con-
text, and if the use is not used, each reference to an object of the package must
be preceded with the package name, flagging it as an external (to the present
context) reference. To think of package names as possibly designating remote-
ness makes the interpretation of package names ambiguous and is far from an
ideal solution. However, it can serve as a flag to the reader to check further. It
is a weakness of Ada that an indicator of remoteness 1s not available in the

language.

3.3. Task Termination

Ada task termination is dependent not only upon the task potentially ter-
minating, but upon sibling and child tasks, and in some cases the parent task, as

well. There are several ways in which this can cause termination difficuity when

Is It Still Ada? 19

RSD-TR-9-86

the tasks are located on different machines. Consider the following code frag-

ment:

task body MASTER is
task SLAVE_1 is
entry ENTRY_I;
end SLAVE_I;
|
task SLAVE_4 is
entry ENTRY_1;
end SLAVE_4;
I
task body SLAVE_1i is
begin
loop
select
accept ENTRY_1;
or
terminate;
end select;

end loop;

end SLAVE_]1;

20 Is It Still Ada?

RSD-TR-9-86

task body SLAVE_4 is
|
begin
loop
select
accept ENTRY_J;
or
terminate;
end select;

end loop;
end SLAVE_4;
!
begin - MASTER

E

end;

Suppose that MASTER has reached its end statement and completed. It will
terminate if SLAVE_1 ... SLAVE_4 are all at their select statements and waiting
on an open terminate alternative. In a uniprocessor situation, this does not
cause unusual problems. The run time system can check SLAVE_1 ... SLAVE_4
for waiting at the terminate alternative. The key point is that because it can
run at the highest priority it can do so without any other task gaining control
and making an entry call to SLAVE_1 ... SLAVE_4 before it completes the check

and takes appropriate action.

Is It Still Ada? 21

RSD-TR-¢-86

With distributed execution this is not always possible. Suppose that MAS-
TER is on processor MO, SLAVE_1 on M1, and SLAVE_2 on M2, etc. Now,
when MASTER completes, it must check termination conditions on the other
processors. Due to propagation delays, race conditions can arise. For example,
suppose that MASTER has completed and serially checks the status of each of its
slaves and that the timing of the events is as shown in Fig. 2. In this figure, C
indicates that the unit has completed, an X indicates that a task is waiting on a
terminate alternative, and a 0 indicates that it is neither completed nor waiting
on a terminate alternative. T1, ..., T4 are the times at which the MASTER is
sent messages from SLAVE_1, ..., SLAVE_4, respectively, indicating their state
at those times. Note that at time T1, MASTER has been sent a message indicat-

ing that SLAVE_1 is waiting at a terminate alternative. Between times T1 and

MASTER C—C—C——C—=C
SLAVE_1 |—X—X—0—0—0
SLAVE_2 f——X—X—X—X—X
SLAVE_3 |—X—X—X—X—2X
SLAVE_4 01— 0—X—X—X

T8 TT T2 T3 T4

time

Figure 3

22 Is It Still Ada?

RSD-TR-9-86

T2, SLAVE_4, which was not waiting at a terminate alternative makes a remote
entry call to SLAVE_1, removing it from the condition of waiting on a terminate
alternative. At time T2, SLAVE_4 has entered a state where it is waiting on a
terminate alternative. Thus, SLAVE_1 ... SLAVE_4 all report that they are
waiting at an open terminate alternative. MASTER might then terminate when

it should not.

Of course, this problem could be blocked by making the slaves wait for
further entries until all termination checking was done, but if there were a long
list of sibling tasks some of which were not ready to terminate, this could cause
SLAVE_1 to unnecessarily delay its operation. This problem can be addressed by
a more complex termination polling strategy. However, that solution is not the
issue here; it is the need for a complex strategy that is of interest. It can both
increase the translation difficulty and and impede the execution efficiency of a

distributed program.

3.4. Distribution of Types

Distributed access to subprograms and tasks (as might result from distribut-
ing packages) implies the need to use remotely defined types, as both the specifi-
cation of the subprogram or task and the referencing unit must have visibility of
the types of the arguments used. The distribution of types is one of the more
interesting aspects of distributing Ada programs as it forces a consideration of

unusual implementation mechanisms.

Is It Still Ada? 23

RSD-TR-9-86

There are three questions which must be considered when objects (data or
task) are created by units remote from the location of the unit in which the type

is defined:

e Where are declared objects of the type located: on the site of the object

declaration or the site of the type declaration?

o Where are allocated objects of the type located: on the site of the object
declaration, the site of the type declaration, the site of definition of the
corresponding access type, or the site of the declaration of the correspond-

ing access object?
o Where are the operations of the type located?

For example, let data type A be defined in a package residing on machine M2,
and X an object of type A declared in a unit residing on machine M1. If X were
placed on M2 every reference to X from the unit in which it was declared would
require a remote reference. Thus, it is likely one would want X placed on MI.
One must then examine the implications of the operations associated with type
A. Each defined data type has three classes of operations, basic operations,
implicit operations and user defined operations. Some of the basic and implicit
operations clearly should reside on M1, e.g., addition on numeric types, storage
allocation for objects of the type, etc. To maintain uniformity, then, all implicit
and basic operations should be imported to the machine on which the declared
object resides. This, in turn, implies that the basic and implicit operations of dis-

tributed types must be replicated on all processors containing units which use the

24 Is It Still Ada?

RSD-TR-9-86

types.

Applying the notion of language uniformity, then, one might expect that
user defined operations should also be replicated on all processors containing
units which use the types. However, user defined operations appear explicitly in
the region in which the type is declared in the form of subprograms, and except
for pqrameterless subprograms, all subprograms are operations for some type.
Thus, replicating the user defined operations of types roughly equates, in pack-
ages for instance, to replicating all of the subprograms appearing in the package
specification. This would also seem quite counter to what one would expect from
distributing a package, which might after all only contain types and subprograms
in its specification. Further, replicating user defined operations implies a remote
access to variables and subprograms defined within a package body. It thus
seems to the authors that it is only a slight sacrifice in language uniformity to
not replicate user defined operations and keep them on the memory to which the

unit defining the type is assigned.

Now consider object creation via the new allocator. This requires the defin-
ition of an access type for the object and the creation of an access object to hold
address of the allocated object. Each of these could potentially be declared in
separate packages distributed to different locations than either the one holding
the original type definition or the one which will ultimately execute the allocator.

For example,

package Pl is -- on machine M1

Is It Still Ada? 25

RSD-TR-0-86

26

[task] type Ais . . ;

i
end PI;

with P1;
package P2 is - on machine M2
type B is access P1.A;

i
end P2;

with P2;
package P3 is -~ on machine M3

C: B; -- declare an access variable to objects of type A

end P3;

with P1;
with P3;

procedure P4 is - on machine M4

|
begin

P3.C := new P1.A; -- allocate a new variable object of type A

i

Is It Still Ada?

RSD-TR-9-86

end P4;

In this case a remote access is required on each reference to P3.C regardless of
where the allocated object of type A is placed. The number of off-machine
operations is minimized by placed the allocated object either on M3 or M4. To
maintain language uniformity, then, one might elect to place the allocated object

on M4.

Another set of considerations arise if A becomes a task type rather than a
data type. Tasks can then be dynamically instantiated and the programmer may
wish to control their placement on different processors as part of the algorithm
being deveioped, e.g., via pragmas. Or, one might wish to reduce or eliminate
the task termination problem described above. Both of these goals, however,
have negative implications in terms of run-time efficiency, distributed program

expressibility, and translational difficulties.

Eliminating the distributed task termination problem requires that tasks be
placed on the same unit as their parents; then all of the checking of termination
conditions will take place on a single processor and can use the existing mechan-
isms for doing so. Thus, declared tasks would be placed on the processor of the
declaring unit while tasks created through evaluation of the allocator would be
placed on the processor holding the unit in which the corresponding access type
definition was elaborated. Any other choice allows task parentage to be remote
from the task object itself and thus leads to the distributed termination problem.

This would require placing an allocated object of type A in the above example

Is It Still Ada? 27

RSD-TR-9-86

(with A now a task type) on M2 since that is where the access type is elaborated.

However, if task objects are located coincidentally with their parents or at
an arbitrary location assigned by the programmer, the code for task objects
would have to be replicated as was considered above for user defined operations
on types. The same difficulty of having to access local variables declared in
package bodies would arise, which would then be remote with respect to the task
body. This has obvious execution efficiency degradations if tasks ﬁtilize shared
variables, which they might well do in a controlled way since in this case we are
talking about shared variables hidden in the body of a package. Moreover, it will
become very difficult for a programmer to recognize which references will be to

remote variables.

Clearly, the translation aiso becomes more difficult. For example, consider
separate compilation of package bodies which contain task bodies for distributed
task types. Since package P2 and procedure P4 could be compiled before the
body of P1, the replicated task bodies would be called for by normal compilation
procedure before the body containing them would have been compiled. This
couid be handled by making the compilation process more involved and creating
a record of units requiring the task bodies as they are compiled. Then when the
package body for P1 is compiled, this record could be checked to determine other
processors for which the task bodies must be compiled. Nevertheless, it would be

one extra level of compiication.

There is not a good solution which satisfies all problems. We have just out-

lined several problems with placing task objects anywhere other than at the

28 Is It Still Ada?

RSD-TR-9-86

location containing the task definition. Suppose, then, that to be consistent with
previous comments about using packages as the unit of distribution we place task
objects with the corresponding task type definition. This means that implemen-
tors will have to face the distributed task termination problem, and allocated and
declared tasks will often be remote from the creating units, and thus involve
remote task entry calls. If it is desired to place a task at any particular node
then that task, or task type definition, must be encapsulated in a package. Con-
sequently one could not have the tasks of the same type occurring at more than a
single node. This is very constraining for some problems. To avoid it would

require having package types, as suggested by Jessop [6].

3.5. Units of Distribution

As we have seen, there is no choice of distributable units within the current
definition of Ada that is devoid of difficulties of one kind or another. Our prefer-
ence is for library subprograms and library packages. They represent a reason-
able granularity of distribution, they provide reasonable flexibility of distributed
program structuring capabilities, they do not require cross machine dynamic
scope management, and they present minimum difficulty to the compiler imple-
mentors. Data objects created from remotely defined types should be placed with
the unit creating them, with implicit and basic operations being replicated. User
defined operations should remain on the unit elaborating the corresponding type

definition.

Is It Still Ada? 29

RSD-TR-9-86

It would be our preference to restrict task objects created from task type
definitions to the units on which the corresponding type definitions are ela-
borated, and to have package types added to the language specification. How-
ever, failing that, we believe it is necessary to allow task objects to be placed on

the unit initiating their creation and living with the concomitant problems.

In view of the fact that some of the decisions concerning units of distribu-
tion have significant implications on the distributed language, we believe that the
allowed units of distribution should be specifically identified in the RM more

explicitly than at present.

4. IMPACT OF TRANSLATIONAL DIMENSIONS ON

DISTRIBUTED EXECUTION

4.1. Distribution and Binding Specifications

There are three issues to consider with regard to this dimension: 1) when the
distribution and binding specifications are made, 2) what is specified at these
times, and 3) the representation of the specifications. The first two of these
issues are closely related to the fact that different addressing mechanisms are
required for private and non-private memory references. Indeed it is this fact
that leads to the need for separating the program mapping into the two specifica-
tions. We will argue that the third issue is another shortcoming of Ada vis-a-vis

distributed programs.

30 Is It Still Ada?

RSD-TR-9-86

4.1.1. Run-time specification of distribution and binding

Both the movement of an existing object and the creation and location of a
new objects are capabilities one might like to have. Deferring both the distribu-
tion and binding specifications until run-time means that the compiler will not
even know whether or not object references are private or non-private. It will
thus either have to use a generalized addressing mechanism (i.e., create a virtual
target machine for all object accesses), or use a private memory addressing
mechanism which will then have to be dynamically converted to a non-private
addressing mode for the objects to be dynamically moved or created at a remote
location. The use of a generalized mechanism throughout would make local
addresses unacceptably expensive. The dynamic conversion of a private memory
addressing mechanism at run-time is likely to require changing the instruction
stream, an effort normally associated with compilation, i.e., something akin to
dynamic recompilation {at least backend processing) would be required. This is

likeiy to be complex and unacceptably slow.

If the distribution specification were given prior to backend processing by
the compiler, the compiler would be able to use the right form of addressing and
only the correct values would have to be inserted when binding is given at run-
time. A change in the instruction stream would not be necessary. For movement
of objects this is effectively a relinking operation for all references to the object
being moved, while for dynamic allocation oﬁly a single address would have to be

established.

Is It Still Ada? 31

RSD-TR-0-86

The above is the principal argument for providing the dfstribution specifica-
tion by compile-time. Subsequent sections on memory architectures and proces-
sor heterogeneity will describe more completely the information which must be
included in the distribution specification. Even with this, however, the overhead
associated with moving an object may be substantial because of the relinking
process. This suggests that only infrequently referenced objects such as whole
programs be moved. Dynamic creation and deletion of objects, however, may be

critical to some algorithms.

The mechanism for expressing the program mapping is an important issue.
Unfortunately, the Ada language does not have a complete set of mechanisms by
which run-time binding can be conveniently expressed. The new allocator pro-
vides a method of dynamically creating a data or task object, but has no
corresponding mechanism for specifying target location. Pragmas could be
defined to supply this information, but since pragmas are compile-time things,
dynamic binding would require using a construct like case selection with each
case being a distribution pragma and an allocator. This is rather awkward,
especially for parallel processors with a large number of processors. Further, there
is no mechanism for dynamically creating and binding packages, which we have
argued above are the natural units of distribution. Finally, there are no mechan-

isms at all for specifying the movement of an object.

32 Is It Still Ada?

RSD-TR-9-886

4.1.2. Distribution and binding specification at link time or befcre

Distribution and binding specification at link time faces the same complexi-
ties described for run-time, except that the overhead is incurred before run-time.
Again, stating the distribution specification by backend compile-time is essential

in a pragmatic sense.

The remaining choices are to specify the distributions either between the
frontend and backend compiler phases or prior to compilation. The former
clearly allows more flexibility in terms of changing the assignment of distribut-
able units without requiring full recompilation, while the latter permits a pre-
translation scheme (described briéﬂy in the next section) to be developed which

can use existing compilers.

For distribution and binding specification at link time or before, language
mechanisms for expressing the distribution are not required. Separate utilities
may be used to interactively specify the distribution and binding, or to read a
separate ‘“‘program file”’ of specifications. However, as noted in section 3, from a
point of view program expressibility it is desirable that the remoteness of objects
be explicit. Also, the behavior of real-time embedded systems will depend upon
the program mapping as well as the program. Thus, there must be an easy way
for the programmer or software maintainer to read and correlate the program
and the mapping. Having the mapping represented explicitly as part of the pro-
gram would minimize the opportunity for a programmer to miscorrelate the two
parts. Hence, either the mapping should be present in the program initially, e.g.,

via pragmas, or a decompilation tool is needed which can reproduce the original

Is It Still Ada? 33

RSD-TR-9-86

program with distribution and/or binding specifications inserted in the program

text.

In summary, the distribution specification should be given by compile-time.
It should either be included in the language or there should be a decompilation
tool which will recreate the program with the distribution specification inserted
in the code. Dynamic creation or movement of objects is rarely used in real-time
programs because of the overhead involved. In this case, similar tools are needed
for the binding specification, if binding is not included in the program. The Ada
language does not have adequate mechanisms for expressing dynamic allocation

and movement of objects in the distributed setting.

4.2. Implications of Memory Architecture

The principal effects of the memory architecture are on the nature of the
addressing mechanisms and the time required to access remote objects (thus
impacting the decisions on what to distribute). It was noted above that it is
necessary for the distribution specification to be made by compile-time. If the
system consists of only a single type of memory interconnection and this is
known to the compilation system all that is required is designating the objects

which may be remote from the code which references them.

However, if more than one memory architecture type may be present, the
distribution specification must be strengthened to include the type of connection
between processors and the memory holding objects they reference. This is

necessary so that the compiler can generate the correct type of addressing

34 Is It Still Ada?

RSD-TR-9-86

mechanism. For example, consider a loosely coupled system in which each of the
individual nodes consists of a mixed shared/private memory multi-processor sys-
tem. The mechanism for addressing an object in a local shared memory will
almost certainly be different than the one used for accessing data in private or
remote memory. The compiler needs to know the kind of relationships which will
be present in order to generate the correct instruction streams. Actual binding,
which can occur later, will then be essentially a linking operation which merely

supplies specific values for address references.

The distribution specification thus becomes a set of relations between pairs
of objects in which the relations correspond to kinds of addressing required for
the first object to reference the second. This is different from the binding specifi-
cation which makes an absolute assignment to each object. In fact, the relations
for the distribution specification can be deduced from the binding specification.
However, separating the weaker distribution specification and making only the
distribution specification available at compile time provides greater flexibility in
distributed program development. It then becomes necessary to check for con-
sistency of the distribution specification. Further, when binding is finally speci-
fied, it is necessary to check the consistency of the binding specification with the
distribution specification. Thus, the separation of the program to processor map-
ping into distribution and binding specifications, while increasing flexibility,

requires the development of additional support tools.

The memory architectures present in a system also have an impact on the

general nature of the translation schemes that may be used. For example, the

Is It Still Ada? 35

RSD-TR-0-86

authors have implemented a subset pretranslation scheme which was intended to
allow existing compilers intended for single processor operation to be used for dis-
tributed Ada programs [10]. Accordingly, only two addressing mechanisms were
readily available, the local object referencing scheme and subprogram or task
entry calls to system functions to reference remote objects. This suffices for dis-
tributed memory systems in which all object references are either local or require
message passing between systems. However, in a mixed private/shared memory
system, neither of these schemes will be satisfactory for the shared memory if the
compiler’s only knowledge of memory is the local memory attached to a single
processor. The compiler would then be incapable of directly addressing the
shared memory, and accessing it via system calls would be too inefficient. It
would be necessary in this case that the compiler itself have knowledge of at least
two kinds of memory, private and shared, and be able to generate efficient
mechanisms for addressing both, defeating the purpose of the pretransiator
approach. The pretranslator approach, however, can be quite useful for distri-
buted memory systems with only moderate interprocessor communication speed
requirements in which compile time assignment of program elements te processors

1s acceptable.

Finally, there is an additional interaction between the memory architecture
and binding time considerations. A massively parallel system, such as the newly
available hypercube architectures, is almost certainly going to be used differently
than a modest sized loosely coupled architecture. The latter is likely to be used

for embedded real-time systems in which each of the loosely coupled systems is

36 Is It Still Ada?

RSD-TR-9-86

attached to a different device, all devices must work together in a coordinated
fashion, and the binding specification is known a priors. While the former may
also be part of an embedded real-time system, it is likely to have some special
function in the system, such as image processing, in which the regularity of the
parallel structure is to be exploited in some way. In this case, as a consequence
of the homogeneity of the processors, the use to which the individual processors
are assigned is likely to be determined at run-time. This implies a need for
dynamic creation and distribution of objects in the program. As noted in the
previous section, Ada lacks adequate mechanisms to deal with this dynamic dis-

tribution.

4.3. Impact of Heterogeneity

Heterogeneity impacts both the semantics of a program and the mechanisms
for translating and executing it. One obvious way to deal with differences in pro-
cessor types is by designing programs for a virtual Ada machine and then making
~the compilers for each real machine produce code which effectively implements
the virtual machine underneath the translated user program. However, there is
often a significant loss of efficiency with this approach. >From a more prag-
matic point of view, it would be very advantageous if compilers produced for
uniprocessor operation could be included in a distributed translation system with
minimum modification. This would almost certainly require using whatever data
representations and mechanisms were natural for a given processor type. It

would also deny translation within the compiler for a virtual Ada machine.

Is It Still Ada? 37

RSD-TR-9-86

>From the user’s point of view it will thus be the combination of the processor
type and the compiler that are important, and when we speak of a “processor
type,” we will actually mean the combination of the processor type and the
translator for it. With this assumption, we reach the conclusion that a distri-
buted Ada program must include processor type information in the distribution

specification. Otherwise, the semantics of the program are ambiguous.

Consider, first, the representation of primative data types, e.g., integers and
floating point numbers. Ada provides mechanisms to support portability which
are uéeful for distributed execution as well. One can define data types in terms
of the ranges needed and let the implementation choose the underlying base type
from which the new type is derived, with errors being flagged if any processor
cannot support the required range. However, programmers are not obligated to
use these mechanisms and the translation system must then provide some type of
data translation. Unfortunately, there is then no guarantee that a translation is
possible, e.g., you can’t represent a 64 bit integer from machine A with the 16
bits that might be available on machine B. Additional checking of the distri-
buted program is necessary to ensure the compatibility of representation of data
objects. Thus, knowledge of processor type is required as input to a distributed

transiation system.

Second, different processors may well have different values for implementa-
tion dependent constants such as SYSTEM.TICK, and may use different schedul-
ing disciplines. These differences may all be in accord with the RM, but when a

program intended for execution on a single processor is moved amongst different

38 Is It Still Ada?

RSD-TR-90-86

processors, drastically different performance may result. It is in general under-
stood that the effect of the program is dependert upon the implementation.
However, when a distributed program is redistributed amongst a set of proces-
sors, the underlying implementation remains the same (even though the perfor-
mance might well change), and it is no longer appropriate to think of the effect
of the program depending upon the implementation. In this case, we think of the
semantics of the distributed program as changing with the mapping of the origi-
nal Ada program onto the specific set of processors in the system. The program-
mer should thus know or be able to control the type of processor to which things
will be assigned. The processor type information should be included in the distri-

bution specification.

5. CONCLUSIONS

The distributed execution of Ada programs requires further consideration of
two issues: the units which may be distributed and the specification of the pro-
gram mapping onto the set of processors and memory to be used. It was argued
that the units of distribution should be stated more precisely than presently done
in the RM. It was stated that the program mapping may be divided into two
parts, a distribution specification and a binding specification; the former should

be a required part of a “‘distributed Ada program.”

It was recommended that the natural units of distribution for Ada are
library packages and library subprograms. These, in turn, require remote access

to individual data objects, subprograms and tasks. Use of remotely defined types

Is It Still Ada? 39

RSD-TR-9-86

requires replication of implicit and basic operations at each site creating objects
of the type. Dynamically elaborated objects, e.g., tasks, need to be placed at the
site of elaboration, which creates certain difficulties with respect to implied access
to remote variables and task termination. The availability of a package type

would alleviate some of these difficulties.

The distribution specification should specify the processor type and memory
architecture used for each part of the program. The inclusion of processor type
makes explicit program semantics which would otherwise be undetermined due to
heterogeneity, while the memory architecture part of the specification allows the

compiler to generate the correct kind of distributed object access code.

There are two principal areas where the authors feel that (hopefully minor)
extensions are needed to Ada to handle the distributed execution situation. Since
the package is the recommended distribution unit, mechanisms for dynamically
instantiating packages and specifying the processor on which the new package is
to be placed are needed. Syntax is needed by which remote references can be
made explicit. In addition, several new tools are required: 1) a mechanism for
expressing the distribution of a program, 2) a checker to ensure that the distribu-
tion specification is consistent with language rules, 3} a checker to ensure that a
binding specification is consistent with the corresponding distribution specifica-
tion, and 4) a decompilation tool which can insert the distribution specification

into the rest of the program (if it was not there in the first place).

Most of the issues raised in this paper are closely related to the language

definition. The authors believe that these issues should be considered in

40 Is It Still Ada?

RSD-TR-9-86

conjunction with the 1988 language definition review.

Acknowledgements: The authors would like to thank Charles Antonelli of the
University of Michigan and Roger Racine of Draper Laboratories for their valu-

able constructive comments.

Is It Still Ada? 41

rso-reoes [

[1]

[2]

3]

4]

[5]

[6]

[7]

8]

9]

[10]

)

42

UNIVERSITY OF MICHIGAN

el

3'9015 03527 17L

References

G.R. Andrews and f.B. Schneider, “Concepts and notations for concurrent
programming,”’ Computing Surveys, vol. 15, no. 1, March 1983.

D.M. Harland, “Towards a language for concurrent processes,” Software
Practice and Ezperience, vol. 15, no. 9, pp. 839-888, 1985.

Ada programming language (ANSIMIL-STD-1815A). Washington, D.C.
20301: Ada Joint Program Office, Department of Defense, OUSD (R&D),
Jan. 1983.

D. Cornhill, “Partitioning Ada programs for execution on distributed sys-
tems,” 1984 Computer Dala Engineersng Conference, 1984.

D. Cornhill, “A survivable distributed computing system for embedded
application programs written in Ada,” Ada Letters, Nov./Dec. 1983

W.H. Jessop, ‘“‘Ada packages and distributed systems,” SIGPLAN Notices,
Feb/Mar 1982.

Intel, in Reference Manual for Intel 432 Eztensions to Ada, 172283-001.
Santa Clara, CA: Intel, 1981.

J.W. Armitage and J.V. Chelini, ““Ada software on distributed targets: a
survey of approaches,” ACM Ada Letters, vol. IV, no. 4, pp. 32-37, Jan/Feb
1985.

M. Tedd, S. Crespi-Reghizzi, and A. Natali, Ada for multi-microprocessors.
Cambridge: Cambridge University Press, 1984.

R.A. Volz, T.N. Mudge, A.W. Naylor, and J.H. Mayers, “Some problems in
distributing real-time ada programs across machines,”” Ada tn use, Proc. of
the 1985 Int’l Ada Conf., pp. 72-84, May 1985.

R.A. Volz and T.N. Mudge, “Robots are (nothing more than) abstract data
types,” Proc. of the Robotics Research Conference: the nezt 5 years and
Beyond, Aug. 14-16, 1984.

Is It Still Ada?

