
868 IEEE TRANSACTIONS ON SOFIWARE ENGINJSRIN G, VOL. 20, NO. 11, NOVEMBER 1994

On a Unified F ramework for the Evaluation
of Distributed Quorum Attainment Protocols

Daniel A. MenascC, Yelena Yesha, Member, IEEE, and Konstantinos Kalpakis

Abstmct~uorum attainment protocols are an important part
of many mutual exclusion algorithms. Assessing the performance
of such protocols in terms of number of messages, as is usually
done, may be less significant than being able to compute the
delay in attaining the quorum. Some protocols achieve higher
reliability at the expense of increased message cost or delay. A
unified analytical model which takes into account the network
delay and its effect on the time needed to obtain a quorum is
presented. A combined performability metric, which takes into
account both availability and delay, is defined in this paper, and
expressions to calculate its value are derived for two different
reliable quorum attainment protocols: Agrawal and El Abbadi’s
and Majority Consensus algorithms. Expressions for the Primary
Site approach are also given as upper bound on performability
and lower bound on delay. A parallel version of the Agrawal
and El Abbadi protocol is introduced and evaluated. This new
algorithm is shown to exhibit lower delay at the expense of
a negligible increase in the number of messages exchanged.
Numerical results derived from the model are discussed

Index Terms-Mutual exclusion, performability, performance
analysis, fault-tolerance, distributed systems, delay analysis, ma-
jority consensus, tree-based mutual exclusion protocols, primary
site protocol.

I. INTRODUCTION

0 NE OF THE most fundamental problems in the area
of distributed systems is the mutual exclusion problem,

which consists of ensur ing that no more than one process
can access the same shared object simultaneously. Many
distributed mutual exclusion algorithms have been proposed
in the past few years [2]-[5], [lo], [12], [13], [15]-[17],
[191, [20]. Some of them are resilient to node and network
failures [5], [lo], [20]. In some cases, the quorum is statically
def ined [lo], [ll]. while in some other algorithms a quorum
attainment protocol has to be executed prior to mutual ex-
clusion achievement [l]. In all cases, the performance of the
protocols is measured in terms of the number of messages
needed to get the quorum. Some studies also show, as an
independent metric, the availability of the protocol, def ined
as the probability that a quorum is obtained, even in the
presence of failures. W e argue that these two measures are
not the only relevant ones. In fact, count ing the number of
messages is less important than assessing the time it takes

Manuscript received March 1992; revised December 1992.
D. A. Menas& is with the Department of Computer Science, George Mason

University, Fairfax, VA 220304l4-4 USA; e-mail: menasce@cne.gmu.edu.
Y. Yesha and K. Kalpakis are with the Computer Science Department,

University of Maryland Baltimore County, MD 21228-5398 USA, e-mail:
yeyeshr@cs.umbxdu, kalpaki@cs.umbc.edu.

IEEE Log Number 9406407.

to establish the quorum, called hereafter quorum attuinment
delay. A certain protocol PI may send more messages than
protocol Pz, but may be able to parallelize the exchange
of messages in a more effective fashion than Pz. resulting
in a smaller quorum attainment delay. Some protocols may
achieve higher availability at the expense of larger number of
messages or quorum attainment delay times. So, in order to
define a single measure of performance, one should take into
account at the same time delay and availability, to make a fair
compar ison of all existing mutual exclusion protocols. In this
paper we present a novel metric to assess the performance
of quorum attainment protocols which combines delay and
availability simultaneously. This metric, a performability [181
type of measure for quorum attainment protocols, is denoted
by P and is def ined as

P=A

where A is the availability of the algorithm and Db is
the average normalized quorum attainment delay, i.e., the
average quorum attainment delay divided by the node to
node communicat ions time under zero network load. So, the
higher the availability and the lower the delay, the better the
performability of the quorum attainment protocol.

A general f ramework for the evaluation of quorum attain-
ment protocols is developed in the form of a unified analytic
model. This model allows one to compute several per formance
metrics, such as quorum attainment delay, pcrformability,
availability, and average number of messages, for distributed
quorum attainment protocols. The unified model has two
submodels: a network submodel and a protocol submodel.
The network submodel computes the average end-to-end delay
exper ienced by a message in the underlying network connect-
ing all nodes. The protocol submodel computes the relevant
per formance metrics for a specific quorum attainment protocol.
An iterative procedure is used to solve the fixed-point equat ion
which results from the unified model. A proof of existence of
a unique solution for this procedure is provided in the paper.
Performability values are der ived for two reliable protocols:
Agrawal and El Abbadi’s [l] and Majority [5], [20]. Results
are also der ived for the Primary Site [2] protocol as a lower
bound on delay and an upper bound on pet-formability. The
unified model was used to study the performance of both
the Agrawal and El Abbadi and the Majority Consensus quo-
rum attainment protocols. A parallel version of the Agrawal
and El Abbadi protocol is p roposed and compared with the
other protocols. The parallel version is shown to exhibit a

0098-5589/94$04.00 0 1994 IEEE

MENASCI? et al.: EVALUATION OF DISTRIBUTED QUORUM AlTAINh4EN’T PROTOCOLS 869

protocol p Tout

1 1 1 1
P % NQ A

Unified Model

Fig. 1. Graphical view of the unified model.

higher pet-formability and lower quorum attainment delay than
other protocols at the expense of a negligible increase in the
number of messages exchanged, while maintaining the same
availability of the original protocol.

The rest of the paper is organized as follows. In Section
II, we present the unified model. A proof that the iterative
procedure to solve the unified model has exactly one solution
is given in the Appendix. The network submodel is presented
in Section III. Sections IV-VI contain the equat ions for
the submodels for the Agrawal and El Abbadi, Majority
Consensus, and Primary Site quorum attainment protocols,
respectively. The parallel version of the Agrawal and El
Abbadi protocol is d iscussed in Section VII. Section VIII
presents the results of several numerical studies carried out
with the use of the analytic model. Finally, Section IX presents
concluding remarks.

II. A UNIFIED EVALUATION MODEL

W e define here a unified model for the evaluation of quorum
attainment protocols. This model can be. better understood
with the help of Fig. 1. The unified model is composed
of two submodels: the network submodel and the protocol
submodel. The network submodel computes the average end-
to-end delay expected by a message in the underlying network
connect ing all nodes. The protocol submodel computes the
relevant per formance metrics for a specific quorum attainment
protocol. Among these performance metrics are: availability,
performability, average delay, and average number of mes-
sages to obtain a quorum.

The following input parameters are considered by the uni-
fied model:

l p: probability that a node fails. W e assume that all nodes
fail independent ly with the same probability.’ A node is
said to have failed if it does not reply to messages within
a specif ied time-out. It is also assumed that when a node

‘Notethatpcanbewrittenas~/~+~),where~
and MTl’R are the mean time to failure and mean time to repair, respectively.

fails it will have to go through a recovery procedure in
order to be considered up again.

l Tout : time interval after which a node is declared to be
down.

l n: number of network nodes involved in the mutual
exclusion algorithm.

l A,: average arrival rate of normal traflic messages gen-
erated per node, i.e., messages not related to a quorum
request.

l +: average time interval e lapsed since a node obtains a
repply (successful or not) to a previous request to obtain
the quorum and the next request issued by the same node.
W e assume that all nodes issue new requests at the same
rate.

l l/p,: average size of messages generated by the quorum
attainment protocol (in bits).

l l/pn: average size of normal traffic messages (in bits).
l +f*: network saturation traffic (in bps), i.e., the traffic

above which the network delay goes to infinity.
l TO: network zero load delay, i.e., the message delay when

the network traffic tends to zero.
The performance metrics computed by the unified model

are given below. They all come from the protocol submodel.
l P: performability of the protocol.
l A: availability of the protocol, i.e., the probability that a

quorum is attained.
l DQ: average time needed to successfully obtain a quo-

rum.
l NQ: average number of messages needed by the quorum

attainment protocol in order to obtain the quorum.
-The network submodel generates the following metric:

l E average end-to-end delay of messages in the underlying
network.

The protocol submodel generates the following metrics
needed as input parameters by the network submodel:

l D”: average time needed to execute the quorum at-
tainment protocol given that the quorum is successfully
obtained.

l Dns: average time needed to execute the quorum attain-
ment protocol given that the protocol fails in obtaining
the quorum.

l NA: average number of messages needed by the quorum
attainment protocol each time it is executed, given that
the quorum is successfully obtained.

l Nz: average number of messages needed by the quorum
attainment protocol each time it is executed, given that the
quorum is not successfully obtained.

The performance metrics of the unified model may be
computed as follows. W e assume that if a request ing
site fails in its attempt to obtain a quorum, the site
resubmits its request until it finally succeeds. The probability,
Pr [i failures before success], that exactly i failures occur
before a successful quorum is obtained is

Pr [i failures before success] = (1 - A)i A. (2)

Each time a failure occurs, the average delay is equal to
D”“. Each node waits a time interval equal to l/A, before

870 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 20, NO. 11, NOVEMBER 1994

submitting a new request. Finally, when a success is achieved,
the delay is D”. So, the average delay D Q is given by

D Q = D”+

0 0

C(
i D”” + l/X,) Pr [i failures before success]

i=o

= D” + -& (Dns + l/X,) (1 - A)i A
i=O

= Ds + (Dns + l/X,) Cl- A)
A (3)

Using the same kind of reasoning one can find the average
number of messages needed in order to attain a quorum:

NQ = NA + 2 i NF Pr [i failures before success]
i=o

= N;+gdN;(l-A)“A
i=O

= N” + N; (l - A)
m A *

Finally, the performability is def ined as

PEA.
DQ/To

As it can be seen from Fig. 1, there is a dependency between
the network and the protocol submodels. For instance, the
protocol submodel needs as an input parameter the value of t
computed by the network submodel. But the network submodel
needs the values of A, D”, D”“, N&, and NE, computed by
the protocol submodel, as input parameters. This dependency
is solved by using a fixed-point equat ion approach by the
following iterative algorithm.

1) Set i c 0; ? + To;
2) Compute D”, D”“, NA, and NE using the protocol

submodel for a specific quorum attainment protocol.
3) Compute f using the network submodel.
4) If i = 0 then i + i + 1 and go to Step 2.
5) If the values of D” , Dn” , N&, and NE obtained in itera-

tion i are sufficiently close (within a specif ied tolerance)
to the ones obtained in iteration i - 1, generate the final
metrics for the unified model and stop.

6) i c i + 1; Go to Step 2.
A proof of the existence of a unique fixed-point solution for

the unified model is given in the Appendix.

III. THE NETWORK SUBMODEL

W e assume that the nodes are connected by an underly-
ing communicat ion network. In a geographical ly distributed
network, the underlying network may be a packet switching
network. In a local network, we may have an Ethernet like or

request at the nodes is negligible if compared with network
transmission time.

The average end-to-end delay ? is, in general, a function
of the network traffic, of the size of each type of message
injected in the network, and on several characteristics of the
network, such as link capacit ies and routing algorithms in
packet switched networks [8], or bus speeds and propagat ion
delays in local networks [6]. In general, the average end-to-end
delay in the network can be easily obtained as a function of
the network traffic and other network characteristics [6], [8].
As observed in [8], the delay versus traffic curve has a typical
shape as a function of the total traffic injected in the network.
For low and medium traffic values, the delay stays reasonably
constant, and it rises quite sharply when the traffic approaches
the network saturation point. This model, called the threshold
model, is d iscussed in detail in [8]. While this threshold
model was first introduced to depict the behavior of wide area
networks, it is also useful to represent the delay throughputs
characteristics of local area networks. In our evaluation of
quorum attainment protocols we use a function that captures
the threshold type of behavior of communicat ion networks.
This function reflects the impact on the average end-to-end
delay caused by an increase in the network traffic.

W e used curve fitting methods to ARPANET delay versus
traffic curves [8] in order to obtain the following expression for
Z as a function of the total traffic 7 injected in the network,
the network zero load delay TO, and the network saturation
traffic value 7*. Thus, our network submodel is given by the
following expression,

l=To l--
[

-
1!+ + (l-;,’ . 1 (6)

In order to compute the total traffic 7, some additional
definitions are in order:

l 7n: average total normal traffic injected in the underlying
communicat ion network due to normal messages, i.e., not
including quorum request messages (in bps).

l yq: average total traffic injected in the underlying com-
munication network due to messages generated by the
quorum attainment protocol (in bps).

Thus, the total network traffic can be written as

7=7n+7q. (7)

The average total arrival rate 7,r of requests to obtain a quorum
can be found by observing that

1) Each process which does not have a pending request
generates a new request with rate X, given that it has
not failed.

2) A process that has requested a quorum will not submit
a new request until it gets an answer from the previous
one. If the process obtains a quorum, then it p roceeds to
obtain mutual exclusion.

3) As many requests as submitted may be simultaneously
being processed.

This situation can be modeled as a queuing system with finite
customer populat ion (due to observat ion 2 above) with infinite
number of servers (due to observat ion 3 above). Let lc be the
number of requests being processed. Then, the arrival rate
X (k) of requests to the system given that L requests are being

MENAXE et al.: EVALUATION OF DISTRIBUTED QUORUM ATTAINMENT PRO’KKOLS 871

processed is equal to X, . (1 - p) . (TZ - k). The average service
time, 5, of a request is equal to D” if the process succeeds in
obtaining the quorum (which occurs with probability A) and
is equal to D”” otherwise. Hence,

z=A.D”+(l-A).D”“. (8)

The service rate ~1 (k) given that k requests are being
processed is equal to k / Z. So, using the results for
GIIGIl~lln 171, we get that the probability, pk, of having
k requests being processed is given by,

Pk = PO * Pk ;
0

where po is given by

po = (lJp)” (10)

and p is def ined by the following equation:

p=X,(l-p)c. (11)

So, the average total request rate is equal to the average
arrival rate of requests to this GI/Glloo//n queuing system
and is given by,

k=O
n-1

= PO c A, Cl- P) (n - k) pk
0

i
k=O

=po&(l-p)e(n-k)~~ z
k=O 0

=Pow-P&P*(;) -gkP$)]

= PO A, (1 - P> [n Cl+ PI” - np(l + PI”-ll
=poX,(l -p)n(l+p)n-l. (12)

If we substitute the value of PO from (10) into (12) we
finally get

(13)

Finally, m can be written in terms of the average arrival rate
of requests to the shared resource, the average number, N,,
of messages exchanged per request, as well as their respective
size. So,

rq = AT . Nm . ; (14)

where N, is given by

N,=AN;+(l-A)Nz. (15)

Note that A, N&, and NE are computed by the protocol
submodel.

The normal traffic injected in the network, T,,, is equal to
the average number of up nodes multiplied by the average
traflic submitted per node. Thus,

(1 - p)L pn-”

= k A, n (1 - p). (16)

IV. SUBMODELFORTHEAGRAWAL
ANDELABBADI~OTOCOL

In [l], Agrawal and El Abbadi present an efficient and
fault-tolerant algorithm for generat ing quorums in order to
achieve distributed mutual exclusion. Their algorithm assumes
a logical tree organization of the network. A site attempting
to form a quorum sends a Request Quorum (REQ) message
to the root of the tree. If the root is up, then it responds with
an Acknowledgment (ACK) message. If the root is up then
the algorithm cont inues recursively, trying to form a quorum,
with the left or right subtree. If it can obtain a quorum from
either of the two subtrees then it returns the quorum together
with the root. Otherwise, if the root is down, the algorithm
recursively obtains a quorum from both the left and the right
subtrees, and then returns their union as the quorum for the
whole tree. A pseudocode description of the protocol is given
in Fig. 2. A node that wants to form a quorum calls the
procedure GetQuorum with the root of the tree as parameter.
Note that because of line 4 in the pseudocode the protocol
is nondeterministic. That is, the protocol may compute the
quorum for the left child first and the quorum for the right child
second, or vice versa. W e assume that the protocol chooses to
compute either quorum first with the same probability. Further,
we assume that this choice does not depend on other factors,
such as previous information about failures of nodes. The
Agrawal and El Abbadi’s algorithm achieves fault-tolerance by
ensur ing that a node request ing mutual exclusion has several
alternative quorums.

W e derive the necessary expressions, which are needed by
our unified model, for the performance analysis of the Agrawal
and El Abbadi’s protocol. First, some definitions are in order.
The disfunce between any two nodes of a tree is equal to the
number of edges on the unique path in that tree that connects
these nodes. The level of a node of a tree is equal to its distance
from the root of that tree. The height of a tree is equal to the
maximum of the distances of any leaf node of that tree from
its root. The height of a node of a tree is def ined to be equal to
the height of the subtree of that tree that is rooted at that node.

Hereafter, we assume that a complete binary tree with n
nodes is given. This tree has height h = log(n + 1) - 1, has
(n + 1)/2 leaves, and each leaf has height 0 and level h. The
number of nodes of that tree at level j (or equivalently at
height h - j) is equal to 2j, for any 0 5 j 5 h.

W e say that a quorum attainment protocol succeeds if and
only if it returns a nonempty quorum. Otherwise, we say that
it fails.

W e use the following notation. Hereafter, i is assumed to
be a nonnegat ive integer less than or equal to h.

872 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.. 20, NO. 11, NOVEMBER l!l$kl

Algorithm GetQuorum.
In@: The root r of a binary tree T.
Output: A quorum consisting of nodes of T.
Begin

(* Empty(T) evaluates to true iff T is empty. *)
(* Up(v) evaluates to true iff node v agrees to*)
(* be in a quorum. *)
(* Left(v) returns the left child of a node v *)
(* Right(v) returns the right child of a node v *)
(* Both Left(v) and Right(v) return {} if *)
(* v is a leaf. *)
1 If Empty(T) Then
2 Return { }
3 Else If Up(r) Then
4 Return ({r} U GetQuorum(Left (r))) or

({r} U GetQuorum(Right(r)))
5 Else
6 &I t GetQuorum(Left(r))
7 Qz +- GetQuorum(Right(r))
8 I f(Q1=8orQz=fl)Then
9 Exit (*Failed to get a quorum*)
10 Else
11 Return (&I U Q2)

End

Fig. 2. Agrawal and El Abbadi’s Quorum attainment protocol.

l Tt: average time to complete the execut ion of the pro-
tocol, when it starts at a node of height i, g iven that the
protocol succeeds.

l T , f : average time to complete the execut ion of the pro-
tocol, when it starts at a node of height i, g iven that the
protocol fails.

l M,S: average number of messages sent dur ing the execu-
tion of the protocol, when it starts at a node of height i,
g iven that the protocol succeeds.

l M!: average number of messages sent dur ing the execu-
tion of the protocol, when it starts at a node of height i,
g iven that the protocol fails.

l A;: probability that the protocol, when it starts at a node
of height i, succeeds. Thus, Ai denotes the availability of
the protocol, when it starts at a node of height i.

Note that if we execute the Agrawal and El Abbadi’s
protocol on a binary tree of height h, then D” = Ti,
D”” = T,f, N;R = M;, NE = Mhf, and A = Ah.

W e provide recursive equat ions for Tz, T,f , Mi, and
M,f, for all 0 5 i 5 h. Agrawal and El Abbadi [l]
give an expression for the availability of their protocol. This
expression, repeated in terms of our notation, is

A.= 2(I-p)A;-1+(2p-l)Af-‘_,, fori=1,2,...,h 2
1 -P, fori=O. ’

(17)
Consider the execut ion of the protocol when it starts at

a node ‘u of the tree that is at height i. Note that w is the
root of a subtree of height i. The average time to execute the
protocol and the average number of messages sent depend on

whether the root w of this subtree is up or down, on whether
the protocol succeeds or fails when it is started at the children
of v (if i # 0), on the probability of failure of the nodes, on
the average end-to-end delay, and on the time to detect that
a node is down.

Theorem I: Suppose the protocol starts at a node of height
i. Then, the average execut ion time Tt of the protocol and the
average number of messages n/i, sent dur ing the execut ion of
the protocol, g iven that the protocol succeeds, are

and

I(25 + T,a_,)(l - p)A;-1 + (Tout + 2T,a_,)pAf-_,+
(2z+ T,a_, + T,f_J(l - p)A;-1(1 - Ai-l)]/Ai,

for i = l,...,h

for i=O
(18)

[(2 + M,a_,)(l - P)&I + (1 + 2M,e_,)pAfe’_,+
(2 + M:-, + M,f_,)(l - p)A;-1(1 - A;-l)]/Ai, ^ _ M ;s = for 2 = l,...,h

2

respectively.

for i=O
(19)

Proof: Let 21 be a node of height i. The protocol starts
execut ing at node V. If w is of height 0 then, since the protocol
succeeds, the protocol sends two messages (one REQ message
plus one ACK message) and its average execut ion time is 2t.
Hence, Ti = 22 and M,” = 2. Otherwise, w is of height i 2 1.
Let W L and ZIR be the left and right children of v. Nodes W L
and v~ are of height i - 1. W e introduce notation for the
following events:

E,,: root v is up.
Esl: the protocol succeeds if it starts at WL.
Es,: the protocol succeeds if it starts at WR.
Eps: the protocol succeeds if it starts at v.
If E is an event then EC denotes its complementary event.

For example, E,“, denotes the event that node w is down, while
E,“1 denotes the event that the protocol fails if it starts at node
WL.

There are three cases to consider:
l Case 1: node v is up and the protocol succeeds if it

starts at the child it chooses to try first. By symmetry and
without loss of generality, we assume it will start at node
WL. Since we assume that the protocol succeeds at node
w, the probability of this case is Pr[E,, & Es, 1 Eps].
Further, in this case, the average execut ion time of the
protocol, when it starts at w, is 2? + Tt-, and the average
number of messages exchanged is 2 + M:-,.

l Case 2: node w is up and the protocol fails if it starts
at the first chosen child and it succeeds if it starts
at the other child. By symmetry and without loss of
generality, we assume that the protocol starts with node
W L first, and then with node VR. Since we assume that
the protocol succeeds at node w, the probability of this
case is Pr[E,, & E,“1 & Es, 1 Eps]. In addition, in this
case, the average execut ion time of the protocol, when it

MFJNASCI? et al.: EVALUATION OF DISTRIBUTED QUORUM AITAINMENT PROTOCOLS 873

starts at w, is 2? + TicI + Tt-, and the average number
of messages sent is 2 + M,f_l + Mi”_,.

l Case 3: node v is down. Given that the protocol succeeds
when it starts at node w, the protocol must succeed when
it starts at nodes VL and Wn. The probability of this case is
Pr[E,“, & ES* & ES,] EpS]. Further, the average execut ion
time of the protocol, when it starts at w, is Tout + 2T;B_,
and the average number of messages sent is 1 + 2Mi”_ 1.

Therefore, the average execut ion time Tt of the protocol and
the average number of messages MS! sent, when the protocol
starts at node w, are

T;S = (22 + Ttel) . Pr[E,, & ES1 1 EpS]+
(22 + Ti”_, + Tif_,) + Pr[E,, & E,“I 8z ES, I EpS]+
(Tout + We,).- Pr[E,“, 8~ &I 8~ Es, I Eps]

(20)
and

M,’ = (2 + Mt-,) . Pr[E,, & ES1 I E,,]+
(2 + Mt-1 + ML,) . Pr[E,, & E,“1 8~ Es, I EpS]+
(1 + 2Mf-,) . Pr[E,“, & ES1 & ES, I EpS.]

(21)
respectively.

Next, we compute formulas for the probabilit ies that appear
in the above two equations. W e start with the computat ion of
a formula for Pr[E,, & ES1] E,,J. Using Bayes’ theorem, it
follows that

Pr[&, & &I I Eps] =
WE,, I J% & Es$‘r[Eru & &I

w-%1
(22)

Observe that Pr[E,,] E,, & ES11 = 1 and that Pr[E,,] = Ai.
Since the events E,, and ES1 are independent, we have that
Pr[E,, & ES11 = Pr[E,,] . Pr[E,l] = (1 - p)Ai-1. Therefore,

Pr[E,, & ES1 I Eps] = (’ -f,Ai-l .
2

The formula for Pr[E,, & E,“1 & ES,] EpS] can be computed
similarly as follows. W e have that

I%%, & E,“I & Es, I &I =
Pr[Eps I & & E,“1 & &,I . Pr[-& & E,“I & Es, I

w%l
(24)

Note that Pr[E,,] E,, & E,“, & ES,] = 1 and that Pr[E,,] =
Ai. Since E,,, E,“,, and ES, are independent, we have that

Pr[E,, & E,“1 & ES,] = Pr[E,,] . Pr[E,“,] . Pr[E,,]
= (1 - p)Ai-i(1 - Ai-l). (25)

Hence, we get that

Pr[E,, & E,“1 & Es, I Epsl = (1 - P)&-l(l - A-1)

Ai

c26j

Finally, we compute a formula for Pr[E,“, & ES1 & ES, I EpS].
From Bayes’ Theorem, we have that

Pr[ET, & J% & Es, I Epsl =
WE,, I E,“, & Es1 8.~ &,I . I’@ ,“, 8~ Es1 & Es,]

w%l
(27)

Since E,“,, ESl, and ES, are independent, we have that

Pr[E,“, & ES, AZ ES,] = Pr[E,“,] . Pr[E,l] . Pr[E,,]
= pAi-IAim1. (28)

Further, since Pr[E,,] E& & ES1 & ES,] = 1 and Pr[E,,] =
Ai, we have that

PA?- 1
Pr[E,“, & Es1 & Es, I Eps] = e- 2

(29)

Note that Pr[E,, & ES1] EpS] +Pr[E,, & E,“1 & ES, I EpS] +
Pr[E,C, & ES1 & ES, 1 EpS] = 1.

Substituting the formulas for the corresponding probabilit ies
in (20) and (21), and using the fact that T,” = 2? and M,$ = 2,
(18) and (19) follow. 0

Theorem 2: Suppose the protocol starts at a node of height
i. Then, the average execut ion time Tif of the protocol and the
average number of messages Mif sent dur ing the execut ion of
the protocol, g iven that the protocol fails, are

i

[(2Z + 2T,f_i)(l - p)(l - A~-I)~+
(Tout + T,f_l)p(l- k-l>+

T,f = (Tout + T,f_l + T,S_,)pA-l(l - Ai-I)]/(1 - Ai)
for i = 1,...,h

and

T out for i=O
(30)

i

[(2 + 2M,f_,)(l -p)(l - Ai-1)2+
(1 + Mif_l)p(l - Ai-])+

M;f = (1 + M,f_l+ Mf-~)p&-l(l- &-1)]/(1 - A),
for i = l,...,h

1

respectively.

for i=O
(31)

Proof Let v be a node of height i. The protocol starts
execut ing at node w. If w is of height 0 then, since the protocol
fails, the protocol sends one message (one RBQ message) and
its average execut ion time is T,,t. Hence Tof = Tout and
Mof = 1. Otherwise, w is of height i 2 1. kt W L and VR be
the left and right children of v. Nodes W L and Vn are of height
i - 1. Recall the following events (from Theorem 1):

l E,,: root v is up.
l ESl: the protocol succeeds if it starts at WL.
l ES,: the protocol succeeds if it starts at VR.
l EpS: the protocol succeeds if it starts at w.
If E is an event then EC denotes its complementary event.
There are three cases to consider:
l Case 1: node v is up and the protocol fails if it starts at

node we or wR. since W e assume that the protocol fails
when it starts at node v, the probability of this case is
Pr[E,, & E,“1 & E,“,) E&l. Further, in this case, the
average execut ion time of the protocol, when it starts at
v, is 2? + 2TiLl and the average number of messages
exchanged is 2 + 2Mif_l.

l Case 2: node w is down and the protocol fails if it starts
at the child of w it chooses to try first. By symmetry

IEEE TRANSACTIONS ON SOFlWARJZ ENGINEERING, VOL. 20, NO. 11, NOVEMBER 1994

and without loss of generality, we assume it chooses
node VL first. Since we assume that the protocol fails
when it starts at node w, the probability of this case is
Pr[E,“, & E,“,] E&l. In addition, in this case, the average
execut ion time of the protocol, when it starts at II, is
Tout + T,f_l and the average number of messages sent
is 1 + Mzfml.

l Case 3: node v is down, the protocol succeeds if it starts
at the node chosen first, and it fails if it starts at the other
child. By symmetry and without loss of generality we
assume it chooses node ?JL first and node W n second. Since
the protocol fails when it starts at node w, the probability
of this case is Pr[E,“, & ES1 & E,“, I E&l. Further, the
average execut ion time of the protocol, when it starts at v,
is Tout + Tim i + Tf- 1 and the average number of messages
sent is 1 + Mi”_, + Mzfml.

Therefore, the average execut ion time Ti of the protocol
and the average number of messages Mif sent, when the
protocol starts at node 21, are

Tif = (2j + 2Tfml) . Pr[E,, & E,“1 & E,” I Ei,]+

(Tout + Tf-,> . Pr[Etu & E,“1 I E&l+

(Tout + TimI + TLl) . Pr[EFu 8~ Es1 8~ Es”, I E&l
(32)

and

M,f = (2 + 2M,f_,) . Pr[E,, & E,“1 & E,“,) Ez,]+

(1 + MLl). Pr[E,C, & E,“1 I E&l+

(1 + Mi”_, + M,f_l). Pr[E,“, 8~ Es1 & E,” I E&]
(33)

respectively.
Next, we compute formulas for the probabilit ies that appear

in the above two equations. W e start with the computat ion
of a formula for Pr[E,, & E,“1 & E,“,) E&l. Using Bayes’
Theorem, it follows that

Pr[E,, & Ez, & Ezr 1 E&] =
WE& I Eru & E,“1 & E,“,] . Pr[&, & &I 8~ Es”,]

Pr[E;sI.
(34)

Since the events E,,, E,“,, and E,“, are independent, we have
that Pr[E,, & Et, & E,“,] = Pr[E,,] .Pr[E,“,] .Pr[E,“,] = (l-
p)(l - Ai-1)2. Further, since Pr[E&) E,, & E,“1 8~ E,“,] = 1
and Pr[Ei,] = 1 - Ai, we have that

Pr[E,, & E,“1 & E,” I EiJ = Cl- P)(I - A-d2
1-A; .

c35j

Similarly, we compute a formula for Pr[E,“, & E,“1 I E&l.
W e have that

Pr[E,“, & E,“1 I Ei,] =
Pr[E& I E,“, & E,“l] . Pr[Ef” & E,“l]

WE&I
(36)

Algorithm Majori tyconsensus.
Input: Aset L={vi,v2,...,v,}ofnnodes.
Output: A quorum consisting of [(n + 1)/2] nodes
from L.
Begin

(* Sizeof returns the cardinality of a set X. *)
(* ResetClock() sets the Clock to the T,,t *)
(* Timeout(): true iff the Clock timeouts. *)
1 Q + Empty set of nodes
2 While Sizeof > [(n + 1)/2]- Sizeof Do
3 5’ c a subset with [(n + 1)/2]- Sizeof

nodes from L
4 Remove from L all the nodes which are in S
5 Send, in parallel, a quorum request message

to each node in S
6 ResetClock()
7 While not Timeout0 and Sizeof > 0 Do
8 If a node v E S replies with an ACK

message Then
9 Add node v to Q
10 Remove node ‘u from S
11 End-While
12 End-While
13 If Sizeof < [(n + 1)/2] Then
14 Exit (* Failed to get a quorum *)
15 Else
16 Return (Q)

End

Fig. 3. Majority consensus quorum attainment protocol.

Note that Pr[Ei, I E,“, & Et,] = 1 and that Pr[E&] = 1 - Ai.
Since the events E& and Ez, are independent, we have that

Pr[E,“, & E,“1] = Pr[E,“,] * Pr[E,“,] = p(1 - Ai-1). (37)

Hence, we get that

Pr[E,“, & E,“I I E&] = p(‘,~~~“. (38)
2

Finally, we compute a formula for Pr[E,“, & ES1 & E,” I E&l.
From Bayes’ Theorem, we have that

Pr [E,“u & ES1 & E& I E&J =
Pr[E&] E,“, & ES1 & E&] . Pr[E,“, & ES1 & E,“,]

~~P&I~
(39)

Since the events E,C,, ES,, and E,“, are independent, we have
that

Pr[E,“, & ES, & E,“,] = Pr[E,“,] . Pr[E,t] . Pr[E,“]

= pAi-I(1 - Ai-1). (4)

Further, since Pr[E&] Et,, & ES1 & E,“J = 1 and Pr[E&] =

MENASCI?eta l . :EVALUATIONOFDISTRIBUTEDQUORUM A' ITAINMENTPROTQCOLS

1 - Ai, we have that

Note that Pr[E,, & E,“1 & E,“, 1 E&] +Pr[E,“, & Ezl 1 E&] +
Pr[E& & Es, & E,“, 1 E;,] = 1.

Substituting the formulas for the correspondin
P-

probabilit ies
into (32) and (33), and using the fact that T, - Tout and
Mof = 1, (30) and (31) follow. 0

V. SUBMODEL FORTHE MAJORITY CONSENSUS PROTOCOL

The majority consensus protocol [5], [20] is a relatively
simple protocol to achieve mutual exclusion in a distributed
system. To guarantee mutual exclusion, a node must receive
permission from a majority of nodes in the network. It is
obvious, that there can be only one majority at any instant, thus
mutual exclusion is achieved. The majority quorum protocol is
resilient to both node and link failures. It has been frequently
used in replicated databases and as a solution to the distributed
commit problem. A brief description of the majority protocol is
as follows (see also Fig. 3). C = [(n+l)/2] messages are sent
in parallel to the C nodes which constitute a majority, where
n is the total number of nodes. If all of them acknowledge,
the quorum is formed and the protocol stops successfully.
If m (m 5 n - C) nodes fail, m messages have to be
sent to additional nodes and the process repeats itself. If
m > n - C the majority cannot be reached and the protocol
stops unsuccessful ly.

W e use the following notation.
l T&: average delay to execute a quorum request given

that i messages are sent, that j nodes have not received
any quorum request messages yet, and that the quorum
will be successfully obtained. Let MzT’ denote the average
number of messages exchanged in this case.

l T&: average delay to execute a quorum request given that
i messages are sent, that j nodes have not received any
quorum request messages yet, and that the quorum will
not be successfully obtained. Let M’, denote the average
number of messages exchanged in this case.

l Ai,j: probability that at least i out of j nodes have not
failed.

Observe that the average delay and average number of
messages in execut ing the majority protocol, in the case
of successful quorum attainment, are given by TE,n-c and
M$+-c, respectively. Similarly, in case it does not succeed
in obtaining a quorum, the average delay and average number
of messages are given by T&-c and ML,n-C, respectively.
Further, the availability of the majority protocol is given by
A+. In what follows, we derive recursive expressions for
T$, M;j, Ti’j, Tti, and Aiyj.

The probability ki,j that at least i out of j nodes have not
failed is given by the following expression:

Ai,j = 2 6) (1 - p)“pi-’
k=i

j! J 1-P

= (i - l)!(j - i)! a
@(l - z)%kr. (42)

The right hand term of (42) [14] provides a more efficient
manner of comput ing A,,j for large number of nodes. Note
that if i > j then A;,j = 0.

Theorem 3: Suppose that the protocol selects to send mes-
sages to i nodes, that there are still j nodes to which no
messages have been sent, and that the protocol successfully
obtains a quorum consisting of i nodes. Then, the average
delay, T<i, and the average number of messages sent, M&,
are given by the following two equations:

[2Z(l - p)i +
C;‘=“;i”l(T,,t + T&-J x

gyl - p)i-mA,,JAi,i+j

ifj>O

and

ifj=O
(43)

M$ =

[2i(l - p)i +
Cz$iYj1(2i - m + Mhj-,,J

pm(l - p)i-mAm,jl/Ai,i+j

ifj >0

(2i, ifj=O
(4)

Proof The protocol sends messages to i nodes. There
are two cases to consider, depending on whether any of these
i nodes fail. First, let us introduce the following events:

+i,j,m: m out of the i nodes that were sent messages have
failed, while there are still j nodes to which no messages
have been sent yet.
*k,l: at least k out of 1 nodes are up.

The two cases to consider are:
Case 1: None of the i nodes have failed. The average delay
and the number of messages, in this case, are 22 and 2i,
respectively. This case happens with probability equal to
Pr[+i,j,0 I *i,i+jl.
Case 2: Some of the i nodes fail, say m, where
1 5 m 5 min{i, j}. Then, the average delay and
number of messages are Tout + TA,j-,,, and 2i - m +
w&7v respectively. The probability of this happening
is Pr[%,j,, I *i,i+j].

Note that when j = 0, and since the protocol successfully
obtains a quorum of size i, we have that T[, = 2% and
M{. = 2i. Moreover, from the case analysis above, and when
j > 0, we get

c (Tout + T&,+,)Pr[Q;,j,, I *i,i+jl
m=l

(45)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO, ,,, NOVEMBER 1%

and

M:j = 2i. Pr[+i,j,a] Qi,i+j] +
min{i,j}

c (2i - m + M,&,,JPr[Qi,j,, 1 Q++j].
m=l

(46)

Next, we compute Pr[@;,j,,] Qi,i+j], for m =
0, ’ . * , min{i, j}. Using Bayes’s Theorem, we get that

Pr[@;,j,, I Q’i,i+j] =
Pr[Qi,i+j I %j,m] . Pr[@i,j,,l

Pr[*i,i+jl .

Since Pr[*i,++j] = Ai,++j, Pr[+i,j,,] =
0

i pn(l - P)~-“,
and Pr[!kl;,i+j I @i,j,+] = Pr[Qlm,i] = A,,j, we have that

A,,j i pm(l -p);-”
Pr[@i,j,m I *i,i+jl = 0

A,i+j . (47)

Substituting (47) into (45) and (46), and using the facts that
T:, = 2j and M[, = 2i, and since Ao,~ = 1, we get Equations
43 and 44, respectively. cl

Theorem 4: Suppose that the protocol selects to send mes-
sages to i nodes, that there are still j nodes to which no
messages have been sent, and that the protocol fails to obtain
a quorum consisting of i nodes. Then, the average delay, T&,
and the average number of messages sent, M;f,, are given by
the following two equations:

(1 - Am,j)(To,t + T,$-,)+
.,=m$.l+l tjJpm(l - p)i-mx

(1 - hn,j)To,t]
(48)

and

M, =

(1 - -4+)(2i - m + Mi,+,)+

(1 - A+)@ - m) I

(49)

respectively.
Proof The protocol sends messages to i nodes. Since we

are given that the protocol fails to obtain a quorum consisting
of i nodes, it follows that at least one of this nodes fails. First,
let us introduce the following events:

@i,j,m: m out of the i nodes that were sent messages have
failed, while there are still j nodes to which no messages
have been sent yet.

Xl+: less than k out of 1 nodes are up.
Let m be the number of the i nodes that fail, 1 5 m 5

i. There are two cases to consider, depending on whether
m > min{i, j} or not. First, we consider the case where
m > min{i, j}. Note that since m 5 i, m > j. In this
case, since the protocol fails to obtain a quorum of size i,
and since there are less than m nodes to which no messages
have been sent (m > j), no additional messages will be sent
after detecting the failure of any of these m nodes. Note that
it must be the case that at least one of the i nodes fails since
the protocol fails. Since failure of a node is detected after time
T out 7 it follows that the average delay in this case is equal to
T out. The average number of messages is 2i - m since the
protocol sends i messages and receives i-m acknowledgments
back, min{i,j} < m 5 i. This happens with probability
W@i,j,m I *t,i+j]*

Second, we consider the case 1 5 m 5 min{i, j}. Since
the protocol will send m messages to the remaining j nodes,
the average delay is Tout + Tf

mY-m*
The average number

of messages sent is 2i - m + Mm,j-m. Therefore, since the
probability that m out of the i nodes fail given that the
protocol fails to obtain a quorum of size i while there are
still j > 0 nodes to which no messages have been sent is
Pr[Qi,j,,,,] il~$+~], it follows that the average delay and
number of messages are

min{i,j}
T& = C (Tout + Ti,jpr,,) . Pr[@i,j,, 1 *‘p,i+j] +

m=l

c T Out . PrF@i,j,m I Q’z’,i+jl (50)
m=min{i,j}+l

and
min{i,j}

M, = c (2i - m + ML,j-,) . Pr[@i,j,m I *‘l,i+jI +
m=l

C (23 - m) * Pr[@i,j,, I @t,i+jl
m=min{i,j}+l

respectively.

(51)

Next, we compute Pr[+;,j,, I @&+j], for m = 1, ... , i.
Using Bayes’s Theorem, we get that

Since Pr[Q&+j] = 1 - Ai,i+j, Pr[@i,j,,] = i pm(l -
0

P)~-“, and Pr[q;,i+j) +i,j,,,J = Pr[\kk,j] = 1 - A,,j, we
have that

(1 - A,,j) ’ pm(l -&-”
Pr[@i,j,, I Qlp,i+jl =

LJ
1 - A,i+j

. (52)

Substituting (52) into (50) and (51), we get (48) and (49). 0

VI. SUBMODEL FORTHE PRIMARY SITE PROTOCOL

The delay results given for the Primary Site protocol
should be viewed as lower bounds on the actual results,

MENAS& et al.: EVALUATION OF DISTRIBUTED QUORUM A’ITAINMEN’I PROTOCOLS

since due to its central ized nature, the primary site has
the potential of becoming a bott leneck. In this case, the
assumption that the quorum request processing time is
negligible is not necessari ly true. The primary site copy
approach [2] is quite simple. A node- the primary site-is
responsible for mediat ing all requests. If it is up, a quorum
is formed, at the cost of two messages (one for the request
and one for the acknowledgment) . Otherwise, a quorum is
not formed and only one message is sent.

The analysis for the primary site protocol is quite straight-
forward. The average number of messages, average delay, and
availability expressions are as follows: N& = 2, NE = 1,
D” = 2 3 D”” = T out, and A = 1 - p.

VII. PARALLEL AGRAWAL AND EL ABBADI PROTOCOL

W e descr ibe here a modification to the basic Agrawal and
El Abbadi quorum attainment protocol. The objective is to
decrease the average delay at the expense of a small or no
increase in the number of messages while maintaining the
same availability. A description of the modif ied algorithm is
given in Figs. 4-6.

Fig. 4 shows the main body of the protocol while Figs. 5
and 6 show the auxiliary functions SelectPaths and QStatus,
respectively. For line 20 of the code in Fig. 4, we need the
following definition. Given a tree T and two nodes IJ and u of
T, we say that w is an ancestor of 2~ in T if the path from the
root of T to u includes w, Note that TJ is an ancestor of itself.
In this protocol, we send messages, in parallel, to all nodes
on paths to leaves of the tree. Further, because the QStatus
function is based upon the Agrawal and El Abbadi protocol,
it is not difficult to see that our modification returns a quorum
as in Agrawal and El Abbadi if one exists. A formal proof of
correctness, based on similar arguments, as in Agrawal and El
Abbadi, can be easily constructed. However, its presentat ion
would not shed any additional light to the material d iscussed
here and it is therefore omitted.

W e give an example of the Parallel Agrawal and El Abbadi
(ParAgrAbb) protocol for a complete binary tree T with 7
nodes. W e assume that the root of T is numbered 1, and for
i = 1,2,3, the left and right children of node i are numbered
2i and 2i + 1, respectively. Suppose that nodes 1 and 2 of T
are down and that all other nodes of T are up.

First, consider the basic Agrawal and El Abbadi protocol.
It sends a request to node 1 and after Tout it f inds that node

(* ResetClock() sets the Clock to Tout. *)
(* Timeout(): true iff the Clock timeouts. *)
1 UpNodes, DownNodes, WaitFor - Empty set

of nodes
2 RootSet - { the root r of T }
3 TreeNodes - The set of nodes of T
4 While QStatus(T, P, TreeNodes - DownNodes)

Failure Do
5 WaitFor - SelectPaths(T, RootSet, UpNodes

U DownNodes)
6 Send requests in parallel to all nodes in

WaitFor
7 ResetClock()
8 While not Timeout0 and) WaitFor I > 0 Do
9 If a node w E WaitFor sends an ACK Then
10 Add node w to UpNodes
11 Remove node w from WaitFor
12 End-While
13 If QStatus(T, T, UpNodes) = Success Then
14 Return the quorum computed by

GetQuorum using UpNodes
(*Obtained a quorum*)

15 Add each node of WaitFor to DownNodes
16 If QStatus(T, r, TreeNodes - DownNodes) =

Failure Then
17 Exit (* Failed to obtain a quorum *)
18 RootSet - Empty set of nodes
19 For each node w E WaitFor Do
20 Find lowest ancestor w’ of ‘u such that

QStatus(T, u’, TreeNodes -
DownNodes) # Failure

21 Select a child VI’ s.t. wN $Z UpNodes and
v” 6 DownNodes

22 Add v” to RootSet
23 End-For
24 End-While
25 Exit (* Failed to obtain a quorum *)

End

1 is down. Then, it requests a quorum for the subtree rooted .:ig. 4. Parallel Agrawal and El Abbadi’s quorum attainment protocol.

Algorithm ParAgrAbb.
Input: A binary tree T with n 2 1 numbered nodes.
Output: A quorum consisting from nodes of T.
Begin

at nodes 2 and 3. It sends a request to node 2 and after Tout
it f inds it is down. It obtains a quorum for the subtree rooted

protocol sends requests, in parallel, to all those nodes. Since

at node 2 after 4% time while sending and receiving a total of only nodes 1 and 2 are assumed down, after Tout time, the

four messages. Then, it cont inues to obtain a quorum for the protocol cont inues with execut ion of line 13 of the code. Since

subtree rooted at node 3. It sends a request to node 3, and after the set of UpNodes consists of node 4, the protocol cont inues

time 2?, it f inds it is up. At this point, let us assume that it with line 15, where the set of DownNodes is updated to include

decides to send a message to node 7, the right child of 3. After nodes 1 and 2. At line 20, the protocol selects an ancestor for
time 2z it f inds that node 7 is up. Hence, the basic Agrawal each node in WaitFor for which it is not certain the protocol
and El Abbadi protocol obtains a quorum after 2T,,, + 82 time will fail to obtain a quorum for the subtree rooted at that
while sending or receiving a total of 10 messages. ancestor. For node 1, the protocol selects node 1 and it adds

Consider now the ParAgrAbb protocol. Suppose that the node 3 to RootSet. For node 2, the protocol selects node 2 and
path selected at line 5 of the code in Fig. 4 consists of the it adds node 5 to RootSet. Then, the protocol loops back to line
nodes 1,2, and 4, which becomes the current WaitPor set. The 4. Suppose that the paths selected at line 5 consists of nodes

878 IEEE TFtANSACl’lONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 11, NOVEMBER 1994

Funct ion SelectPaths(T, R, E).
Input: A binary tree T of nodes and two subsets R
and E of nodes in T.
Output: A subset of the nodes of T that lie on paths
that start at nodes in R and end at leaves of T while
they do not use any node in E.
Begin

1 Temp - Empty set of nodes
2 For each node u E R Do
3 Find a path in T from v to a leaf of T that

does not use any nodes in E
4 Add all the nodes in that path to Temp
5 End-For
6 Return Temp

End

Fig. 5. The SelectPaths function for the Parallel Agrawal and El Abbadi
protocol.

3,5, and 7. Tbe set WaitFor consists of nodes 3, 5, and 7. The
protocol sends requests, in parallel, to all nodes in WaitFor,
and after time 2f, since all these nodes are up, all these nodes
acknowledge. Then, the protocol cont inues with line 13. At
this point the set of UpNodes consists of nodes 3, 4, 5,
and 7. Funct ion QStatus at line 13 returns success and the
protocol successfully obtained a quorum consisting of nodes
3, 4, 5, and 7. Note that the quorum is determined in line 14
by invoking the same GetQuorum procedure descr ibed in the
original Agrawal and El Abbadi protocol with the following
modification. The Up(w) function descr ibed in GetQuorum,
evaluates true iff node w is up and thus agrees to be in a
quorum. In that case, this has to be done by sending a message
to v and waiting for a reply. Here, the Up(v) returns true if
w E UpNodes. Therefore, no messages need to be exchanged
at this point. The use of the GetQuorum procedure guarantees
that the quorum obtained by ParAgrAbb conforms to a quorum
that would be obtained by AgrAbb. The time taken is TOULt + 23
while the total number of messages exchanged during the
execut ion of the protocol is 10. It should be noted that line 14
is necessary since in tbe course of running the protocol, there
are nodes that are discovered to be up which however are
not part of the Agrawal and El Abbadi quorum. For example,
consider a tree with 31 nodes and height 4. Suppose that i)
all leaves except the rightmost are down, ii) the left child of
the root is also down, and iii) all other nodes are up. Suppose
that we explore the tree from left to right; that is whenever we
have a choice between left and right child, we choose the left
child first. The quorum consists of the path from the root to
the rightmost leaf. In this example, the set of UpNodes in the
protocol includes many up nodes which are not in the quorum.
A similar situation appears in the AgrAbb protocol.

Note that, in this small example, both the original and
parallel Agrawal and El Abbadi protocols exchanged the same
number of messages, while the delay for the parallel version
of the protocol is substantially smaller than for the original
version. In general, we expect that the parallel version will

Funct ion QStatus(T, v, V).
Input: A binary tree T, a node o of T, and a subset.
U of the nodes of T.
Output: Success or Failure depending on whether a
quorum based on the Agrawal and El Abbadi proto
co1 can be obtained for the subtree of T rooted at v
under the assumption that all nodes in (not in) U are
up (down).
Begin

(* Left(v) returns the left child of a node v *)
(* Right(v) returns the right child of a node v *)
1 If v is a leaf of T Then
2 If v E U Then Return Success
3 Else Return Failure
4 If v E U Then
5 If QStatus(T, Left(v), V) or

QStatus(T, Right(v), V) = Success
6 Then Return Success
7 Else Return Failure
8 Else
9 If QStatus(T, Left(v), U) and

QStatus(T, Right(v), V) = Success
10 Then Return Success
11 Else Return Failure

End

Fig. 6. The QStatus function for the Parallel Agrawal and El Abbadi
protocol.

TABLE I
MODEL PARAMETER VALUES

Parameter Value
To 0.1 s
T 0”t 1.0 s
;* 2 Mb/s

A* 0.2 request/s
X” 2.0 requests/s
l/h 1024 b
l/p, 256 b

exchange more messages than the serial version while the
delay of the former will be much smaller than for the later.
In Section VIII, we compare the performance of both versions
of the Agrawal and El Abbadi protocol. Observe that both
protocols have the same availability.

VIII. NUMERICAL RESULTS

W e compare the performance of the various quorum
attainment protocols d iscussed in the previous sections.
The results for Agrawal and El Abbadi (AgrAbb), Majority
(Maj), and Primary Site (PS) are der ived from the analytic
models, while those for the parallel implementation of
Agrawal and El Abbadi (ParAgrAbb) were derived by
discrete event simulation. In all g raphs shown in this section
we assume that the model parameters are the ones given in
Table I, unless otherwise specified.

Fig. 7 shows the variation of the average delay DQ as a
function of the probability of failure for the four protocols. In
all cases, the delay is equal to 2 ? when the probability of fail-
ure is equal to zero. For the four protocols, the average delay

MENAX% et 01.: EVALUATION OF DISTRJBUTED QUORUM ATMINMENT PROTOCOLS a79

31 Nodes 31 Nodes

180

160

140
m ” 5 120
0
g) 100
E
$! 80
a

60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability of Failure Probability of Failure

Fig. 7. Average delay versus probability of failure for fixed n. Fig. 9. Performability versus probability of failure for fixed n.

31 Nodes
1 .o

0.9

0.0

0.7

,@ 0.6
z
$ 0.5
F
a 0.4

0.3

0.2

0.1
\

\ .’ . .
.._ 0.0 I 8 I I 0 0 L . . .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability of Failure

Fig. 8. Availability versus probability of failure for fixed n.

tends to infinity when p tends to 1. However, Maj tends to in-
finity faster than AgrAbb and ParAgrAbb, which in turn go to
infinity faster than PS. Note however, that the PS curve should
be interpreted as a lower bound on delay due to the reasons
previously discussed. In the range 0 5 p < 0.7, ParAgrAbb
exhibits a smaller or comparable delay to all other protocols.

Fig. 8 shows the variation of the availability of the four
protocols as a function of the probability of failure for a
network with 31 nodes. AgrAbb and ParAgrAbb have the
same availability for obvious reasons. The PS protocol has the
smallest availability for values of probability of failure smaller
than 0.5. In this range, Maj is slightly better than AgrAbb and
ParAgrAbb. For values of p greater than 0.5, PS presents the
best availability, fol lowed by AgrAbb, ParAgrAbb, and Maj.
In practice, values of p are not expected to exceed 0.3. So, in
the range p 5 0.3, Maj exhibits the best availability. A more
detailed compar ison between the availability of AgrAbb and
Maj can be found in [l].

Probability of Failure p = 0.010

g 0.30

[0.25

2 0.20

0.15

0.10

0.05

0.00 I
40 60 80

Number of Nodes

Fig. 10. Performability versus number of nodes for fixed p.

fact that the average delay for 31 nodes increases very rapidly
in this range and tends to infinity as indicated in Fig. 7. In
the range 0 5 p < 0.5, Maj has a higher availability (see Fig.
8) and lower average delay (see Fig. 7) than AgrAbb. Hence,
the performability of Maj is greater than that of AgrAbb in
this range. On the other hand, ParAgrAbb has the highest
per-formability of all protocols over the whole practical range
of the probability of failure p, 0 5 p 5 0.3, since it exhibits
a lower delay than Maj and AgrAbb for any value of the
probability of failure in this range. The PS curve in Fig.
9 is accurate as long as the primary site does not become
a bott leneck. Otherwise, this curve should be v iewed as an
upper bound on per-formability for PS. In the case where it
becomes a bott leneck, the assumption that processing time
can be neglected, compared with communicat ion time, does
not necessari ly hold. Note also, that the theoretical maximum
for the performability is 0.5 for any protocol. This is due to

Fig. 9 shows the performability of the four protocols the fact that the maximum availability is 1 and the minimum
as a function of the probability of failure for a network normalized delay is 2 To/To = 2.
with 31 nodes. The variation of the performability as a function of the

As it can be seen, the performability tends to zero for values number of nodes for a fixed value of the probability of failure
of the probability of failure greater than 0.5. This is due to the p @ = 0.01) is shown in Fig. 10.

880 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 11, NOVEMBER 1994

31 Nodes

0.1 0.2 0.3 0.4
Probability of Failure

Fig. 11. Availability-weighted performability versus probability of failure
for fixed n.

In general, the performability decreases as the number of
nodes increases for Maj, AgrAbb, and ParAgrAbb because the
average delay increases faster than the availability increases.
It should be noted that Maj and ParAgrAbb are equivalent for
n = 3. For this reason, they have the same pet-formability
for this number of nodes. For values of n greater than 3,
ParAgrAbb exhibits a better performability than Maj which
in turn is better than AgrAbb. For instance, for 63 nodes
and p = 0.01, ParAgrAbb has a performability 80% higher
than Maj, and Maj has a 170% higher performability than
AgrAbb. Thus, ParAgrAbb has a performability 386% higher
than AgrAbb for this set of parameters. This trend is expected
to continue as the number of nodes increases even further. The
PS curve is pretty much insensitive to the number of nodes
as expected since the availability for PS is not a function of
the number of nodes nor is the average delay per attempt to
obtain a quorum. Again, we are not considering the possible
bottleneck effect of PS.

The performability, as defined in (l), does not change if both
the availability and the average normalized quorum attainment
delay are multiplied by the same factor. Obtaining even a
few percent points of improvement in the system availability
may be more difficult than reducing the delay by the same
factor. Thus, one might want to use alternative performability
metrics that give more weight to availability. We propose a
availability-weighted pe$ormability metric defined as

p, = _ 1s 100 - A)
Db

(53)

where A, and Db are, as already defined, the availability of
the algorithm and the average normalized quorum attainment
delay, respectively. Fig. 11 shows the variation of P’ as a
function of the probability of failure for 31 nodes. Under this
new metric and for 31 nodes, Maj has a higher performability
than any other protocol, followed by ParAgrAbb, AgrAbb,
and PS.

If we fix the probability of failure and vary the number
of nodes, as indicated in Fig. 12, we observe that the per-
formability for Maj and ParAgrAbb increase initially with n

Probability of Failure p = 0.010

r----

//

‘d’
//’

d’

~ AgrAbb
--- Maj

-- PS
c- +I ParAgrAbb

0.30 i
0 20 40 60 80

Number of Nodes

Fig. 12. Availability-weighted performability versus number of nodes for
fixed p.

Probability of Failure p = 0.010
I’ 1 1 ‘1’ ” 1”’ 1

1.5 - ~ AgrAbb

1.3 -
--- Maj

ps
+ + ParAgrAbb

m”
1.1 -

x 0.9 -
zk
E
$2 0.7 -
a

0.1’ I I 1 I I I
0 10 20 30 40 50 60 70

Number of Nodes

Fig. 13. Average delay versus number of nodes for fixed p.

due to the logarithmic effect of the increase in availability as
n increases. After some value of n, the availability of both
protocols increases very slightly with n but the delay starts to
increase significantly with n. At this point, the performability
starts to decrease. This occurs first for Maj since its delay
increases faster with n than for ParAgrAbb as shown in Fig.
13 discussed next. AgrAbb and PS have very low values of P’
if compared with Maj and ParAgrAbb. In the case of AgrAbb
this is due to its much higher delay (see Fig. 13). In the case
of PS, this is due to its lower availability (see Fig. 8).

Fig. 13 shows the variation of the average delay DQ as a
function of n for a fixed value of p @ = 0.01). The average
delay increases with the number of nodes for all protocols
except for PS. The delay for ParAgrAbb is always less than
that of Maj, which in turn is less than the one for AgrAbb. For
p = 0.01, the delay of AgrAbb ranges from 1.8 to 5 times the
delay of ParAgrAbb. Also, the difference between AgrAbb,
Maj, and ParAgrAbb tends to increase as n increases.

Fig. 14 shows the variation of the average number of
messages NQ for AgrAbb, ParAgrAbb, Maj, and PS as a
function of the probability of failure for 31 nodes.

As it can be seen, the number of messages for Maj is larger
than for any of the other protocols. For probability of failure

MENASCI? et al.: EVALUATION OF DISTRIE4uTED QUORUM ATTAINMENT PROTUCOLS 881

31 Nodes

--- Maj
g 160 -
P

---- PS
Q- - * ParAgrAbb

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability of Failure

Fig. 14. Average number of messages versus probability of failure for fixed
12.

in the range 0 5 p < 0.3, the number of messages for AgrAbb
and ParAgrAbb are very close (less than 5% difference). On
the other hand, the average delay for ParAgrAbb is about
half of that for AgrAbb in the same range of p. The average
number of messages for Maj in the same range of p is
roughly twice as the same number for AgrAbb and ParAgrAbb.
The average number of messages for Maj tends to infinity
before ParAgrAbb, which goes to infinity before AgrAbb. All
protocols saturate before PS. In fact, for Maj, NQ starts to
grow very fast for values of p close to 0.5, while for AgrAbb
and ParAgrAbb this happens for p in the vicinity of 0.65. PS
shows a very small number of messages until p reaches 0.9.
After this point, the average number of messages for PS starts
to rise sharply. PS exhibits the smallest number of messages
among all three protocols. As shown by the figure, for each
protocol there is a different value of p after which the protocol
should not be used since the number of messages would
increase very fast. The same observat ions may be derived by
looking at the delay curves.

Fig. 15 shows the variation of the average number of
messages NQ as a function of the number of nodes for a fixed
value of p @ = 0.01). For such a low value of p, AgrAbb and
ParAgrAbb require an almost identical number of messages
to attain a quorum. As it can be seen, the difference in NQ
between Maj and AgrAbb increases sharply with n. For PS,
NQ is not a function of the number of messages.

Fig. 16 shows the impact of the rate, X,, at which each
node generates new requests on the average delay. For this
figure we kept the ratio X,/A, constant and equal to 10. As it
can be seen, AgrAbb is clearly more sensitive than the other
protocols to the quorum request workload intensity. This is
due to the fact that 3 increases with X, and the coefficient of ?
in the average quorum attainment delay expression is greater
for AgrAbb if compared with the other protocols. Maj and
ParAgrAbb are very close to one another, but ParAgrAbb has
a better per formance than Maj since it exchanges less messages
per quorum request than Maj, thus injecting less traffic into the
network. For larger number of nodes, the difference between
Maj and ParAgrAbb is expected to increase. Again the PS
curve is a lower bound on delay.

P

Probability of Failure p = 0.010
70, I I I I I I I ,

~ AgrAbb /
60 - --- Maj /

kl
/ ps /

0
/

Q- - -o ParAgrAbb /
2 50 - /

r”
/

/
/

z 40 c / ,

zil 1’
m 20 /

5
/

/

I/ 3
/

a 10 ,’ _ /

Ol”““““““‘I
0 10 20 30 40 50 60 70 80

Number of Nodes

Fig. 15. Average number of messages versus number of nodes for fixed p.

31 Nodes and Probability of Failure p = 0.010
9.00 I I I I

8.00 r - AgrAbb
: ---- Maj

7.00 - ps

6.00

i

Q- - -C ParAgrAbb
m ”
x 5.00

Quorum requests per second per node

Fig. 16. Average delay versus arrival rate of quorum requests.

IX. CONCLUDING REMARKS

This paper presented a unified framework to evaluate the
performance of quorum attainment protocols. The unified
model consists of two submodels: one for the underlying
communicat ion network and another for the protocol be-
ing analyzed. An iterative procedure is given to solve the
fixed-point equat ion that results from the unified model. The
procedure is shown to have a unique solution under very
general assumptions. The performance metrics computed from
the model are: average delay to obtain a quorum, availability,
average number of messages needed to obtain the quorum, and
performability-a per formance metric introduced in this paper
to evaluate quorum attainment protocols.

Many mutual exclusion protocols have been proposed in
the past. In all cases, the performance of these protocols has
been basically assessed in terms of two metrics: number of
messages needed to get the quorum, and availability of the
protocol. Count ing the number of messages is less important
than assessing the quorum attainment delay. Some protocols
may achieve higher availability at the expense of larger
number of messages or higher quorum attainment delays.
In this paper, we def ined a performability metric which is

882 IEEE TRANSACTIONS ON SOFTWARE ENGINEERIN G. VOL. 20, NO. 11, NOVEMBER 1994

the ratio between the availability and the average normalized
quorum attainment delay. So, the higher the availability and
the lower the delay, the better the per-formability of the
quorum attainment protocol. The theoretical maximum for the
performability for any protocol is 0.5. An alternative definition
of performability which gives higher weight to availability
than to quorum attainment delay was also discussed.

Analytical expressions were derived to obtain the average
quorum attainment delay, average number of messages and
performability of the following three protocols: AgrAbb [l],
Maj [20], and PS [2]. A parallel implementation of AgrAbb,
called ParAgrAbb, was proposed and its per formance metrics
were obtained through simulation. ParAgrAbb was shown to
have a higher performability than all other protocols analyzed
over the whole range of values of the probability p of node fail-
ure. Even though Maj has a higher availability than ParAgrAbb
in the range 0 5 p < 0.5, ParAgrAbb has a lower delay than
Maj in the whole range of values of p. Therefore, ParAgrAbb
provides a better tradeoff than Maj between availability and
average quorum attainment delay. The same kind of behavior
can be observed for all other values of the number of nodes
evaluated. If the availability-weighted per-formability metric is
used, Maj exhibits a better performability than ParAgrAbb for
less than 63 nodes. After this point, ParAgrAbb outperforms
Maj since the delay for the latter increases faster than for the
former protocol.

For all protocols analyzed, the average delay tends to infinity
when p tends to 1. However, Maj tends to infinity faster than
AgrAbb, which in turn goes to infinity faster than ParAgrAbb
and PS. The number of messages for Maj is larger than for
any of the other protocols. For small values of the probability
of failure (0 5 p < 0.3), the number of messages for AgrAbb
and ParAgrAbb are very close (less than 5% difference). On
the other hand, the average delay for ParAgrAbb is about
half of that for AgrAbb in the same range. The average
number of messages for Maj in the same range of p is roughly
twice as the same number for AgrAbb and ParAgrAbb. The
average number of messages for Maj tends to infinity before
ParAgrAbb, which goes to infinity before AgrAbb.

The observat ions made in the previous paragraph show that
a delay analysis is a better method for evaluating protocols
than simply count ing messages, since the delay does not grow
linearly with the number of messages exchanged. Finally, the
framework presented here can be appl ied to other distributed
mutual exclusion and commit protocols as well.

APPENDIX

EXISTENCE OFAUNIQUESOLIJTIONTOTHEUNIFIEDMODEL

This appendix presents a proof that the unified model
has a unique fixed-point solution under the fairly general
assumptions given in the following theorem.

Theorem 5: The fixed point equat ion solved by the algo-
rithm given in Section II has exactly one solution under the
following conditions:

l the network is in equilibrium, i.e., 7 < y*,
l D” and Dn” are strictly increasing functions of ?,
l the probability of a site failure is less than 1 (p < l), and
l the derivatives of D” and D”” with respect to i: exist.

Proof Let us rewrite here some of the equat ions shown
in Section II in a form suitable for the proof. Let D” and D””
be functions of 3 as def ined below.

D” = g1 (2) (54)

D”” = g2 (3). (55)

Since D” and D”” are assumed to be strictly increasing
functions of T, gil) - (t) > 0 and gg) (f) > 0. Let r = 1 -r/r*.
Since we assume that the network is in equilibrium, it follows
that 0 < T 5 1. So, according to (6), we can write 2 as a
function ga of r, as follows

-i = g3 (r) = To [l - l/r + l/T-2]. (56)

Funct ion gs has the following propert ies which can be easily
der ived from (56):

l l im,,ags (r) = co.
l Q3 (1) = To .

l gs (r) is a monotonical ly decreasing function of T with
no saddle point. In fact,

gp) (r) = 32 1- 2 [1 T-2 T

which is always negat ive since 0 < r 5 1. Also,

gp (r) = 53 [1 3 - 1
r3 r

which is always positive since 0 < r 5 1.
If we combine (8), (1 l), (13), (14), (16), (54), and (55), we

can write r as a function g4 of T.

r = g4 (Z) = 1 - L n (1 -PI/h
-f*

n A, (1 -P) NJ(cL~ Y*) -
1 + A, (1 -P) [A 91 CT> + Cl- -4) a (?>I *

(59)

For fixed values of the model parameters, we can rewrite
(59) as

g4 (T) = 1 - KI - K2

I+ K3 g1 (3) + K4 g2 (t>
(60)

where KI, K2, K3, and K4 are positive constants, since we
are assuming p < 1.

Funct ion g4 has the following properties:
l g4 is a strictly increasing function of 1. In fact, its first

derivative, gp) (T), is given by

gF) (?> = K2 [K3 &) (z) + K4 g:) (@I

[I + K3 gl (2) + K4 g2 @>I2 ’ (61)

Since K2, &, K4,gI
gy (Z) > 0.

(l) (Z),gp’ (T) > 0, it follows that

l Also, limz,, g4 (T) = 1 - K1, since the delays tend to
00 when the network delay Z goes to infinity. Note also
that 1 - K1 5 1 since K1 is simply the ratio between
normal traffic and the network saturation traffic.

MENAS& ef al.: EVALUATION OF DISTRIBUTED QUORUM ATTAINMENT PROTOCOLS 883

TO

r 1 - K,

Fig. 17. gs (r) and gT1 (r).

l The minimum possible value for g4 (T) occurs for 3 = To.
since Tc is the minimum possible value for Z and g4 (2)
is a strictly increasing function of T.

Since g4 is a strictly increasing function of 5, there is an
inverse function gil (r) such that

-i = gp (?-).

The solution to the fixed point equation is given by equating
(56) and (62). Thus,

3 = g3 (r) = g;l (T-).

Given the properties derived above for functions gs and g4,
it is easy to see that they may be plotted as shown in Fig. 17.
As it may be seen from the figure, the curves for gs (r) and
gT1 (r) intersect at exactly one point. n

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
their careful review. In particular, they would like to express
their gratitude to one of the referees for pointing out some
flaws in the analytical models contained in an earlier version
of this paper.

REFERENCES

[l] D. Agrawal and A. El Abbadi, “An efficient and fault-tolerant solution
for distributed mutual exclusion,” ACM Trans. Camp. Syst., vol. 9, no.
1, pp. l-20, Feb. 1991.

[2] P. A. Al&erg and J. D. Day, “A principle for resilient sharing of
distributed resources,” in P rot. 2nd Int. Conf. S&wore Eng., Oct. 1976,
pp. 562-570.

[3] J. M. Berm&u-Auban and M. Ahamad, “Applying a path-compression
technique to obtain an efficient distributed mutual exclusion
algorithm,” in Proc. 3rd Int. Workshop on Distributed Algorithms,
Sept. 1989, pp. 33-44.

[4] H. Garcia-Molina and D. Barbara, “How to assign votes in distributed
systems,,” J. ACM, vol. 32, no. 4, pp. 841-860, Oct. 1985.

151 D. K. Gifford, “Weighted vo tin f g or replicated data,” in Proc. 7th ACM
Symp. Operating Systems Princ~pies, I&c. 1979, pp. 150-162.

[6] J. L. Hammond and P. J. P. O’Reilly, Performance Analysis of Local
Computer Nehvorks. Reading, MA: Addison Wesley, 1986.

[7] L. Kleinrock, Qwueing Systems, Volume I: Theory. New York:
Wiley, 1975.

PI -. Queueing Systems, Volume II: Computer Applications. New
York: Wiley, 1976.

191 M. H. MacDougaJl, Simulutinn Computer Systems, Techniques, and _ _
Tools.Cambridgey MA: MIT P&s, 1987. -

[lo] M. Maekawa, “A fi algorithm for mutual exclusion in decentralized
systems,” ACM Trans. Comp. Syst., vol. 3, no. 2, pp. 145-159, May
1985.

[ll] S. Rangarajan, S. Setia, and S. K. Tripathi, “Fault-tolerant algorithms
for replicated data management,” in Proc. 8th Int. Con& Data Eng., Feb.
1992, pp. 230-237.

[121 K. Raymond, “A tree-based algorithm for distributed mutual exclusion,”
ACM Trans. Comp. Syst., vol. 7, no. 1, pp. 61-77, Feb. 1989.

[13] Cl. Ricart and A.K. Agrawala, “An optimal algorithm for mutual
exclusion in computer networks,” Commun. ACM, vol. 24, no. 1, pp.
9-17, Jan. 1981.

[14] S. Ross, Introduction to Probability Models, 4th ed. New York: Aca-
demic Press, 1989.

[15] B. A. Sanders, “The information structure of distributed mutual exclu-
sion algorithms,” ACM Trans. Comp. Syst., vol. 5, no. 3, 284-299, Aug.
1987.

[16] M. Singhal, “A heuristically-aided algorithm for mutual exclusion in
distributed systems,” IEEE Trans. Computers, vol. 38, pp. 651-662,
May 1989.

1171 -, “A dynamic information structure mutual exclusion algorithm
for distributed systems, ” IEEE Trans. Parallel and Distrib. Syst., vol.
3, pp 121-125, Jan. 1992.

[18] R. M. Smith, K. S. Trivedi, and A. V. Ramesh, “Peformability analysis:
Measures, an algorithm, and a case study,” IEEE Trans. Computers,
vol. C-37, pp. 406-417, Apr. 1988.

[19] I. Suzuki and T. Kasami, “A distributed mutual exclusion algorithm,”
ACM Trans. Camp. Syst., vol. 3, no. 4, pp. 344-349, Nov. 1985.

[20] R. H. Thomas, “A majority consensus approach to concurrency control
for multiple copy databases,” ACM Trans. Database Syst., vol. 4, no. 2,
pp. 180-209, June 1979.

Daniel A. Menascd received the Ph.D. degree in
computer science from the University of California
at Los Angeles (UCLA) in 1978, the M.Sc. degree in
computer science, and the B.S.E.E degree both from
the Pontifical Catholic University in Rio de Janeiro
(PUC-RIO), Brazil in 1975 and 1974, respectively.

Since 1992 he has been with the Department
of Computer Science at George Mason University,
where he is a Professor of Computer Science and
Associate Director of the Center for the New En-
gineer. He was a visiting faculty at the Institute

for Advanced Computer Studies (UMIACS) of the University of Maryland
College Park from 1991 to 1992, a visiting faculty at the University of Rome,
Italy, in 1981, and a full time faculty at PUC-RIO from 1978 to 1992 where he
chaired the department of Computer Science from 1981 to 1983. His research
interests include the areas of performance modeling, distributed systems, and
high performance and parallel computing. He is the author of over 70 refereed
articles and is the chief author of three books. His research over the past years
has been supported by ARPA, NSF, Hughes Applied Information Systems,
IBM Brasil, and the Brazilian Telecommunications Agency.

Dr. Menascf was the president of the Brazilian Computer Society from
1987 to 1989.

884 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 11, NOVEMBER 1994

Yelena Yesha (M’OO), received the Ph.D. and M.Sc. Konstantinos Kalpakis received the Ph.D. and
degrees in computer and information science from the M.S. degrees in computer science from the
The Ohio State University in 1989 and 1986, re- University of Maryland Graduate School, Baltimore,
spectively, and the B.Sc. degree in computer science in 1994 and 1992, respectively. He also received
from York University, Toronto, Canada in 1984. the Diploma degree in Computer Engineering and

Since 1989 she has been with the Department of fnformatics from the University of Patras, Greece,
Computer Science at the University of Maryland, in 1989.
where she is presently an Associate Professor. She He is currently a Visiting Assistant Research
was a consultant for Center for Excellence in Space Professor at the Computer Science Department at
Data and Information Sciences, where she was one the University of Maryland Baltimore County. His
of the key people in establishing the digital library research interests include parallel and distributed

program at NASA. Her research interests are in the areas of distributed computing, combinatorial optimization, analysis of algorithms, data structures,
databases, distributed systems, and performance model ing. She has authored and databases.
over 40 refereed articles in these areas. She is presently on leave from Uni- Dr. Kalpakis is a member of the Association of Comput ing Machinery
versity of Maryland and is working at the National Institute of Standards and (ACM) and the Society for Industrial and Appl ied Mathematics (SIAM). He
Technology, where she is leading research on digital libraries and electronic is also a member of Sigma Xi and Upsilon Pi Epsilon.
commerce at the Information Systems Engineering Division. She was a guest
editor of International Journal on Intelligent and Cooperative Information
Systems, Journal of Systems and Sojlware, and Journal of Computer and
Sofhvare Engineering.

Dr. Yesha is a member of New York Academy of Science and member of
the ACM. She was a program chair and genera1 chair of the International
Conference on Information and Knowledge Management and member of
program committees of many prestigious conferences.

