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Abstract-The fault exposure ratio K is an important factor 
that controls the per-fault hazard rate, and hence the effectiveness 
of testing of software. The paper examines the variations of K 
with fault density which declines with testing time. Because faults 
get harder to find, K should decline if testing is strictly random. 
However, it is shown that at lower fault densities K tends to 
increase; we explain this by using a hypothesis: real testing is 
more efficient than strictly random testing especially at the end 
of the test phase. Data sets from several different projects (in 
USA and Japan) are analyzed. If we combine the two factors, 
e.g., shift in the detectability profile and the nonrandomness of 
testing, then the analysis leads us to the logarithmic model which 
is known to have superior predictive capability. 

Index Terms-Detectability, fault density, fault exposure ratio, 
testing, predictive capability, software reliability. 

I. INTRODUCTION 

HE SOFTWARE reliability models are needed for mea- T suring and projecting reliability. While some of the 
models like the recent neural network approach [l]  are purely 
empirical, many of them are based on some specific as- 
sumptions about the fault detection/removal process [2]. The 
parameters of these models thus have some interpretations and 
thus possibly may be estimated using empirical relationships 
using static attributes. The two parameters of the exponential 
model [3] are the easiest to explain. Using this model the 
expected number of faults p(t)  detected in a duration t may 
be expressed as 

Here ,BO represents the total number of faults that would 
be eventually detected and is the per-fault hazard rate, 
which is assumed constant for the exponential model. The 
total hazard rate at any instant (i.e., the failure intensity) is 
given by the total number of faults multiplied by the per- 
fault hazard rate. The available data [3] show that the number 
of fault introduced during the debugging process is only 
about 5%. Thus PO, the total number of faults that will be 
found, may be estimated as the initial number of faults. It has 
been observed [4] that in an organization, the defect density 
(measured in defects/thousand lines of code) does not vary 
significantly at the beginning of the system test phase and 
thus may be estimated from past experience. This allows PO 
to be estimated with acceptable accuracy. Empirical methods 
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to estimate defect density using programmer skill, etc., have 
also been proposed [SI, [6]. 

The estimation of the other parameter 01 is more complex. 
Musa et al. [3] have defined a parameter K, called fault 
exposure ratio, which can be obtained by normalizing the per- 
fault hazard rate with respect to the linear executionfrequency, 
which is the ratio of the instruction execution rate and the 
software size. For 13 software systems they found that K 
varies from 1.41 x to 10.6 x with the average 
value equal to 4.20 x 

Identifying what factors affect K is of considerable signif- 
icance. If we can accurately model the behavior of K, there 
are three ways in which the software reliability engineering 
will be affected. 

When the process parameters are known a priori, opti- 
mal resource allocation can be done even before testing 
begins. Early planning can be crucial to the success of 
the project. 
In the early phases of testing, the failure intensity values 
observed contain considerable noise [7]. The use of reli- 
ability growth models in the early phases can sometimes 
result in grossly incorrect projection. The accuracy can 
be enhanced by using a priori parameter values in such 
cases. 

failures/fault. 

Residual defect density can be measured accurately. 
Musa et al. have speculated that K may depend on program 

structure in some way. However, they suspected that for 
large programs, the “structuredness” (as measured by decision 
density) averages out and hence does not vary much from 
program to program [3]. Musa has also argued that K should 
be independent of program size [8]. Mayrhauser and Teresinki 
[9] have suggested that K may depend on testability, as 
measured by static metrics like “loopiness” and “branchiness” 
of the program. However, because of lack of sufficient data, 
the results are not yet conclusive [lo]. 

We analytically examine random testing in the next section. 
As faults with higher testability [11]-[13] are likely to be 
exposed earlier, it is next shown that K should decline with 
time when random testing is done. Such behavior is observed 
in some read data sets; however, it is also observed that when 
the fault density is sufficiently low, a reversal in the behavior 
occurs [14]. At low densities K rises as density declines. 
This can be explained by observing that the random testing 
assumption becomes invalid at low fault densities. In Section 
IV it is shown that one hypothesis leads to logarithmic model; 
it has been shown in [15] that the logarithmic model indeed 
is the best among the two-parameter models with statistical 
significance. 

.OO 0 1993 IEEE 
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11. ANALYSIS OF RANDOM TESTING 

In this section we examine random testing analytically. We 
assume that when the software is tested, each test is selected 
randomly. We also assume that the debugging is perfect and no 
new fault is generated. The latter assumption does not really 
restrict the applicability of our analysis; if it is not true, this 
would merely result in some change in the model parameter 
values [16]. 

The software being tested is executed a number of times. 
During each execution one input (set of input information or 
actions) is accepted and one output (set of output information 
or actions) is generated. Let N ( t )  be the expected number 
of defects present in the system at time t. According to our 
assumptions above, N ( t )  will monotonically decrease as faults 
are exposed and removed. Let T, be the average time needed 
for a single execution, which is very small compared with 
the overall testing duration. Let K,  be the fraction of existing 
faults exposed during a single execution. Then 

d:lt)Ts = -K,N(t) .  

It would be convenient to replace T, with something which 
can be easily estimated. Let TL be the linear execution time 
[3] which is defined as the total time needed if each instruction 
in the program was executed once and only once. It can be 
estimated using 

1 
TL = I ,  * Qz- 

T 
(3) 

where I, is the number of source statements, Qz is the number 
of object (machine level) instructions per source instructions, 
and T is the object instruction execution rate of the computer 
being used. Let us consider the ratio T,/TL = F, where F is a 
parameter depending on the program structure. If a program is 
loop-dominated, i.e., if the program execution involves a large 
number of loops, then F may be greater than one because 
of higher node visitation frequency. For a branch-dominated 
program, F may be smaller than one since during a single 
execution, many branches would not be executed. Using (3) 
we can write (2) as 

dN(t )  - K,  N ( t )  
d t  F TL . 

Here it would be convenient to use a parameter K such that 

(4) - - 

(5) 

Here K is the same as the fault exposure ratio defined by 
Musa et al. in [3]. Using this (4) can be rewritten as 

dN(t) K 
d t  TL 

-- - - - N ( t ) .  

Equation (5) suggests that K may depend on the program 
structure. However, for a program with higher loop domi- 
nation, both F and K,  would have higher values. This is 
because when larger number of loops are executed during a 
single execution, the faults associated with looping would have 
higher probability of being exposed. Similarly it can be argued 
that in a program with higher branch domination, both F and 

K, would have lower values. Thus the value of K may not 
vary much with the program structure. 

It should be noted that the per-fault hazard rate as given in 
(6) is K/TL.  Thus K (or K,) directly controls the efficiency 
of the testing process. 

A. Time-Invariant K 

equation has the following solution: 
If we assume that K is time-invariant, then the above 

~ ( t )  = N(0)e-(K/TL)t. (7) 

This may be expressed in amore familiar form as follows: 

N ( O )  - ~ ( t )  = N ( o ) ( ~  - e-t(K/TL)). (8) 

The left side of this equation corresponds to p(t) ,  the mean 
value function, as given by (1). Thus the parameters PO and 

have the following interpretations: 

(9) 
K 

Po = N ( 0 )  and P1 = %. 

B. Detectability of Different Faults 

Let us assume that the system is subject to possible faults 
f1, f2, . . . , f ~ .  A randomly selected test may or may not test 
for a specific fault fi. Let us define detectability di of a fault 
fi in the following way: 

di = Prob {a random input tests for fi}. (10) 

The detectability of a fault would depend on how frequently 
the instructions containing the fault get executed [ 171, and 
the probability that the final output will be affected by the 
execution of those instructions. The probability that a random 
input will expose fi is 

Prob {the input tests for fi and fi is present} = diPf, (t) 

where Pj%(t) is the probability that fi is present. If Xi  is the 
hazard rate -(dPj%/dt) for fault fi, we have 

(11) 

which has the solution 

The overall hazard rate due to all M faults is given by 
M . M  

Since N ( t )  is the expected number of faults at time t ,  we have 

(15) 
M M 

N ( t )  = x P r o b { f i  ispresent at t} = x P j i ( t ) .  

Hence by (6), the overall hazard rate is also given by 

i=l  i = l  
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Comparing (14) and (16), we get 

This suggests that K would in general be a function of 
time, unless all di are equal, i.e., all the faults have the 
same detectability. Equation (17) states that the overall K is 
proportional to the weighted average of di for all faults and 
hence K can be regarded as a measure of average detectability 
for the software. Using (13) we have 

A fault with higher detectability is likely to be exposed and 
removed earlier. The faults with lower detectability will remain 
causing K ( t )  to decline with time. This can be verified by 
numerically plotting the value of K ( t )  in (18). If we assume 
that all the faults f l ,  f2 ,  . . . , f~ exist at time t = 0, then 
N ( 0 )  = M and the maximum value of K is given by 

1 M d .  
M F  

K(0)  = -CA. 
i = l  

The fault with the smallest value of di controls the minimum 
value of K. 

where kmin = minll;<M{di} = the detectability of the least 
detectable fault. Thus the value of K will range from initial 
average of d i / F ,  as given by (19) and the smallest value of 
d i / F ,  as given by (20). Equation (20) is also true when several 
faults with equal values of di have the smallest testability. 

In general K ( t )  is controlled by the detectability profile of 
the object under test. The detectability profile (DP) for an 
object is defined as 
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(b) 
Fig. 1. A: variation of h' for Example 1, B: approximation. (a) With 

logarithmic time scale. (b) With linear time scale. 

of TL is 5 x l o p 2 .  Then K ( t )  can be plotted as shown in Fig. 
l(a) and (b); the line marked by A shows K ( t )  as given by 
(18) and the line marked by B shows K ( t )  as given by (22). 
The first uses a logarithmic z-axis; the second uses a linear 
scale. 

While the above example uses values arbitrarily chosen for 
illustration, it shows that K ( t )  may be regarded approximately 
constant for a short duration. It may change by an order of 
magnitude if t is sufficiently large. As shown below, such 
behavior has indeed been experimentally observed for some 
real situations. 

Somewhat similar assumptions were used by Nakagawa and 
Hanata [12] for their error complexity model. They proposed 
a classification of errors into three classes which may be 
regarded as an approximation of the detectability profile by 
considering only three major components. Their model is 
different from other reliability growth models in that it requires 
recording not only the number of faults detected but also the 
distribution of the detected faults into the three classes. 

where rd, is the total number of faults with detectability di .  
The DP is arranged such that d l  5 dz 5 ... 5 d,,,, i.e., r d l  
denotes the number of faults with least detectability and ?fd,,, 

denotes the number of faults with maximum detectability. The 
concept of detectability profile was introduced by Malaiya and 
Yang [18] and is applicable to both hardware and software. 
If the detectability profile is known, then the expected fault 
coverage achieved by random (with replacement) or pseudo- 
random (without replacement) can be calculated. It can be 
shown that at high fault coverage levels only the lowest com- 
ponents of the DP (i.e., hardest to test faults) are significant. 
The DP of several hardware components has been evaluated. 
Adams [19] and Finnelli [20] have given DP's of software 
packages. The example below illustrates variation of K ( t )  
with time. 

Example I :  Consider a software system containing faults 
with detectabilities dl = 0.2 x d2 = 0.2 x 
d3 = 2 x d4 = 2 x d5 = 2 x Also assume 
that the detectability profile is { 10, 50, 25, 5, 1) and the value 

The estimation of the detectability profile is hard for large 
combinational logic blocks [21], it would be even harder for 
large software systems. However, we have observed that the 
general shape of K ( t )  appears to remain the same for different 
detectability profiles. K ( t )  is a complicated function of time; 
however, Fig. l(b) suggests that it may be approximately 
modeled as 

K ( t )  = - K ( o )  where a > 0. (22) 1+a t '  

Substitution of (22) into (6) yields 

which has the solution 

N ( t )  = N(0)(1 + at)-[K(o)/aTL1. (23) 

If a << l/t, the above equation can be approximated by 
(7) which describes the exponential model. Because of the 
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assumed decreasing testing efficiency, N ( t )  will 
cally approach a minimum value. Also, from the 
equations we have 

asymptoti- 
above two 

If D ( t )  denotes the fault density at time t, then D(t )  = 
N ( t ) / l s Q Z .  and we can express K in terms of fault density 
as follows: 

Thus if our assumptions at the beginning of this section are 
valid, h' should vary with fault density. Then, we can make 
the following observations: 

If testing is random, the faults get harder and harder to 
expose near the end of the test phase. 
If inputs are applied randomly during the operational 
phase, the remaining faults have less probability of being 
encountered than we would have thought. 

111. EVIDENCE FROM REAL DATA 
If the assumptions stated in the previous section are valid, 

K should decline monotonically (neglecting the "noise" that 
is always present) as the fault density decline. We now put 
this to test using real data sets. The number of useful data sets 
is still limited. Still, the observations noted below allow us to 
get a better understanding of the debugging process. We will 
first examine the variation of K with fault density (or time) 
for the same software system. Next, we will look at variation 
of K across different software systems. 

A. Variation of K for Individual Data Sets 
A dynamic test data set can be examined for variation in K 

with time or fault density. A grouped data set is of the form 
( to ,  mo), ( t l ,  m l ) ,  . . ,  ( t f ,  m f )  where mi is the total num- 
ber of faults detected by time ti. The experimentally obtained 
data sets contain considerable noise (short-term randomness), 
which must be filtered out by appropriate smoothing. 

Ole way of estimating K ( t )  at different times would be to 
divide the data set into several subsets. Curve fitting would 
yield values of 01 for different subsets. The values of K ( t )  
can then be obtained using (5). However, curve fitting with a 
limited number of points would lead to inaccurate estimation 
of 01 and hence K(t ) .  The other approach is to use (7). Using 
N ( t i )  and N ( t i + l ) ,  K ( t )  for the duration (ti, ti+l) can be 
estimated as 

TL K ( t )  = -- 

This is the computational approach we have used since we 
found that it results in more stable estimates. The group size 
must be large enough to filter out the short-term noise. Let us 
first consider data set T1 compiled by Musa [3]. This software 
system with 21.7 thousand object instructions was found to 

K 

K 

0 10000 20000 000 40000 50000 60000 
%me 

@) 

Fig. 2. Variation of li (normalized) with density and time for data set A 
in Table I. 

TABLE I 
DATA SETS USED FOR STUDY OF K 

Faults Initial Instructions 

Code) 
21.7 136 6.89 min. at 2 

Data Set ( K  Object Detected Density (Est.) Trend 

2400 
35 

5268 
180 
800 

3480 
160 
4 
4 
4 
4 
4 

23 1 
279 
328 
101 
48 1 
535 
46 
27 
24 
21 
27 
27 - 

0.11 
8.77 
0.07 
0.62 
0.66 
0.17 
0.32 
7.43 
6.60 
5.78 
7.43 
7.43 

rising 
min. at 3 

rising 
falling 
rising 
rising 
rising 

min. at 4 
rising 

min. at 4 
??? 

rising 

contain 136 faults. The collection of these data was carefully 
controlled. The overall exponential model parameters have 
been calculated as 00 = 142 and 01 = 0.35 x If we take 
the CPU instruction execution rate to be 4 x 106/s, the overall 
value of K is given by K = 1 . 9 ~  Fig. 2(a) and (b) shows 
the variation of K with time and fault density, respectively. 
At the points examined, K ranges between 3.6 x and 
1.3 x However, values of K ,  normalized with respect to 
its minimum value have been plotted to allow comparison with 
other data sets, which also use normalized values of K. Fig. 
2(a) shows that K would decline as the fault density falls. Fig. 
2(b) shows that K generally declines with time except for the 
last two points. Except for the last two points corresponding 
to lowest densities, the behavior is in accordance with the 
analysis in the previous section. Note that points corresponding 
to higher density occur earlier in time. As the discussion below 
suggests, the last two points indicate a reversal in the trend. 

Let us now examine a few other data sets given in Table I. 
While the size is known for all of them, execution rates are 
not. This does not present a problem since we are interested 
in relative values of K. The variation of normalized values 
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0' 
0.1 0.05 0 

Density 

0.08 0.04 0 
Density 

observation. The plot of Fig. 3(d) does not show a trend that 
can be easily interpreted, while Fig. 3(e) shows a rising trend. 

An explanation of this phenomenon can be found by re- 

data suggest that at low fault densities, actual testing is 
significantly more efficient than random testing. Since there are 
only a few faults left, the testers are more likely to examine 
the situations which may not have been considered before. 
Testing becomes more and more directed. The assumption of 
randomness of testing should be regarded as an approximation 
which may be valid during the early phases of testing. 

0 examining our assumption about testing being random. The 
ti 2':pl 

9 6 3 0  
Density 

(b) 

Density 

(c) ( 4  B. Deterministic Testing 
I I I h  1 

"I 
" 

I 1  

0.15 0.1 0.05 0 
Density 

0.6 0.4 0.2 0 
Density 

(e) (9 

0.25 0.15 0.05 
Density 

(9 
Fig. 3. Variation of K with density. (a) Data set E .  (b) Data set 'C. (c)  Data 

set D. (d) Data set E. (e) Data set F. (9 Data set G .  (9) Data set H .  

of K with density is plotted in Figs. 3(a)-(g) and 4(a)-(d). 
We assume that about 10% of the faults are still present when 
testing ends. There exists no accurate way to measure fault 
density at very low values. As we are primarily interested in 
observing the trend, we have used estimated values of defect 
densities. 

The plots of Fig. 3 use data from several sources in USA 
and Japan. Fig. 3(a), (c), (e), ( f ) ,  and (8) shows a rise of K as 
fault density declines. For all of these, the initial defect density 
is less than 1.0 per thousand object instructions. Figs. 2 and 

To see how K would be affected by nonrandomness, 
consider deterministic testing when the location of possible 
faults is known. Let us also assume that application of each test 
has the same likelihood of revealing the presence or absence 
of a new fault. In this situation, we can assume 

- z -c dN 
dt 

where C is a constant. Comparing this with (6), we have 

(27) 
1 

K = TL . C . - 
N 

or 

K ( D )  = -(A). TL . C 
Is 

Thus K would rise as N falls. The situation assumed for (26) 
would be an extreme case. Equation (28) explains why K 
would start rising as the extreme situation is approached. 

It should be remembered that when we describe the variation 
in K ,  we are examining the process at a very low level of 
granularity. We should thus not expect K to vary in a precise 
and smooth manner. Some of the peaks and valleys in K 
probably occur because of switching to new test suites. 

C. K for Different Data Sets 
3(b) appear to suggest that K first declines to a minimum 
at densities of about 1.9 and 2.5, respectively, and then 
starts rising. Fig. 3(d) shows a decline which is a noticeable 
exception. These observations seem to suggest the following: 

At higher fault density K declines, whereas at lower fault 

The change of behavior appears to occur in the vicinity 

We have seen that K varies with time as testing progresses. 
This suggest that the value of K may depend on the phase as 
reflected by the current fault density. It would be interesting 
to see if this dependence on fault density is also observed 

gives the values of K for 
several data sets, as obtained from the table given by Musa 
[3]. In order to have a valid comparison we have chosen the 

separate Fig. 
densities K appears to rise as testing progresses. 

of density about 2, although it is likely to vary from z-axis to be the average fault density for all the data sets. 
system to system. 

Some additional plots are given in Fig. 4(a)-(d). These are 
for five Japanese students testing their own compiler project 
[27]. Very small software (about 1000 lines) packages are 
used. The initial fault density is within the range normally 
encountered in industry [3]. For such a small project, we would 
not expect to see a specific trend. It is interesting to note that 
Fig. 3(a), (b), and (c) do show a specific trend. The value of 
K is stable or declines slightly until a density of about 3 to 4 
and then it starts rising. This is consistent with out previous 

Fig. 5 suggests that K declines with declining fault density 
until a DK,," of about 2, and then it rises sharply as density 
approaches zero. On a preliminary examination, one might 
regard the isolated data point on the left-hand side or the two 
points with K greater than 8 to be outliers. However, based 
on the preceding discussion these points can be regarded as 
representing the expected behavior. This is supported by the 
discussion in the next section. Note that K may also depend 
on program evolution and the use of the operational profile. It 
would require further study to quantify this dependence. 
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Fig. 4. Variation of K with density for five variations of the same project. (a) Data set I .  (b) Data set J .  (c) Data set K 
(d) Data set L. (e )  Data set A4. 

IiO 0 0  4 
K 0.5 

n 
20 15 IO 5 0 

Density 

Computed values of K for the logarithmic model. Fig. 6. 

Fig. 5. Scatterplot of K versus density for different projects as given by 
Musa et al. This corresponds to the logarithmic model 

P ( t )  = Po In (1 + Plt) (32) 

where p( t )  is the mean value function. The parameters have 
the 

IV. A MODEL INCLUDING BOTH EFFECTS 

In the above discussion we have identified two factors 
affecting K. Because faults get harder to find, (22) suggests 
that K should decline in accordance with a factor 1/(1+ at). 
On the other hand, (27) suggests that K should rise as it is 
proportional to 1 / N ,  because effectiveness of testing increases 
as compared with random testing. It would be interesting to 
hypothesize that the behavior of K actually is given as a 
product of two factors, i.e., 

correspondence: 

P o = = =  aTL 
, and PI = a. (33) 

It has been shown [15] that the logarithmic model works better 
than other two-parameter models. The result has been shown 
to be statistically significant. If we assume that a debugging 
process for a system with N ( 0 )  = 200 is exactly described 
by a logarithmic model with Po = 60 and = 1, we can 
calculate the values of K at different densities. The values are 
plotted in Fig. 6. It shows a remarkable resemblance to Fig. 

9 K(O)N(O) 

(29) K ( t )  = 
N ( t ) ( l +  a t )  

where 
g = K(O)N(O). Substituting (29) into (6), we get 

is a parameter. It can be Seen that the parameter 5. Here it should be noted that the parameter “a” introduced 
in (22) depends on the detectability profile. If this parameter 
can be estimated a priori, both PO and 01 can be estimated, 

which has a solution 

9 
aTL 

N = N ( 0 )  - -In (1 + at). 

provided both K(0)  and N ( 0 )  can be empirically obtained 
[28]. Empirical estimation of the parameter “a” remains an 
important problem. 

(30) 

V. CONCLUSION 
The above examination of real data, along with mathemat- 

K represents the average detectability of the software 

Rearranging terms, we get ical analysis, suggests the following hypotheses: 
9 

aTL (31) N ( 0 )  - N = -In (1 + at). 
under the test strategy being used. 
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At higher fault densities, the value of K  would sometimes 
fall as testing progresses. This is because faults with 
high detectability are found earlier and thus the remaining 
faults get harder and harder to find. 
At lower densities, the effective value of K starts to rise. 
This is caused by the fact that at this density range, testing 
is more efficient than what the assumption of random 
testing implies. 

In the data sets examined, DK,,,,” appears to be in the 
region of 2-4 faults/1000 object instructions (Le., about 
&16/KSLOC). As some of the plots of Fig. 4 suggest, a 
decreasing K may never be observed, suggesting that the 
second factor (28) may dominate from the beginning. It 
probably depends on the testing approach used. Additional 
data sets need to be examined to validate the hypothesis 
suggested and to arrive at an accurate model for K ( D )  
in the two regions. A preliminary model is suggested here 
in the form of equations (22) and (27). Taken together 
they may provide an explanation for why the logarithmic 
model works better. If the hypothesis is indeed valid, it 
has major consequences for both ordinary and ultra-reliable 
software. 

Some reliability growth models must be switched [15] or 
corrected when the fault density falls below DK,,,;”.  This 
would not be needed for the logarithmic model, which is 
a significant advantage. 
The reliability growth models [29] generally assume 
random testing. As (6) and (7) suggest, the fault detection 
rate drops exponentially and thus random testing would 
be very inefficient near the end of testing. However, 
our observations suggest, as given by (30), that the 
fault detection rate drops only according to an inverse 
linear relationship. This is the behavior modeled by the 
logarithmic model 

dP POP1 A = - = -  
dt 1 + P i t ’  

Thus lower fault densities are more easily achievable than 
assumed under random testing. 
If we assume that during the operational phase, the 
inputs are effectively random choices from the operational 
profile, then the probability of faults with low densities 
being exposed would be significantly less than during 
testing. In other words, the last phases of testing may 
represent a highly accelerated form of exercising than 
during actual operation. 

The last observation arises from the fact that if inputs are 
indeed random, then even at low-fault densities, K  would be 
low in accordance with (18). 
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