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On a Unified F ramework for the Evaluation 
of Distributed Quorum  Attainment Protocols 

Daniel A. MenascC, Yelena Yesha, Member,  IEEE, and Konstantinos Kalpakis 

Abstmct~uorum attainment protocols are an important part 
of many mutual exclusion algorithms. Assessing the performance 
of such protocols in terms of number of messages, as is usually 
done, may  be less significant than being able to compute the 
delay in attaining the quorum. Some protocols achieve higher 
reliability at the expense of increased message cost or delay. A 
unified analytical model which takes into account the network 
delay and its effect on the time needed to obtain a quorum is 
presented. A combined performability metric, which takes into 
account both availability and delay, is defined in this paper, and 
expressions to calculate its value are derived for two different 
reliable quorum attainment protocols: Agrawal and El Abbadi’s 
and Majority Consensus algorithms. Expressions for the Primary 
Site approach are also given as upper bound on performability 
and lower bound on delay. A parallel version of the Agrawal 
and El Abbadi protocol is introduced and evaluated. This new 
algorithm is shown to exhibit lower delay at the expense of 
a negligible increase in the number of messages exchanged. 
Numerical results derived from the model are discussed 

Index Terms-Mutual exclusion, performability, performance 
analysis, fault-tolerance, distributed systems, delay analysis, ma- 
jority consensus, tree-based mutual exclusion protocols, primary 
site protocol. 

I. INTRODUCTION 

0 NE OF THE most fundamental  problems in the area 
of distributed systems is the mutual exclusion problem, 

which consists of ensur ing that no  more than one  process 
can access the same shared object simultaneously. Many  
distributed mutual exclusion algorithms have  been  proposed 
in the past few years [2]-[5], [lo], [12], [13], [15]-[17], 
[ 191,  [20]. Some of them are resilient to node  and  network 
failures [5], [lo], [20]. In some cases, the quorum is statically 
def ined [lo], [ll]. while in some other algorithms a  quorum 
attainment protocol has  to be  executed prior to mutual ex- 
clusion achievement [l]. In all cases, the performance of the 
protocols is measured in terms of the number  of messages 
needed  to get the quorum. Some studies also show, as  an  
independent  metric, the availability of the protocol, def ined 
as  the probability that a  quorum is obtained, even  in the 
presence of failures. W e  argue that these two measures are 
not the only relevant ones.  In fact, count ing the number  of 
messages is less important than assessing the time it takes 
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to establish the quorum, called hereafter quorum attuinment 
delay. A certain protocol PI may send more messages than 
protocol Pz, but may be  able to parallelize the exchange 
of messages in a  more effective fashion than Pz. resulting 
in a  smaller quorum attainment delay. Some protocols may 
achieve higher availability at the expense of larger number  of 
messages or quorum attainment delay times. So, in order to 
define a  single measure of performance, one  should take into 
account  at the same time delay and  availability, to make a  fair 
compar ison of all existing mutual exclusion protocols. In this 
paper  we present a  novel metric to assess the performance 
of quorum attainment protocols which combines delay and  
availability simultaneously. This metric, a  performability [ 181  
type of measure for quorum attainment protocols, is denoted 
by  P and  is def ined as  

P=A 

where A is the availability of the algorithm and  Db is 
the average normalized quorum attainment delay, i.e., the 
average quorum attainment delay divided by  the node  to 
node  communicat ions time under  zero network load. So, the 
higher the availability and  the lower the delay, the better the 
performability of the quorum attainment protocol. 

A general  f ramework for the evaluation of quorum attain- 
ment protocols is developed in the form of a  unified analytic 
model. This model  allows one  to compute several per formance 
metrics, such as  quorum attainment delay, pcrformability, 
availability, and  average number  of messages,  for distributed 
quorum attainment protocols. The  unified model  has  two 
submodels:  a  network submodel  and  a  protocol submodel.  
The  network submodel  computes the average end-to-end delay 
exper ienced by  a  message in the underlying network connect-  
ing all nodes.  The  protocol submodel  computes the relevant 
per formance metrics for a  specific quorum attainment protocol. 
An iterative procedure is used  to solve the fixed-point equat ion 
which results from the unified model. A proof of existence of 
a  unique solution for this procedure is provided in the paper.  
Performability values are der ived for two reliable protocols: 
Agrawal and  El Abbadi’s [l] and  Majority [5], [20]. Results 
are also der ived for the Primary Site [2] protocol as  a  lower 
bound  on  delay and  an  upper  bound  on  pet-formability. The  
unified model  was used to study the performance of both 
the Agrawal and  El Abbadi  and  the Majority Consensus quo-  
rum attainment protocols. A parallel version of the Agrawal 
and  El Abbadi  protocol is p roposed and  compared with the 
other protocols. The  parallel version is shown to exhibit a  

0098-5589/94$04.00 0  1994 IEEE 



MENASCI? et al.: EVALUATION OF DISTRIBUTED QUORUM AlTAINh4EN’T PROTOCOLS 869 

protocol p  Tout 

1 1  1  1  
P %  NQ A 

Unified Model 

Fig. 1. Graphical view of the unified model.  

higher pet-formability and  lower quorum attainment delay than 
other protocols at the expense of a  negligible increase in the 
number  of messages exchanged,  while maintaining the same 
availability of the original protocol. 

The  rest of the paper  is organized as  follows. In Section 
II, we present the unified model. A proof that the iterative 
procedure to solve the unified model  has  exactly one  solution 
is given in the Appendix.  The  network submodel  is presented 
in Section III. Sections IV-VI contain the equat ions for 
the submodels  for the Agrawal and  El Abbadi, Majority 
Consensus,  and  Primary Site quorum attainment protocols, 
respectively. The  parallel version of the Agrawal and  El 
Abbadi  protocol is d iscussed in Section VII. Section VIII 
presents the results of several numerical studies carried out 
with the use  of the analytic model. Finally, Section IX presents 
concluding remarks. 

II. A UNIFIED EVALUATION MODEL 

W e  define here a  unified model  for the evaluation of quorum 
attainment protocols. This model  can  be. better understood 
with the help of Fig. 1. The  unified model  is composed 
of two submodels:  the network submodel  and  the protocol 
submodel.  The  network submodel  computes the average end-  
to-end delay expected by  a  message in the underlying network 
connect ing all nodes.  The  protocol submodel  computes the 
relevant per formance metrics for a  specific quorum attainment 
protocol. Among these performance metrics are: availability, 
performability, average delay, and  average number  of mes- 
sages to obtain a  quorum. 

The  following input parameters are considered by  the uni- 
fied model: 

l p: probability that a  node  fails. W e  assume that all nodes  
fail independent ly with the same probability.’ A node  is 
said to have  failed if it does  not reply to messages within 
a  specif ied time-out. It is also assumed that when  a  node  

‘Notethatpcanbewrittenas~/~+~),where~ 
and MTl’R are the mean  time to failure and  mean  time to repair, respectively. 

fails it will have  to go  through a  recovery procedure in 
order to be  considered up  again. 

l Tout :  time interval after which a  node  is declared to be  
down. 

l n: number  of network nodes  involved in the mutual 
exclusion algorithm. 

l A,: average arrival rate of normal traflic messages gen-  
erated per  node,  i.e., messages not related to a  quorum 
request. 

l +: average time interval e lapsed since a  node  obtains a  
repply (successful or not) to a  previous request to obtain 
the quorum and  the next request issued by  the same node.  
W e  assume that all nodes  issue new requests at the same 
rate. 

l l/p,: average size of messages generated by  the quorum 
attainment protocol (in bits). 

l l/pn: average size of normal traffic messages (in bits). 
l +f*:  network saturation traffic (in bps), i.e., the traffic 

above  which the network delay goes  to infinity. 
l TO: network zero load delay, i.e., the message delay when  

the network traffic tends to zero. 
The  performance metrics computed by  the unified model  

are given below. They all come from the protocol submodel.  
l P: performability of the protocol. 
l A: availability of the protocol, i.e., the probability that a  

quorum is attained. 
l DQ: average time needed  to successfully obtain a  quo-  

rum. 
l NQ: average number  of messages needed  by the quorum 

attainment protocol in order to obtain the quorum. 
-The network submodel  generates the following metric: 

l E average end-to-end delay of messages in the underlying 
network. 

The  protocol submodel  generates the following metrics 
needed  as input parameters by  the network submodel:  

l D”: average time needed  to execute the quorum at- 
tainment protocol given that the quorum is successfully 
obtained. 

l Dns: average time needed  to execute the quorum attain- 
ment protocol given that the protocol fails in obtaining 
the quorum. 

l NA: average number  of messages needed  by the quorum 
attainment protocol each  time it is executed, given that 
the quorum is successfully obtained. 

l Nz: average number  of messages needed  by the quorum 
attainment protocol each  time it is executed, given that the 
quorum is not successfully obtained. 

The  performance metrics of the unified model  may be  
computed as  follows. W e  assume that if a  request ing 
site fails in its attempt to obtain a  quorum, the site 
resubmits its request until it finally succeeds.  The  probability, 
Pr [i failures before success], that exactly i failures occur 
before a  successful quorum is obtained is 

Pr [i failures before success] =  (1 - A)i A. (2) 

Each time a  failure occurs, the average delay is equal  to 
D”“. Each node  waits a  time interval equal  to l/A, before 
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submitting a  new request. Finally, when  a  success is achieved, 
the delay is D”. So, the average delay D Q  is given by  

D Q  = D”+ 

0 0  

C( 
i D”” + l/X,) Pr [i failures before success] 

i=o 

= D” + -& (Dns + l/X,) (1 - A)i A 
i=O 

= Ds + (Dns + l/X,) Cl- A) 
A (3) 

Using the same kind of reasoning one  can find the average 
number  of messages needed  in order to attain a  quorum: 

NQ = NA + 2  i NF Pr [i failures before success] 
i=o 

= N;+gdN;(l-A)“A 
i=O 

= N” + N; (l - A) 
m A * 

Finally, the performability is def ined as  

PEA. 
DQ/To 

As it can  be  seen from Fig. 1, there is a  dependency  between 
the network and  the protocol submodels.  For instance, the 
protocol submodel  needs  as  an  input parameter the value of t 
computed by  the network submodel.  But the network submodel  
needs  the values of A, D”, D”“, N&, and  NE, computed by  
the protocol submodel,  as  input parameters. This dependency  
is solved by  using a  fixed-point equat ion approach by  the 
following iterative algorithm. 

1) Set i c  0; ?  +  To; 
2) Compute D”, D”“, NA, and  NE using the protocol 

submodel  for a  specific quorum attainment protocol. 
3) Compute f using the network submodel.  
4) If i =  0  then i +  i +  1  and  go  to Step 2. 
5) If the values of D” , Dn” , N&, and  NE obtained in itera- 

tion i are sufficiently close (within a  specif ied tolerance) 
to the ones  obtained in iteration i - 1, generate the final 
metrics for the unified model  and  stop. 

6) i c  i +  1; Go  to Step 2. 
A proof of the existence of a  unique fixed-point solution for 

the unified model  is given in the Appendix.  

III. THE NETWORK SUBMODEL 

W e  assume that the nodes  are connected by  an  underly- 
ing communicat ion network. In a  geographical ly distributed 
network, the underlying network may be  a  packet  switching 
network. In a  local network, we may have  an  Ethernet like or 

request at the nodes  is negligible if compared with network 
transmission time. 

The  average end-to-end delay ?  is, in general,  a  function 
of the network traffic, of the size of each  type of message 
injected in the network, and  on  several characteristics of the 
network, such as  link capacit ies and  routing algorithms in 
packet  switched networks [8], or bus  speeds and  propagat ion 
delays in local networks [6]. In general,  the average end-to-end 
delay in the network can be  easily obtained as  a  function of 
the network traffic and  other network characteristics [6], [8]. 
As observed in [8], the delay versus traffic curve has  a  typical 
shape  as a  function of the total traffic injected in the network. 
For low and  medium traffic values, the delay stays reasonably 
constant, and  it rises quite sharply when  the traffic approaches 
the network saturation point. This model, called the threshold 
model, is d iscussed in detail in [8]. While this threshold 
model  was first introduced to depict the behavior of wide area 
networks, it is also useful to represent the delay throughputs 
characteristics of local area networks. In our  evaluation of 
quorum attainment protocols we use a  function that captures 
the threshold type of behavior of communicat ion networks. 
This function reflects the impact on  the average end-to-end 
delay caused by an  increase in the network traffic. 

W e  used curve fitting methods to ARPANET delay versus 
traffic curves [8] in order to obtain the following expression for 
Z  as  a  function of the total traffic 7  injected in the network, 
the network zero load delay TO, and  the network saturation 
traffic value 7*. Thus, our  network submodel  is given by  the 
following expression, 

l=To l-- 
[ 

- 
1!+ + (l-;,’ . 1 (6) 

In order to compute the total traffic 7, some additional 
definitions are in order: 

l 7n: average total normal traffic injected in the underlying 
communicat ion network due  to normal messages,  i.e., not 
including quorum request messages (in bps). 

l yq: average total traffic injected in the underlying com- 
munication network due  to messages generated by  the 
quorum attainment protocol (in bps). 

Thus, the total network traffic can  be  written as  

7=7n+7q.  (7) 

The  average total arrival rate 7,r of requests to obtain a  quorum 
can be  found by  observing that 

1) Each process which does  not have  a  pending request 
generates a  new request with rate X, given that it has  
not failed. 

2) A process that has  requested a  quorum will not submit 
a  new request until it gets an  answer from the previous 
one.  If the process obtains a  quorum, then it p roceeds to 
obtain mutual exclusion. 

3) As many  requests as  submitted may be  simultaneously 
being processed.  

This situation can be  modeled as  a  queuing system with finite 
customer populat ion (due to observat ion 2  above)  with infinite 
number  of servers (due to observat ion 3  above).  Let lc be  the 
number  of requests being processed.  Then,  the arrival rate 
X (k) of requests to the system given that L  requests are being 
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processed is equal  to X, . (1 - p) . (TZ - k). The  average service 
time, 5, of a  request is equal  to D” if the process succeeds in 
obtaining the quorum (which occurs with probability A) and  
is equal  to D”” otherwise. Hence,  

z=A.D”+(l-A).D”“. (8) 

The service rate ~1  (k) given that k requests are being 
processed is equal  to k / Z. So, using the results for 
GIIGIl~lln 171,  we get that the probability, pk, of having 
k requests being processed is given by, 

Pk = PO * Pk ; 
0 

where po  is given by  

po = (lJp )” (10) 

and  p  is def ined by  the following equation: 

p=X,(l-p)c. (11) 

So, the average total request rate is equal  to the average 
arrival rate of requests to this GI/Glloo//n queuing system 
and  is given by, 

k=O 
n-1 

= PO c A, Cl- P) (n - k) pk 
0 

i 
k=O 

=po&(l-p)e(n-k)~~ z 
k=O 0 

=Pow-P&P*(;) -gkP$)] 

= PO A, (1 - P> [n Cl+ PI” - np(l + PI”-ll 
=poX,(l -p)n(l+p)n-l. (12) 

If we  substitute the value of PO from (10) into (12) we 
finally get 

(13) 

Finally, m  can be  written in terms of the average arrival rate 
of requests to the shared resource, the average number,  N,, 
of messages exchanged per request, as  well as  their respective 
size. So, 

rq =  AT . Nm . ; (14) 

where N, is given by  

N,=AN;+(l-A)Nz. (15) 

Note that A, N&, and  NE are computed by  the protocol 
submodel.  

The  normal traffic injected in the network, T,,, is equal  to 
the average number  of up  nodes  multiplied by  the average 
traflic submitted per  node.  Thus, 

(1 - p)L pn-” 

= k A, n  (1 - p). (16) 

IV. SUBMODELFORTHEAGRAWAL 
ANDELABBADI~OTOCOL 

In [l], Agrawal and  El Abbadi  present an  efficient and  
fault-tolerant algorithm for generat ing quorums in order to 
achieve distributed mutual exclusion. Their algorithm assumes 
a  logical tree organization of the network. A site attempting 
to form a  quorum sends a  Request  Quorum (REQ) message 
to the root of the tree. If the root is up, then it responds with 
an  Acknowledgment (ACK) message.  If the root is up  then 
the algorithm cont inues recursively, trying to form a  quorum, 
with the left or right subtree. If it can  obtain a  quorum from 
either of the two subtrees then it returns the quorum together 
with the root. Otherwise, if the root is down, the algorithm 
recursively obtains a  quorum from both the left and  the right 
subtrees, and  then returns their union as  the quorum for the 
whole tree. A pseudocode description of the protocol is given 
in Fig. 2. A node  that wants to form a  quorum calls the 
procedure GetQuorum with the root of the tree as  parameter.  
Note that because of line 4  in the pseudocode the protocol 
is nondeterministic. That is, the protocol may compute the 
quorum for the left child first and  the quorum for the right child 
second,  or vice versa. W e  assume that the protocol chooses to 
compute either quorum first with the same probability. Further, 
we assume that this choice does  not depend  on  other factors, 
such as  previous information about failures of nodes.  The  
Agrawal and  El Abbadi’s algorithm achieves fault-tolerance by  
ensur ing that a  node  request ing mutual exclusion has  several 
alternative quorums. 

W e  derive the necessary expressions, which are needed  by 
our  unified model, for the performance analysis of the Agrawal 
and  El Abbadi’s protocol. First, some definitions are in order. 
The  disfunce between any  two nodes  of a  tree is equal  to the 
number  of edges  on  the unique path in that tree that connects 
these nodes.  The  level of a node  of a  tree is equal  to its distance 
from the root of that tree. The  height of a tree is equal  to the 
maximum of the distances of any  leaf node  of that tree from 
its root. The  height of a node of a  tree is def ined to be  equal  to 
the height of the subtree of that tree that is rooted at that node.  

Hereafter, we assume that a  complete binary tree with n  
nodes  is given. This tree has  height h  =  log(n + 1) - 1, has  
(n +  1)/2 leaves, and  each  leaf has  height 0  and  level h. The  
number  of nodes  of that tree at level j (or equivalently at 
height h  - j) is equal  to 2j, for any  0  5  j 5  h. 

W e  say that a  quorum attainment protocol succeeds if and  
only if it returns a  nonempty  quorum. Otherwise, we say that 
it fails. 

W e  use the following notation. Hereafter, i is assumed to 
be  a  nonnegat ive integer less than or equal  to h. 



872 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.. 20, NO. 11, NOVEMBER l!l$kl 

Algorithm GetQuorum. 
In@: The  root r of a binary tree T. 
Output: A quorum consisting of nodes  of T. 
Begin 

(* Empty(T) evaluates to true iff T  is empty. *) 
(* Up(v) evaluates to true iff node  v agrees to*) 
(* be  in a  quorum. *) 
(* Left(v) returns the left child of a  node  v *) 
(* Right(v) returns the right child of a  node  v *) 
(* Both Left(v) and  Right(v) return {} if *) 
(* v is a  leaf. *) 
1  If Empty(T) Then  
2  Return { } 
3  Else If Up(r) Then  
4  Return ({r} U GetQuorum( Left (r))) or 

({r} U GetQuorum(Right(r))) 
5  Else 
6  &I t GetQuorum(Left(r)) 
7  Qz  +- GetQuorum(Right(r)) 
8  I f(Q1=8orQz=fl)Then 
9  Exit (*Failed to get a  quorum*) 
10  Else 
11  Return ( &I U Q2 ) 

End 

Fig. 2. Agrawal and  El Abbadi’s Quorum attainment protocol. 

l Tt: average time to complete the execut ion of the pro- 
tocol, when  it starts at a  node  of height i, g iven that the 
protocol succeeds.  

l T , f  : average time to complete the execut ion of the pro- 
tocol, when  it starts at a  node  of height i, g iven that the 
protocol fails. 

l M,S: average number  of messages sent dur ing the execu-  
tion of the protocol, when  it starts at a  node  of height i, 
g iven that the protocol succeeds.  

l M!: average number  of messages sent dur ing the execu-  
tion of the protocol, when  it starts at a  node  of height i, 
g iven that the protocol fails. 

l A;: probability that the protocol, when  it starts at a  node  
of height i, succeeds.  Thus, Ai denotes the availability of 
the protocol, when  it starts at a  node  of height i. 

Note that if we  execute the Agrawal and  El Abbadi’s 
protocol on  a  binary tree of height h, then D” = Ti, 
D”” = T,f, N;R = M;, NE = Mhf, and  A = Ah. 

W e  provide recursive equat ions for Tz, T,f , Mi, and  
M,f, for all 0  5  i 5  h. Agrawal and  El Abbadi  [l] 
give an  expression for the availability of their protocol. This 
expression, repeated in terms of our  notation, is 

A.= 2(I-p)A;-1+(2p-l)Af-‘_,, fori=1,2,...,h 2  
1 -P, fori=O. ’ 

(17) 
Consider the execut ion of the protocol when  it starts at 

a  node  ‘u  of the tree that is at height i. Note that w is the 
root of a  subtree of height i. The  average time to execute the 
protocol and  the average number  of messages sent depend  on  

whether the root w of this subtree is up  or down, on  whether 
the protocol succeeds or fails when  it is started at the children 
of v (if i #  0), on  the probability of failure of the nodes,  on  
the average end-to-end delay, and  on  the time to detect that 
a  node  is down. 

Theorem I: Suppose the protocol starts at a  node  of height 
i. Then,  the average execut ion time Tt of the protocol and  the 
average number  of messages n/i, sent dur ing the execut ion of 
the protocol, g iven that the protocol succeeds,  are 

and  

I(25 + T,a_,)(l - p)A;-1 + (Tout + 2T,a_,)pAf-_,+ 
(2z+ T,a_, +  T,f_J(l - p)A;-1(1 - Ai-l)]/Ai, 

for i =  l,...,h 

for i=O 
(18) 

[(2 +  M,a_,)(l - P)&I + (1 + 2M,e_,)pAfe’_,+ 
(2 +  M:-, +  M,f_,)(l - p)A;-1(1 - A;-l)]/Ai, ^ _  M ;s = for 2  =  l,...,h 

2  

respectively. 

for i=O 
(19) 

Proof: Let 21  be  a  node  of height i. The  protocol starts 
execut ing at node  V. If w is of height 0  then, since the protocol 
succeeds,  the protocol sends two messages (one REQ message 
plus one  ACK message)  and  its average execut ion time is 2t. 
Hence,  Ti =  22  and  M,” = 2. Otherwise, w is of height i 2  1. 
Let W L  and  ZIR be  the left and  right children of v. Nodes  W L  
and  v~ are of height i - 1. W e  introduce notation for the 
following events: 

E,,: root v is up. 
Esl: the protocol succeeds if it starts at WL.  
Es,: the protocol succeeds if it starts at WR. 
Eps: the protocol succeeds if it starts at v. 
If E is an  event  then EC denotes its complementary event. 

For example, E,“, denotes the event  that node  w is down, while 
E,“1  denotes the event  that the protocol fails if it starts at node  
WL. 

There are three cases to consider: 
l Case 1: node  v is up  and  the protocol succeeds if it 

starts at the child it chooses to try first. By symmetry and  
without loss of generality, we assume it will start at node  
WL.  Since we assume that the protocol succeeds at node  
w, the probability of this case is Pr[E,, & Es, 1  Eps]. 
Further, in this case, the average execut ion time of the 
protocol, when  it starts at w, is 2?  + Tt-, and  the average 
number  of messages exchanged is 2  +  M:-,. 

l Case 2: node  w is up  and  the protocol fails if it starts 
at the first chosen child and  it succeeds if it starts 
at the other child. By symmetry and  without loss of 
generality, we assume that the protocol starts with node  
W L  first, and  then with node  VR. Since we assume that 
the protocol succeeds at node  w, the probability of this 
case is Pr[E,, & E,“1  & Es, 1  Eps]. In addition, in this 
case, the average execut ion time of the protocol, when  it 
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starts at w, is 2?  + TicI +  Tt-, and  the average number  
of messages sent is 2  +  M,f_l +  Mi”_,. 

l Case 3: node  v is down. Given that the protocol succeeds 
when  it starts at node  w, the protocol must succeed when  
it starts at nodes  VL and  Wn.  The  probability of this case is 
Pr[E,“, & ES* & ES, ] EpS]. Further, the average execut ion 
time of the protocol, when  it starts at w, is Tout +  2T;B_, 
and  the average number  of messages sent is 1  +  2Mi”_  1. 

Therefore, the average execut ion time Tt of the protocol and  
the average number  of messages MS! sent, when  the protocol 
starts at node  w, are 

T;S = (22 + Ttel) . Pr[E,, & ES1 1  EpS]+ 
(22 + Ti”_, +  Tif_,) +  Pr[E,, & E,“I 8z  ES, I EpS]+ 
(Tout +  We,).- Pr[E,“, 8~  &I 8~  Es, I Eps] 

(20) 
and  

M,’ = (2 +  Mt-,) . Pr[E,, & ES1 I E,,]+ 
(2 + Mt-1 + ML,) . Pr[E,, & E,“1  8~ Es, I EpS]+ 
(1 +  2Mf-,) . Pr[E,“, & ES1 & ES, I EpS.] 

(21) 
respectively. 

Next, we compute formulas for the probabilit ies that appear  
in the above  two equations. W e  start with the computat ion of 
a  formula for Pr[E,, & ES1 ] E,,J. Using Bayes’ theorem, it 
follows that 

Pr[&, & &I I Eps] = 
WE,, I J% & Es$‘r[Eru & &I 

w-%1 
(22) 

Observe that Pr[E,, ] E,, & ES11 = 1  and  that Pr[E,,] =  Ai. 
Since the events E,, and  ES1 are independent,  we have  that 
Pr[E,, & ES11 = Pr[E,,] . Pr[E,l] =  (1 - p)Ai-1. Therefore, 

Pr[E,, & ES1 I Eps] =  (’ -f,Ai-l . 
2  

The  formula for Pr[E,, & E,“1  & ES, ] EpS] can be  computed 
similarly as  follows. W e  have  that 

I%%, & E,“I & Es, I &I = 
Pr[Eps I & & E,“1 & &,I . Pr[-& & E,“I & Es, I 

w%l 
(24) 

Note that Pr[E,, ] E,, & E,“, & ES,] =  1  and  that Pr[E,,] =  
Ai. Since E,,, E,“,, and  ES, are independent,  we have  that 

Pr[E,, & E,“1  & ES, ] =  Pr[E,,] . Pr[E,“,] . Pr[E,,] 
=  (1 - p)Ai-i(1 - Ai-l). (25) 

Hence,  we get that 

Pr[E,, & E,“1 & Es, I Epsl = (1 - P)&-l(l - A-1) 

Ai 

c26j 

Finally, we compute a  formula for Pr[E,“, & ES1 & ES, I EpS]. 
From Bayes’ Theorem, we have  that 

Pr[ET, & J% & Es, I Epsl = 
WE,, I E,“, & Es1 8.~ &,I . I’@ ,“, 8~ Es1 & Es, ] 

w%l 
(27) 

Since E,“,, ESl, and  ES, are independent,  we have  that 

Pr[E,“, & ES, AZ ES, ] =  Pr[E,“,] . Pr[E,l] . Pr[E,,] 
=  pAi-IAim1. (28) 

Further, since Pr[E,, ] E& & ES1 & ES,] =  1  and  Pr[E,,] =  
Ai, we have  that 

PA?- 1 
Pr[E,“, & Es1 & Es, I Eps] =  e- 2  

(29) 

Note that Pr[E,, & ES1 ] EpS] +Pr[E,, & E,“1  & ES, I EpS] +  
Pr[E,C, & ES1 & ES, 1  EpS] =  1. 

Substituting the formulas for the corresponding probabilit ies 
in (20) and  (21), and  using the fact that T,” = 2?  and  M,$ = 2, 
(18) and  (19) follow. 0  

Theorem 2: Suppose the protocol starts at a  node  of height 
i. Then,  the average execut ion time Tif of the protocol and  the 
average number  of messages Mif sent dur ing the execut ion of 
the protocol, g iven that the protocol fails, are 

i 

[(2Z + 2T,f_i)(l - p)(l - A~-I)~+ 
(Tout +  T,f_l)p(l- k-l>+ 

T,f =  (Tout +  T,f_l +  T,S_,)pA-l(l - Ai-I)]/(1 - Ai) 
for i =  1,...,h 

and  

T out for i=O 
(30) 

i 

[(2 + 2M,f_,)(l -p)(l - Ai-1)2+ 
(1 +  Mif_l)p(l - Ai-])+ 

M;f =  (1 +  M,f_l+ Mf-~)p&-l(l- &-1)]/(1 - A), 
for i =  l,...,h 

1  

respectively. 

for i=O 
(31) 

Proof Let v be  a  node  of height i. The  protocol starts 
execut ing at node  w. If w is of height 0  then, since the protocol 
fails, the protocol sends one  message (one RBQ message)  and  
its average execut ion time is T,,t. Hence Tof =  Tout and  
Mof =  1. Otherwise, w is of height i 2  1. kt W L  and  VR be  
the left and  right children of v. Nodes  W L  and  Vn are of height 
i - 1. Recall the following events (from Theorem 1): 

l E,,: root v is up. 
l ESl: the protocol succeeds if it starts at WL.  
l ES,: the protocol succeeds if it starts at VR. 
l EpS: the protocol succeeds if it starts at w. 
If E is an  event  then EC denotes its complementary event. 
There are three cases to consider: 
l Case 1: node  v is up  and  the protocol fails if it starts at 

node  we or wR. since W e  assume that the protocol fails 
when  it starts at node  v, the probability of this case is 
Pr[E,, & E,“1  & E,“, ) E&l. Further, in this case, the 
average execut ion time of the protocol, when  it starts at 
v, is 2?  + 2TiLl and  the average number  of messages 
exchanged is 2  +  2Mif_l. 

l Case 2: node  w is down and  the protocol fails if it starts 
at the child of w it chooses to try first. By symmetry 
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and  without loss of generality, we assume it chooses 
node  VL first. Since we assume that the protocol fails 
when  it starts at node  w, the probability of this case is 
Pr[E,“, & E,“, ] E&l. In addition, in this case, the average 
execut ion time of the protocol, when  it starts at II, is 
Tout +  T,f_l and  the average number  of messages sent 
is 1  +  Mzfml. 

l Case 3: node  v is down, the protocol succeeds if it starts 
at the node  chosen first, and  it fails if it starts at the other 
child. By symmetry and  without loss of generality we 
assume it chooses node  ?JL first and  node  W n  second.  Since 
the protocol fails when  it starts at node  w, the probability 
of this case is Pr[E,“, & ES1 & E,“, I E&l. Further, the 
average execut ion time of the protocol, when  it starts at v, 
is Tout +  Tim i +  Tf- 1  and  the average number  of messages 
sent is 1  +  Mi”_, +  Mzfml. 

Therefore, the average execut ion time Ti of the protocol 
and  the average number  of messages Mif sent, when  the 
protocol starts at node  21, are 

Tif =  (2j +  2Tfml) . Pr[E,, & E,“1  & E,” I Ei,]+ 

(Tout +  Tf-,> . Pr[Etu & E,“1  I E&l+ 

(Tout +  TimI +  TLl) . Pr[EFu 8~ Es1 8~ Es”, I E&l 
(32) 

and  

M,f =  (2 +  2M,f_,) . Pr[E,, & E,“1  & E,“, ) Ez,]+ 

(1 +  MLl). Pr[E,C, & E,“1  I E&l+ 

(1 +  Mi”_, +  M,f_l). Pr[E,“, 8~ Es1 & E,” I E&] 
(33) 

respectively. 
Next, we compute formulas for the probabilit ies that appear  

in the above  two equations. W e  start with the computat ion 
of a  formula for Pr[E,, & E,“1  & E,“, ) E&l. Using Bayes’ 
Theorem, it follows that 

Pr[E,, & Ez, & Ezr 1  E&] =  
WE& I Eru & E,“1  & E,“,] . Pr[&, & &I 8~  Es”,] 

Pr[E;sI. 
(34) 

Since the events E,,, E,“,, and  E,“, are independent,  we have  
that Pr[E,, & Et, & E,“,] =  Pr[E,,] .Pr[E,“,] .Pr[E,“,] =  (l- 
p)(l - Ai-1)2. Further, since Pr[E& ) E,, & E,“1  8~ E,“,] =  1  
and  Pr[Ei,] =  1  - Ai, we have  that 

Pr[E,, & E,“1  & E,” I EiJ =  Cl- P)(I - A-d2 
1-A; . 

c35j 

Similarly, we compute a  formula for Pr[E,“, & E,“1  I E&l. 
W e  have  that 

Pr[E,“, & E,“1  I Ei,] =  
Pr[E& I E,“, & E,“l] . Pr[Ef” & E,“l] 

WE&I 
(36) 

Algorithm Majori tyconsensus. 
Input: Aset L={vi,v2,...,v,}ofnnodes. 
Output: A quorum consisting of [(n +  1)/2] nodes  
from L. 
Begin 

(* Sizeof returns the cardinality of a  set X. *) 
(* ResetClock() sets the Clock to the T,,t *) 
(* Timeout(): true iff the Clock timeouts. *) 
1  Q  + Empty set of nodes  
2  While Sizeof >  [(n +  1)/2]- Sizeof Do 
3  5’ c a  subset  with [(n +  1)/2]- Sizeof 

nodes  from L  
4  Remove from L  all the nodes  which are in S 
5  Send, in parallel, a  quorum request message 

to each  node  in S 
6  ResetClock() 
7  While not Timeout0 and  Sizeof >  0  Do 
8  If a  node  v E S replies with an  ACK 

message Then  
9  Add node  v to Q  
10  Remove node  ‘u  from S 
11  End-While 
12  End-While 
13  If Sizeof <  [(n +  1)/2] Then  
14  Exit (* Failed to get a  quorum *) 
15  Else 
16  Return ( Q  ) 

End 

Fig. 3. Majority consensus quorum attainment protocol. 

Note that Pr[Ei, I E,“, & Et,] =  1  and  that Pr[E&] =  1  - Ai. 
Since the events E& and  Ez, are independent,  we have  that 

Pr[E,“, & E,“1  ] =  Pr[E,“,] * Pr[E,“,] =  p(1 - Ai-1). (37) 

Hence,  we get that 

Pr[E,“, & E,“I I E&] =  p(‘,~~~“. (38) 
2  

Finally, we compute a  formula for Pr[E,“, & ES1 & E,” I E&l. 
From Bayes’ Theorem, we have  that 

Pr [E,“u  & ES1 & E& I E&J = 
Pr[E& ] E,“, & ES1 & E&] . Pr[E,“, & ES1 & E,“, ] 

~~P&I~ 
(39) 

Since the events E,C,, ES,, and  E,“, are independent,  we have  
that 

Pr[E,“, & ES, & E,“, ] =  Pr[E,“,] . Pr[E,t] . Pr[E,“] 

=  pAi-I(1 - Ai-1). (4) 

Further, since Pr[E& ] Et,, & ES1 & E,“J = 1  and  Pr[E&] =  



MENASCI?eta l . :EVALUATIONOFDISTRIBUTEDQUORUM A' ITAINMENTPROTQCOLS 

1  - Ai, we have  that 

Note that Pr[E,, & E,“1  & E,“, 1  E&] +Pr[E,“, & Ezl 1  E&] +  
Pr[E& & Es, & E,“, 1  E;,] =  1. 

Substituting the formulas for the correspondin 
P- 

probabilit ies 
into (32) and  (33), and  using the fact that T, - Tout and  
Mof =  1, (30) and  (31) follow. 0  

V. SUBMODEL FORTHE MAJORITY CONSENSUS PROTOCOL 

The majority consensus protocol [5], [20] is a  relatively 
simple protocol to achieve mutual exclusion in a  distributed 
system. To  guarantee mutual exclusion, a  node  must receive 
permission from a  majority of nodes  in the network. It is 
obvious, that there can be  only one  majority at any  instant, thus 
mutual exclusion is achieved. The  majority quorum protocol is 
resilient to both node  and  link failures. It has  been  frequently 
used  in replicated databases and  as  a  solution to the distributed 
commit problem. A brief description of the majority protocol is 
as  follows (see also Fig. 3). C = [(n+l)/2] messages are sent 
in parallel to the C nodes  which constitute a  majority, where 
n  is the total number  of nodes.  If all of them acknowledge,  
the quorum is formed and  the protocol stops successfully. 
If m  (m 5  n  - C) nodes  fail, m  messages have  to be  
sent to additional nodes  and  the process repeats itself. If 
m  > n  - C the majority cannot  be  reached and  the protocol 
stops unsuccessful ly. 

W e  use the following notation. 
l T&: average delay to execute a  quorum request given 

that i messages are sent, that j nodes  have  not received 
any  quorum request messages yet, and  that the quorum 
will be  successfully obtained. Let MzT’ denote the average 
number  of messages exchanged in this case. 

l T&: average delay to execute a  quorum request given that 
i messages are sent, that j nodes  have  not received any  
quorum request messages yet, and  that the quorum will 
not be  successfully obtained. Let M’, denote the average 
number  of messages exchanged in this case. 

l Ai,j: probability that at least i out of j nodes  have  not 
failed. 

Observe that the average delay and  average number  of 
messages in execut ing the majority protocol, in the case 
of successful quorum attainment, are given by  TE,n-c and  
M$+-c, respectively. Similarly, in case it does  not succeed 
in obtaining a  quorum, the average delay and  average number  
of messages are given by  T&-c and  ML,n-C, respectively. 
Further, the availability of the majority protocol is given by  
A+. In what follows, we derive recursive expressions for 
T$, M;j, Ti’j, Tti, and  Aiyj. 

The  probability ki,j that at least i out of j nodes  have  not 
failed is given by  the following expression: 

Ai,j =  2  6) (1 - p)“pi-’ 
k=i 

j! J 1-P 

= (i - l)!(j - i)! a  
@(l - z)%kr. (42) 

The  right hand  term of (42) [14] provides a  more efficient 
manner  of comput ing A,,j for large number  of nodes.  Note 
that if i >  j then A;,j =  0. 

Theorem 3: Suppose that the protocol selects to send mes- 
sages to i nodes,  that there are still j nodes  to which no  
messages have  been  sent, and  that the protocol successfully 
obtains a  quorum consisting of i nodes.  Then,  the average 
delay, T<i, and  the average number  of messages sent, M&, 
are given by  the following two equations: 

[2Z(l - p)i +  
C;‘=“;i”l(T,,t +  T&-J x 

gyl - p)i-mA,,JAi,i+j 

ifj>O 

and  

ifj=O 
(43) 

M$  = 

[2i(l - p)i +  
Cz$iYj1(2i - m  + Mhj-,,J 

pm(l - p)i-mAm,jl/Ai,i+j 

ifj >0  

(2i, ifj=O 
(4) 

Proof The  protocol sends messages to i nodes.  There 
are two cases to consider, depending on  whether any  of these 
i nodes  fail. First, let us  introduce the following events: 

+i,j,m: m out of the i nodes  that were sent messages have  
failed, while there are still j nodes  to which no  messages 
have  been  sent yet. 
*k,l: at least k out of 1  nodes  are up. 

The  two cases to consider are: 
Case 1: None  of the i nodes  have  failed. The  average delay 
and  the number  of messages,  in this case, are 22  and  2i, 
respectively. This case happens  with probability equal  to 
Pr[+i,j,0 I *i,i+jl. 
Case 2: Some of the i nodes  fail, say m, where 
1  5  m 5  min{i, j}. Then,  the average delay and  
number  of messages are Tout +  TA,j-,,, and  2i - m  + 
w&7v respectively. The  probability of this happening 
is Pr[%,j,, I *i,i+j]. 

Note that when  j =  0, and  since the protocol successfully 
obtains a  quorum of size i, we  have  that T[, =  2% and  
M{. =  2i. Moreover,  from the case analysis above,  and  when  
j >  0, we get 

c (Tout +  T&,+,)Pr[Q;,j,, I *i,i+jl 
m=l 

(45) 
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and 

M:j = 2i. Pr[+i,j,a ] Qi,i+j] + 
min{i,j} 

c (2i - m + M,&,,JPr[Qi,j,, 1 Q++j]. 
m=l 

(46) 

Next, we compute Pr[@;,j,, ] Qi,i+j], for m = 
0, ’ . * , min{i, j}. Using Bayes’s Theorem, we get that 

Pr[@;,j,, I Q’i,i+j] = 
Pr[Qi,i+j I %j,m] . Pr[@i,j,,l 

Pr[*i,i+jl . 

Since Pr[*i,++j] = Ai,++j, Pr[+i,j,,] = 
0 

i pn(l - P)~-“, 
and Pr[!kl;,i+j I @i,j,+] = Pr[Qlm,i] = A,,j, we have that 

A,,j i pm(l -p);-” 
Pr[@i,j,m I *i,i+jl = 0 

A,i+j . (47) 

Substituting (47) into (45) and (46), and using the facts that 
T:, = 2j and M[, = 2i, and since Ao,~ = 1, we get Equations 
43 and 44, respectively. cl 

Theorem 4: Suppose that the protocol selects to send mes- 
sages to i nodes, that there are still j nodes to which no 
messages have been sent, and that the protocol fails to obtain 
a quorum consisting of i nodes. Then, the average delay, T&, 
and the average number of messages sent, M;f,, are given by 
the following two equations: 

(1 - Am,j)(To,t + T,$-,)+ 
.,=m$.l+l tjJpm(l - p)i-mx 

(1 - hn,j)To,t ] 
(48) 

and 

M, = 

(1 - -4+)(2i - m + Mi,+,)+ 

(1 - A+)@ - m) I 

(49) 

respectively. 
Proof The protocol sends messages to i nodes. Since we 

are given that the protocol fails to obtain a quorum consisting 
of i nodes, it follows that at least one of this nodes fails. First, 
let us introduce the following events: 

@i,j,m: m out of the i nodes that were sent messages have 
failed, while there are still j nodes to which no messages 
have been sent yet. 

Xl+: less than k out of 1 nodes are up. 
Let m be the number of the i nodes that fail, 1 5 m 5 

i. There are two cases to consider, depending on whether 
m > min{i, j} or not. First, we consider the case where 
m > min{i, j}. Note that since m 5 i, m > j. In this 
case, since the protocol fails to obtain a quorum of size i, 
and since there are less than m nodes to which no messages 
have been sent (m > j), no additional messages will be sent 
after detecting the failure of any of these m nodes. Note that 
it must be the case that at least one of the i nodes fails since 
the protocol fails. Since failure of a node is detected after time 
T out 7 it follows that the average delay in this case is equal to 
T out. The average number of messages is 2i - m since the 
protocol sends i messages and receives i-m acknowledgments 
back, min{i,j} < m 5 i. This happens with probability 
W@i,j,m I *t,i+j]* 

Second, we consider the case 1 5 m 5 min{i, j}. Since 
the protocol will send m messages to the remaining j nodes, 
the average delay is Tout + Tf 

mY-m* 
The average number 

of messages sent is 2i - m + Mm,j-m. Therefore, since the 
probability that m out of the i nodes fail given that the 
protocol fails to obtain a quorum of size i while there are 
still j > 0 nodes to which no messages have been sent is 
Pr[Qi,j,,,, ] il~$+~], it follows that the average delay and 
number of messages are 

min{i,j} 
T& = C (Tout + Ti,jpr,,) . Pr[@i,j,, 1 *‘p,i+j] + 

m=l 

c T Out . PrF@i,j,m I Q’z’,i+jl (50) 
m=min{i,j}+l 

and 
min{i,j} 

M, = c (2i - m + ML,j-,) . Pr[@i,j,m I *‘l,i+jI + 
m=l 

C (23 - m) * Pr[@i,j,, I @t,i+jl 
m=min{i,j}+l 

respectively. 

(51) 

Next, we compute Pr[+;,j,, I @&+j], for m = 1, ... , i. 
Using Bayes’s Theorem, we get that 

Since Pr[Q&+j] = 1 - Ai,i+j, Pr[@i,j,,] = i pm(l - 
0 

P)~-“, and Pr[q;,i+j ) +i,j,,,J = Pr[\kk,j] = 1 - A,,j, we 
have that 

(1 - A,,j) ’ pm(l -&-” 
Pr[@i,j,, I Qlp,i+jl = 

LJ 
1 - A,i+j 

. (52) 

Substituting (52) into (50) and (51), we get (48) and (49). 0 

VI. SUBMODEL FORTHE PRIMARY SITE PROTOCOL 

The delay results given for the Primary Site protocol 
should be viewed as lower bounds on the actual results, 
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since due  to its central ized nature, the primary site has  
the potential of becoming a  bott leneck. In this case, the 
assumption that the quorum request processing time is 
negligible is not necessari ly true. The  primary site copy 
approach [2] is quite simple. A node- the primary site-is 
responsible for mediat ing all requests. If it is up, a  quorum 
is formed, at the cost of two messages (one for the request 
and  one  for the acknowledgment) .  Otherwise, a  quorum is 
not formed and  only one  message is sent. 

The  analysis for the primary site protocol is quite straight- 
forward. The  average number  of messages,  average delay, and  
availability expressions are as  follows: N& = 2, NE = 1, 
D” = 2 3  D”” = T out, and  A = 1  - p. 

VII. PARALLEL AGRAWAL AND EL ABBADI PROTOCOL 

W e  descr ibe here a  modification to the basic Agrawal and  
El Abbadi  quorum attainment protocol. The  objective is to 
decrease the average delay at the expense of a  small or no  
increase in the number  of messages while maintaining the 
same availability. A description of the modif ied algorithm is 
given in Figs. 4-6. 

Fig. 4  shows the main body  of the protocol while Figs. 5  
and  6  show the auxiliary functions SelectPaths and  QStatus, 
respectively. For line 20  of the code in Fig. 4, we need  the 
following definition. Given a  tree T and  two nodes  IJ and  u  of 
T, we say that w is an  ancestor of 2~  in T  if the path from the 
root of T  to u  includes w, Note that TJ is an  ancestor of itself. 
In this protocol, we send messages,  in parallel, to all nodes  
on  paths to leaves of the tree. Further, because the QStatus 
function is based  upon  the Agrawal and  El Abbadi  protocol, 
it is not difficult to see that our  modification returns a  quorum 
as in Agrawal and  El Abbadi  if one  exists. A formal proof of 
correctness, based  on  similar arguments,  as  in Agrawal and  El 
Abbadi, can  be  easily constructed. However,  its presentat ion 
would not shed any  additional light to the material d iscussed 
here and  it is therefore omitted. 

W e  give an  example of the Parallel Agrawal and  El Abbadi  
(ParAgrAbb) protocol for a  complete binary tree T with 7  
nodes.  W e  assume that the root of T  is numbered 1, and  for 
i =  1,2,3, the left and  right children of node  i are numbered 
2i and  2i +  1, respectively. Suppose that nodes  1  and  2  of T  
are down and  that all other nodes  of T  are up. 

First, consider the basic Agrawal and  El Abbadi  protocol. 
It sends a  request to node  1  and  after Tout it f inds that node  

(* ResetClock() sets the Clock to Tout. *) 
(* Timeout(): true iff the Clock timeouts. *) 
1  UpNodes,  DownNodes,  WaitFor - Empty set 

of nodes  
2  RootSet - { the root r of T  } 
3  TreeNodes - The  set of nodes  of T  
4  While QStatus(T, P, TreeNodes - DownNodes)  

#  Failure Do 
5  WaitFor - SelectPaths(T, RootSet, UpNodes  

U DownNodes)  
6  Send requests in parallel to all nodes  in 

WaitFor 
7  ResetClock() 
8  While not Timeout0 and  ) WaitFor I >  0  Do 
9  If a  node  w E WaitFor sends an  ACK Then  
10  Add node  w to UpNodes 
11  Remove node  w from WaitFor 
12  End-While 
13  If QStatus(T, T, UpNodes)  =  Success Then  
14  Return the quorum computed by  

GetQuorum using UpNodes 
(*Obtained a  quorum*) 

15  Add each  node  of WaitFor to DownNodes  
16  If QStatus(T, r, TreeNodes - DownNodes)  =  

Failure Then  
17  Exit (* Failed to obtain a  quorum *) 
18  RootSet - Empty set of nodes  
19  For each  node  w E WaitFor Do 
20  Find lowest ancestor w’ of ‘u  such that 

QStatus(T, u’, TreeNodes - 
DownNodes)  #  Failure 

21  Select a  child VI’ s.t. wN $Z UpNodes and  
v” 6  DownNodes  

22  Add v” to RootSet 
23  End-For 
24  End-While 
25  Exit (* Failed to obtain a  quorum *) 

End 

1  is down. Then,  it requests a  quorum for the subtree rooted .:ig. 4. Parallel Agrawal and  El Abbadi’s quorum attainment protocol. 

Algorithm ParAgrAbb. 
Input: A binary tree T with n  2  1  numbered nodes.  
Output: A quorum consisting from nodes  of T. 
Begin 

at nodes  2  and  3. It sends a  request to node  2  and  after Tout 
it f inds it is down. It obtains a  quorum for the subtree rooted 

protocol sends requests, in parallel, to all those nodes.  Since 

at node  2  after 4% time while sending and  receiving a  total of only nodes  1  and  2  are assumed down, after Tout time, the 

four messages.  Then,  it cont inues to obtain a  quorum for the protocol cont inues with execut ion of line 13  of the code.  Since 

subtree rooted at node  3. It sends a  request to node  3, and  after the set of UpNodes  consists of node  4, the protocol cont inues 

time 2?, it f inds it is up. At this point, let us  assume that it with line 15, where the set of DownNodes  is updated to include 

decides to send a  message to node  7, the right child of 3. After nodes  1  and  2. At line 20, the protocol selects an  ancestor for 
time 2z it f inds that node  7  is up. Hence,  the basic Agrawal each  node  in WaitFor for which it is not certain the protocol 
and  El Abbadi  protocol obtains a  quorum after 2T,,, +  82  time will fail to obtain a  quorum for the subtree rooted at that 
while sending or receiving a  total of 10  messages.  ancestor. For node  1, the protocol selects node  1  and  it adds  

Consider now the ParAgrAbb protocol. Suppose that the node  3  to RootSet. For node  2, the protocol selects node  2  and  
path selected at line 5  of the code in Fig. 4  consists of the it adds  node  5  to RootSet. Then,  the protocol loops back to line 
nodes  1,2, and  4, which becomes the current WaitPor set. The  4. Suppose that the paths selected at line 5  consists of nodes  



878 IEEE TFtANSACl’lONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 11, NOVEMBER 1994 

Funct ion SelectPaths(T, R, E). 
Input: A binary tree T of nodes  and  two subsets R 
and  E of nodes  in T. 
Output: A subset  of the nodes  of T  that lie on  paths 
that start at nodes  in R and  end  at leaves of T  while 
they do  not use  any  node  in E. 
Begin 

1  Temp - Empty set of nodes  
2  For each  node  u  E R Do 
3  Find a  path in T  from v to a  leaf of T  that 

does  not use  any  nodes  in E 
4  Add all the nodes  in that path to Temp 
5  End-For 
6  Return Temp 

End 

Fig. 5. The SelectPaths function for the Parallel Agrawal and  El Abbadi  
protocol. 

3,5, and  7. Tbe  set WaitFor consists of nodes  3, 5, and  7. The  
protocol sends requests, in parallel, to all nodes  in WaitFor, 
and  after time 2f, since all these nodes  are up, all these nodes  
acknowledge.  Then,  the protocol cont inues with line 13. At 
this point the set of UpNodes  consists of nodes  3, 4, 5, 
and  7. Funct ion QStatus at line 13  returns success and  the 
protocol successfully obtained a  quorum consisting of nodes  
3, 4, 5, and  7. Note that the quorum is determined in line 14  
by  invoking the same GetQuorum procedure descr ibed in the 
original Agrawal and  El Abbadi  protocol with the following 
modification. The  Up(w) function descr ibed in GetQuorum, 
evaluates true iff node  w is up  and  thus agrees to be  in a  
quorum. In that case, this has  to be  done  by sending a  message 
to v and  waiting for a  reply. Here, the Up(v) returns true if 
w E UpNodes.  Therefore, no  messages need  to be  exchanged 
at this point. The  use of the GetQuorum procedure guarantees 
that the quorum obtained by  ParAgrAbb conforms to a  quorum 
that would be  obtained by  AgrAbb. The  time taken is TOULt +  23  
while the total number  of messages exchanged during the 
execut ion of the protocol is 10. It should be  noted that line 14  
is necessary since in tbe course of running the protocol, there 
are nodes  that are discovered to be  up  which however  are 
not part of the Agrawal and  El Abbadi  quorum. For example, 
consider a  tree with 31  nodes  and  height 4. Suppose that i) 
all leaves except  the rightmost are down, ii) the left child of 
the root is also down, and  iii) all other nodes  are up. Suppose 
that we explore the tree from left to right; that is whenever  we 
have  a  choice between left and  right child, we choose the left 
child first. The  quorum consists of the path from the root to 
the rightmost leaf. In this example, the set of UpNodes  in the 
protocol includes many  up  nodes  which are not in the quorum. 
A similar situation appears  in the AgrAbb protocol. 

Note that, in this small example, both the original and  
parallel Agrawal and  El Abbadi  protocols exchanged the same 
number  of messages,  while the delay for the parallel version 
of the protocol is substantially smaller than for the original 
version. In general,  we expect  that the parallel version will 

Funct ion QStatus(T, v, V). 
Input: A binary tree T, a  node  o  of T, and  a  subset. 
U of the nodes  of T. 
Output: Success or Failure depending on  whether a  
quorum based  on  the Agrawal and  El Abbadi  proto 
co1 can be  obtained for the subtree of T  rooted at v 
under  the assumption that all nodes  in (not in) U are 
up  (down). 
Begin 

(* Left(v) returns the left child of a  node  v *) 
(* Right(v) returns the right child of a  node  v *) 
1  If v  is a  leaf of T  Then  
2  If v  E U Then  Return Success 
3  Else Return Failure 
4  If v  E U Then  
5  If QStatus(T, Left(v), V) or 

QStatus(T, Right(v), V) =  Success 
6  Then  Return Success 
7  Else Return Failure 
8  Else 
9  If QStatus(T, Left(v), U) and  

QStatus(T, Right(v), V) =  Success 
10  Then  Return Success 
11  Else Return Failure 

End 

Fig. 6. The QStatus function for the Parallel Agrawal and  El Abbadi  
protocol. 

TABLE I 
MODEL PARAMETER VALUES 

Parameter Value 
To  0.1 s 
T 0”t 1.0 s 
;* 2  Mb/s 

A* 0.2 request/s 
X” 2.0 requests/s 
l/h 1024  b  
l/p, 256 b  

exchange more messages than the serial version while the 
delay of the former will be  much smaller than for the later. 
In Section VIII, we compare the performance of both versions 
of the Agrawal and  El Abbadi  protocol. Observe that both 
protocols have  the same availability. 

VIII. NUMERICAL RESULTS 

W e  compare the performance of the various quorum 
attainment protocols d iscussed in the previous sections. 
The  results for Agrawal and  El Abbadi  (AgrAbb), Majority 
(Maj), and  Primary Site (PS) are der ived from the analytic 
models, while those for the parallel implementation of 
Agrawal and  El Abbadi  (ParAgrAbb) were derived by  
discrete event  simulation. In all g raphs shown in this section 
we assume that the model  parameters are the ones  given in 
Table I, unless otherwise specified. 

Fig. 7  shows the variation of the average delay DQ as a  
function of the probability of failure for the four protocols. In 
all cases, the delay is equal  to 2  ?  when  the probability of fail- 
ure is equal  to zero. For the four protocols, the average delay 
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Fig. 7. Average delay versus probability of failure for fixed n. Fig. 9. Performability versus probability of failure for fixed n. 
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Fig. 8. Availability versus probability of failure for fixed n. 

tends to infinity when  p  tends to 1. However,  Maj tends to in- 
finity faster than AgrAbb and  ParAgrAbb, which in turn go  to 
infinity faster than PS. Note however,  that the PS curve should 
be  interpreted as  a  lower bound  on  delay due  to the reasons 
previously discussed. In the range 0  5  p  <  0.7, ParAgrAbb 
exhibits a  smaller or comparable delay to all other protocols. 

Fig. 8  shows the variation of the availability of the four 
protocols as  a  function of the probability of failure for a  
network with 31  nodes.  AgrAbb and  ParAgrAbb have  the 
same availability for obvious reasons. The  PS protocol has  the 
smallest availability for values of probability of failure smaller 
than 0.5. In this range, Maj is slightly better than AgrAbb and  
ParAgrAbb. For values of p  greater than 0.5, PS presents the 
best availability, fol lowed by AgrAbb, ParAgrAbb, and  Maj. 
In practice, values of p  are not expected to exceed 0.3. So, in 
the range p  5  0.3, Maj exhibits the best availability. A more 
detailed compar ison between the availability of AgrAbb and  
Maj can  be  found in [l]. 
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Fig. 10. Performability versus number  of nodes for fixed p. 

fact that the average delay for 31  nodes  increases very rapidly 
in this range and  tends to infinity as  indicated in Fig. 7. In 
the range 0  5  p  <  0.5, Maj has  a  higher availability (see Fig. 
8) and  lower average delay (see Fig. 7) than AgrAbb. Hence,  
the performability of Maj is greater than that of AgrAbb in 
this range. On  the other hand,  ParAgrAbb has  the highest 
per-formability of all protocols over the whole practical range 
of the probability of failure p, 0  5  p  5  0.3, since it exhibits 
a  lower delay than Maj and  AgrAbb for any  value of the 
probability of failure in this range. The  PS curve in Fig. 
9  is accurate as  long as  the primary site does  not become 
a  bott leneck. Otherwise, this curve should be  v iewed as an  
upper  bound  on  per-formability for PS. In the case where it 
becomes a  bott leneck, the assumption that processing time 
can be  neglected, compared with communicat ion time, does  
not necessari ly hold. Note also, that the theoretical maximum 
for the performability is 0.5 for any  protocol. This is due  to 

Fig. 9  shows the performability of the four protocols the fact that the maximum availability is 1  and  the minimum 
as a  function of the probability of failure for a  network normalized delay is 2  To/To = 2. 
with 31  nodes.  The  variation of the performability as  a  function of the 

As it can  be  seen,  the performability tends to zero for values number  of nodes  for a  fixed value of the probability of failure 
of the probability of failure greater than 0.5. This is due  to the p  @  = 0.01) is shown in Fig. 10. 



880 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO.  11, NOVEMBER 1994 

31 Nodes 

0.1 0.2 0.3 0.4 
Probability of Failure 

Fig. 11. Availability-weighted performability versus probability of failure 
for fixed n. 

In general, the performability decreases as the number of 
nodes increases for Maj, AgrAbb, and ParAgrAbb because the 
average delay increases faster than the availability increases. 
It should be noted that Maj and ParAgrAbb are equivalent for 
n = 3. For this reason, they have the same pet-formability 
for this number of nodes. For values of n greater than 3, 
ParAgrAbb exhibits a better performability than Maj which 
in turn is better than AgrAbb. For instance, for 63 nodes 
and p = 0.01, ParAgrAbb has a performability 80% higher 
than Maj, and Maj has a 170% higher performability than 
AgrAbb. Thus, ParAgrAbb has a performability 386% higher 
than AgrAbb for this set of parameters. This trend is expected 
to continue as the number of nodes increases even further. The 
PS curve is pretty much insensitive to the number of nodes 
as expected since the availability for PS is not a function of 
the number of nodes nor is the average delay per attempt to 
obtain a quorum. Again, we are not considering the possible 
bottleneck effect of PS. 

The performability, as defined in (l), does not change if both 
the availability and the average normalized quorum attainment 
delay are multiplied by the same factor. Obtaining even a 
few percent points of improvement in the system availability 
may be more difficult than reducing the delay by the same 
factor. Thus, one might want to use alternative performability 
metrics that give more weight to availability. We propose a 
availability-weighted pe$ormability metric defined as 

p, = _ 1s 100 - A) 
Db 

(53) 

where A, and Db are, as already defined, the availability of 
the algorithm and the average normalized quorum attainment 
delay, respectively. Fig. 11 shows the variation of P’ as a 
function of the probability of failure for 31 nodes. Under this 
new metric and for 31 nodes, Maj has a higher performability 
than any other protocol, followed by ParAgrAbb, AgrAbb, 
and PS. 

If we fix the probability of failure and vary the number 
of nodes, as indicated in Fig. 12, we observe that the per- 
formability for Maj and ParAgrAbb increase initially with n 
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Fig. 12. Availability-weighted performability versus number of nodes for 
fixed p. 
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Fig. 13. Average delay versus number of nodes for fixed p. 

due to the logarithmic effect of the increase in availability as 
n increases. After some value of n, the availability of both 
protocols increases very slightly with n but the delay starts to 
increase significantly with n. At this point, the performability 
starts to decrease. This occurs first for Maj since its delay 
increases faster with n than for ParAgrAbb as shown in Fig. 
13 discussed next. AgrAbb and PS have very low values of P’ 
if compared with Maj and ParAgrAbb. In the case of AgrAbb 
this is due to its much higher delay (see Fig. 13). In the case 
of PS, this is due to its lower availability (see Fig. 8). 

Fig. 13 shows the variation of the average delay DQ as a 
function of n for a fixed value of p @  = 0.01). The average 
delay increases with the number of nodes for all protocols 
except for PS. The delay for ParAgrAbb is always less than 
that of Maj, which in turn is less than the one for AgrAbb. For 
p = 0.01, the delay of AgrAbb ranges from 1.8 to 5 times the 
delay of ParAgrAbb. Also, the difference between AgrAbb, 
Maj, and ParAgrAbb tends to increase as n increases. 

Fig. 14 shows the variation of the average number of 
messages NQ for AgrAbb, ParAgrAbb, Maj, and PS as a 
function of the probability of failure for 31 nodes. 

As it can be seen, the number of messages for Maj is larger 
than for any of the other protocols. For probability of failure 
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Fig. 14. Average number of messages versus probability of failure for fixed 
12. 

in the range 0  5  p  <  0.3, the number  of messages for AgrAbb 
and  ParAgrAbb are very close (less than 5% difference). On  
the other hand,  the average delay for ParAgrAbb is about  
half of that for AgrAbb in the same range of p. The  average 
number  of messages for Maj in the same range of p  is 
roughly twice as  the same number  for AgrAbb and  ParAgrAbb. 
The  average number  of messages for Maj tends to infinity 
before ParAgrAbb, which goes  to infinity before AgrAbb. All 
protocols saturate before PS. In fact, for Maj, NQ starts to 
grow very fast for values of p  close to 0.5, while for AgrAbb 
and  ParAgrAbb this happens  for p  in the vicinity of 0.65. PS 
shows a  very small number  of messages until p  reaches 0.9. 
After this point, the average number  of messages for PS starts 
to rise sharply. PS exhibits the smallest number  of messages 
among  all three protocols. As shown by the figure, for each  
protocol there is a  different value of p  after which the protocol 
should not be  used  since the number  of messages would 
increase very fast. The  same observat ions may be  derived by  
looking at the delay curves. 

Fig. 15  shows the variation of the average number  of 
messages NQ as a  function of the number  of nodes  for a  fixed 
value of p  @  = 0.01). For such a  low value of p, AgrAbb and  
ParAgrAbb require an  almost identical number  of messages 
to attain a  quorum. As it can  be  seen,  the difference in NQ 
between Maj and  AgrAbb increases sharply with n. For PS, 
NQ is not a  function of the number  of messages.  

Fig. 16  shows the impact of the rate, X,, at which each  
node  generates new requests on  the average delay. For this 
figure we kept the ratio X,/A, constant and  equal  to 10. As it 
can  be  seen,  AgrAbb is clearly more sensitive than the other 
protocols to the quorum request workload intensity. This is 
due  to the fact that 3  increases with X, and  the coefficient of ?  
in the average quorum attainment delay expression is greater 
for AgrAbb if compared with the other protocols. Maj and  
ParAgrAbb are very close to one  another,  but ParAgrAbb has  
a  better per formance than Maj since it exchanges less messages 
per  quorum request than Maj, thus injecting less traffic into the 
network. For larger number  of nodes,  the difference between 
Maj and  ParAgrAbb is expected to increase. Again the PS 
curve is a  lower bound  on  delay. 
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Fig. 15. Average number of messages versus number of nodes for fixed p. 
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Fig. 16. Average delay versus arrival rate of quorum requests. 

IX. CONCLUDING REMARKS 

This paper  presented a  unified framework to evaluate the 
performance of quorum attainment protocols. The  unified 
model  consists of two submodels:  one  for the underlying 
communicat ion network and  another for the protocol be-  
ing analyzed. An iterative procedure is given to solve the 
fixed-point equat ion that results from the unified model. The  
procedure is shown to have  a  unique solution under  very 
general  assumptions. The  performance metrics computed from 
the model  are: average delay to obtain a  quorum, availability, 
average number  of messages needed  to obtain the quorum, and  
performability-a per formance metric introduced in this paper  
to evaluate quorum attainment protocols. 

Many  mutual exclusion protocols have  been  proposed in 
the past. In all cases, the performance of these protocols has  
been  basically assessed in terms of two metrics: number  of 
messages needed  to get the quorum, and  availability of the 
protocol. Count ing the number  of messages is less important 
than assessing the quorum attainment delay. Some protocols 
may achieve higher availability at the expense of larger 
number  of messages or higher quorum attainment delays. 
In this paper,  we def ined a  performability metric which is 
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the ratio between the availability and  the average normalized 
quorum attainment delay. So, the higher the availability and  
the lower the delay, the better the per-formability of the 
quorum attainment protocol. The  theoretical maximum for the 
performability for any  protocol is 0.5. An alternative definition 
of performability which gives higher weight to availability 
than to quorum attainment delay was also discussed. 

Analytical expressions were derived to obtain the average 
quorum attainment delay, average number  of messages and  
performability of the following three protocols: AgrAbb [l], 
Maj [20], and  PS [2]. A parallel implementation of AgrAbb, 
called ParAgrAbb, was proposed and  its per formance metrics 
were obtained through simulation. ParAgrAbb was shown to 
have  a  higher performability than all other protocols analyzed 
over the whole range of values of the probability p  of node  fail- 
ure. Even though Maj has  a  higher availability than ParAgrAbb 
in the range 0  5  p  <  0.5, ParAgrAbb has  a  lower delay than 
Maj in the whole range of values of p. Therefore, ParAgrAbb 
provides a  better tradeoff than Maj between availability and  
average quorum attainment delay. The  same kind of behavior 
can  be  observed for all other values of the number  of nodes  
evaluated. If the availability-weighted per-formability metric is 
used,  Maj exhibits a  better performability than ParAgrAbb for 
less than 63  nodes.  After this point, ParAgrAbb outperforms 
Maj since the delay for the latter increases faster than for the 
former protocol. 

For all protocols analyzed, the average delay tends to infinity 
when  p  tends to 1. However,  Maj tends to infinity faster than 
AgrAbb, which in turn goes  to infinity faster than ParAgrAbb 
and  PS. The  number  of messages for Maj is larger than for 
any  of the other protocols. For small values of the probability 
of failure (0 5  p  <  0.3), the number  of messages for AgrAbb 
and  ParAgrAbb are very close (less than 5% difference). On  
the other hand,  the average delay for ParAgrAbb is about  
half of that for AgrAbb in the same range. The  average 
number  of messages for Maj in the same range of p  is roughly 
twice as  the same number  for AgrAbb and  ParAgrAbb. The  
average number  of messages for Maj tends to infinity before 
ParAgrAbb, which goes  to infinity before AgrAbb. 

The  observat ions made  in the previous paragraph show that 
a  delay analysis is a  better method for evaluating protocols 
than simply count ing messages,  since the delay does  not grow 
linearly with the number  of messages exchanged.  Finally, the 
framework presented here can be  appl ied to other distributed 
mutual exclusion and  commit protocols as  well. 

APPENDIX 

EXISTENCE OFAUNIQUESOLIJTIONTOTHEUNIFIEDMODEL 

This appendix  presents a  proof that the unified model  
has  a  unique fixed-point solution under  the fairly general  
assumptions given in the following theorem. 

Theorem 5: The  fixed point equat ion solved by  the algo- 
rithm given in Section II has  exactly one  solution under  the 
following conditions: 

l the network is in equilibrium, i.e., 7  <  y*, 
l D” and  Dn” are strictly increasing functions of ?, 
l the probability of a  site failure is less than 1  (p <  l), and  
l the derivatives of D” and  D”” with respect to i: exist. 

Proof Let us  rewrite here some of the equat ions shown 
in Section II in a  form suitable for the proof. Let D” and  D”” 
be  functions of 3  as  def ined below. 

D” = g1  (2) (54) 

D”” = g2  (3). (55) 

Since D” and  D”” are assumed to be  strictly increasing 
functions of T, gil) - (t) >  0  and  gg)  (f) >  0. Let r =  1  -r/r*. 
Since we assume that the network is in equilibrium, it follows 
that 0  <  T 5  1. So, according to (6), we can write 2  as  a  
function ga  of r, as  follows 

-i =  g3  (r) =  To  [l - l/r +  l/T-2]. (56) 

Funct ion gs  has  the following propert ies which can be  easily 
der ived from (56): 

l l im,,ags (r) =  co. 
l Q3 (1) = To .  

l gs (r) is a  monotonical ly decreasing function of T  with 
no  saddle point. In fact, 

gp)  (r) =  32  1- 2  [ 1  T-2 T 

which is always negat ive since 0  < r 5  1. Also, 

gp (r) = 53 [ 1  3 - 1 
r3 r 

which is always positive since 0  < r 5  1. 
If we  combine (8), (1 l), (13), (14), (16), (54), and  (55), we 

can write r as  a  function g4  of T. 

r =  g4  (Z) =  1  - L n  (1 -PI/h 
-f* 

n  A, (1 -P) NJ(cL~ Y*) - 
1 + A, (1 -P) [A 91 CT> + Cl- -4) a (?>I * 

(59) 

For fixed values of the model  parameters, we can rewrite 
(59) as  

g4  (T) =  1  - KI - K2 

I+ K3 g1 (3) + K4 g2 (t> 
(60) 

where KI, K2, K3, and  K4 are positive constants, since we 
are assuming p  < 1. 

Funct ion g4  has  the following properties: 
l g4  is a  strictly increasing function of 1. In fact, its first 

derivative, gp)  (T), is given by  

gF) (?> = K2 [K3 &) (z) + K4 g:) (@I 

[I + K3 gl (2) + K4 g2 @>I2 ’ (61) 

Since K2, &, K4,gI 
gy (Z) >  0. 

(l) (Z),gp’ (T) >  0, it follows that 

l Also, limz,, g4  (T) =  1  - K1, since the delays tend to 
00  when  the network delay Z goes  to infinity. Note also 
that 1  - K1 5  1  since K1 is simply the ratio between 
normal traffic and  the network saturation traffic. 
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TO 

r 1 - K, 

Fig. 17. gs (r) and gT1 (r). 

l The minimum possible value for g4 (T) occurs for 3 = To. 
since Tc is the minimum possible value for Z and g4 (2) 
is a strictly increasing function of T. 

Since g4 is a strictly increasing function of 5, there is an 
inverse function gil (r) such that 

-i = gp (?-). 

The solution to the fixed point equation is given by equating 
(56) and (62). Thus, 

3 = g3 (r) = g;l (T-). 

Given the properties derived above for functions gs and g4, 
it is easy to see that they may be plotted as shown in Fig. 17. 
As it may be seen from the figure, the curves for gs (r) and 
gT1 (r) intersect at exactly one point. n 
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