
Timing Analysis for Fixed Priority Scheduling
of Hard Real-Time Systems

1Michael Gonzalez Harbour
Departmento de Electronica
Universidad de Cantabria
39005 - Santander, Spain

2Mark H. Klein
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

3John P. Lehoczky
Department of Statistics

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper considers the problem of timing analysis for a quite general hard real-time periodic task set on a

uniprocessor using fixed priority methods. Periodic tasks are decomposed into serially executed subtasks, where

each subtask is characterized by an execution time, a fixed priority, and a deadline. A method for determining the

schedulability of each task is presented along with its theoretical underpinnings. This method can be used to

analyze the schedulability of complex task sets which involve interrupts, certain synchronization protocols, non-

preemptible sections, certain precedence constraints, and, in general, any mechanism that contributes to a complex

priority structure. The method is illustrated with a realistic example.

1Michael Gonzalez Harbour’s research is sponsored in part by the Direccion General de Investigacion Cientifica y
Tecnica of the Spanish Government.

2Mark Klein’s research at the Software Engineering Institute is sponsored by the U.S. Department of Defense.

3John Lehoczky’s research is sponsored in part by the Office of Naval Research under contract number
N0014-84-K-0734, in part by the Naval Ocean Systems Center under contract N66001-87-C-0155, and in part by
the Federal Systems Division of IBM Corporation under University Agreement Y-278067.

1 Introduction
Timing behavior is important to all computing systems. However, the criticalness of timing behavior for real-time

systems and the difficulty in understanding, predicting and controlling their timing behavior has distinguished these
systems. As real-time systems grow in size and complexity, it is becoming increasingly important to manage timing
complexity throughout the life of a system; from timing requirement specification, through design, development and
testing and after deployment. Thus it has become very important to develop models and theory that can be used to
reason about the behavior of real-time systems. In particular, fixed priority scheduling theory is proving to be a
means for developing a sound theoretical foundation for analyzing the timing behavior of systems and designing
systems that are amenable to such analysis. This paper builds on previous work and extends the domain of
analyzable real-time systems to cover an important class of systems; namely message passing systems that use fixed
priority preemptive scheduling.

A theoretical treatment of fixed priority scheduling first appeared in 1973 when Liu and Layland [8] introduced
the rate monotonic scheduling algorithm for independent periodic tasks. They proved the optimality (for fixed
priority scheduling) of a rate monotonic priority assignment for the case where task deadlines are coincident with the
end of a task’s period. They also derived a sufficient condition for the schedulability of task sets that use a rate
monotonic priority assignment. Leung and Whitehead [7] later showed the optimality of the deadline monotonic

priority assignment for the case where periodic tasks have deadlines that are at or before the end of their periods.

Fixed priority scheduling theory has received renewed consideration over the last five years. A collection of
results has been developed that is proving to be very useful and is gaining popularity as a basis for reasoning about
the timing behavior of real-time systems. These results are summarized by Sha, Klein, and Goodenough [15], Sha
and Goodenough [12] and Lehoczky, et al. [6]. Aperiodic task scheduling has been treated in [16], synchronization
requirements treated in [9, 10, 14], and mode change requirements treated in [11]. In addition, hardware scheduling
support has been treated in [4, 13], implications for Ada scheduling rules discussed in [2], and schedulability
analysis of input/output paradigms discussed in [3].

All of this work lays the foundation for considering a more general class of problems where logical threads of
execution are not constrained to execute at a single priority level. There are many existing systems in which the
original problem naturally maps onto a software architecture consisting of multiple tasks that respond to and
generate events using a message passing or signal/wait paradigm. Each of these tasks is assigned a priority based
upon a deadline or semantic importance. In these systems it is possible to identify execution sequences composed of
several processing steps in a specific order at varying priority levels.

Even in cases where one strives to use a fixed priority assignment for periodic tasks, the task dispatching
mechanism may violate this premise since periodic tasks are generally initiated by clock interrupt service routines,
which usually execute at a priority level different from the task. Borger, Klein, and Veltre [1] present a
schedulability analysis that considers the effects of task dispatching. The basic inheritance protocols also change
execution priority as necessary. Sha and Goodenough [12] discuss a mechanism for emulating the priority ceiling
protocol by setting the priority of a server task to be one level higher than the priority of all of the server’s clients.
This represents another instance of varying priorities. It is not uncommon for operating systems to ensure internal
consistency by disabling interrupts for short periods of time, effectively creating small intervals of
nonpreemptibility, which need to be considered when analyzing the timing behavior of a system.

This paper generalizes the fixed priority analysis methods by offering a framework for reasoning about timing
behavior in the context of varying execution priority. The analytic framework includes the ability to analyze
systems with varying execution priorities, synchronization requirements, some kinds of precedence constraints, and
periodic and sporadic tasks. The remainder of this section presents a formal framework that defines the problem and

2

discusses a difficulty that arises when task priorities vary.

This paper is organized as follows. Section 2 presents an algorithm and schedulability equations for checking
task set schedulability. Section 3 introduces a simple but realistic real-time robotics application and illustrates how
one uses the schedulability equations presented in Section 2. Section 4 proves the method’s correctness, further
generalizes the formal framework and discusses subtask priority assignment. Section 5 offers our conclusions.

1.1 The Framework
We assume there are n periodic tasks denoted by τ ,...,τ . Each periodic task τ has a total computation1 n i

requirement (C), a period (T), and a deadline (D). The computation requirement must be completed by thei i i
deadline or a timing fault occurs. In this paper, we assume that each periodic task may be composed of distinct
subtasks, each of which may have its own timing requirement. Thus, τ consists of subtasks τ ,...,τ . Each ofi i1 im(i)
these subtasks is characterized by a set of parameters. In particular, τ is characterized by (C , D , P) where:ij ij ij ij

• C = worst-case computation requirement of τ ,ij ij

• D = deadline of τ relative to the arrival time of task τ , taking 0 to be this arrival time,ij ij i

• P = fixed priority level of τ .ij ij

We assume that 0 ≤ D ≤ . . . ≤ D = D , and we allow either D ≤ T , or D > T . The sum of thei1 im(i) i im(i) i im(i) i
execution times associated with each subtask of task τ equals C . Each activation of a periodic task generates ani i
instance of task execution called a job of that task.

Using this framework, we wish to derive a set of equations by which we can determine if all of the timing
requirements of all of these tasks will be met under all possible phasings. We make the following assumptions
concerning the execution behavior of any single task:

Assumption 1: Subtasks executing at a given priority level can be preempted by any subtask of higher priority.

Assumption 2: Tasks do not suspend themselves at any instant between their activation and their completion.

st thAssumption 3: The (k+1) job of τ will not execute until the k job of τ has been completed. Furthermore, anyi i
subtask τ is not ready for execution until subtasks τ , 1 ≤ r < j have been completed.ij ir

4Assumption 4: The time required to perform task scheduling, context swapping, and other overhead is ignored.

There are situations, especially involving interrupts, in which one would want to modify Assumption 3 to allow
early subtasks of a later job to interrupt unfinished later subtasks of an earlier job. The analysis given in Section 4
can be modified to handle this case, but we develop the theory specifically for Assumption 3.

To determine the schedulability of a task τ , we will apply a transformation to its priority structure to derive itsi
canonical form.

Definition 1: A task is said to be in canonical form if it consists of consecutive subtasks that do not
decrease in priority. The canonical form of a task τ is another task, τ′, that is obtained by applying thei i
following algorithm where P′ denotes the priority of subtask τ′ .ij ij

4This assumption can be relaxed by introducing the context switch times into the execution times of each task, using a technique similar to that
discussed in [1].

3

P′ = Pim(i) im(i)

for l = m(i) downto 2
if P′ < P then P′ = P′il il−1 il−1 il
else P′ = Pil−1 il−1

end;

After applying the algorithm, consecutive subtasks of the transformed task with equal priority can be
combined into a single subtask, if their deadlines are the same.

We will prove in Section 4 that the completion time of a task τ and the completion time of its canonical form τ′i i
are the same. The canonical form has the advantage of being simpler for the purpose of understanding the worst-case
phasing and performing the schedulability analysis.

1.2 A Difficulty
The possibility that a task’s deadline, D , exceeds its period, T , requires one to check more than just theim(i) i

deadline of the first job of a particular task. As shown in [5], all deadlines in a particular time interval called a busy
period must be checked. Suppose, however, that D ≤ T , 1 ≤ i ≤ n, so that a job of task τ must be completedim(i) i i
before the next job of τ is ready (assuming task deadlines are met). Consequently, earlier jobs of τ do not competei i
with later jobs, and it would seem that one could follow a standard Liu and Layland approach, namely constructing a
worst-case phasing of all other tasks and checking that the first job of τ meets its deadline. The difficulty with thisi
reasoning is that it overlooks another way in which earlier jobs of τ can influence later jobs. If an early subtask ofi
τ , say τ , has a relatively low priority, P , while a later subtask, τ , p < r, has a relatively high priority, P < P ,i ip ip ir ip ir
then τ can delay a medium priority subtask τ , k ≠ i where P < P < P . This delay in τ creates anir kq ip kq ir kq
intermediate phasing which cannot be created as an initial phasing and which can lead to longer response times for
the next job of subtask τ . Consider the following example.ip

Example: Let n=2, where task τ has one subtask given by C = 4, D = 10, and T = 10. Task τ has period1 11 11 1 2
T = 14 and two subtasks characterized by C = 6, D = 14, and C = 2, D = 14. Suppose further that2 21 21 22 22
P < P < P .21 11 22

1 0 2 0 3 0 4 0

1 4 2 8 4 2

0

0

τ1

τ2

1 2 1 4

Low

Medium

High

Legend

P2 1

P1 1

P2 2

Figure 1: Considering the First Job is Not Sufficient

Under the traditional (Liu and Layland) worst-case phasing shown in Figure 1, the longest response time for τ is22
given by 14 for the second job of τ , whereas the first job has a response time of 12. Thus, the longest response time2

4

of this task is associated with its second job rather than the first. The cause of this phenomenon is the high priority
accorded to τ which delays the start of the second job of τ . This, in turn, creates the long response times for the22 1
subtasks of τ . Note that had τ not been divided into two parts, but had been given its rate monotonic priority, then2 i
the task set would not be schedulable. We will return to this point in Section 4.11.

1.3 Busy Period
The above example shows that one may need to check the deadlines of more than one job of a particular task.

The criterion for which deadlines need to be checked is based on the concept of a busy period. The concept of a
busy period is well known in queuing theory and was first introduced in real-time scheduling by Lehoczky [5];
however, we need to modify this concept slightly to accommodate the fact that a single task may have subtasks with
different priorities. Let P = min(P , 1 ≤ j ≤ m(i)) denote the minimum priority level of all of the subtasks of task τ .i ij i

Definition 2: A τ -idle instant is any time t such that all work of priority P or higher started before ti i
and all τ jobs also started before t have completed at or before t.i

Definition 3: A τ -busy period is an interval of time [A,B] such that both A and B are τ -idle instants andi i
there is no time t∈(A,B) such that t is a τ -idle instant.i

Intuitively, a τ -busy period is a time interval during which the processor is continuously processing at priorityi
level P or higher. It is also "self-contained" in the sense that any job of task τ that is started during the busy periodi i
is also completed during the busy period. Moreover, all work of priority level P or higher which is ready at somei
time during the busy period is also finished by the end of the busy period.

2 A Method for Determining Schedulability
This section describes a procedure for determining the schedulability of a task set of the general form described in

the previous section. We will assume that we are analyzing a single task in the task set, and the method used can be
subsequently applied to all of the other tasks.

2.1 Final Deadline
First, we will focus on the task’s final deadline. Our goal is to determine if task τ will meet its final deadline.i

The general strategy is very similar to that used by Liu and Layland [8] and Lehoczky [5]. One must first find the
phasing of the other tasks relative to task τ that results in a critical instant for task τ . A critical instant is a point ini i
time such that if task τ is activated at that point, its completion time will be the longest. In order to determine thei
critical instant phasing, we will first divide the other n-1 tasks into several groups.

2.1.1 Task Groups: Tasks are placed into groups based upon the priorities of their subtasks relative to τ . A keyi
criterion is the priority of the first subtask relative to the minimum priority of all subtasks of task τ . For example, ai
task that starts with a high-priority subtask will eventually be able to preempt the subtask of task τ with thei
minimum priority. On the other hand, a task that starts with a lower priority subtask will never have this
opportunity. Since the task groupings are relative to the priority structure of task τ , the groups will vary as ai
function of the task being analyzed.

Recall that P = min(P , 1 ≤ j ≤ m(i)) denotes the minimum priority of all of the subtasks of task τ . We refer to ai ij i
sequence of consecutive subtasks as a segment. An H segment comprises a sequence of consecutive subtasks, each
of which has a priority equal to or greater than P . Note that this is a possibly pessimistic treatment of equal priorityi
subtasks, allowing for a worst-case analysis and thus covers all scheduling policies for handling equal priorities.
Similarly, an L segment refers to any set of consecutive subtasks, each of which has priority strictly less than P . Ini
the following description of task types, a "+" denotes one or more patterns. A "0" denotes zero or one patterns. An
effect due to preemption by a high priority first segment will be referred to as a preemption effect. An effect due to
a high-priority segment that occurs after a low-priority segment will be referred to as a blocking effect. Figure 1
shows preemption effects of τ over τ at times t=0, t=12, t=20, and t=30; a blocking effect of τ on τ is shown at1 2 2 1

5

time t=10.

The five types of tasks are:

• Type 1 (H) tasks may be able to preempt task τ more than once per τ -busy period. Each task in thisi i
group is used to determine the worst-case completion time for task τ .i

+• Type 2 ((HL)) tasks are such that each high-priority segment is followed by a low-priority segment.
Consequently, each task in this set can preempt task τ only once per τ -busy period because thei i
low-priority segments will have to wait until the busy period is complete before they can execute.
Depending on types 3 and 4, one task in this set may be used for its blocking effect rather than its
preemption effect.

+• Type 3 ((HL) H) differ from the previous type in that they end with a high-priority segment. In
general these tasks are treated like tasks of type 2. However, under special circumstances (described
below) one task may exhibit both a preemption effect and a blocking effect.

+ 0• Type 4 ((LH) L) tasks are solely blocking tasks. Moreover, at most one task in this group can
contribute a blocking effect.

• Type 5 (L) tasks have no effect on the completion time of task τ and thus can be ignored.i

2.1.2 Schedulability Equations: In this section a step-by-step procedure is described for determining if tasks can
meet their final deadlines. The procedure entails methodically identifying blocking effects and preemption effects,
and constructing equations that account for how these effects contribute to the completion time of task τ .i

We will assume throughout this section that task τ has been transformed to canonical form and that adjacenti
subtasks of equal priority have been compressed into a single subtask. This results in a task where each subtask has
a priority strictly higher than its predecessor. The rest of the tasks remain unchanged.

The procedure determines the completion time of the first subtask of the transformed canonical form. It then
st thiteratively determines the completion of the (j+1) subtask as a function of the j subtask until the completion time

of the final subtask has been determined. This is performed for every job in the τ -busy period.i

Some notation is needed prior to discussing the procedure. Let MP denote the set of tasks that can have moreij
than one preemptive effect relative to the priority of the subtask τ . Recall that P = min(P , 1 ≤ j ≤ m(p)).ij p pj

MP = { τ | p ≠i ∧ P ≥ P }ij p p ij

For example, since τ is assumed to be in canonical form, MP is simply the set of type 1 tasks for τ . Since thei i1 i
priority of the second subtask of the canonical form is greater than the first, not all of the tasks that are multiply
preemptive (i.e., can preempt more than once during a task τ -busy period) relative to τ will continue to be multiplyi i1
preemptive during the execution of the second subtask. Consider the example in Figure 1. Task 1 is multiply
preemptive until task 2 enters its second subtask; then task 1 can no longer preempt.

Let SP be the set of singly preemptive tasks relative to τ . Furthermore, given a task τ ∈ SP , let h(p,i,j) denoteij ij p ij
the number of subtasks that comprise the initial H segment of task τ , p≠i, relative to subtask τ , wherep ij

h(p,i,j) = (h | p≠i ∧ (P ,...,P ≥ P) ∧ (P < P))p1 ph ij ph+1 ij

The execution time associated with the leading H segment of one of these tasks is denoted as:
h(p,i,j)

h(p,i,j)
C = C∑ pkp

k=1

h h(p,i,j)
In the context of a task τ and a subtask τ , h will serve as notational shorthand for h(p,i,j) and C for C .p ij p p

6

The stepwise procedure for determining if task τ can meet its final deadline follows.i

Step 1: Find the worst-case phasing for the other n-1 tasks.

In this step tasks other than τ are placed into the groups defined in the previous section, MP and SP arei i1 i1
determined, and then the blocking term, B , is identified.i

1. Let MP be the set of type 1 tasks for τ and set SP to the union of type 2 and type 3 tasks.i1i1 i
′2. Determine the longest H segment of the type 4 tasks. Denote the length of this as B .

3. For each type 2 and 3 task, denote the length of the longest inner blocking H segment (if any) as U, the
final blocking H segment (if any) as V, and the initial H segment as W. If there is no inner blocking
segment then set U=0. If there is no final blocking segment then set V=0.

′ ′Calculate max(U-W-B , V-B) for each task and choose the task with the largest value (let τ be thism
′task). If this value is negative then B =B . If this value is positive then a new blocking term must bei

computed. We must determine if the blocking term will be from the inner segment or the final
segment of task τ . If U-W > V, then set B =U and remove task τ from SP ; otherwise set B =V andm i m i1 i
τ remains in SP .m i1

Step 2: Determine how many jobs of task τ must be checked.i
1. The length of the task-τ busy period is:i

h
L = min(t > 0 | B + t/T C + C + t/T C = t)∑ ∑i i p p i ip

τ ∈ MP τ ∈ SPp i1 p i1

The length of the τ -busy period is determined by considering processing contributed by:i
• the blocking term,
• the multiply preemptive tasks (relative to the first subtask),
• the singly preemptive tasks (relative to the first subtask), and
• complete jobs of τ .i

The idea is to look for the minimum time t, such that all work of priority P or higher initiated in thei
interval [0,t] is completed at time t. Notice that multiply preemptive tasks and τ may contributei
processing more than once during the τ -busy period, and the blocking term and singly preemptivei
tasks contribute exactly once during this busy period.

2. The number of jobs of τ in the busy period is:i

N = L /T i i i

Step 3: Check the completion time of each of the N jobs in the τ -busy period.i i
th1. The completion time of the first subtask of the k job of task τ is represented by E (k).i i1

h
E (k) = min(t > 0 | B + t/T C + C + (k−1)C + C = t)∑ ∑i1 i p p i i1p

τ ∈ MP τ ∈ SPp i1 p i1

To understand this equation, consider as an example the first subtask of the first job in canonical form.
Under worst-case phasing, the completion of this subtask is impacted by the blocking term, all higher
priority processing that is initiated at the same instant and the execution time of the subtask itself. The
right side of the equation represents the first point in time t, where all of the processing initiated by
multiply preemptive and single preemptive tasks in the interval [0,t], the processing associated with
the blocking term, and the processing associated with the subtask itself has been completed.

th2. Given the completion time of the first subtask of the k job, it is possible to calculate the completion
thof the second subtask of the k job. The first step in this calculation is to insert the correct elements

into the set SP . Insert into SP those tasks that were multiply preemptive relative to subtask τ , buti2 i2 i1
due to the higher priority of τ , are singly preemptive relative to τ .i2 i2

7

SP = {τ | τ ∈ (MP −MP) ∧i2 p i1 i2p

(∃l | (P ,...,P ≥ P) ∧ (P < P)) }p1 pl i2 pl+1 i2

SP is constructed by first selecting those tasks from MP that may have become singly preemptive.i2 i1
This is accomplished via the set subtraction in the equation. Secondly, one must ensure that each of
the selected tasks is actually a singly preemptive task relative to τ . This is accomplished by makingi2
sure that there exists a leading segment that has a priority greater or equal to P . Notice that tasks ini2
SP are not included in SP . This is because these tasks only preempt once during a τ -busy periodi1 i2 i
and this single preemption has already been accounted for in the calculation of E .i1

3. Using the completion time of the first subtask and sets SP and MP , the completion time of thei2 i2
second segment is:

E (k) = min(t > 0 | E (k) +i2 i1

[t/T  − E (k)/T ]C +∑ p i1 p p
τ ∈ MPp i2

h
min(1, [t/T  − E (k)/T ]) C + C = t)∑ p i1 p i2p

τ ∈ SPp i2

The equation uses the completion time of the first subtask (in canonical form) as the starting point for
calculating the completion time of the second subtask. The first summation represents the multiply
preemptive processing initiated by tasks after the completion of the first subtask. The second
summation represents the singly preemptive processing initiated by tasks after the completion of the
first subtask. The "min" function within the second summation ensures that singly preemptive tasks
can have at most one preemption effect on the remainder of the job. The execution time of the second
subtask is then added in.

th th4. In general, given the completion time of the j subtask of the k job, it is possible to calculate the
st thcompletion of the (j+1) subtask of the k job.

Once again we must first insert the proper elements into the set SP .ij+1

SP′ = {τ | τ ∈ SP ∧ij+1 ijp p

(E (k)/T  − E (k)/T ) = 0 ∧ij p ij−1 p

(∃l | (P ,...,P ≥ P) ∧ (P < P))}p1 pl ij+1 pl+1 ij+1

SP′ is the set of singly preemptive tasks relative to P that have not yet exhibited their singlyij+1 ij
preemptive effect and are also singly preemptive relative to P , andij+1

SP′′ = {τ | τ ∈ (MP −MP) ∧ij+1 p ij ij+1p

(∃l | (P ,...,P ≥ P) ∧ (P < P)) }p1 pl ij+1 pl+1 ij+1

SP′′ is the set of multiply preemptive tasks relative to P that are singly preemptive relative to P .ij+1 ij ij+1
The set SP is the union of the above two sets.ij+1

SP = SP′ ∪ SP′′ij+1 ij+1 ij+1

The calculation for E (k) is:ij+1

E (k) = min(t > 0 | E (k) +ij+1 ij

[t/T  − E (k)/T ]C +∑ p ij p p
τ ∈ MPp ij+1

h
min(1, [t/T  − E (k)/T ])C + C = t)∑ p ij p ij+1p

τ ∈ SPp ij+1

All jobs of task τ will meet their deadlines if the following condition is satisfied.i

8

max((k−1)T + D − E (k)) ≥ 0 for k ≤ Ni i im(i) i

2.2 Deadlines for Other Subtasks
The analysis of the other subtasks is very similar (and in some cases identical) to the analysis of the final subtask.

The only difference is in the analysis of the first job. Assume that subtask τ is to be analyzed, where j ≠ m(i). Letij
P (j) = min(P , 1 ≤ k ≤ j). Special analysis of the first job of τ is necessary only if P (j) > P .i ik ij i i

If the special analysis is needed, then truncate task τ after subtask τ and use the algorithm for converting a taski ij
to canonical form on this truncated task. Determine task groupings for the truncated task and apply the stepwise
method from the previous section. The schedulability test for the first job of subtask τ is: D − E (1) ≥ 0ij ij ij

3 Applying the Method to an Example

3.1 Problem Description
We will use an example developed from a real-time robotics application to illustrate the utility of the theory

developed in this paper and how to perform a schedulability analysis using the method described in the previous
section. This example is derived from a real robot system that measures the shape of pipes inside a nuclear reactor,
by moving around them and using a distance sensor. The task set corresponding to this system has been simplified to
reflect only the important activities relevant to our analysis, and the numbers used are not exact, although they
approximate the real magnitudes. With no loss of generality, we will consider all tasks to be periodic, by using a
worst-case arrival assumption for those tasks whose nature is essentially aperiodic, namely that those tasks arrive at
their maximum expected rates.

The system, which has five tasks, is represented in Figure 2. A sequence of tasks that execute serially at varying
priorities is considered to be a single task with multiple subtasks, for our analysis. For example, task τ is considered1
to be a single task, but is in fact composed of two system tasks, an interrupt service routine (ISR) and Servo Control,
where Servo Control executes only as a consequence of being signaled by the ISR. The five tasks are:

• Robot control. Task τ has to control the robot’s servomotors and has two subtasks, that have two1
different deadlines. The corresponding activities are: reading the inputs from the servo sensors and
performing the control action for moving the robot.

• Measurement subsystem. Tasks τ and τ constitute the measurement subsystem, and synchronize2 3
with each other: τ reads the distance sensors and does some data preprocessing, while τ does some2 3
more processing and sends the results to a remote system.

• System command. Task τ is in charge of receiving and interpreting commands arriving from the4
remote system, while τ has to process and execute these commands. Both tasks synchronize with each5
other, and τ also has to update some control variables that affect the operation of the rest of the tasks.5

Hardware interrupts, synchronization, and existence of different deadlines lead to a task structure in which each
task has several subtasks, each characterized by having different priorities and worst-case execution times. Priority
ceiling protocol emulation [12] is being used for task synchronization and is responsible for the assignment of some
of the priority levels. Table 1 shows the subtasks and characteristics of each task. All time values are in
milliseconds.

• The lower level priorities of each task have been assigned according to rate monotonic order, using the
task periods.

• Tasks τ and τ start with an ISR, and therefore have the priorities of their first sections fixed by the1 4
system’s hardware.

• Tasks τ and τ synchronize with each other in their middle and final subtasks, respectively, and2 3
execute both of these subtasks at the same elevated priority. The reason for this elevated priority level
will become apparent in the analysis phase.

9

Command
Execution

ISR
Read Sensor

and
Preprocess

Servo
Control

ISR

Interpretation

Command
Processing

Process
and

Send

Shared
Data

Command
Buffer

 Input
 from

 Sensors

 Control
 Outputs

 Communi-
 cation

 Subsystem

Measure-
 ment
 System

Remote
System

τ2

τ4

τ3

τ5

shared data
task

subtask
control flow
data flow

Legend

Control
Variables

1τ

LEGEND

Figure 2: System Diagram

• Tasks τ and τ also synchronize with each other, and are assumed to have their final and initial4 5
subtasks, respectively, executing at the same priority.

• Task τ ’s final subtask must modify some control variables, and is therefore executed at relatively high5
priority to prevent interference from some of the other tasks.

Although tasks τ and τ start with an ISR and could potentially have a self-preemption effect and violate1 4
Assumption 3, the fact that their final deadlines are before or at the end of their periods ensures that this effect
cannot happen, if task deadlines are met. Therefore, all of the analysis developed in this paper applies to these two
tasks, as long as they meet their deadlines.

Each task has its final deadline at the end of its period, and task τ has an additional deadline for its first subtask,1
due to physical constraints on the sensors: D = 1ms. The total CPU utilization is 97.5%. Our goal is to derive a11
worst-case phasing or critical instant for each task, to be able to analyze the worst-case response times. In this way
we can determine if the timing requirements of each task, and of the required associated subtasks, can be met under
all circumstances.

10

Table 1: Task Set Characteristics

Timing Requirements

C C

4 0

1 0 0

5 0

2 0 0

4 0 0

1

1 0

8

1 0

2

5

5

1 2

2 0

1 2

5

3

1 0

4 0

1 0 0

5 0

2 0 0

4 0 0

P P

1 0

8

P

Priority Structure

4

5

9

3

7

8

2

1

4

3

6

τ1

τ2

τ3

τ4

τ5

i Ci 1 i 2 i 3 Di Shapei 1 i 2 i 3T

3.2 Problem Solution
Before starting the analysis of each task we will reduce it to its canonical form. The first step in the analysis will

be to determine the critical instant phasing, by identifying the blocking term and the multiply preemptive and singly
preemptive sets. The second step is to obtain the number of jobs that have to be checked by evaluating the length of
the task’s busy period. Finally, the worst-case completion time for each job will be obtained by application of the
schedulability equations, and checked against the deadlines or timing requirements.
3.2.1. Analysis of τ : The transformed canonical form of τ is obtained by lowering the priority of its first subtask,1 1
and combining the resultant equal priority subtasks into a single segment with priority 7.

Step 1. The lowest priority level in task τ′ is 7. We will classify the rest of the tasks according to this priority1
level to determine the critical instant phasing.

τ : It is an LHL task (type 4), and its only contribution to the critical instant may be a blocking segment.2

τ : It is an LH task (also type 4). It can only contribute with a blocking segment.3

τ : It is an HL task (type 2), so it is classified as a singly preemptive task.4

τ : It is an L task (type 5) and has no effect on the critical instant.5

Consequently, we have task τ in the set of single preemptive tasks (SP) with its first subtask τ acting as the H4 11 41
segment, and B = C as the maximum of the blocking terms.1 32

Step 2. The length of the busy period is:

h
L = min (t > 0 | B + t/T C + C + t/T C = t)∑ ∑1 1 p p 1 1p

τ ∈ MP τ ∈ SPp 11 p 11

L = min (t > 0 | 0 + C + C + t/T C = t)1 32 41 1 1

L = 0 + 12 + 10 + 1 ⋅ 6 = 281

Therefore, there is only one job, N = 28 / T  = 1, of τ in the busy period. As it can be seen, when the task has1 1 1

11

only one segment of constant priority and the deadline is before or at the end of the period, there can only be a single
job in the busy period if it makes its deadline. This fact can be used as a shortcut for this step of the analysis.

Step 3. As the transformed canonical form has only one segment and there is only one job in the busy period, the
completion time and the busy period expressions become identical. Consequently:

E (1) = 28 ≤ 40 = D1 1

Intermediate Deadline. Task τ meets its final deadline, but it also has a deadline for its first subtask, which has1
to be checked. According to the schedulability rules, τ ’s critical instant is valid for all jobs of this first subtask,1
except for the first one. For this first job we have to create a different critical instant, according to its own priority
level. In this case, the first subtask has the highest priority in the system; therefore, all the rest of the tasks can be
classified as low priority (type 5), and the completion time of this first subtask will be:

E (1) = C = 1 ≤ 1 = D11 11 11

3.2.2 Analysis of τ : The transformed canonical form for τ is a task with a single segment τ′ of priority 4.2 2 21

Step 1. For task τ we will classify the rest of the tasks according to its lowest priority level, which is 4.2

τ ,τ : They are H tasks (type 1) and have to be included among the multiply preemptive tasks.1 3

τ : It is an HL task (type 2), so it is classified into the singly preemptive set.4

τ : It is an LH task (type 4) and has a potential blocking effect on τ .5 2

Thus, we have tasks τ and τ in the set of multiply preemptive tasks (MP), τ as a singly preemptive segment,1 3 21 41
and B = C as the only blocking term.2 53

Step 2. The length of the busy period is:

h
L = min (t > 0 | B + t/T C + C + t/T C = t)∑ ∑2 2 p p 2 2p

τ ∈ MP τ ∈ SPp 21 p 21

L = min (t > 0 | C + t/T C + t/T C + C + t/T C = t)2 53 1 1 3 3 41 2 2

L = 10 + 3 ⋅ 6 + 2 ⋅ 20 + 10 + 1 ⋅ 20 = 982

Finding the minimum t > 0 that satisfies the equation above can be accomplished by supposing an initial positive
but very small value for t, obtaining the ceiling functions, and adding all the terms in the left-hand side of the
equality. Using this result as the new value for t, we repeat the same process until we find a value of t that is the
same as in the last iteration and, therefore, satisfies the equality. If the total utilization is less than or equal to 100%,
then we know that the busy period will end (and so will the algorithm). In this particular case, we find that there is
only one job of τ in the busy period.2

Step 3. As the transformed canonical task has only one segment of constant priority, the completion time has the
same expression as the length of the busy period. Therefore:

E (1) = 98 ≤ 100 = D2 2

Task τ also meets its final deadline.2

3.2.3. Analysis of τ : Task τ is already in canonical form.3 3

12

Step 1. Task τ has its basic priority at level 5, and the classification of the rest of the tasks is:3

τ : It is an H task (type 1) and is included among the multiply preemptive tasks.1

τ : It is an LHL task (type 4), so its H segment has a potential blocking effect.2

τ : It is an HL task (type 2), so it is classified as a singly preemptive task.4

τ : It is an LH task (type 4) and has a potential blocking effect on τ .5 2

Thus, we have task τ in the set of multiply preemptive tasks (MP), τ as a singly preemptive segment, and1 31 41
B = C as the maximum blocking term.3 53

Step 2. The length of its busy period is:

h
L = min (t > 0 | B + t/T C + C + t/T C = t)∑ ∑3 3 p p 3 3p

τ ∈ MP τ ∈ SPp 31 p 31

L = min (t > 0 | C + t/T C + C + t/T C = t)3 53 1 1 41 3 3

L = 10 + 2 ⋅ 6 + 10 + 2 ⋅ 20 = 723

Consequently, there are two jobs, N = 72 / T  = 2, of τ in the busy period, which have to be checked.3 3 3

Step 3. The completion time of the first segment of the first job is:

h
E (1) = min (t > 0 | B + t/T C + C + C = t)∑ ∑31 3 p p 31p

τ ∈ MP τ ∈ SPp 31 p 31

E (1) = min (t > 0 | C + t/T C + C + C = t)31 53 1 1 41 31

E (1) = 10 + 1 ⋅ 6 + 10 + 8 = 3431

For the second segment, we have to recalculate the sets of multiple and single preemptive tasks. MP will be32
empty, as there are no tasks with all their subtasks with priority higher than or equal to 8. SP can get elements32
from the tasks that were originally in MP and are not in MP , if their priority is first higher and then lower than31 32
P . Task τ satisfies these conditions and therefore the analysis for this subtask is:32 1

E (1) = min (t > 0 | E (1) + [t/T  − E (1)/T ]C +∑32 31 p 31 p p
τ ∈ MPp 32

h
min(1,[t/T  − E (1)/T ])C + C = t)∑ p 31 p 32p

τ ∈ SPp 32

E (1) = min (t > 0 | E (1) + min(1,[t/T  − E (1)/T ])C + C = t)32 31 1 31 1 11 32

E (1) = 34 + 1 ⋅ 1 + 12 = 47 ≤ 50 = D32 3

And now we have to check the second job, in the same way:

E (2) = min (t > 0 | C + t/T C + C + C + C = t)31 53 1 1 41 3 31

E (2) = 10 + 2 ⋅ 6 + 10 + 20 + 8 = 6031

E (2) = min (t > 0 | E (2) + min(1,[t/T  − E (2)/T ])C + C = t)32 31 1 31 1 11 32

13

E (2) = 60 + 0 ⋅ 1 + 12 = 72 ≤ 50 + 50 = T + D32 3 3

We can see that task τ meets its deadlines through all of the busy period, thanks to the high priority of its last3
subtask. If the priority of this subtask had not been so high, let us say it remained at 5, then the first job would have
missed its deadline.

3.2.4. Analysis of τ : The transformed canonical form for τ is a task with two segments: τ′ of priority 2 and τ′4 4 41 42
of priority 3.

Step 1. Task τ has its lower priority subtask at level 2, so we will classify the rest of the tasks accordingly.4

τ ,τ ,τ :1 2 3
They are H tasks (type 1) and their subtasks fall into the multiple preemptive set.

τ : It is an HLH task (type 3), so its last segment has a potential blocking effect on τ , and its first segment a5 4
one-time preemptive effect.

Thus, we have tasks τ , τ , and τ in the set of multiply preemptive tasks (MP), τ as a singly preemptive1 2 3 41 51
segment and B = C as the only blocking term.4 53

Step 2.The length of the busy period is:

L = min(t > 0 | C + t/T C + t/T C + t/T C + C + t/T C = t)4 53 1 1 2 2 3 3 51 4 4

L = 10 + 5 ⋅ 6 + 2 ⋅ 20 + 4 ⋅ 20 + 2 + 1 ⋅ 33 = 1954

Consequently, there is only one job of τ in the busy period.4

Step 3. We will now obtain the completion time of this job, starting with the first segment of its canonical form:

E′ (1) = min (t > 0 | C + t/T C + t/T C + t/T C + C + C + C = t)41 53 1 1 2 2 3 3 51 41 42

E′ (1) = 10 + 5 ⋅ 6 + 2 ⋅ 20 + 4 ⋅ 20 + 2 + 10 + 20 = 19241

For the completion time of the second segment of the canonical form, tasks τ , τ , and τ remain as multiple1 2 3
preemptive in the MP set. The analysis is:42

E′ (1) = min (t > 0 | E′ (1) +42 41

[t/T  − E′ (1)/T ]C +1 41 1 1

[t/T  − E′ (1)/T ]C +2 41 2 2

[t/T  − E′ (1)/T ]C + C = t)3 41 3 3 43

E′ (1) = 192 + 0 + 0 + 0 + 3 = 195 ≤ 200 = D42 4

Task τ also meets its final deadline.4

3.2.5. Analysis of τ : The transformed canonical form for τ is a task with two segments: τ′ of priority 1 and τ′5 5 51 52
of priority 6.

Step 1. Task τ has its lower priority subtask at level 1, which is the lowest priority in the system, so all the rest of5
the tasks are of type 1.

14

Step 2.The length of the busy period is:

L = min(t > 0 | t/T C + t/T C + t/T C + t/T C + t/T C = t)5 1 1 2 2 3 3 4 4 5 5

L = 10 ⋅ 6 + 4 ⋅ 20 + 8 ⋅ 20 + 2 ⋅ 33 + 1 ⋅ 24 = 3905

Consequently, there is only one job of τ in the busy period.4

Step 3. We will now obtain the completion time of this job. The analysis of the first segment of the canonical
form is:

E′ (1) = min (t > 0 | t/T C + t/T C + t/T C + t/T C + C + C = t)51 1 1 2 2 3 3 4 4 51 52

E′ (1) = 5 ⋅ 6 + 2 ⋅ 20 + 4 ⋅ 20 + 1 ⋅ 33 + 2 + 12 = 19751

For the analysis of the second segment τ remains as a multiply preemptive task, τ is a singly preemptive1 41
segment, and the rest of the tasks have no influence. Therefore:

E′ (1) = min(t > 0 |E′ (1) +[t/T  − E′ (1)/T ]C +52 51 1 51 1 1

min(1,[t/T  − E′ (4)/T ])C + C = t)4 51 4 41 53

E′ (1) = 197 + 1 ⋅ 6 + 1 ⋅ 10 + 10 = 223 ≤ 400 = D52 5

Task τ also meets its final deadline, so the total task set is schedulable.5

4 Theoretical Analysis
In this section, we present the theoretical underpinnings that support the rules for schedulability analysis that were

presented and used in Sections 2 and 3.

4.1 Busy Period Analysis
The focus of this section is finding the longest response time for a particular subtask τ . Once this has been found,ij

we check whether it is less than the subtask deadline D . If so, then the subtask timing requirements will be metij
under all task phasings. We define P to be min(P , 1 ≤ j ≤ m(i)). If we select any particular phasing of the n tasksi ij
and consider the resulting processor execution sequence that evolves over time, we can partition this execution
sequence into intervals of time of two types: τ -busy periods, as defined in Section 1, and instants of τ -idleness ori i
intervals of τ -idleness, during which tasks of priority less than P (or no task at all) are processed. The execution ofi i
τ takes place solely within the τ -busy period segments. Consequently, when checking any timing requirementsi i
associated with τ , attention can be restricted to τ -busy periods.i i

The definition of a τ -busy period permits two such periods to be "back-to-back." In this case, we consider thei
interval of lower priority processing or idleness to exist, but to be of zero length. One could require that the τ -busyi
period have strictly positive intervals of lower priority processing (or idleness) on each side; however, this can lead
to unnecessary deadline checking.

We begin our schedulability analysis by looking only at the final subtask deadlines, D , 1 ≤ i ≤ n. We laterim(i)
discuss the deadlines for the earlier subtasks in the task set.

4.2 Schedulability of the Canonical Form
We next show that for purposes of checking its timing requirements, τ can be reduced to its canonical form.i

Consider any task τ that has two consecutive subtasks τ and τ with strictly decreasing priorities P > P . Wei ij ij+1 ij ij+1
consider a modified version of τ , τ′, obtained by reducing the priority of τ to P′ = P . We next show that thei i ij ij ij+1

15

completion times of τ and of the subtasks τ , j+1 ≤ k ≤ m(i), are unchanged in the modified version.i ik

Theorem 1: Suppose τ has two consecutive subtasks τ and τ of strictly decreasing priorityi ij ij+1
P > P . Then for any task set phasing, the completion times of a task τ and its subtasks τ , j+1 ≤ k ≤ij ij+1 i ik
m(i) are unchanged if the priority of τ is reduced to P , assuming all equal priority segments areij ij+1
executed in the same relative order.

Proof: Let the execution sequence for the task set be given. For any single job of τ (τ′) let b (b′) andi i ik ik
f (f′) denote the start time and the completion time of τ (τ′). Notice that the completion time of τ (τ′)ik ik ik ik ik ik
is the activation time of τ (τ′). The activation time is the instant at which a particular task orik+1 ik+1
subtask becomes ready to execute. Preemption may cause the task to start executing at an instant later than
the activation; we call this the start time. Assume that the two versions of this job of τ are activated at thei
same time. The execution sequences will then be identical up to f . If we prove b = b′ , then theij−1 ij+1 ij+1
execution sequences will be identical after b , and the result will follow, assuming that segments withij+1
equal priority are processed in the same order in the original and in the modified task set. For the original
task set, the interval [f , b] consists of the execution of τ and other tasks with priority higher than orij−1 ij+1 ij
equal to the priority of τ . At time b , all work of equal or higher priority than τ will have justij+1 ij+1 ij+1
finished, and that subtask can begin. If we now reduce the priority of τ to that of τ , then exactly theij ij+1
same work will be done during this interval, although possibly in another order. At time b , all work ofij+1
equal or higher priority than τ will also have just finished, and that subtask will begin execution.ij+1
Consequently, b = b′ , and the results hold. Moreover, since the activation time of both versions is theij+1 ij+1
same at the beginning of any τ -busy period, this result holds for the entire busy period.i

The above theorem can be used to simplify the determination of whether a particular task meets its final deadline.
If any consecutive subtasks are of strictly decreasing priority, we can reduce the priority of the first to that of the
second and merge these two into a single segment. By applying this theorem to all such consecutive subtasks, we
can reduce the task to canonical form, as defined in Section 2.

4.3 Worst-Case Phasing
Recall that P = min(P , 1 ≤ j ≤ m(i)) and that the execution sequence arising from any choice of task phasingsi ij

will create an alternating sequence of τ -busy periods and periods of less than priority level P execution. We select ai i
τ -busy period and seek to determine the task phasings that will create the longest response time for subtask τ .i im(i)

Theorem 2: The longest response time for τ is found during a τ -busy period initiated by τ .im(i) i i

Proof: Suppose that τ does not initiate a τ -busy period, so there exists an interval of execution ofi i
length A > 0 prior to the first initiation of τ during which subtasks of priority level P or higher arei i
continuously executed. If the initiation time of τ were moved back by A, then τ could not start itsi im(i)
execution any earlier than it did with its original initiation time, because all subtasks that were initiated
during the period of length A would still need to be executed before τ can begin execution. Thus, theim(i)
response times for all jobs of τ would be increased by A. Thus, the situation in which τ does notim(i) i
initiate its τ -busy period may not give the worst-case response time.i

According to Theorem 1, one can reduce τ to its transformed canonical form. The resulting task, τ′, will consisti i
of m′(i) subtasks τ′ , . . . , τ′ having priorities P = P′ < . . . < P′ . The transformed canonical form is usefuli1 im′(i) i i1 im′(i)
for reasoning about the phasing of the rest of the tasks that creates the worst-case response. This phasing will depend
on the priority levels of each task, compared to the priority of the first segment of the canonical form task, resulting
in the classification of tasks by type that appeared in Section 2.

Clearly, type 5 tasks (lower priority) cannot be executed during a τ -busy period, and therefore cannot influencei
the response time of τ . We now seek the phasing of the 4 remaining task types that will maximize the longesti
response time for τ during the busy period.i

4.3.1. Type 1 Tasks (H): The phasing of a type 1 task that will create the largest response time for any job of τ in ai
τ -busy period is to have such a task initiated at the same instant that τ is initiated. To see this, suppose that the firsti i

16

job of such a task within the τ -busy period is initiated at time I > 0. The cumulative processor demands from thisi
task during [0,t] for every t ∈ [0,b) (where b represents the end of the busy period) monotonically increase as I

decreases towards 0. Consequently, these demands are maximized uniformly over time by choosing I = 0; this
maximizes the completion time of all subtasks and all jobs of τ in the busy period. Therefore, setting I = 0 for anyi
type 1 task will lead to the longest response time of τ .i

+ 04.3.2. Type 4 Tasks ((LH) L): All H segments in type 4 tasks are preceded by an L segment that has priority
lower than P . This means that, as tasks cannot suspend themselves, at most one of the H segments can be processedi
during the τ -busy period. Furthermore, only one segment of one of the type 4 tasks can be processed during thisi
entire busy period. For τ to initiate its own busy period, and for a segment of a type 4 task to execute during thei
busy period, the type 4 task must be executing one of its high-priority segments when τ is initiated. It can finish thati
segment, but no further processing is possible until the busy period ends. Thus, to determine the worst-case phasing
for all type 4 tasks, we must consider all of the H segments of all of these tasks and select the one with the longest
processing requirement. That segment should be starting just as τ is initiated. The phasing of the other tasks isi
irrelevant. We let B′ denote the length of this longest segment.

+ +4.3.3. Type 2 ((HL)) and Type 3 ((HL) H) Tasks: Type 2 tasks are similar to type 4, in that only one segment of
the task can be processed during the busy period. The difference is that by phasing each type 2 task to be initiated at
time 0, each will contribute a processing requirement that must be finished during the busy period, in contrast to the
type 4 tasks, which collectively contribute only a single processing requirement. However, one of the type 2 tasks
may have a long blocking segment, so long that it contributes more processing requirements than its initial segment
would contribute; we have to determine if this is the case.

Type 3 tasks are the most complicated to phase. Only part of a type 3 task can be processed during the τ -busyi
period, but that part can be an inner H segment, the last H segment, the first H segment, or the last followed by the
first H segment. It should be noticed, however, that the inner H and final H segments are blocking terms and, as
tasks do not suspend themselves, at most one blocking term chosen from the type 2, 3, and 4 tasks can be executed
during the busy period.

To determine which task, if any, of types 2 and 3 acts with a blocking segment, and therefore has to be phased
with τ at one of its inner or final H segments, we can follow the next procedure. For each type 2 and type 3 task, leti
W be the computational requirement of the initial H segment, U be the requirement of the longest inner H segment
(if any) and V be the computation requirement of the final H segment (for type 3 tasks). If there is no inner blocking
segment then set U=0, and if there is no final blocking segment then set V=0.

Assume that each type 2 or type 3 task is initiated at the same time as task τ . Now consider the two other possiblei
phasings:

1. Initiating the longest inner H segment at the same time as τ will increase τ ’s response times byi i
U−W−B′, which is the marginal gain in total computational requirement from using this inner H
segment.

2. For type 3 tasks, initiating the final H segment at the same time as τ may increase τ ’s response timesi i
by V−B′. For type 2 tasks this value is negative or zero (because V=0), and will be disregarded in the
next steps. Note that this is a pessimistic estimate in that it assumes that the final segment serves as a
blocking segment and the initial segment is a preempting segment. However, the busy period may end
before the initial segment can preempt.

For each type 2 and type 3 task, we calculate the gain in latency as max[(U−W−B′),(V−B′)], and we choose the
task with the largest value. If this value is negative, then all of these tasks should be initiated at the same time as τ ,i
and the blocking term would be B =B′. If the largest value is positive, then either the inner blocking or final blockingi

17

segment should be selected. If U−W ≥ V, then the inner segment is chosen, and B =U; in this case the initial Hi
segment does not contribute a preemption effect. If U−W < V then the final segment is chosen, we set B =V, and thisi
task also remains as a singly preemptive task. All the other tasks should be initiated at the same time as τ .i

4.4 Other Subtask Deadlines
The preceding analysis was carried out under the assumption that each task had only a single deadline at the end

of its final subtask. We now wish to allow additional subtask deadlines, for example τ having a deadline D .ij ij
Clearly, one must check the deadlines of each of these subtasks throughout the τ -busy period for the worst-casei
phasing developed earlier. However, this is not sufficient, because it will only ensure that jobs of subtasks after the
first job in the busy period will meet their worst-case timing requirement. It does not guarantee the first job, because
the phasing may not be worst for the first job of the subtask. The reason for this is that the phasing developed was
based on the τ -busy period in which only activity of priority P or higher is executed, P being the minimum priorityi i i
of all of the subtasks of τ . However, the appropriate priority level against which to create a longest response timei
phasing for the first job should be based upon a possibly higher level priority, P (j) = min(P , 1 ≤ k ≤ j). This is thei ik

j j
same as thinking of a τ -busy period, where task τ is a task composed of the first j subtasks of τ .ii i

Theorem 3: The deadline, D , of τ will be met under all task phasings provided:ij ij
j

1. The deadline of the first job of τ is met under the worst-case phasing for a τ -busy period, andij i

2. The deadline of all jobs of τ after the first are met during a τ -busy period with worst-caseij i
phasing for the minimum priority level of that busy period.

Proof: For each subtask processed during the τ -busy period, we record the minimum priority of it andi
all subtasks of τ processed before it during this busy period. This minimum priority is defined as P (j) fori i
the first job of each subtask of τ and will be P for all subtasks of second and later jobs. The proof has twoi i
parts: finding the longest response time for jobs with minimum priority P and finding the longest responsei
time for jobs with minimum priority P (j) > P .i i

The case of deadlines for subtasks with minimum priority P follows easily from the reasoning given ini
Section 4.3. Specifically, type 5 tasks can be ignored, type 1 tasks should be phased to maximize
preemption as should any type 2 and type 3 tasks chosen for preemption. The largest blocking term
derived from type 2, 3, and 4 tasks will also be the same, because a subtask of priority level P prior to thei
subtask in question is being blocked to the maximum extent, and this maximum blocking time will also
delay all subsequent subtasks of τ . Consequently, one needs only to check the deadlines of all subtasksi
during the τ -busy period using the worst-case phasing derived in Section 4.3.i

Subtasks τ of the first job of τ with P (j) greater than P must be handled separately, because theirij i i i
critical instant phasing can be different. One must now derive the worst-case phasing described in Section
4.3 for type 1 - 4 tasks, except the priority level P must be replaced by P (j). Consider first the subtask τi i ik
with the largest k among those for which P (k) > P . We wish to determine the longest response time for itsi i

k
first job. To do this, we ignore any later subtasks by considering only the task τ , and reduce this truncatedi
task to its canonical form. Note that the minimum priority is now P (k) and the other n−1 tasks must bei
reclassified into the five types with respect to P (k). Once this is done, the arguments of Section 4.3 can bei
used to derive the worst-case phasing, and the longest response time of τ can be computed. One nowik
picks the subtask τ , k′<k, with the next largest k′ among those with P (k′) > min(P , . . . ,P), truncates τik′ i 1 k i

k′
there to obtain τ , reduces it to canonical form, classifies the other tasks, and invokes the worst-casei
phasing to derive its worst-case response time. This process continues until all deadlines of first jobs have
been checked. Thus conditions (1) and (2) are sufficient for all subtask deadlines to be met.

4.5 A Blocked-at-Most-Once Property
In Section 4.3 we described the procedure for calculating the latency due to internal and final H segments of other

tasks, or in other words any H segment that is preceded by an L segment. Our procedure for finding the worst-case
phasing implicitly used a "blocked-at-most-once" property for determining the effect of internal and final H
segments. We will refer to internal and final H segments as blocking segments. We will refer to initial H segments

18

as preempting segments. Restating this property more formally:

Lemma 4: There can be no more than one blocking segment within a τ -busy period.i

Proof: Let task τ or a preempting segment (with a priority greater than or equal to P) start the τ -busyi i i
period. Since all blocking segments are preceded by an L segment and the L segment cannot preempt the
τ -busy period, the blocking segment will not be able to execute until after the completion of the τ -busyi i
period. Therefore the only way a blocking segment can be part of the τ -busy period is if the blockingi
segment starts the busy period.

Let a blocking segment start the τ -busy period. Once again, since blocking segments are preceded by Li
segments, a second blocking segment will not be able to execute until after the completion of the τ -busyi
period.

Two situations in which blocking segments naturally occur in practice are non-preemptible sections and
emulation of the Priority Ceiling Protocol for task synchronization. These are described next.

4.6 Non-preemptible Sections
A non-preemptible section is typically implemented through system calls that start and later end the interval

where preemption is to be disallowed. The system call to start the non-preemptible section is executed at the (base)
priority of the subtask. The non-preemptible section can be modeled as a new subtask of extremely high execution
priority. The non-preemptible section is ended with a system call that returns the priority to the original base
priority. Therefore the original segment in which the non-preemptible section is embedded is transformed into three
segments.

Given this model for non-preemptible sections, we would like to determine what effect they have on the
schedulability of any given task. To understand this we must understand how non-preemptible sections affect each
type of task discussed in Section 4.3. The effects of a non-preemptible section within a particular segment are
different depending on the kind of segment:

1. When the non-preemptible section is embedded in an H segment it has no effect on the schedulability
of the task being analyzed, because the resulting segments still behave as H segments.

2. When the non-preemptible section is embedded in an L segment, this segment is transformed into an
LHL segment.

+Consequently, non-preemptible sections have no effect on type 1 (H) tasks. For type 2 ((HL)) tasks, an L
segment with an embedded non-preemptible section will be transformed into an LHL sequence. Since this was
already preceded by an H segment, the transformed task remains in this class. The same reasoning holds for type 3

+ + 0((HL) H) and type 4 ((LH) L) tasks. Type 5 (L) tasks will be transformed into type 4 tasks. Using Lemma 3, we
can see that at most one non-preemptible section can delay the completion of any given task being analyzed.

4.7 Synchronization
When two or more tasks share a resource, such as data, that needs to be accessed in a mutually exclusive manner,

then these tasks must be forced to synchronize by using the resource in a critical section. One effective
synchronization protocol is the Priority Ceiling Protocol (PCP) [14]. The protocol dictates the priority at which a
critical section executes and specifies conditions that must be true before a critical section can be entered. An
approximation of the PCP can be easily implemented at the application-level by ensuring that a critical section
executes at a sufficiently high priority. In the case where the entire task executes at a single priority level and also
accesses data in a critical section, PCP emulation requires the critical section to be executed at a priority level
slightly higher than any task that accesses the shared resource [12]. Effectively this changes the task from one that
had a single segment to one that has three segments where the middle segment executes at a fixed but elevated
priority. In the case where the original task has multiple segments, assume that the critical section is executed
within a single segment of the original task. Divide that segment into three segments: one before, one during and

19

one after the critical section. The critical section will execute at a higher priority than all subtasks that access the
shared resource. Using the same reasoning that was used for non-preemptible sections, we can see that at most one
critical section or one non-preemptible section can delay the completion of any given task being analyzed.

4.8 Sporadic Tasks and Aperiodic Servers
The theory in this paper is restricted to the case of periodic tasks which are composed of subtasks, each of which

has a hard deadline. This theory can be easily extended to allow for sporadic tasks, tasks which do not necessarily
arrive periodically but which have a minimum interarrival time, a fixed worst case computation time and a hard
deadline. The sporadic tasks may be composed of serially executed subtasks. Sporadic tasks can be included into
the scheduling analysis presented in this paper by treating each sporadic task as a periodic task with its period given
by the minimum interarrival time. The analysis also permits the inclusion of aperiodic server algorithms, such as the
sporadic server [16]. Aperiodic servers are used to provide high priority execution time to service aperiodic
requests in a manner that is predictably invasive on the schedulability of lower priority tasks. The high priority of
the server task can provide very fast response times to aperiodic tasks, especially when those tasks have relatively
short execution times.

4.9 Assigning Subtask Priorities
In this section, we consider an important special case in which each task τ is composed of subtasks τ whosei ij

deadlines D satisfy D ≤ D ≤ . . . ≤ D ≤ T . Thus all subtask deadlines are at or before the end of the taskij i1 i2 im(i) i
period.

A good starting point for assigning priorities is to use a deadline monotonic priority assignment. That is, assign
P >P if and only if D <D where ties between subtasks with equal deadline are broken arbitrarily. We will laterij kl ij kl
prove that this priority assignment is optimal among all fixed priority assignments for task sets whose subtask
priorities are required to be non-ascending. It is important to note that the canonical form for subtask τ consists ofij
a single subtask with priority P and computation requirements:ij

j
j

C = C∑ iki
k=1

The assumption D ≤T allows one to infer that only the deadline of the first job of each subtask needs to bekm(k) k
checked under its worst case phasing to ensure that all jobs of a subtask meet their deadlines. Assuming all subtask

j
priorities are distinct, a τ -busy period ends with the completion of the first job of that subtask, thus eliminating thei
need for further checking.

For this case, we can most easily express the schedulability conditions if we relabel all the subtasks, writing them
in order of decreasing priority. Thus the subtasks, become

n

{ s | k=1,N }, where N = m(i) .∑k
i=1

Subtask s has priority P with P ≥P , computation requirement C , period T and deadline D . In this case, thek k k k+1 k k k
necessary and sufficient condition for subtask s schedulability under all task phasing is:k

k

min(0 ≤ t ≤ D | t/T (C /t)) ≤ 1 .∑k j j
j=1

The necessary and sufficient condition for task set schedulability is for the above inequality to hold for all s ,k
1 ≤ k ≤ N. Equivalently,

20

k

max (min(0 ≤ t ≤ D | t/T (C /t))) ≤ 1, 1 ≤ k ≤N .∑k j j
j=1

Since the precedence relations in the original task set are enforced by the priority assignment in the transformed
task set, we can now use the result of Leung and Whitehead [7] to prove the optimality of the deadline monotonic
priority assignment for this transformed task set {s }.k

4.10 Deadline Monotonic Scheduling Conditions
We can use the inequalities in the previous subsection as exact schedulability tests; however, it is useful to

develop sufficient conditions for a particular subtask to be schedulable. For example, Liu and Layland proved that if
1/nn periodic tasks have total utilization no greater than n(2 -1), then all deadlines will be met using the rate

monotonic priority assignment. Lehoczky [5] extended the Liu and Layland analysis to allow arbitrary deadlines.
Using Lehoczky’s methods, one can prove that if n tasks are assigned fixed priorities, τ has lowest priority, periodn
T and deadline D , and each (higher priority) task τ has a period T that is less than D , then the τ is schedulable ifn n i i n n

n
1/nU ≤ n((2∆) −1) + 1 − ∆∑ i

i=1

where U = C /T , and ∆ = D /Ti i i n n

This idea can be used to develop sufficient conditions for task sets where subtasks are assigned deadline
monotonic priorities and all deadlines are before the end the period. To check the schedulability of τ , we reduceij
that subtask to canonical form. This results in a task with a single subtask of priority P , period T , deadline D andij i ij

j
computation requirement C . All other tasks must be classified into one of five categories; however, in this casei
only types H, HL, and L are possible when τ is reduced to canonical form. Now we have to further categorize tasksij
as being singly preemptive (SP) or multiply preemptive (MP). Singly preemptive tasks will be able to preempt the
canonical subtask only once before its deadline. Multiply preemptive tasks will be able to preempt the canonical
subtask more than once before its deadline. The type H tasks with period shorter than D are MP tasks. Theij
remainder of the H tasks are SP tasks. The HL tasks are all SP tasks. The L tasks can be ignored.

If we let U denote the total utilization of all MP tasks; let C denote the sum of the execution times of theMP SP
initial H segments of all SP tasks; let ∆=D /T ; and let m be one plus the number of MP tasks, then a sufficientij i
condition for subtask τ to meet its deadline isij

j 1/mU + C /T +C /T ≤ m((2∆) −1) + 1 − ∆MP i SP ii

This test can be applied to every subtask. Those subtasks that satisfy the condition are schedulable. Those
subtasks not satisfying the condition must be checked using the exact test in the previous section.

4.11 Improving Schedulability
The example presented in Figure 1 was designed to show the added scheduling complexity that can occur when

tasks are composed of subtasks that are executed at different fixed priority levels. This example also shows a
scheduling benefit that can accrue from such a task structure. Using ordinary rate monotonic scheduling, a task set
with two tasks: C = 4, T = 10 and C = 6, T = 14, is schedulable, but fully utilizes the processor with total1 1 2 2
utilization of .829, essentially equal to the Liu and Layland bound of .828 for two tasks. However, the example in
Section 1.2 modifies task two to have two subtasks of differing priority. This modified task set has a total utilization
of .971 and is schedulable using a fixed priority algorithm. Thus, we see that we can increase the fixed priority
schedulability of a task set by decomposing one or more of the tasks into subtasks that are executed at modified
priority levels, and this can offer an increase in schedulability over that provided by the simple rate monotonic

21

algorithm.

This paper is restricted to methods by which the schedulability of complex tasks can be determined for any fixed
priority scheduling algorithm. The question of determining optimal priority assignments in the general case is
beyond the scope of this paper. In the previous subsection we discussed an optimal priority assignment for a very
special case. In this subsection we present a simple and very interesting result for two tasks; by dividing the one
having the largest period into two subtasks, one with the lowest priority and one with globally highest priority,
100% schedulability can be attained. Specifically, given any two periodic tasks with T < T and utilizations U +1 2 1
U = 1, one should decompose τ into two subtasks with C = C - (T - C), C = T - C . τ has intermediate2 2 21 2 1 1 22 1 1 1
priority, τ has lowest priority and τ has highest priority. The resulting task set is schedulable, the C’s and T’s are21 22
arbitrary and the task set has 100% utilization.

Theorem 5: Given two periodic tasks τ and τ , with the following characteristics:1 2
• execution times are C and C ,1 2

• periods are T ≤T ,1 2

• C /T + C /T = 11 1 2 2
there exists a decomposition of C =C +C with priorities P <P <P such that the task set is2 21 22 21 1 22
schedulable

Proof: First notice that the τ is being transformed from an L task into an LH. Therefore τ will need to2 1
be able to tolerate blocking due to the newly created H segment. We know that τ can tolerate blocking1
segment of length T -C , so we use that as C . We will show that the following decomposition results in1 1 22
a schedulable task set.

C = C − (T − C)21 2 1 1

C = T − C22 1 1

First we want to establish that C and C are non-negative and then we will show that both tasks are21 22
schedulable.

It’s obvious that C is non-negative. We will now show that C is non-negative. We will use C /T +22 21 1 1
C /T = 1 implies T = C [T /(T -C)] .2 2 2 2 1 1 1

C ≥ 0 iff21
C /(T −C)≥ 1 iff2 1 1
C T /(T −C) ≥ T iff2 1 1 1 1
T ≥ T , which holds by assumption.2 1

Therefore C ≥0.21

Task τ is clearly schedulable since C was chosen carefully to ensure that it remained schedulable.1 22
The only issue is the schedulability of τ .2

thWe must show that each job of task τ meets its deadline. The j job of task τ will meet its deadline at2 2
time jT if the following two conditions hold:2

1. jT /T C + jC ≤ jT , and2 1 1 2 2

2. jT /T C + (j−1)C + C ≤ jT /T T2 1 1 2 21 2 1 1

The value i = jT /T  denotes the number of complete periods of task τ that fit into the interval [0,jT].2 1 1 2
Since τ is already guaranteed to not overrun, then at least i jobs of τ and j jobs of τ must complete1 1 2
before jT if job j of task τ is to meet its deadline. This is stated in condition 1 above. The second2 2

thcondition states that i jobs from τ , (j-1) jobs of τ and the first subtask of the j job of τ should complete1 2 2
stbefore the (i+1) job of τ is initiated. If this is true then the high priority of τ will allow it to finish1 22
stbefore the (i+1) job of τ executes. Condition 1 then guarantees that it meets its deadline.1

22

Showing the first condition to be true follows:

jT /T C + jC ≤ jT (C /T) + jC2 1 1 2 2 1 1 2

= jT ((C /T) + jC /jT) = jT2 1 1 2 2 2

Showing the second condition to be true follows:

iC + (j−1)C + C1 2 21

= iC + (j−1)C + C −(T −C)1 2 2 1 1

= (i+1)C + jC − T1 2 1

= (i+1)T [((i+1)C)/((i+1)T) + jC /((i+1)T)] − T1 1 1 2 1 1

≤ (i+1)T [C /T + jC /jT] − T = iT1 1 1 2 2 1 1
thThus, the j job of τ meets its deadline and τ is schedulable.2 2

As an example, consider the task set depicted in Figure 1 with C increased to 8.4. The resulting task set has2
100% utilization, yet it is schedulable if the second task is broken into two subtasks with C =2.4, C =6, and τ is21 22 22
given highest priority. Ordinary rate monotonic scheduling can meet the timing requirements only if C ≤6.2

5 Conclusions
Even when application-level tasks are assigned fixed priorities, the actual priority structure of a realistic system

can be much more complex. Characteristics of the operating system and underlying hardware impact the priority
structure and consequently the timing behavior of the system. For example, the task dispatching mechanism of the
operating system, the interrupt architecture of the processor, synchronization protocols, and intertask communication
mechanisms all contribute to the system’s actual timing behavior. In order to accurately predict system behavior,
these effects should be included in the schedulability equations that model the system’s behavior.

This paper offers a generalized model of fixed priority scheduling that provides a theoretical framework for
analyzing task sets scheduled through a fixed priority preemptive scheduler, where each task is comprised of a
number of subtasks, each executing at a different priority level. For a set of tasks with a complex priority structure,
we offer a method of analysis with an underlying theoretical foundation. For simple task sets, our contribution is a
formalization of techniques currently being used [3]. Furthermore, the method shows that an increase in
schedulability can be achieved by taking advantage of the high-priority execution of the final subtasks of a task.

Another very important highlight of this method is that it provides some simple techniques for reasoning about
time in systems with varying priorities. The fact that tasks can be reduced to a canonical form simplifies analysis
and allows one to easily reason about worst-case phasing. It also simplifies analysis by allowing the classification of
tasks according to the priority of their first subtask. We feel that in practical problems the algorithm described in
Section 2 is easily implemented and runs efficiently; however, the worst case complexity of this algorithm is an
open question.

23

References

1. Borger, M. W., Klein, M. H., and Veltre, R. A. "Real-Time Software Engineering in Ada: Observations and
Guidelines". Software Engineering Institute Technical Review (1988).

2. Goodenough, J. B., and Sha, L. "The Priority Ceiling Protocol: A Method for Minimizing the Blocking of High
Priority Ada Tasks". Proceedings of the 2nd International Workshop on Real-Time Ada Issues (June 1988).

3. Klein, M. H., and Ralya, T. An Analysis of Input/Output Paradigms for Real-Time Systems. Tech. Rept.
CMU/SEI-90-TR-19, Software Engineering Institute, July 1990.

4. Lehoczky, J. P., and Sha, L. "Performance of Real-Time Bus Scheduling Algorithms". ACM Performance
Evaluation Review, Special Issue 14, 1 (May, 1986).

5. Lehoczky, J.P. "Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadline". IEEE Real-Time
System Symposium (1990).

6. Lehoczky, J. P., Sha, L., Strosnider, J.K., Tokuda, H. Fixed Priority Scheduling for Hard Real-Time Systems. In
Foundations of Real-Time Computing: Scheduling and Resource Management, van Tilborg, Andre and Koob, Gary
M., Ed., Kluwer Academic Publishers, 1991, pp. 1-30.

7. Leung, J. and Whitehead, J. "On Complexity of Fixed-Priority Scheduling of Periodic Real-Time Tasks".
Performance Evaluation 2, 237-50 (1982).

8. Liu, C.L., and Layland, J.W. "Scheduling Algorithms for Multi-Programming in a Hard Real-Time
Environment". Journal of the Association for Computing Machinery Vol. 20, 1 (January 1973), pp. 46-61.

9. Rajkumar, R., Sha, L., and Lehoczky, J.P. "Real-Time Synchronization Protocols for Multiprocessors". IEEE
Real-Time Systems Symposium (December 1988).

10. Rajkumar, R. "Real-Time Synchronization Protocols for Shared Memory Multi-Processors". Proceedings of
The 10th International Conference on Distributed Computing (1990).

11. Sha, L., Rajkumar, R., Lehoczky, J. and Ramamritham K. "Mode Change Protocols for Priority-Driven
Preemptive Scheduling". The Journal of Real-Time Systems Vol. 1 (1989), pp. 243-264.

12. Sha, L. and Goodenough, J. B. "Real-Time Scheduling Theory and Ada". IEEE Computer Vol. 23, No. 4 (April
1990).

13. Sha, L., Rajkumar, R., and Lehoczky, J. P. "Real-Time Scheduling Support in Futurebus+". IEEE Real-Time
Systems Symposium (1990).

14. Sha, L., Rajkumar, R., and Lehoczky, J. P. "Priority Inheritance Protocols: An Approach to Real-time
Synchronization". IEEE Transactions on Computers (Sept. 1990).

15. Sha, L., Klein, M. H., and Goodenough, J. B. Rate Monotonic Analysis for Real-Time Systems. In
Foundations of Real-Time Computing: Scheduling and Resource Management, van Tilborg, Andre and Koob, Gary
M., Ed., Kluwer Academic Publishers, 1991, pp. 129-155.

16. Sprunt, B., Sha, L., and Lehoczky, J.P. "Aperiodic Task Scheduling for Hard Real-Time Systems". The
Journal of Real-Time Systems , 1 (1989), pp. 27-60.

24

Table of Contents
1 Introduction 2

1.1 The Framework 3
1.2 A Difficulty 4
1.3 Busy Period 5

2 A Method for Determining Schedulability 5
2.1 Final Deadline 5
2.2 Deadlines for Other Subtasks 9

3 Applying the Method to an Example 9
3.1 Problem Description 9
3.2 Problem Solution 11

4 Theoretical Analysis 15
4.1 Busy Period Analysis 15
4.2 Schedulability of the Canonical Form 15
4.3 Worst-Case Phasing 16
4.4 Other Subtask Deadlines 18
4.5 A Blocked-at-Most-Once Property 18
4.6 Non-preemptible Sections 19
4.7 Synchronization 19
4.8 Sporadic Tasks and Aperiodic Servers 20
4.9 Assigning Subtask Priorities 20
4.10 Deadline Monotonic Scheduling Conditions 21
4.11 Improving Schedulability 21

5 Conclusions 23
References 24

i

List of Figures
Figure 1: Considering the First Job is Not Sufficient 4
Figure 2: System Diagram 10

ii

List of Tables
Table 1: Task Set Characteristics 11

iii

