
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 11, NOVEMBER 1993

An Examination of Fault Exposure Ratio
Yashwant K. Malaiya, Senior Member, IEEE, Anneliese von Mayrhauser, Member, IEEE,

and Pradip K. Srimani, Senior Member, IEEE

Abstract-The fault exposure ratio K is an important factor
that controls the per-fault hazard rate, and hence the effectiveness
of testing of software. The paper examines the variations of K
with fault density which declines with testing time. Because faults
get harder to find, K should decline if testing is strictly random.
However, it is shown that at lower fault densities K tends to
increase; we explain this by using a hypothesis: real testing is
more efficient than strictly random testing especially at the end
of the test phase. Data sets from several different projects (in
USA and Japan) are analyzed. If we combine the two factors,
e.g., shift in the detectability profile and the nonrandomness of
testing, then the analysis leads us to the logarithmic model which
is known to have superior predictive capability.

Index Terms-Detectability, fault density, fault exposure ratio,
testing, predictive capability, software reliability.

I. INTRODUCTION

HE SOFTWARE reliability models are needed for mea- T suring and projecting reliability. While some of the
models like the recent neural network approach [l] are purely
empirical, many of them are based on some specific as-
sumptions about the fault detection/removal process [2]. The
parameters of these models thus have some interpretations and
thus possibly may be estimated using empirical relationships
using static attributes. The two parameters of the exponential
model [3] are the easiest to explain. Using this model the
expected number of faults p(t) detected in a duration t may
be expressed as

Here ,BO represents the total number of faults that would
be eventually detected and is the per-fault hazard rate,
which is assumed constant for the exponential model. The
total hazard rate at any instant (i.e., the failure intensity) is
given by the total number of faults multiplied by the per-
fault hazard rate. The available data [3] show that the number
of fault introduced during the debugging process is only
about 5%. Thus PO, the total number of faults that will be
found, may be estimated as the initial number of faults. It has
been observed [4] that in an organization, the defect density
(measured in defects/thousand lines of code) does not vary
significantly at the beginning of the system test phase and
thus may be estimated from past experience. This allows PO
to be estimated with acceptable accuracy. Empirical methods

Manuscript received December 1992; revised July 1993. This work was
partly supported under an SDIO/IST Contract monitored by ONR. Recom-
mended by F. Bastani.

The authors are with the Department of Computer Science, Colorado State
University, Ft. Collins, CO 80523.

IEEE Log Number 9213116.

OO98-5589/93$03

1087

to estimate defect density using programmer skill, etc., have
also been proposed [SI, [6].

The estimation of the other parameter 01 is more complex.
Musa et al. [3] have defined a parameter K, called fault
exposure ratio, which can be obtained by normalizing the per-
fault hazard rate with respect to the linear executionfrequency,
which is the ratio of the instruction execution rate and the
software size. For 13 software systems they found that K
varies from 1.41 x to 10.6 x with the average
value equal to 4.20 x

Identifying what factors affect K is of considerable signif-
icance. If we can accurately model the behavior of K, there
are three ways in which the software reliability engineering
will be affected.

When the process parameters are known a priori, opti-
mal resource allocation can be done even before testing
begins. Early planning can be crucial to the success of
the project.
In the early phases of testing, the failure intensity values
observed contain considerable noise [7]. The use of reli-
ability growth models in the early phases can sometimes
result in grossly incorrect projection. The accuracy can
be enhanced by using a priori parameter values in such
cases.

failures/fault.

Residual defect density can be measured accurately.
Musa et al. have speculated that K may depend on program

structure in some way. However, they suspected that for
large programs, the “structuredness” (as measured by decision
density) averages out and hence does not vary much from
program to program [3]. Musa has also argued that K should
be independent of program size [8]. Mayrhauser and Teresinki
[9] have suggested that K may depend on testability, as
measured by static metrics like “loopiness” and “branchiness”
of the program. However, because of lack of sufficient data,
the results are not yet conclusive [lo].

We analytically examine random testing in the next section.
As faults with higher testability [11]-[13] are likely to be
exposed earlier, it is next shown that K should decline with
time when random testing is done. Such behavior is observed
in some read data sets; however, it is also observed that when
the fault density is sufficiently low, a reversal in the behavior
occurs [14]. At low densities K rises as density declines.
This can be explained by observing that the random testing
assumption becomes invalid at low fault densities. In Section
IV it is shown that one hypothesis leads to logarithmic model;
it has been shown in [15] that the logarithmic model indeed
is the best among the two-parameter models with statistical
significance.

.OO 0 1993 IEEE

1088 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 11, NOVEMBER 1993

11. ANALYSIS OF RANDOM TESTING

In this section we examine random testing analytically. We
assume that when the software is tested, each test is selected
randomly. We also assume that the debugging is perfect and no
new fault is generated. The latter assumption does not really
restrict the applicability of our analysis; if it is not true, this
would merely result in some change in the model parameter
values [16].

The software being tested is executed a number of times.
During each execution one input (set of input information or
actions) is accepted and one output (set of output information
or actions) is generated. Let N (t) be the expected number
of defects present in the system at time t. According to our
assumptions above, N (t) will monotonically decrease as faults
are exposed and removed. Let T, be the average time needed
for a single execution, which is very small compared with
the overall testing duration. Let K, be the fraction of existing
faults exposed during a single execution. Then

d:lt)Ts = -K,N(t) .

It would be convenient to replace T, with something which
can be easily estimated. Let TL be the linear execution time
[3] which is defined as the total time needed if each instruction
in the program was executed once and only once. It can be
estimated using

1
TL = I , * Qz-

T
(3)

where I, is the number of source statements, Qz is the number
of object (machine level) instructions per source instructions,
and T is the object instruction execution rate of the computer
being used. Let us consider the ratio T,/TL = F, where F is a
parameter depending on the program structure. If a program is
loop-dominated, i.e., if the program execution involves a large
number of loops, then F may be greater than one because
of higher node visitation frequency. For a branch-dominated
program, F may be smaller than one since during a single
execution, many branches would not be executed. Using (3)
we can write (2) as

dN(t) - K, N (t)
d t F TL .

Here it would be convenient to use a parameter K such that

(4) - -

(5)

Here K is the same as the fault exposure ratio defined by
Musa et al. in [3]. Using this (4) can be rewritten as

dN(t) K
d t TL

-- - - - N (t) .

Equation (5) suggests that K may depend on the program
structure. However, for a program with higher loop domi-
nation, both F and K, would have higher values. This is
because when larger number of loops are executed during a
single execution, the faults associated with looping would have
higher probability of being exposed. Similarly it can be argued
that in a program with higher branch domination, both F and

K, would have lower values. Thus the value of K may not
vary much with the program structure.

It should be noted that the per-fault hazard rate as given in
(6) is K/TL. Thus K (or K,) directly controls the efficiency
of the testing process.

A. Time-Invariant K

equation has the following solution:
If we assume that K is time-invariant, then the above

~ (t) = N(0)e-(K/TL)t. (7)

This may be expressed in amore familiar form as follows:

N (O) - ~ (t) = N (o) (~ - e-t(K/TL)). (8)

The left side of this equation corresponds to p(t) , the mean
value function, as given by (1). Thus the parameters PO and

have the following interpretations:

(9)
K

Po = N (0) and P1 = %.

B. Detectability of Different Faults

Let us assume that the system is subject to possible faults
f1, f2, . . . , f ~ . A randomly selected test may or may not test
for a specific fault fi. Let us define detectability di of a fault
fi in the following way:

di = Prob {a random input tests for fi}. (10)

The detectability of a fault would depend on how frequently
the instructions containing the fault get executed [171, and
the probability that the final output will be affected by the
execution of those instructions. The probability that a random
input will expose fi is

Prob {the input tests for fi and fi is present} = diPf, (t)

where Pj%(t) is the probability that fi is present. If Xi is the
hazard rate -(dPj%/dt) for fault fi, we have

(11)

which has the solution

The overall hazard rate due to all M faults is given by
M . M

Since N (t) is the expected number of faults at time t , we have

(15)
M M

N (t) = x P r o b { f i ispresent at t} = x P j i (t) .

Hence by (6), the overall hazard rate is also given by

i=l i = l

MALAIYA et al.: EXAMINATION OF FAULT EXPOSURE RATIO 1089

Comparing (14) and (16), we get

This suggests that K would in general be a function of
time, unless all di are equal, i.e., all the faults have the
same detectability. Equation (17) states that the overall K is
proportional to the weighted average of di for all faults and
hence K can be regarded as a measure of average detectability
for the software. Using (13) we have

A fault with higher detectability is likely to be exposed and
removed earlier. The faults with lower detectability will remain
causing K (t) to decline with time. This can be verified by
numerically plotting the value of K (t) in (18). If we assume
that all the faults f l , f2 , . . . , f~ exist at time t = 0, then
N (0) = M and the maximum value of K is given by

1 M d .
M F

K(0) = -CA.
i = l

The fault with the smallest value of di controls the minimum
value of K.

where kmin = minll;<M{di} = the detectability of the least
detectable fault. Thus the value of K will range from initial
average of d i / F , as given by (19) and the smallest value of
d i / F , as given by (20). Equation (20) is also true when several
faults with equal values of di have the smallest testability.

In general K (t) is controlled by the detectability profile of
the object under test. The detectability profile (DP) for an
object is defined as

8e-07

K
4e-07

0
1 IO l o~ im;ooo 10000 100000

8e-07

K
4e-07

O U 1 IO l o~ im;ooo 10000 100000

0- 0 25000 yF2z 75000 100000

(b)
Fig. 1. A: variation of h' for Example 1, B: approximation. (a) With

logarithmic time scale. (b) With linear time scale.

of TL is 5 x l o p 2 . Then K (t) can be plotted as shown in Fig.
l(a) and (b); the line marked by A shows K (t) as given by
(18) and the line marked by B shows K (t) as given by (22).
The first uses a logarithmic z-axis; the second uses a linear
scale.

While the above example uses values arbitrarily chosen for
illustration, it shows that K (t) may be regarded approximately
constant for a short duration. It may change by an order of
magnitude if t is sufficiently large. As shown below, such
behavior has indeed been experimentally observed for some
real situations.

Somewhat similar assumptions were used by Nakagawa and
Hanata [12] for their error complexity model. They proposed
a classification of errors into three classes which may be
regarded as an approximation of the detectability profile by
considering only three major components. Their model is
different from other reliability growth models in that it requires
recording not only the number of faults detected but also the
distribution of the detected faults into the three classes.

where rd, is the total number of faults with detectability di .
The DP is arranged such that d l 5 dz 5 ... 5 d,,,, i.e., r d l
denotes the number of faults with least detectability and ?fd,,,

denotes the number of faults with maximum detectability. The
concept of detectability profile was introduced by Malaiya and
Yang [18] and is applicable to both hardware and software.
If the detectability profile is known, then the expected fault
coverage achieved by random (with replacement) or pseudo-
random (without replacement) can be calculated. It can be
shown that at high fault coverage levels only the lowest com-
ponents of the DP (i.e., hardest to test faults) are significant.
The DP of several hardware components has been evaluated.
Adams [19] and Finnelli [20] have given DP's of software
packages. The example below illustrates variation of K (t)
with time.

Example I : Consider a software system containing faults
with detectabilities dl = 0.2 x d2 = 0.2 x
d3 = 2 x d4 = 2 x d5 = 2 x Also assume
that the detectability profile is { 10, 50, 25, 5, 1) and the value

The estimation of the detectability profile is hard for large
combinational logic blocks [21], it would be even harder for
large software systems. However, we have observed that the
general shape of K (t) appears to remain the same for different
detectability profiles. K (t) is a complicated function of time;
however, Fig. l(b) suggests that it may be approximately
modeled as

K (t) = - K (o) where a > 0. (22) 1+a t '

Substitution of (22) into (6) yields

which has the solution

N (t) = N(0)(1 + at)-[K(o)/aTL1. (23)

If a << l/t, the above equation can be approximated by
(7) which describes the exponential model. Because of the

1090 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 11, NOVEMBER 1993

assumed decreasing testing efficiency, N (t) will
cally approach a minimum value. Also, from the
equations we have

asymptoti-
above two

If D (t) denotes the fault density at time t, then D(t) =
N (t) / l s Q Z . and we can express K in terms of fault density
as follows:

Thus if our assumptions at the beginning of this section are
valid, h' should vary with fault density. Then, we can make
the following observations:

If testing is random, the faults get harder and harder to
expose near the end of the test phase.
If inputs are applied randomly during the operational
phase, the remaining faults have less probability of being
encountered than we would have thought.

111. EVIDENCE FROM REAL DATA
If the assumptions stated in the previous section are valid,

K should decline monotonically (neglecting the "noise" that
is always present) as the fault density decline. We now put
this to test using real data sets. The number of useful data sets
is still limited. Still, the observations noted below allow us to
get a better understanding of the debugging process. We will
first examine the variation of K with fault density (or time)
for the same software system. Next, we will look at variation
of K across different software systems.

A. Variation of K for Individual Data Sets
A dynamic test data set can be examined for variation in K

with time or fault density. A grouped data set is of the form
(to , mo), (t l , m l) , . . , (t f , m f) where mi is the total num-
ber of faults detected by time ti. The experimentally obtained
data sets contain considerable noise (short-term randomness),
which must be filtered out by appropriate smoothing.

Ole way of estimating K (t) at different times would be to
divide the data set into several subsets. Curve fitting would
yield values of 01 for different subsets. The values of K (t)
can then be obtained using (5). However, curve fitting with a
limited number of points would lead to inaccurate estimation
of 01 and hence K(t) . The other approach is to use (7). Using
N (t i) and N (t i + l) , K (t) for the duration (ti, ti+l) can be
estimated as

TL K (t) = --

This is the computational approach we have used since we
found that it results in more stable estimates. The group size
must be large enough to filter out the short-term noise. Let us
first consider data set T1 compiled by Musa [3]. This software
system with 21.7 thousand object instructions was found to

K

K

0 10000 20000 000 40000 50000 60000
%me

@)

Fig. 2. Variation of li (normalized) with density and time for data set A
in Table I.

TABLE I
DATA SETS USED FOR STUDY OF K

Faults Initial Instructions

Code)
21.7 136 6.89 min. at 2

Data Set (K Object Detected Density (Est.) Trend

2400
35

5268
180
800

3480
160
4
4
4
4
4

23 1
279
328
101
48 1
535
46
27
24
21
27
27 -

0.11
8.77
0.07
0.62
0.66
0.17
0.32
7.43
6.60
5.78
7.43
7.43

rising
min. at 3

rising
falling
rising
rising
rising

min. at 4
rising

min. at 4
???

rising

contain 136 faults. The collection of these data was carefully
controlled. The overall exponential model parameters have
been calculated as 00 = 142 and 01 = 0.35 x If we take
the CPU instruction execution rate to be 4 x 106/s, the overall
value of K is given by K = 1 . 9 ~ Fig. 2(a) and (b) shows
the variation of K with time and fault density, respectively.
At the points examined, K ranges between 3.6 x and
1.3 x However, values of K , normalized with respect to
its minimum value have been plotted to allow comparison with
other data sets, which also use normalized values of K. Fig.
2(a) shows that K would decline as the fault density falls. Fig.
2(b) shows that K generally declines with time except for the
last two points. Except for the last two points corresponding
to lowest densities, the behavior is in accordance with the
analysis in the previous section. Note that points corresponding
to higher density occur earlier in time. As the discussion below
suggests, the last two points indicate a reversal in the trend.

Let us now examine a few other data sets given in Table I.
While the size is known for all of them, execution rates are
not. This does not present a problem since we are interested
in relative values of K. The variation of normalized values

MALAIYA et al.: EXAMINATION OF FAULT EXPOSURE RATIO 1091

0'
0.1 0.05 0

Density

0.08 0.04 0
Density

observation. The plot of Fig. 3(d) does not show a trend that
can be easily interpreted, while Fig. 3(e) shows a rising trend.

An explanation of this phenomenon can be found by re-

data suggest that at low fault densities, actual testing is
significantly more efficient than random testing. Since there are
only a few faults left, the testers are more likely to examine
the situations which may not have been considered before.
Testing becomes more and more directed. The assumption of
randomness of testing should be regarded as an approximation
which may be valid during the early phases of testing.

0 examining our assumption about testing being random. The
ti 2':pl

9 6 3 0
Density

(b)

Density

(c) (4 B. Deterministic Testing
I I I h 1

"I
"

I 1

0.15 0.1 0.05 0
Density

0.6 0.4 0.2 0
Density

(e) (9

0.25 0.15 0.05
Density

(9
Fig. 3. Variation of K with density. (a) Data set E . (b) Data set 'C. (c) Data

set D. (d) Data set E. (e) Data set F. (9 Data set G . (9) Data set H .

of K with density is plotted in Figs. 3(a)-(g) and 4(a)-(d).
We assume that about 10% of the faults are still present when
testing ends. There exists no accurate way to measure fault
density at very low values. As we are primarily interested in
observing the trend, we have used estimated values of defect
densities.

The plots of Fig. 3 use data from several sources in USA
and Japan. Fig. 3(a), (c), (e), (f) , and (8) shows a rise of K as
fault density declines. For all of these, the initial defect density
is less than 1.0 per thousand object instructions. Figs. 2 and

To see how K would be affected by nonrandomness,
consider deterministic testing when the location of possible
faults is known. Let us also assume that application of each test
has the same likelihood of revealing the presence or absence
of a new fault. In this situation, we can assume

- z -c dN
dt

where C is a constant. Comparing this with (6), we have

(27)
1

K = TL . C . -
N

or

K (D) = -(A). TL . C
Is

Thus K would rise as N falls. The situation assumed for (26)
would be an extreme case. Equation (28) explains why K
would start rising as the extreme situation is approached.

It should be remembered that when we describe the variation
in K , we are examining the process at a very low level of
granularity. We should thus not expect K to vary in a precise
and smooth manner. Some of the peaks and valleys in K
probably occur because of switching to new test suites.

C. K for Different Data Sets
3(b) appear to suggest that K first declines to a minimum
at densities of about 1.9 and 2.5, respectively, and then
starts rising. Fig. 3(d) shows a decline which is a noticeable
exception. These observations seem to suggest the following:

At higher fault density K declines, whereas at lower fault

The change of behavior appears to occur in the vicinity

We have seen that K varies with time as testing progresses.
This suggest that the value of K may depend on the phase as
reflected by the current fault density. It would be interesting
to see if this dependence on fault density is also observed

gives the values of K for
several data sets, as obtained from the table given by Musa
[3]. In order to have a valid comparison we have chosen the

separate Fig.
densities K appears to rise as testing progresses.

of density about 2, although it is likely to vary from z-axis to be the average fault density for all the data sets.
system to system.

Some additional plots are given in Fig. 4(a)-(d). These are
for five Japanese students testing their own compiler project
[27]. Very small software (about 1000 lines) packages are
used. The initial fault density is within the range normally
encountered in industry [3]. For such a small project, we would
not expect to see a specific trend. It is interesting to note that
Fig. 3(a), (b), and (c) do show a specific trend. The value of
K is stable or declines slightly until a density of about 3 to 4
and then it starts rising. This is consistent with out previous

Fig. 5 suggests that K declines with declining fault density
until a DK,," of about 2, and then it rises sharply as density
approaches zero. On a preliminary examination, one might
regard the isolated data point on the left-hand side or the two
points with K greater than 8 to be outliers. However, based
on the preceding discussion these points can be regarded as
representing the expected behavior. This is supported by the
discussion in the next section. Note that K may also depend
on program evolution and the use of the operational profile. It
would require further study to quantify this dependence.

I I

1092 IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. 19, NO. 11, NOVEMBER 1993

[Q-++&‘@

8 6 4 2 0

Density

0 I

(a)

8 6 4 2 0

Density

(4

6 4 2 0

Density

(b)

5 4 3 2 1 0

Density

(4

8 6 4 2 0

Density

(e)

Fig. 4. Variation of K with density for five variations of the same project. (a) Data set I . (b) Data set J . (c) Data set K
(d) Data set L. (e) Data set A4.

IiO 0 0 4
K 0.5

n
20 15 IO 5 0

Density

Computed values of K for the logarithmic model. Fig. 6.

Fig. 5. Scatterplot of K versus density for different projects as given by
Musa et al. This corresponds to the logarithmic model

P (t) = Po In (1 + Plt) (32)

where p(t) is the mean value function. The parameters have
the

IV. A MODEL INCLUDING BOTH EFFECTS

In the above discussion we have identified two factors
affecting K. Because faults get harder to find, (22) suggests
that K should decline in accordance with a factor 1/(1+ at).
On the other hand, (27) suggests that K should rise as it is
proportional to 1 / N , because effectiveness of testing increases
as compared with random testing. It would be interesting to
hypothesize that the behavior of K actually is given as a
product of two factors, i.e.,

correspondence:

P o = = = aTL
, and PI = a. (33)

It has been shown [15] that the logarithmic model works better
than other two-parameter models. The result has been shown
to be statistically significant. If we assume that a debugging
process for a system with N (0) = 200 is exactly described
by a logarithmic model with Po = 60 and = 1, we can
calculate the values of K at different densities. The values are
plotted in Fig. 6. It shows a remarkable resemblance to Fig.

9 K(O)N(O)

(29) K (t) =
N (t) (l + a t)

where
g = K(O)N(O). Substituting (29) into (6), we get

is a parameter. It can be Seen that the parameter 5. Here it should be noted that the parameter “a” introduced
in (22) depends on the detectability profile. If this parameter
can be estimated a priori, both PO and 01 can be estimated,

which has a solution

9
aTL

N = N (0) - -In (1 + at).

provided both K(0) and N (0) can be empirically obtained
[28]. Empirical estimation of the parameter “a” remains an
important problem.

(30)

V. CONCLUSION
The above examination of real data, along with mathemat-

K represents the average detectability of the software

Rearranging terms, we get ical analysis, suggests the following hypotheses:
9

aTL (31) N (0) - N = -In (1 + at).
under the test strategy being used.

,

MALAIYA et al.: EXAMINATION OF FAULT EXPOSURE RATIO

At higher fault densities, the value of K would sometimes
fall as testing progresses. This is because faults with
high detectability are found earlier and thus the remaining
faults get harder and harder to find.
At lower densities, the effective value of K starts to rise.
This is caused by the fact that at this density range, testing
is more efficient than what the assumption of random
testing implies.

In the data sets examined, DK,,,,” appears to be in the
region of 2-4 faults/1000 object instructions (Le., about
&16/KSLOC). As some of the plots of Fig. 4 suggest, a
decreasing K may never be observed, suggesting that the
second factor (28) may dominate from the beginning. It
probably depends on the testing approach used. Additional
data sets need to be examined to validate the hypothesis
suggested and to arrive at an accurate model for K (D)
in the two regions. A preliminary model is suggested here
in the form of equations (22) and (27). Taken together
they may provide an explanation for why the logarithmic
model works better. If the hypothesis is indeed valid, it
has major consequences for both ordinary and ultra-reliable
software.

Some reliability growth models must be switched [15] or
corrected when the fault density falls below DK,,,;”. This
would not be needed for the logarithmic model, which is
a significant advantage.
The reliability growth models [29] generally assume
random testing. As (6) and (7) suggest, the fault detection
rate drops exponentially and thus random testing would
be very inefficient near the end of testing. However,
our observations suggest, as given by (30), that the
fault detection rate drops only according to an inverse
linear relationship. This is the behavior modeled by the
logarithmic model

dP POP1 A = - = -
dt 1 + P i t ’

Thus lower fault densities are more easily achievable than
assumed under random testing.
If we assume that during the operational phase, the
inputs are effectively random choices from the operational
profile, then the probability of faults with low densities
being exposed would be significantly less than during
testing. In other words, the last phases of testing may
represent a highly accelerated form of exercising than
during actual operation.

The last observation arises from the fact that if inputs are
indeed random, then even at low-fault densities, K would be
low in accordance with (18).

ACKNOWLEDGMENT

The authors wish to thank N. Li for his assistance in this
paper. They also wish to thank Prof. Tohma for providing
them with some of his technical reports. They are grateful to

1093

J. D. Musa and other anonymous reviewers for their detailed
comments which greatly improved the presentation.

REFERENCES

N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Using neural networks
in reliability prediction,” IEEE Software, vol. 9, no. 4, pp. 53-59, July
1992.
C. V. Ramamoorthy and F. B. Bastani, “Software reliability: Status and
perspectives,” IEEE Trans. Software Eng., vol. SE-8, no. 4, pp. 354-371,
Apr. 1982.
A. Iannino, J. D. Musa, and K. Okumoto, Software Reliability: Mea-
surement, Prediction and Application. New York: McGraw-Hill, 1987.
G. A. Krueger, “Validation and further application of software reliability
growth models,” Hewlen Packard J., pp. 75-79, Apr. 1989.
M. Takahashi and Y. Kamayachi, “An empirical study of a model for
program error prediction,” in Proc. 8th Int. IEEE Conf on Sofrware
Engineering, pp. 33G336, Aug. 1985.
T. M. Khosgoftar and J. C. Munson, “Predicting software development
errors using software complexity metrics,” IEEE J. Selected Areas in
Communication, vol. 8, no. 2, pp. 253-264, Feb. 1990.
Y. K. Malaiya and P. K. Verma, “Testability profile and approach to
software reliability,” in M. H. Hamza, Ed., Advances in Reliability and
Quality Control. Acta Press, Dec. 1988, pp. 67-71.
J. D. Musa, “Rationale for fault exposure ratio K,” Software Eng. Notes,
vol. 16, no. 3, pp. 78-79, 1991.
A. von Mayrhauser and J. A. Teresinki, “The effects of static code
metrics toon dynamic software reliability models,” in Proc. Symp. on
Software Reliability Engineering, pp. 19.1-19.13, Apr. 1990.
J. M. Keables, “Program structure and dynamic models in software
reliability: investigation in a simulated environment,” Ph.D. dissertation,
Illinois Institute of Technology, 1991.
B. Littlewood, “A Bayesian differential debugging model for software
reliability,’’ in Proc. COMPSAC, Oct. 1980, pp. 511-517.
Y. Nakagawa and S. Hanata, “An error complexity model for software
reliability measurement,” in Proc. Int. Conf on Software Engineering,
1989, pp. 23G235.
A. von Mayrhauser and J. M. Keables, “A data collection environment
for software reliability research,” in Proc. Int. Symp. on Software
Reliability Engineering, 1991, pp. 9S105.
Y. K. Malaiya, A. von Mayrhauser, and P. K. Srimani, “The nature
of fault exposure ratio,” in Proc. Int. Symp. on Software Reliability
Engineering (Raleigh, NC, Oct. 1992), pp. 23-32.
Y. K. Malaiya, N. Karunanithi, and P. Verma, “Predictability of software
reliability models,” IEEE Trans. Reliab., vol. 41, no. 4, pp. 539-546,
Dec. 1992.
M. Ohba and X. M. Chou, “Does imperfect debugging affect software
reliability growth,” in Proc. Int. Conf on Software Engineering, 1989,
pp. 23&235.
W. W. Everett, “An extended execution time software reliability model,”
in Proc. Int. Symp. on Software Reliability Engineering (Raleigh, NC,
Oct. 1992), pp. 4-13.
Y. K. Malaiya and S. Yang, “The coverage problem for random testing,”
in Proc. Int. Test Conf, Oct. 1984, pp. 237-242.
E. A. Adams, “Optimizing preventing service to software systems,” IBM
J . Res. Devel., vol. 28, pp. 2-14, Jan. 1984.
G. B. Finnelli, “Results of software error-data experiments,” in Proc
AIAA AHS ASEE Aircrafr Design, Systems and Operations Conf, Sept.

P. G . Ryan and W. K. Fuchs, “Partial detectability profiles, in Proc. Int.
Conf on CAD, Nov. 1990.
P. M. Misra, “Software reliability analysis,” IBM Syst. J., vol. 22, pp.
262-270, Mar. 1983.
M. Ohba, “Software reliability analysis models,” IBM J. Res. Devel.,
vol. 28, pp. 428-143, July 1984.
N. D. Singpurwalla and R. Soyer, “Assessing software reliability growth
using a random coefficient autoregressive process and its ramifications,”
IEEE Trans. Software Eng., vol. SE-11, pp. 145&1464, Dec. 1985.
Y. Tohma, “Structural approach to the estimations of the number of
residual software fault based on hypergeometric distribution,” IEEE
Trans. Software Eng., vol. 15, pp. 345-355, Mar. 1989.
-, “Parameter estimation of the hypergeometric distribution model
for real test/debug data,” Tech. Rep. TR 90 1002, Tokyo Institute of
Technology, Dep. Computer Sci., 1990.
M. Matsumoto, K. Inoue, and K. Tori, “Experimental evaluation of
software reliability models,” in Proc. IEEE Fault Tolerant Computing
Sumposium (FTCS-18), June 1988, pp. 148-153.

1988, pp. 1-5.

1094 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 11, NOVEMBER 1993

[28] L. Naixing and Y. K. Malaiya, “Empirical estimation of fault exposure
ratio,” Tech. Rep., Dep. Computer Sci., Colorado State Univ., 1993.

[29] Y. K. Malaiya and P. K. Srimani, Eds., Software Reliability Models: The-
oretical Developments, Evaluation and Applications. IEEE Computer
Society Press, Dec. 1990.

Yashwan K. Malaiya (S’76M’7%SM’89) re-
ceived the B.Sc. degree from the Government
Degree College, Damoh, India, the M.Sc. degree
from the University of Sangor, Sangor, India, and
the M.Sc. Tech. degree from BITS, Pilani, India.
In 1978 he received the Ph.D. degree in electrical
engineering from Utah State University, Salt Lake
City.

He was with the State University of New York,
Binghamton, from 1978 to 1982. He is a Professor
in the ComDuter Science Deoartment and also in

the Electrical Engineering Department at Colorado State University, Ft.
Collins. He has published widely in the areas of fault modeling, software and
hardware reliability, testing, and testable design. He has also been a Consultant
to industry. He was a General Chair of the 24th International Symposium
on Microarchitecture and the 6th International Conference on VLSI Design.
He is the General Chair of the 4th International Symposium on Software
Reliability Engineering. He has been the Chair of TC on Microprogramming
and Microarchitecture. He is the Chair of the Software Test Subcommittee of
T I T C and a Vice-Chair of the TCSE Subcommittee on Software Reliability
Engineering.

Dr. Malaiya is a Member of the IEEE Computer Society TAB Executive
Committee, and a member of the IEEE Computer Society Awards Committee.
He has co-edited the IEEE Computer Society technical series books Software
Reliability Models, Theoretical Developments, Evaluation and Applications
and Bridging Faults and IDDQ Testing. He was a Guest Editor of special
issues of IEEE Sofiware and IEEE Design and Test.

Anneliese von Mayrhauser (M’93) received the
Dipl. Inf. degree in Informatik from Technische
Universitat Karlsruhe, and the M.A. as well as Ph.D.
degrees in computer science, from Duke University,
Durham, NC.

She was with Illinois Institute of Technology,
Chicago, and in 1991 joined Colorado State Uni-
versity, Ft. Collins, where she is now an Associate
Professor on Computer Science. She is the author
of Sofrware Engineering: Methods and Management
and of more than 60 conference and journal articles.

She also works in industry on selective consulting projects.
Currently the second Vice President of IEEE Computer Society, Confer-

ences and Tutorials, and a member of the Board of Governors, Dr. von
Mayrhauser has recently been the Chair of TC on Software Engineering.
She has been actively involved in several IEEE Computer Society activities.
She was the General Chair of the 2nd International Symposium on Software
Reliability Engineering, a Program Chair of the IEEE Computer Society
International Software Metrics Symposium, and of the 4th International
Symposium on Software Reliability Engineering.

Pradip K. Srimani (M’87SM’90) received the
B.Sc. degree in physics, the B. Tech., as well as the
M. Tech. degrees in radiophysics and electronics,
and the Ph.D. degree in computer science, all from
the University of Calcutta, Calcutta, India, in 1970,
1973, 1975, and 1978, respectively.

He has served on the faculty of the Indian Statisti-
cal Institute, Calcutta, Gesselschaft fur Mathematik
und Datenverarbeitung, Bonn, Germany, The Indian
Institute of Management, Calcutta, and Southern
Illinois University, Carbondale. Currently, he is a

Professor of Computer Science at the Colorado State University, Ft. Collins.
His research interests include reliable systems, parallel algorithms, fault-
tolerant computing, networks, and graph theory applications. He is a member
of the Editorial Board of International Journal of Simulation.

Dr. Srimani is currently the Associate Editor-in-Chief of IEEE Computer
Society Press, and is a member of the Editorial Board of IEEE SOFIWARE
MAGAZINE. He is a Vice-Chair for Tutorials of the IEEE Computer Society
CT Board. He is a member of ACM.

