N
N

N

HAL

open science

Development of Veda, a prototyping tool for distributed
algorithms

Claude Jard, Jean-Francois Monin, Roland Groz

» To cite this version:

Claude Jard, Jean-Francois Monin, Roland Groz. Development of Veda, a prototyping tool for dis-
tributed algorithms. [Research Report] RT-0087, INRIA. 1987. inria-00071322

HAL 1d: inria-00071322
https://inria.hal.science/inria-00071322
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00071322
https://hal.archives-ouvertes.fr

Rapports Techniques

N°§7

: DEVELOPMENT OF VEDA, A
PROTOTYPING TOOL FOR
DISTRIBUTED ALGORITHMS

AT
e
At

T

ATV

Claude JARD
Jean-Francois MONIN
Roland GROZ

5
SN

T e e
A e RN
(SE = gﬁ@?tﬂ

o % “:-“ %?f*[,sx«,o;

e
RV

ism e

OCTOBRE 1987

l Rl S a . INSTITUT DE RECHERCHE EN INFORMATIQUE
' ' ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
Avenue du Geéneral Leclerc
35042 - RENNES CEDEX
FRANCE

Tel : (89) 36.20.00

Télex : UNIRISA S5 0473 F

Development of Véda, a Prototyping Tool
for Distributed Algorithms *

Développement de Véda, un outil de
prototypage des algorithmes distribués

Glaude JARDT#,
Jean-Frangois MONIN? and Roland GROZI_

Publication Interne n°® 372 - Aoiit 1987 - 42 pages

t :IRISA, CNRS, Campus de Beaulicu,
F-835042 Rennes Cedez, FRANCE
emasl from uucp : .../sessmo!mcvazlinrialirisaljard

t :Département Evaluation et Validation de Protocoles
CNET LANNION A, Route de Trégastel, BP40,
F-22301 Lannion Cedez, FRANCE

Key Words : ,
Simulation, Versfication, Distributed Algorithms, Protocols,
Software Engincering, Estelle, Prolog.

*will be edited in a special issue of IEEE Transactions on Software Engineering on
Computer Communication Systems, November 1987. This work contributed to the French
Research Program C? on Parallelism and Distributed Computing.)

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE

(L.A.227) EN INFORMATIQUE ET EN AUTOMATIQUE
UNIVERSITE DE RENNES 1 I.NS.A. DE RENNES (LABORATOIRE DE RENNES)

Abstract

~ We report our experience in developing a simulator, called Véda.
Veda is a software tool to support designers in protocol modelling
and validation. It is basically oriented towards the rapid prototyp-
ing of distributed algorithms, and has been available for more than
two years. Algorithms are described using an ISO formal description
technique, called Estelle. We first give an external view of Véda, and
particularly how one can describe service properties and tracing, using
a specific feature of Véda, called observation. Then, the development
_of Véda and its internal structure is presented, emphasizing the use of
Prolog as a software engineering tool. Typical uses of Véda that have
been made in the relatively large community of its users are sketched.
We conclude with a critical analysis of the main features of Véda and
how they may have contributed to its success.

Résumé : Nous rapportons notre expérience dans le développement
d’un simulateur, appelé Véda. Véda est un outil logiciel destiné i aider
les concepteurs dans la modélisation et la validation d’algorithmes dis-
tribués. Il est congu pour faire du prototypage rapide d’algorithmes
distribués et est disponible depuis plus de deux ans. Les algorithmes
sont décrits dans un langage formel issu de I’'ISO, dénommé Estelle.
Nous commencons par donner une vision externe de Véda, et par-
ticulierement comment on peut décrire les propriétés de service et
Paffichage de traces, en utilisant une fonction spécifique de Véda, ap-
pelée observation. Le développement de Véda et sa structure interne
sont ensuite présentés, mettant en relief I'utilisation de Prolog en tant
qu’outil de génie logiciel. Les utilisations caractéristiques de Véda qui
ont été effectuées dans la communauté relativement large de ses util-
isateurs sont évoquées. Nous concluons par une analyse critique des
possibilités de Véda et comment elles ont contribuées & son succés.

NDPAMR RECUPERE €T RECYCLE .

1 Introduction

In this paper, we report our experience in developing a tool (Véda) that
has already been in use for more than two years. It was developed while
the three authors were in CNET Lannion. It has been used by at least a
dozen laboratories in France. We present the current features of this tool.
A first overview of Véda is available in [Jard 85b).

Véda is basically oriented towards the rapid prototyping of distributed
algorithms and protocols. We consider that these two notions are syn-
onyms : they refer to programs for handling information that is distributed
in space. '

Véda has also been one of the very first tools based on the Estelle
language, an ISO proposed standard for protocol specifications.

1.1 Formal specification for protocols

It is commonplace to say that the decrease in hardware costs and the de-
velopment of networking facilities have led to a proliferation of protocols
and related needs. However, the development of that kind of software has
raised specific problems. Conventional software methods and tools were ill-
prepared to deal with some of these problems. For instance, specification
and design of a software sequential module can be informal up to the point
of code writing. Only very large software developed by several teams would
require strict definitions of interfaces, and these are only a small part of
the whole module. Protocols are very different in that respect: interfac-
ing with other implementations designed by other vendors is the core of
protocol definition. This is why a precise - if not formal - specification is
of paramount importance. And it is a important to note that problems
(such as specification, debugging...) arise even for the simplest protocols.
In particular, distribution raises exponential state explosions.

1.2 Rapid prototyping : simulation vs prototype im-
plementation '

There is a need -as yet unsatisfied- for rapid prototyping tools and debug-
gers for distributed systems. Unravelling the possible behaviours of all but

the simplest (alternating-bit-like) protocols requires some kind of ezpers-
mentation. This can be done on a prototype implementation. However, on
' implementations, rare events (such as disordering of messages on a link)
are unlikely to appear. Unfortunately, validation of a protocol precisely
requires some investigation of error handling in unhealthy situations.

Simulation in that respect is a much more powerful tool than a prototype
implementation. Here is a short list of its advantages :

¢ Setting up a simulation takes much less time than a prototype imple-
mentation (where everything has to be programmed, often in low-leve]
language), and costs a lot less.

* Simulation makes it possible to have a complete control over all pa-
‘Trameters and events of the system under scrutiny.

e Simulation can be done in a virtual time. Whereas an implemen-
tation is slowed down by delays on e.g. message transfer, this can
be represented by an event on a simulation scheduler that runs on a
speeded up virtual time scale.

e It is possible to include observation devices of the kind introduced
in Véda: almighty daemons that can scrutinize “on-line” all of the
behaviour of the distributed system simulated.

In short, simulation makes it possible to control and observe a dis-
tributed system much better than would be possible on an implementa-
tion. Some parameters cannot be tampered with on an implementation:
time in particular. Global time for instance is an abstraction that may
not be found in a really distributed system (cf Lamport and prior to that
Einstein...); but many service properties are stated with an implicit global
time in mind, and simulation makes it easy to produce this global time.

. Nevertheless, a prototype implementation is likely to be useful as a
complement to a simulation. The reason is that a simulation is only a

model of reality. And certain types of error situations (such as cascading

failures) may not have been taken into account in a simulation. '

1.3 Background of Véda

Véda was designed on the basis of these premises. But before designing a
tool dedicated to protocol simulation, we had experimented the basic ideas
of simulating protocols on a few significant examples. In particular, other
groups in PTT research centers had submitted to us a realistic protocol for
mutual exclusion that was.able to work in a very tough environment (loss
of messages, site failures) and a session-layer protocol. These preliminary
investigations had shown that simulation was a valuable approach that
could exhibit very complex error situations that had gone unnoticed on
existing implementations [Groz 85]. All the simulations had been done
using a simulation language called Simone; Simone is based on Hoare’s
monitors. It turned out that such a tool, dedicated to general purpose
simulations was not well suited to our needs (see section 2.2 for a rationale).
This is why we built a specific tool, and we based it on Pascal (for the
implementation of the simulation). '

Thanks to the use of Prolog, we were able to develop Véda in a short
time: a first version of the tool was available and distributed one year after
the start of the project. Since that time, and to our greatest surprise, Véda
has attracted an astounding number of users from PTT, universities and
research laboratories. Véda proved able to handle protocols quite complex
and of a reasonably large size. It appeared that Véda filled a need that was
not yet covered.

1.4 Organization of the paper

Section 2 gives an afterthought specification of Véda. In that matter, we
have followed the advice given in [Parnas 86]. Of course, this is an idealized
view, but it is a convenient way of abstracting from all sorts of contingencies
that arise naturally in the course of setting up a novel design.

In sections 3 to 5, we give an external view of Véda. We first present the
whole tool, and then how one can express protocols and service properties.
The internal structure of Véda is presented in section 6. Important design
trade-offs and choices are discussed. Part 7 names a few typical uses of
Véda that have been made in the community of its users.

The last section is devoted to a critical analysis of the main features

of Véda, its strong and weak points. We try and see how they may have
contributed to its success.

2 Afterthought specification of Véda

2.1 The protocol design methodology that Véda im-
" plements

Véda was designed with the view that the design and validation of a proto-
col could follow the following steps. First, the designer describes formally
the protocol; to that aim, a so-called Formal Description Technique is used.
Provided this technique is well-typed, some kind of consistency (at a static
level) can be checked at that point by a compiler. In the next step, the
simulator already comes in. These preliminary simulations are meant to
be short and designed to find out trivial errors (deadlocks for instance),
For this task, the designer can use random and interactive (step-by-step)
simulation. Fine tuning the protocol comes as a later stage; in that case,
it is necessary to have means of scrutinizing all the parts of the proto-
col behaviour; for instance, tracing of specific messages, or more generally
speaking, of all sorts of events (internal states reached etc), is necessary.
The last step consists in testing thoroughly the protocol specification. This
is the time for long simulation runs. In the current state of Véda, those
simulations are done in random mode. Producing huge trace files in that
step would be worthless. The method proposed is to verify properties of
the system on-line, and at the same time to pick up some measures. All
this is done with observer daemons,

Of course, those steps are only a general framework. Véda can even be
used for other purposes than protocol validation. Typical uses of Véda are
listed in section 7.

The simulation makes use of several entities. First, the system under
study (in particular, the protocol considered). Then, the instruments for .
control and observation. It is important that the protocol specification
should not be modified for simulation purposes. It should be kept unpol-
luted with such things as traces, or error messages. In turn, the system un-
der study can be divided into several entitjes. The protocol itself should be

6

Figure 1: External view of Véda

Service
Estelle
descriptions probes "~ Observers
Protocol :
Model of the
environnement - \EDA = Results
and configuration S C kernel

Simulation parameteré
and Control

described separately from the model of its environment (underlying layer,
and model of user requests from an upper layer for instance). Separate
compilation helps in dividing the system in different files.

Figure 1 is a simplified view of the corresponding dataflow in Véda.
Véda simulates the execution of the closed system S, under the control of
C, with O overseeing this execution (verifying properties and producing
traces). '

Concerning O and C, several approaches can be considered : they can
be compiled (along with the system), or interpreted in the course of the -
simulation.

Modularity is an important feature of the language used for protocol
specifications. In this way, the architecture of the system considered can be
represented. However, the more complex the system specification, the more
difficult the observation: because the observer is external to the system, it
must be able to name the objects it observes inside a whole hierarchy of
structures.

It is important to note that in Véda we simulate only closed systems.
This means that apart from the protocol under study, all its environment
(underlying network and user presenting requests for instance) must be
modelled somehow. Of course, whereas the protocol must be accurately
specified, we can do with a simplified model of its environment. In partic-

ular, if we consider a level 7 protocol in the OSI model, all the underlying
network can be represented simply by one single module, a centralized sim-
ulation of a distributed network. Thus, the size of the environment can be
- kept small compared to the protocol specification, even for large applica-
tions (see section 7.1). o

2.2} Validation-oriented simulation

If we try to sum up the functions expected from Véda, and what the im-
plications are on the tool, we see that it must :

e accept formal protocol specification and simulate their execution;

® accept a description of service properties, and provide the means of

verifying them; this implies that all events and objects semantically

- relevant (internal states, transitions, interactions etc) should be ac-
cessible;

¢ provide the means of driving the simulation, especially towards sit-
uations than can be interesting (e.g. error-prone); this implies that
the scheduling of processes, the time queue, the management of non-
determinism should all be parametrized or even “programmable”.

Of course, there is a trade-off between fine control and efficiency of the
simulation. The requirements we set imply that our simulator cannot be
as efficient as cruder ones, such as Simscript or Simone. Such simulation
languages are oriented towards performance evaluation. This is probably
why these languages do not offer the access function we need, at least not at
the level required for Véda. Note however that the observation constructs
required for Véda make it easy to express, among other things, measures
of performance. So, if we were to build Véda on a simulation language, we
would have to reprogram a scheduler, a time queue and so on on top of those
provided by the underlying simulator.This would be a gross underuse of the
supporting simulation language, and would result in added-on inefficiency.

As a matter of fact, this was our experience with a pre-prototype exper-
iment done with the Simone simulation language. This is also.the reason
why we developed our own simulation too] and based it on a general-purpose

Figure 2: Data flow

random RESULTS
_ text editor ‘ _ simulation T '
' : teractive 2"] -]
: gimulation SIM e
or

7 intelligent
[mulation
exec.
ode
links
pasca
com
intermediate
. - CODE . code
Di : Estelle descriptions
Dob : Observers description_s
Ti : Symbol tables standard\ °' / user
Pi, Pob : Partial intermediate codes kernel kernel

ital. : user defined parameters

Q : files [: processors =™ : support tools

language (Pascal). It remains however that Véda is inspired from classical
simulation languages in that it is optimized for long random simulations.

3 An external description of Véda

3.1 Main functionalities

The overall structure retained for the use of Véda is shown in figure 2.
Some intermediate files show up : every compilation translates a source
description (D; or D) into data structures and corresponding access pro-
cedures (in P;), and saves the compilation symbol table in T}; those tables
are used for separate compilation, which also makes use of a “link” file

9

to manage the tree of dependencies between separately compiled entities.

Note that truly separate compilation is performed, not independent compi-

lation: when external identifiers are used, it is clear from which other source

description they come, and the compiler performs all semantic checks Te-
quired.

The “code” command gathers the partial object codes (P;) and binds -
them with the simulation kernel to produce executable code. This is link
editing, but at a higher level than usual (our object code is pseudo-Pascal,
and the executable code is Pascal: so we run on a virtual Pascal machine).
The kernel contains all the basic primitives needed for handling processes,
interactions, parallelism... A procedure that performs random simulation is
included. Also included in the kernel are constants setting up limits (such
as the maximum number of processes, 200 by default): however these limits
can be modified freely by the users; the only limit is that of the memory
available on the host machine. In fact, the whole kernel, far from being a
well kept secret of Véda, is at the user’s disposal, who can tailor it to his
needs, or to the needs of each application.

An interface is provided to drive the simulation (apart form the random
mode that is provided in the kernel). When the “sim” command is issued,
the user is given a choice between automatic (random) simulation, and
an interpreted mode under the control of a Prolog program which can be
defined by the user. A default program is the interactive mode in which all -
the driving is left to the user at the terminal. '

3.2 Overview of other commands

Every command of Véda can have arguments and options. Since option
names are fully explicit, an abbreviation facility is provided. ‘

Extensive on-line help is available. It covers not only the commands,
but also the overall structure of Véda, miscellaneous manuals, the BNF of
Estelle and variants used, or news about the features of the last version
publicly released. ‘

10

3.3 Moral

Considering what had been set as a goal for Véda, this tool lives up to
its commitments. We must say that some of those functionalities that deal
with nonautomatic driving are currently underused, being not user-friendly
enough. They can be seen as an open direction, that will be much improved :
" in the commercial version of the tool. . '
In fact, experience has shown that random simulation is by itself conve-
nient enough to cover most needs [Jard 84]. Its is always possible to make a
suitable choice of critical parameters of a model (such as failure rate) so as
to force very likely would-be errors in the protocol to show up. But we are
still investigating the potentialities of intelligent driving of a simulation.

4 Choosing Estelle |

4.1 Estelle among other techniques

Using a suitable language reduces modelling risks : what must be validated
is the model, not the modelling. For our needs, the language must include
the concepts commonly required for expressing distributed algorithms and
architectures. Since a good number of languages include concurrency, we
set out to see how they could meet our requirements.

However, we found many languages to be either too general or too
restricted. On the general side, we could have considered ADA. But it was
beyond our scope and efforts to implement such a language, and it does not
offer a specific framework for distributed systems: it is an implementation
language for centralized systems, rather than a specification language for
distributed systems.

On the other side, a language like CSP, in its 78 version [Hoare 78},
is quite popular in the academic world for describing small distributed
algorithms. But this language was lacking in syntactic constructs for com-
fortably undertaking to describe large protocols. It was not sufficiently
complete for our needs.

We also turned to methods based on transition systems with a “graphic”
base like Petri-nets or SDL [CCITT 84]. Our experience with Petri-nets
(which we also use for verification) indicated that protocol modelling with

11

them was a non-trivial task. And SDL, in 1983 (so the 1980 CCITT version)
was incomplete: our observations on other groups within PTT indicated
that it was used too informally, with inconsistent specifications as a result.
The situation is much brighter in 1986 with tools coming up all around the
world. -

As to formal calculi such as CCS and Lotos [ISO 86b], they were not
well-advanced enough as languages when we started. It is not quite sure
whether protocol specifiers are ready now to'take on such formal methods,

We finally chose Estelle (or subgroup B language as it was known), with
which we were already acquainted: we had based our preliminary experience
on the language defined by Gregor v. Bochmann [Bochmann 78]. Although
this language includes a lot of syntactic sugar even for simple distributed
algorithms, and is quite complex with little orthogonality, it has been tailor-
made by protocol experts, and is well accepted by rank and file users thanks
to its Pascal base. And the fact that it was in the process of becoming a
standard was a keypoint in our choice. -

However, we made this choice in 1983. Estelle was not completely de-
fined at that time. So we relied on what was the most up-to-date official
document: recommendation X.250 of CCITT. We just extended it with a
simplified description of static architectures. So the current language im-
plemented in Véda is known as FDT-E. It is in fact a strict subset of the
current Estelle [ISO 86a] (with a few minor discrepancies in the choice of
keywords). What FDT-E does not include is dynamic configuration, and
associated problems (parent-child relations, activities and processes etc).
We are currently updating Véda to conform to the new version of Estelle.

As a final comment, we can say that the choice might have been different
in 1986. For instance, Occam [May 83], and to a lesser degree Lotos, have
gained in strength and support. They are languages with a clear semantics.
However, we feel that, had we made the choice of such a formal language for
Véda, the appeal of our tool would have been much less to the community
of would-be users, and Véda might well have been a “flop”.

4.2 A glance at Estelle

Detailed presentations of Estelle are available in [Linn 85] and [Courtiat 87).
In this paper, we shall only present a small example. This example will be

12

used throughout this paper to illustrate how Véda works on it.

Figure 3 is a description of a toy resynchronizing protocol between two
logical clocks. This is a simplified version of a protocol privately commu-
nicated by Gérard Roucairol. It gives a sample Estelle specification.

The basic idea is to resynchronize the logical clocks or timestamps (rep-
resented by integer variable H) of two stations. The protocol must ensure
that their drift is bounded by a given quantity DELTA (which must be greater
than 0). To that aim, each station keeps track of its own time (H) and an
upper bound (u) on the time of the other station. ‘

The protocol is based on a “window” principle. The window is delimited
by H and u, and its maximal width is DELTA. Each station is given a credit
of incrementations equal to its window size.

A station can do one of three things :

e increment its clock (provided it would not go beyond the authorized
upper bound u);

e send its current time to the other station;
® receive a message from the other station, and update u accordingly.

The algorithm appears clearly in the centre of the specification. There
are three transitions : two of them are spontaneous (they begin with key-
word “delay”), and the last one is triggered by the arrival of an external
interaction on gate R (this transition begins with keyword “when”). Preced-
ing the transition part, we find the declaration part, where Pascal constants
and types are declared, along with channels and modules (this declares
types of external interfaces) and bodies (internal behaviours associated with
the external interfaces). The last lines from “modvar” downwards set up
an architecture made up of two instances (called st [1] and [2]) of module
type Station. They both use the same algorithm (body CR.simplistic).
These two stations are simply connected together (see figure 4). Although
the algorithm can cope with loss and disordering of messages, we have not
modelled the behaviour of the underlying communication network in this
over-simplified version. '

13

. Figure 3: Formal description of a simple protocol

specification C_Rouc ;

const DELTA = ... ;
di = ... ; @2 = .., ;
incl = .., ; inc2 = ... :

type logical_time = integer ; one_two = 1..2 :
module whole_system ;
body ws for whole_systenm ;
channel Resynchronizing (sender,receiver) H
by sender : Ny_time (x:logical_time) ;
end ;
module Station systemprocess ;
ip.R : Resynchronizing(sender) ;
end ; : '
body CR_simplistic for Station ;
var-u,H:logical_time ;
initialize begin H:=0 ; u:= DELTA end :
trans
delay (inc1,inc2) provided H<u begin H:= H+1 end ;
delay (d1,d2) begin output R.My_time(H) end ;
trans
when R.Ny_time priority 1
begin if u<x+DELTA then u:=x+delta end ;
end ; (* body CR_simplistic #)
modvar st: array[one_two] of Station :
initialize begin o
all i:one_two do init st[i] with CR_resync ;
comnect st[1].R = gt[2].R ‘
end ;
end ; (* body ws *)
end.

Figure 4: Architecture

stf1] st[2]

14

5 Observation: an interesting feature of Véda

5.1 Overview and rationale

All sorts of methods for expressing protocol properties have been investi-
gated in protocol verification tools. We had first considered the possibility
of using some kind of (linear) temporal logic; or finite state machines that
would express some regular expression on the ordering of service primitives.
We soon found that most formal methods for expressing service properties
were :

e limited in expressive power; for instance, with temporal logic or FSM
limited to regular languages; and thus, unable to express properties
such as “number of messages received=number of messages transmit-
ted” as soon as unbounded quantities appeared;

® restrictive on the events that could be taken into account : for in-
stance, limited to ordering of messages, and considering internal states
as not semantically relevant.

Although some of these limitations are well-founded in theory, it turned
out that they were unsuited to the practical needs of protocol designers
who used Véda. So we were urged to use a more general approach to
service properties, and protocol verification altogether. Those interested in
a discussion justifying this approach will find arguments in [Groz 86].

The verification in Véda is expressed in a language which is a program-
ming language. The program is called “observer”. In fact, there can be
one (the usual case) or several observers: this can be used, for instance, to
express separately the verification of different parts of the service. Other
uses are discussed in section 5.5. 4 .

Observers are almighty daemons: they can see every interaction ex-
changed in the system, and internal states of a module (except in the course
of a transition, when the state is not defined). They can halt the simulation
while observing. Then, they can compute any recursively enumerable func-
tion on what they have observed, with the ease of a programming language.
They may be talkative daemons: they can display (or write on a file) their
view of what they have observed. So, the power of a programming lan-
guage is provided for expressing either verification (a computation of some

15

properties) or a sophisticated trace (displaying only well-chosen high-level
events).

The programming language retained for the first version of Véda was
simply a variant of Estelle. This choice was motivated by several reasons :

o the state transition model is well suited to observation (cf infra);

e referring to Estelle objects is made easier by using syntactic constructs
of Estelle;

e we had a ready compiler for this language;

¢ users of Véda do not have to learn and master a completely new
language.

There is however a drawback in using Estelle: with this model, the
observation itself is inherently non-deterministic. This is more often a nui-
sance than a benefit, because the intuitive view of verification or tracing
is rather deterministic. Fortunately, this nondeterminism is of little conse-
quence to the normal use of Véda because observers are usually written in
such a way that they are either deterministic or insensitive to the order in
which the transitions are written.

There is a major problem to be solved when using observers external
to the system observed. We have already justified this choice by saying
that it keeps the specification of the system unpolluted with simulation
or observation-related features. However, since observers are supposed to
have access to all objects within the system, they must be able to designate
them. Objects of interest in Estelle are interactions and process variables
(including major states). The problem lies in the nested architecture that
Estelle enforces. Several object instances of the same type will have the
same name. And worse, different types may be associated with the same
identifier, provided they lie in different syntactic scopes. The basic idea is
that of using a dotted notation (just as for Pascal records). However this
could be tiresome in the case of deeply nested structures. So a shorthand is
provided, with the notion of probes (see figure 7 for a graphic illustration
of the notion of probe). An observer has a certain number of probes, each
one having a name. An observer can observe only through its probes. And

16

each probe is set (once and for all) on one object of the system. So the
probe has two functions; it serves as :

* a shorthand for referring from within the observer to the object ob-
served;

* a filter: the observer is concerned solely with the objects on which it
has explicitely set a probe.

In this way, the description of the observation is divided into two parts.
. First, a description of probe types, probe instances, and their connections.

Second, the observation computation (verification and tracing...) which is.

expressed solely in terms of probes, with no explicit reference to the system.

5.2 Expressing verification with observers

In Estelle, the evolution of a module is expressed in terms of internal states
and interactions. Internal states stretch over time, at least from one tran-
sition to the next. Interactions are seen only punctually: when output
or input. This duality in nature makes it all the more difficult to have
a uniform view of what a property, bearing on both’ aspects, is. Typi-
cally, for states, one may be interested in invariants, Taking into account
the transition-based semantics, the observer can specify that an invariant
must hold by performing the following computation after every significant
transition in the system : '

as soon as not [invariant] — error(message for instance)

When an interaction must be observed, we can trigger some action in
the observer :

[interaction input/output] — action (for instance, trace it
or remember this occurrence).

In that way, a unified view consists in saying that the observer is a set
of predicate/action couples :

on [event] — action

17

Figure 5: An observer

(* P is an array of two probes *)

body obsr for obs

- trans provided abs (p[1].H - p[2].H) > DELTA
begin writeln ('error’) end ;

where [event] can bear on internal states and those interactions that are
present (occurring) when the observer does its observation. As can be seen,
we come naturally to a state-transition model for observers. In addition,
the definition of probes necessarily makes use of Estelle constructs. This
is the main reason why we were led to use an Estelle-based language for
observers.

Let us have a new look at the example pictured on figure 3. This proto-
col ensures that the drift between the logical clocks H of the two stations is
bounded by DELTA. Figure 5 expresses this property (bounded drift), in the
observation language of Véda; there remains only to be seen how Probes
pl and p2 are expressed. Note that the observer would remain the same,
even for another resynchronizing protocol (more realistic for instance), pro-
vided it ensures a bounded drift DELTA. This is another benefit of the probe
concept.

'5.3 . Probes

Figure 6 is a complete description of the observation and configuration
parts. This seems complex, but it is due to the fact that the example is
outrageously simplistic. With a much more complex system observed, the
observation part would be scarcely longer than it is here.

As can be seen, the usual two-step definition (type/instance) is ex-
pressed in the manner of Estelle. First, probes are typed: in that part, the
user defines which syntactic type the probe will access. This is done in the
module declaration of the observer (module obs observe [probes-type-
declaration]). Then probes are connected (in the initialize part of the
whole simulation architecture). This defines which instance in the system

18

Figure 6: Formal description of the observation part

simulation O_C_R ;
import C_Rouc ; ,

(+ uses a separately compiled system *)
observe (* introduces the observation part %)
module obs observe (* typing of probes *)

module P : array [one_two] of ws.CR_resync
channel c: ws.Resynchronizing ;
end ;
body obsr for obs ; (* service property *)
trans provided abs (p[1].H - p[2].H) > DELTA
begin writeln (’error') end ;
end ; :
modvar 8: whole_system ; 0: obs ;
initialize begin (= setting up a configuration *)
init 8 with ws ; init O with obsr ;
all i:one_two do observe 0.p[i] : (8,ws).st[i] ;
observe 0.c : (8,ws).st[1].R
end ;
end.

Figure 7: Graphic illustration of probes

st[1] st[2]-

— 7 I

p[1] c p[2]

19

the probe will observe.

In the example above, we define a probe p that is meant to observe
module instances of type CR.resync. However, scoping rules imply that
CR_resync is not visible when the observer is declared : CR_resync is a body
which is declared within body ws of specification Carvalho Roucairol.
Importing Carvalho_Roucairol gives access to objects declared at the top
level of this specification (e.g. ws). To denote CR.resync, we prefix it by the
path of syntactic constructs that give access to it. In this simple example,
the path is only of length one, so we get :

ws.CR_resync

After that, when the architecture is defined, we declare only one ob-
server (instance) 0. So there are two probe instances 0.p(1] and 0.p[2]
that must be set to observe modules. Again, we must give a path, but of
instances this time. So we would expect, for this path, S.st[i]. .

However, st [i] could be ambiguous. The reason is that another body,
say ws_bis, could have been declared for whole_system; and ws_bis could
contain an

st : array[0..3) of Station :

Since the architecture is set up at runtime, the compiler cannot know
which st is referred to. This is why we force to write a path of couples :
(instance,init-body).

In this way, many checks can be performed at compile-time. And the
access is precompiled, so that observation is quite efficient at runtime.

5.4 Tracing

Véda offers a set of predefined procedures for tracing interactions (mes-
sages) comfortably enough. With these procedures, it is possible to display
messages and their parameters in high-level terms. Even if a parameter is
a “record of arrays of sets of enumerated types...” the content would be
listed in high-level terms (braces for sets and so on). The display, as shown
. on figure 8 includes the virtual date, an identification of the interaction
point where the interaction took place, and a high-level description of the

20

Figure 8: Example of tracing

body trace for obs ;
trans
begin writeln(’'hi:’,p[1].H,’; h2:’,p[2].H) end ;
trans
begin exrepprobesmess end ;
end ;

..

..

-4
=3
E
[SY

6.653 : 8 st[l] R --> My_time (o)
ht: 1; h2: 2

11.064 : 8.8t[1]1.R <-- My_time (2)
hi: 1; h2: 2

13.896 : S.8t[1].R <-- My_time (2)
hi: 1 ; h2: 3

message, its direction (input/output) and its contents. This is a default
display, but it can be tailored by the user.

The trace shown on figure 8 can be obtained by having the two transi-
tions mentioned in the observer. These two transitions have no condition
(implicit “provided true”), so the trace is always enabled. The second sim-
ply calls procedure exrepprobesmess that traces all mteractlons that pass
through the points observed. :

In the first steps of specification debugging, it might be tedlous to have
to write an observer with probes on all interaction points just to trace what
happens. This is why Véda offers, as an option in the “code” command, a
facility to include automatic tracing of all interactions (an equivalent of the
exrepprobesmess procedure); this facility is implemented in the kernel, so it

is available for the trace of systems that are simulated with no observation
at all.

21

5.5 Other uses

Observers have been used for performance measurement: it is easy to collect
data on the progress of the system and produce a statistical analysis at the
end of the simulation. However, implementing data collection in this way
is not efficient. And performance evaluation does not make much sense on
a non-deterministic specification. So we are currently investigating which
better-suited methods could be implemented in Véda.

It is also possible to have several observers running in parallel, and
communicating with each other. This has been used for experimenting
distributed testing schemes [Dssouli 86].

Observers could also be used actively, interacting with the system. Al-
though this facility was foreseen in the design, it has not been implemented
- in Véda, because the semantics of the evolution of the system would be
unclear.’

6 The implementation of Véda

6.1 Overall structure

The functions presented in section 3 are implemented by the software mod-
ules represented in figure 9. Véda is made up of a number of boxes driven
by the central box called “interface.VEDA”. The dataflow , represented by
full arrows, may be compared with the one on figure 2.

“Interface VEDA” is an interpreter of commands from the user. It
contains a command analyser (including the abbreviation handler), and
a command manager that invokes the procedures corresponding to each
command. The profile proper to each user, in particular the abbreviations
he has defined, are kept in the “user_profile” module. '

Compilation gets the lion’s share in the software involved. Compiling is
done in two passes. The first pass performs lexical, syntactic (context-free)
and semantic (viz. contextual) analysis, and produces an intermediate code.
It also produces, as a by-product, the symbol table (for use in separate
compilation). If no error has been detected, a second pass produces object
code from the intermediate code. The first pass is associated with the
“parser” box and the second with the “generator” box.

22

Figure 9: Internal structure of Véda

User *—

. File Management
System

table
‘7 switch

predefined

identifiers
external
references

interface
VEDA

-

parser

lexical *
analyser |

key
words

dynamic
table

predext.prolog

N4

predext.pascal

23

user profile

generator

link

kernels

stream

editor | (SALr

pascal
compiler

driver

RO Ov4Y 4\

dataflow
uses

prolog/pascal interface

Veda module

set of similar modules

host software

The first pass calls the lexical analyser, and uses symbol tables: one
for predefined identifiers (with a choice between French and English, as
for keywords), and one for each separately compiled unit used (“external
references”). The “dynamic table” box contains the symbol table for the
unit currently being compiled. All these tables are kept in different Prolog
modules (one per table), and accessed through the “switch” box.

All the boxes correspond to Prolog programs, except the lexical anal-
yser which is written in Pascal. We discuss this choice of implenientation
languages in sections 6.2 and 6.3; briefly, we can say that in this way, the
time required for a compilation is quite tolerable, even though it is slower
than a fully compiled compiler.

The “link-editor” box corresponds to the command named “code” in
Véda. This command assembles the object code produced and the simu-
lation kernel to produce an executable code. In fact, the object code is
made of bits of declarations and procedures which are mixed with those of
the kernel (see section 6.2.1). The task of the link-editor is first to find out
(from the “link” file that keeps a record of the tree of dependencies between
separately compiled units) which object codes are to be fetched; then the
link editor processes the tokens of the object codes into unique identifiers,
avoiding conflicts (clashes between identifier names). The assembly is done
with the help of a stream editor; so the only thing that the link editor does
is to build a command file for this stream editor. This is done again by
a Prolog program. Lastly, the “executable code” produced, which, for us,
means Pascal code (since we run on a virtual Pascal machine), is compiled
on the host Pascal compiler.

Now this code can be executed to represent a simulation of the dis-
tributed system. This is done by a program called the “driver”, which cor-
responds to the “sim” command of Véda. The driver implements some sim-
ulation strategies, by calling suitable entry-points in the executable code.
Exemples of extreme predefined strategies are: fully random, or fully inter-
active. '

There remain two boxes to be explained: “predext.prolog” and “pre-
dext.pascal”. Those result from the choice of Prolog as main implementa-
tion language of Véda. In these two programs, the interface between Prolog
and Pascal is defined. In particular, the dividing line between Prolog and
Pascal passes through the lexical analyser and the driver (both programs

24

have a part written in Prolog and a part written in Pascal). This inter-
face described how the so-called “external predicates” of Prolog (hence the
name “predext”) are implemented as Pascal procedures. As an addition,
“predext.Prolog” contains the definition of all built-in and general purpose
Prolog predicates.

6.2 Implementing and observing ‘an Estelle simula-
tion " : '

6.2.1 Overall structure of the target code

An obsession runs throughout the structure of the object code: to keep full
control of the finest elements that could be of interest in the simulation.

The object code is made of two parts, of a different kind: a fixed part (or
“system” part, corresponding roughly to the kernel), and a variable part
which is defined by the protocol. The system part embodies the manage-
ment of parallelism, of virtual time, of interactions and the use of memory.
The protocol part embodies, for instance, the translation of Pascal types,
procedures and functions declared in the specification.

It is good practice to bring the time spent in the system part to a
minimum. But for a validation-oriented simulator, the protocol part must
be interrupted whenever it is in an observable state, and whenever a driving
decision must be made. The definition of these interruption points depends
on the semantics of the language simulated. In the case of Estelle, the action
part of a transition is considered atomic: while executing, it is insensitive
to all external events and its state is undefined. Thus, we will consider
transitions to be uninterruptible. ‘

Coming to process management, we see that for each process (we use the
word in its general sense, not the specific meaning of Estelle) there is a cycle
within each process of determining enabled transitions and choosing (under
guidance from the driver) to fire one of them (if any). Then, the parallelism
between processes must be simulated. This is a crucial point: running on
a sequential machine, a serialization (interleaving) of process actions is
unescapable. This introduces a simulation-dependent total order, where
only the partial order of causality is semantically relevant. To circumvent
this problem, we must be cautious when determining “enabled” transitions.

25

The independence of process choices outside their interactions must be kept.
Consider for instance the protocol described on figure 3. Suppose that only
the first transition (incrementing h) is enabled for one process, while only
the second (output My_time) is enabled in the other process. In that case,
the possible simultaneousness of both transitions (transition 1 in process 1
and transition 2 in process 2) should be included in the simulation, even
if the serialized version interleaves process 1 after process 2. Note that
outputting My_time in process 2 disables transition 1 of process 1 because
of the priority rule (priority to the input). This means that the enabled
transitions of process 1 are not reassessed after executing process 2.

With the (disputable) simplification that transitions can be considered
to take no time, the following simulating scheme can be adopted :

loop

o select (driver’s choice) a subset of processes (= those con-
sidered as running for that slot of time)

compute enabling conditions for all transitions of these
processes '

select (driver) one (if any) enabled transition per process

‘execute the selected transitions

(observe: this is where observers come in; the interleaving
of the processes is not semantically relevant to them).

The default driver strategy is random choice (which is a very peculiar
notion of strategy!).
The kernel is structured in three parts :

¢ General purpose routines: pseudo-random functions, of which three
independent sets are provided (for the simulation, for the observation,
and for the user convenience); warnings and errors...

e Basic primitives, either data structures or procedures; this includes :
configuration (“init” etc), communication and time (“delays”); also
primitives for observers only : traces, and the exit procedure that
aborts the simulation. The code generated from source descriptions
use these basic primitives.

26

Figure 10: Target code generation

COMPILER : LINKER KERNEL
Estelle files Intermediate code Object code header
(Prolog clauses) (Pseudo Pascal) fixed typeg
' and const
ehan.

Pascal
control

Pascal Prolog
compiled interpreted

e Higher-level primitives for use by the driver : list of active processes,
list of enabled transitions, executing a transition, and determining the
possible next events in the time queue; there are also corresponding
primitives for observers. Those higher-level primitives are accessible
both as Pascal procedures and Prolog predicates. '

The code generated from the source descriptions is made of the following
structures : '

¢ Type definitions for the data structures representing modules (and
the hierarchy of instances), process contexts, and interactions.

¢ Trace procedures for each user-defined. Pascal type that is used in
parameters of interactions.

¢ Configuration procedures, corresponding to an “init”, for each body
type. A root configuration procedure is also generated.

e A procedure for each process (i.e. a body with a trans part) type
definition; inside this procedure, two sub-procedures are defined for

27

each transition: one for the enabling condition, and the other for the
execution.

Of course, this is only a very brief outline of the Pascal structures used
to simulate Véda. Those interested in a more detailed presentation of the
translation of Estelle constructs, and how the scheduler and time queue
work will find it in [Jard 85a].

Generation of the target Pascal program from the Estelle descriptions
(variable parts) and from the kernel (fixed parts) is illustrated in figure 10.

Figure 11 shows the different steps in the transformation of an Estelle
channel (extracted from the synchronization protocol of figure 3) into Pascal
code.

6.2.2 Moral

To what extent did we benefit from using Pascal as target code ? We were
able to avoid interpretation or compilation of most Pascal constructs by a
careful division between “system” and “protocol” part, and playing on the
atomicity of Estelle transitions. From that point of view, the use of the
Pascal compiler is fruitful.

On the other hand, it turns out that it is impossible to avoid syntactic
and even semantic analysis of purely Pascal parts within Estelle. Far from
being a juxtaposition of Pascal and supplementary constructs, Estelle is
pervaded with Pascal. '

This implies a redundancy in parsing (Véda + Pascal compiler), but
Pascal errors in the Estelle source are signalled early (in a much more
explicit way than they would be in generated code). .

The main problem comes from Pascal runtime errors. In that case,
the user of Véda must have a minimal knowledge of the translation from
Estelle to Pascal. Although all identifiers from the source are renamed,
each identifier in the object code is tagged with a comment containing its
original name. This kind of simple help has been found satisfactory enough
by users of Véda, taking into account the “prototype” nature of Veda.

For a polished version of Véda, this drawback could be overcome (we
could interface with the Pascal runtime or a debugger, or program checks
on top of Pascal).

28

Figure 11: Code generation for an Estelle channel

estelle source text

channel Resynchronizing (sender,receiver) ;
by sender : My_time (x:logical_time) ;
end ; : '

...

prolog intermediate code

mesg(
id((c_nouc.4).My_time).
id((C_Rouc.5).x, 1d((C_Rouc.6) .logical_time)).Nil

...

partial code

» %IDC_RoucXodo1{My_time}
%IDC_RoucXodoi{My_time} :

- (%IDC_Rouc¥%oboi{x} : %IDC_RoucXo600{logical_time}

--

pascal code

typeinteraction =
(sivideO
» 00odo1{My_time)}
)
typemessage =
record case sorte: typeinteraction of
sivide0 : (b:boolean) ;
000401 {Ny_time} :
(000601{x} : 000600{logical_time} H
)

end ;

29

6.3 On the choice of Prolog for implementing Véda

The compiler is the largest piece of software in Véda. We put our stakes
and hopes on Prolog for it, and on having a uniform framework for writing
‘the whole system (viz. both Véda and the software environment to write

" Véda).

6.3.1. Compiler - -

Although compiler-writing in Prolog has been envisioned since 1975 [Colmer-
auer 75|, there was no real-size successful experience when we started. For-
tunately :

® Véda compiles descriptions of more than two thousand lines, which is
much more than necessary, thanks to separate compilation. Systems
consisting of thousands of lines of Estelle have been compiled (see
section 7). Remember that we are compiling a specification language,
not an implementation language: a thousand line long specification
is already a big one.

e The speed of compilation is certainly slow, but tolerable: several
source lines per second. The compiler runs on a Prolog interpreter,
and it cannot compete with a compiled program. Crucial phases
had to be carefully optimized: the management of the symbol table
(see [Monin 84]), and lexical analysis. When we switched from lexical
analysis in Prolog to a Pascal-written predicate, the speed of context-
free compiling was increased tenfold!

® Prolog has proved a very handy language for managing software up-
grades. Separate compilation, compiling observers and type-tracing
routines have all been introduced with little or no change to the ex-
isting compiler. And fixes for bugs in the compiler were very small.

6.3.2 Prolog as a software engineering tool

Managing a software like Véda requires adequate programming methods.
One principle which has been used for Véda is: “for each problem, choose
the method (language for instance) that fits best”. Since Prolog is very

30

good at language transformations, this approach was easily supported in
Véda. For various problems, we designed an adequate formal language for
specifying a. solution, and built the adequate translator in Prolog. This
approach is close to metaprogramming as defined by [Levy 86]. In Véda,
we used this approach mainly for writing the parser and the object code
generator. Meta-tools used for Véda are shown on figure 12. Detailed
analysis of the figure is out of scope of the paper.

An example of meta-pascal-specification of code corresponding to figure
11 is shown in figure 13.

6.3.3 Which Prolog ?

We used Prolog-CNET [Barberye 83] better known as Prolog/P in its com-

‘mercial version. Two prominent features of this Prolog have proved essen-
tial for Véda :

e Modularity. It makes a big Prolog software like Véda more manage-
able. And it is very useful for managing symbol tables (it avoids
automatically clashes between identifiers).

® I/t is written in and interfaced with Pascal. This means that the public
part of the Prolog interpreter (predext.pascal) can be extended with
‘Pascal procedures, which can be called as predicates from Prolog. Of
course a compiled Pascal procedure is much more efficient than an
interpreted ordinary Prolog predicate. This is what made possible
the dramatic increase in parsing performances. But it is also most
useful for interfacing the Prolog driver with the Pascal simulation code
(cf the primitives described in section 6.2.1). The Pascal simulation
primitives are declared as externally compiled predicates. However,
this relies on dynamic linking, which is not available on Unix. So this
feature is implemented only on Multics.

6.3.4 Moral

Véda proved that a real-size, comfortable software tool can be written in
Prolog. It should also be said that the commercial version of Véda will also

31

Figure 12: Meta-tools used during the development

level 3

translator of

metamorphosis grammars

N

*

level 2
translator
of meta-pascal

1

specification

(metamorphosis grammar)

prolog
program

i

level 1
meta-pascal
object code specif’i)cation / prolog
generation program
level 0 o prolog
protocole Estelle description intermediate
code
specification rolo
level 1 (metamorphosis grammar) parse?r
Estelle : LP '
parser
EXTRACTORS
obs. : i
only contextual grammar BNF
1>
extractor
extractor
without L>
obs

32

1

Figure 13: Rewriting rules for interactions
A J

+enum_interact (*lmess) ->
typeinteraction =

(sivideO
+noms_de_messages(+1mess) .
)
+noms_de_messages(mesg(*i,+p).*1) ->
, +rep_id(*i)

+noms_de_messages(*1)
+noms_de_messages(Nil).
+struct_interact(*1lmess) ->
typemessage =
record case sorte: typeinteraction of
8ivide0 : (b:boolean);
+messages_types (*1mess)
end;

run in Prolog : Prolog can support more than prototypes, it has reached
the product level.

7 Applications and distribution of Véda

Véda has gained a large number of users within our PTT research centre
(CNET), in french universities and public research laboratories.

In the PTT, Véda has been used for ISDN specifications (we detail
that below), radiotelephone protocols, switching designs, satellite proto-
cols, remote maintenance... It has also been used by french manufacturers
(Alcatel-Thomson,Bull) on punctual cooperation with CNET.

In our opinion, Véda was certainly not the ideal tool for many of the
applications mentioned. But it was there, readily available and easy to use.
And only a subset of its functions were needed in many cases. Just to show
how the use can depart from the original intentions of the designers of the
tool, ‘we give here a selection of typical applications. '

33

7.1 ISDN application

This was an internal study done in CNET (its code name was ARMOR).
The basic task was that of defining a functional specification of some parts
of an ISDN switch. Véda was used to model the functions involved in the
X.213 protocol. The model involved 3600 lines of Estelle for X.213 itself,
and 940 lines to model an environment (simulating calls etc). All this was
divided into 19 source files. There were 13 module types involved, and 74
different types of interactions. The Pascal code produced for the simulation
corresponded to approximately 15000 lines of Pascal (in “normal” style).

In this application, simulation was not the main function required. The
need was for a formal specification technique supported by a compiler, with
a good degree of modularity. The target was to produce coherent specifi-
cations, at a static level. However, simulation came as a plus: it provided
a kind of prototype of the functional specification. The evaluation of this
example pointed out the strong and weak points of Estelle for functional
specification of such systems :

o Strong points: modularity (and hierarchical substructuring), com-
plete definition of interfaces, executability of the specification.

e Weak points: no support of abstract data types; no integration of
database concepts.

7.2 Switching

Switching is an essential part of the telecommunications business. Véda was
used for validating some protocols internal to components of a large digital
switch. There was a protocol at the transport level: the connection part was
validated with a Petri-Net tool, the data transfer part with Véda. Other
protocols were validated: an election protocol, and a protocol involved in
fault-diagnosis. 4

In that case, the use of Véda followed the ideal pattern described in
section 2.1. All the functions were “rightly” used, and the goal was protocoi
validation. |

34

7.3 Véda as a teaching tool

Véda turned out to be a useful tool for supporting post-graduate courses
on distributed systems. It provides students with a possibility of experi-
menting distributed algorithms, and grasping the difficulty of that kind of
design. Véda has been popular in this field because :

e it makes quasi immediate experimentation possible, with no.distributed
hardware needed; o ‘ '

e all students are familiar with Pascal, whence Estelle (in our restricted
version at least) comes easily;

e Véda is user-friendly: extensive on-line documentation, explicit (and

juicy!) error messages in French;
e Véda is robust.

e One drawback however: since most of Véda is interpreted (on a Prolog
interpreter), its use is expensive for student accounts!

In the case of exercise solving sessions, the use of Véda includes editing,
compiling, and simulating but only for debugging purposes (or showing
a token behaviour). Intensive validation is only used by PhD students
working on larger protocols.

7.4 A failure

To be honest, we must report that in one case, Véda proved unsuited to the
needs of protocol designers. Some people in CNET had designed a protocol
for collecting maintenance data on remote stations. They were interested in
validating their design. But we were not able to offer something interesting
to them. This protocol was a low-level one: astride on layers 1 and 2
of the OSI model. The duration of transmission, related to the length of
the physical representation of interaction (number of bits required), was
important because the protocol involved many synchronizations on these
durations. Estelle was ill-suited to represent these low-level constraints.
And they were the main feature to be validated.

35

7.5 Moral

Véda met the needs of many more people than was expected. And the
use of a tool can differ to a large extent from what its designers intended.
'Véda has also proved able to handle reasonably large applications; however,
it is best suited for the validation of small protocols, or such distributed
“algorithms as are published currently in the literature.

8 Attempting tq analysvé the success of Véda

It is quite usual that people working on research fields like protocol valida-
tion should develop tools for their own needs. And Véda fits exactly in that
pattern. However, many such tools never go beyond the group that devel-
oped them. We thought it interesting to try and see why Véda experienced
a success far beyond what we, its designers, ever expected.

8.1 The needs expressed by users

Véda was designed to meet our need in 1983: we were a group devoted
to validating protocol specifications defined by other groups in CNET. For
this activity, we needed a simulator of specifications. But we were soon
pressed with other demands from users. Two main factors have influenced
the evolution of Véda.

Firstly, a group specialized in protocol verification techniques soon finds
out that few protocol designers are really interested in verification oracles.
If no error is found, verification is felt as a luxury. If errors are found,
they are either considered to be not significant for the real application, or
simply bugs that had passed overseen and can easily (?) be fixed in the
next version. However, all protocol designers are interested in a simulation
tool with which they can draft a design, experiment and modify it as they
like. This is an important lesson we learned from Véda. With it, we were
able to pass the burden of preliminary protocol verification from protocol
verifiers to protocol designers. :

Secondly, it soon appeared that the functions we required (as described
in sections 2 and 3) could suit the needs of other people. In particular,
Véda could be helpful for : :

36

o designing structured architectures (with Estelle);

e debugging distributed algorithms (esp. with traces and step-by-step
simulation); : '

e teaching distributed systems; and let students have a feel of it.

It has been possible for Véda to evolve accordingly. To that end, we
strengthened the presentation part of the tool. This includes facilities pro-
vided in the tool to make it convivial (user-friendly) enough. But it also
means: providing adequate manuals, setting up training structures etc.

8.2 Corresponding features in Véda
8.2.1 Simulation vs formal proof

Simulation is better received than more formal methods. It is nearer to
the culture of the average computer scientist. This is also true for Estelle.
And formal proof can play its role best when the design is clear enough. In
. the current state of the art, it is less helpful when the specification is still

vague and incomplete. : A

8.2.2 Estelle

Learning a new language requires some time and practice. Estelle has the
advantage of being based on a widely known language (Pascal) and a would-
be standard : this can justify the investment. However, Estelle (like many
programming languages) does not permit currently a sound mathematical
modelling of parallel computations. Although semantics precision in the
area of validation is of paramount importance.

8.2.3 A reasonable quality of the tool

Experimental softwares are often quite limited, user-unfriendly, and some-
times ridden with bugs (or do not recover from unspecified errors). In
that case, the software has no chance to be used outside a small group of
designers and students.

37

Such softwares are intended to prove some sort of feasibility. Often,

not all the problems are envisioned from the beginning, and some appear
unexpectedly in the course of implementation. Fortunately, we avoided that
kind of problem for Véda. The use of the “throw-away prototype practice”
has probably played a role. Most problems appeared early enough, and
could be solved without modifying the general design.
, When major extensions were made, they were added to an existing base
- that was already usable and widely used. This is the case for separate
compilation, and observation, which could fit in the original design (they
had stood in the back of our minds since the beginning of the project).

8.2.4 Development and distribution on Multics

The operating system used for developing Véda, Multics, has contributed
to its success. Multics provides a comfortable environment for software
development. We had a good Pascal compiler. Above all, most major re-
search centres in France had a mainframe running under Multics. And they
are interconnected with medium-speed, reliable links that permit file trans-
fers and a nationwide uniform mail-system. This enabled us to distribute
rapidly Véda all over France. '

8.2.5 On-line documentation

On-line documentation provides a detailed user’s manual of Véda, and more
than that: it also presents other features of Véda that may be of interest
(how Véda can be installed on new machines, examples of its use, highlights
of its internal structure, news, and even a users forum on some mainframes).
This made it possible for plenty of people to use Véda, without their ever
getting in touch with us, or getting written documentation; this we could
know thanks to a “spy” included in the software to record all users. One
-weak point however: the tutorial on Estelle (FDT-E) is not available on-
line; since we had developed Véda for ASCII terminals, we could not include
graphics in on-line help.

38

8.2.6 Using the vernacular

It turned out that this point is more important than is often deemed. The
whole system is in French: user interface, Estelle keywords, on-line help.
This is quite helpful for many users (esp. students), and appreciated.- And,
apart from documentation, providing a multx-hngual interface is quite sim-
pleand i mexpenswe So why not do it 7 :

8.2.7 Véda: an open sqftwal_'e ?

“Open” is used to mean that a software can be tailored by a user to his
‘needs, or easily extended by suppliers to include new functions. Véda goes
some way along this line.

For the user, the® is the possnbxhty of modifying the mmulatlon kernel
used. In this way, Véda does not set any other limits than those set by
the underlying system or Pascal compiler. Code generation, however, is
fixed in the 1986 version, which is a strong limit. Observers are also an

implementation of this openness concept. There is no limitation on the

properties one can express.’

Concermng the addition of new functlons to Véda, some of them have
been made easier by the use of Prolog (see section 6.3). Others that were
more difficult (a change in the generator for instance) led to extendmg the
meta.progra.mmmg approach to new parts of the software.

8.2.8 Handicaps

Piling up on Prolog and Pascal implies that Véda is dependent on their
shortcomings. Pascal compilers rarely implement correctly the whole of ISO
Pascal... So we had to adapt to each compiler: and Véda is not completely
portable, and the code produced is not either. Those drawbacks of building
on high-level environments must be balanced with the gains in building the
tool. '

‘9 Conclusion

Lessons have been drawn in section 8. Experience with Véda has shown
that this kind of tool corresponds to a real need currently.

30

Among similar experiences, we can quote SARA [Estrin 86] which pro-
* vides a lot of tools to analyse specifications but uses a more restricted
formalism based on Petri nets. :

We are currently doing research work on extensions to Véda in the
following directions :

* Performance evaluation (see 5.5).

. Intell'i'gént‘ driving; with backtrack, and'-st;ategieé that ébtild be based
on what is observed; semi-exhaustive simulation.

¢ Some high-level logic for expressing properties, with automatic trans-
lation into an observer (see [Groz 86)).

® Producing code for parallel machines or distributed systems.

Without all these functions though, Véda proved that a tool based on
simple simulation of protocols could be useful to a large community of users,
as long as it provides a comfortable environment.

10 References

[Barberye 83 | G. Barberye, T. Joubert, M. Martin, :
Manuel d’utslisation du Prolog-CNET, Technical Report NT /PAA/CLC/LSC/1058,
CNET, France, Sept. 1983.

[Bochmann 78] G.v. Bochmann,
Finite State Description of Communication Protocols, Computer Net-
works, vol. 2, Oct. 1978, pp 361-372. '

[CCITT 84 | CCITT Red book,
recommendations Z.100 to Z.104.

[Colmerauer 75 | A. Colmerauer,
Les grammaires de metamorphoses, Technical Report, GIA, Univ.
Marseille-Luminy, France, Nov. 1975.

[Colmerauer 85 | A. Colmerauer,
Prolog in 10 Figures, CACM, Vol 28, Nu 12, Dec. 1985, pp 1296-1310.

40

[Courtiat 87 | JP. Courtiat, P. Dembinski, R. Groz, C. Jard,
Estelle, un langage ISO pour les Aalgonfthmes distribues et protocoles,
TSI, March 1987, vol 6, nu. 2,pp 89-102.

[Dssouli 86 | R. Dssouli, G. V. Bochma.nn,
Conformance testing with multiple observers, VI IFIP WG6.1 work-
- shop, Gray Rocks, Montreal June 1986 North-Holland G V. Bochmann
" and B. Sarikaya ed. ’ .

[Estrin 86] G. Estrin, RS. Fenchel, R. Razouk, MK. Vernon,
SARA (System ARchitects Apprentice): Modeling, Analysis and Sim-
ulation Support for Design of Concurrent Systems, IEEE trans. on
SE, Vol 12, Nu 2, Feb. 1986, pp 293-311.

[Groz 85 | R. Groz, C. Jard, C. Lassudrie,
Attacking a Complez Distributed Algorithm from Different Sides: an
Ezperience with Complementary Validation Tools, Computer Net-
works, Vol 10, Nu 5, Dec. 1985, pp 245-257. :

[Groz 88 | R. Groz,
- Unrestricted Verification of Protocol Properties on a Simulation using
an Observer Approach, VI IFIP WG6.1 workshop, Gray Rocks, Mon-
treal, June 1986, North-Holland, G. V. Bochmann and B. Sarikaya
ed. '

[Hoare 78] C.A.R Hoare,
Communicating Sequential Processes, CACM, Vol. 21, Aug. 1978,
pp. 666-677.

[ISO 86a] ISO/TC97/SC21/WG16-1 DP9074,
Estelle: a Formal Description Technique based on an Ea:tcnded State
Transition Model, Sept. 1986.

[ISO 8eb | ISO/TC97/SC21/WG16-1 DP8807,
Lotos: a Formal Descrintion Technique, Sept. 1986.

[Jard 84 | C. Jard,

Protocoles et Services: Test des Specifications, PhD Thesw, Univ. de
Rennes, France, Mai 1984.

41

[Jard 85a | C. Jard, JF. Monin, R. Groz,
Ezperience in implementing X250 in Véda, V IFIP WG6.1 workshop,
Moissac, June 1985, France, North-Holland, M. Diaz ed.

[Jard 85b] C. Jard, R. Groz, JF. Monin, .
Véda: a Software Simulator for the Validation of Protocol Specifi-
cations, COMNET"85, Budapest, Oct. 1985, published by North-
Holland in Computer network usage: recent ezperiences , L. Csaba,
K. Tarnay, T. Szentivanyi ed.

[Levy 86 | LS. Levy,
A Meta-programming Method and its Economsie Justification, IEEE
trans. on SE, Vol 12, Nu 2, Feb. 1986, pp 272-277.

[Linn 85] RJ. Linn,
The Features and Facthtaes of Estelle: a Formal Description Tech-
nique based upon an Ertended Finite State Machine Model, V IFIP
WG6.1 workshop, Moissac, Fra.nce, June 1985, North-Holland, M.
Diaz ed.

[May 83 | D. May,
OCCAM, SIGPLAN notices, vol. 13, nu 4, Apnl 1983, pp 69-79.

[Monin 84] JF. Monin,
Ecriture d’un compilateur reel en Prolog, Journees sur la programma-
tion en logique, Plestin, France, April 1984, Cnet ed.

[Parnas 86 | DL. Parnas, PC. Clements,
A Rational Design Process: How and Why to Fake st?, IEEE trans.
on SE, Vol 12, Nu 2, Feb. 1986, pp 251-257.

Imprimé en France
par
I'Institut National de Recherche en Informatique et en Automatique

