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Abstract

Any parallel program has abstractions that are shared by the program’s multiple processes,
including data structures containing shared data, code implementing operations like global
sums or minima, type instances used for process synchronization or communication, etc.
Such shared abstractions can considerably affect the performance of parallel programs, on
both distributed and shared memory multiprocessors. As a result, their implementation
must be efficient, and such efficiency should be achieved without unduly compromising
program portability and maintainability. Unfortunately, efficiency and portability can be
at cross-purposes, since high performance typically requires changes in the representation
of shared abstractions across different parallel machines.

The primary contribution of the DSA library presented and evaluated in this paper is its
representation of shared abstractions as objects that may be internally distributed across
different nodes of a parallel machine. Such distributed shared abstractions (DSA) are encap-
sulated so that their implementations are easily changed while maintaining program porta-
bility across parallel architectures ranging from small-scale multiprocessors, to medium-scale
shared and distributed memory machines, and potentially, to networks of computer work-
stations. The principal results presented in this paper are (1) a demonstration that the frag-
mentation of object state across different nodes of a multiprocessor machine can significantly
improve program performance and (2) that such object fragmentation can be achieved with-
out compromising portability by changing object interfaces. These results are demonstrated
using implementations of the DSA library on several medium-scale multiprocessors, includ-
ing the BBN Butterfly, Kendall Square Research, and SGI shared memory multiprocessors.
The DSA library’s evaluation uses synthetic workloads and a parallel implementation of a

branch-and-bound algorithm for solving the Traveling Salesperson Problem (TSP).
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1 Introduction

A parallel program can be viewed as a set of independent processes interacting via shared ab-
stractions. Such abstractions include shared data, shared types like work queues and locks, as
well as globally executed operations like global sums, merging scan-lines into coherent bitmaps,
and others. Since the shared abstractions used in a parallel program represent the program’s
global information, their efficient implementation can be crucial to the program’s performance,
its scalability to different size machines, and its portability to different target architectures.
For example, a port of a parallel program from a shared memory to a distributed memory
machine typically requires the re-implementation of its shared abstractions from using explicit
synchronization constructs to sending messages across statically or dynamically defined com-
munication structures linking the program’s processes[41, 15]. Similarly, the differences in local
to remote memory access costs in most larger-scale parallel machines (i.e., the NUMA proper-
ties of such machines[28]) require substantive changes in the implementation of synchronization
constructs for small-scale parallel machines like Sequents[2] or Silicon Graphics multiprocessors
to larger-scale parallel machines[31].

The contribution of our work toward increased scalability and portability of parallel pro-
grams is the provision of the DSA library for the efficient implementation of objects termed
“Distributed Shared Abstractions (DSA)”. Scalability on SMP machines is achieved by imple-
mentation of such objects as sets of object fragments[41, 45] linked by a user-defined commu-
nication structure, which we term a topology. The resulting parallel program’s portability is
improved by encapsulation of its shared abstractions as objects with operational interfaces that
may remain invariant across objects’ different implementations for specific target machines.

Distributed shared abstractions (DSA) permit programmers to:

o define and create encapsulated objects that may be internally fragmented in order to take
advantage of localities of reference to locally vs. remotely stored object state, and

e employ library mechanisms for implementing efficient, abstraction-specific communica-
tions among object fragments, thereby exploiting their application-level knowledge about
the semantics of object invocations and the communication patterns among object frag-
ments.

DSA support is implemented as a runtime library layered on top of a Mach-compatible Cthreads
package developed by our group|7, 33]. As a result, a parallel program written with the DSA
library comsists of a set of independent threads interacting via DSA objects. Implementation
of a DSA object itself involves (1) the storage of object fragments (state and code) at partici-
pating processors and (2) communication between these processors and fragments via a remote
invocation mechanism, also part of the library. Portability of the DSA library to different
shared memory multiprocessors is due to the portability of the underlying Cthreads library.
Portability of DSA-based programs from shared to distributed memory machines (including
workstation networks) is due to the use of an easily ported remote invocation mechanism[5] for
communication among object fragments.

The benefits derived from constructing DSA objects are manifold, including (1) potential
reductions in contention of access to an object, since many operations on the object will access
only locally stored copies of its distributed state, (2) decreases in invocation latencies, since lo-
cal accesses are faster than remote accesses, and (3) the ability to implement objects such that



they may be used on both distributed and shared memory platforms, therefore increasing the
portability of applications using them. Performance benefits derived from the fragmentation of
objects or object state have been shown possible for many implementations of higher level oper-
ating system services in distributed systems (e.g., file systems[38]) and for application-specific
services on distributed memory machines[41]. For shared memory multiprocessors, similar re-
sults have been attained for RPC implementations on NUMA machines like the BBN Butterfly
multiprocessor[28] and are demonstrated in this paper for a program-specific abstraction (i.e.,
a shared queue) in a parallel branch-and-bound application executed on a 32-node GP1000
BBN Butterfly and a 32-node Kendall Square Research KSR-1 supercomputer. In this shared
queue, alternative fragmentations of the object make use of application-level information about
both the specific pattern and the rates of communications between multiple queue fragments.
Sample application-level knowledge includes desirable or acceptable global or local orderings
among queue elements, tolerable delays regarding the propagation of information among queue
fragments, etc.

There are several differences of our research to current work on distributed shared abstrac-
tions. First, in contrast to recent research in cache architectures for parallel machines (e.g., the
DASH project[16]) and in weakly consistent distributed shared memory[4, 22, 29|, we do not
assume a fixed model (or limited number of models) of consistency between object fragments.
Instead, programmers can implement object-specific protocols for state consistency among ob-
ject fragments, using the low-level remote invocation mechanism offered by the DSA library.
Second, since communications among objects fragments are explicitly programmed, shared ab-
stractions implemented with the library are not subject to some of the performance penalties
in distributed shared memory systems arising from sharing multiple, small abstractions allo-
cated on a single shared page (i.e., false sharing leading to additional and/or excessively large
communications). Conversely, by adding calls like “invalidate(page)” and “get(page)”[22], etc.
to our current low-level communication calls, distributed shared memory (DSM) abstractions
may be implemented and compared with alternative representations within the existing DSA
library. Such an implementation and performance results attained on a cluster of workstations
are described in [27]. Third, ongoing research on distributed objects is contributing language
and compiler support for describing objects and then compiling object interactions into effi-
cient runtime invocations, using custom communication protocols[3] and/or exploiting active
message paradigms[25, 48, 21]. We share with such work the assumption that communications
between different object fragments can often benefit from the use of active messages and that
the use of active messages can improve the locality of parallel programs[47]. However, we also
posit that the compilation techniques and runtime support described in such work should be
enhanced to support object fragmentation as well as other well-known techniques for optimizing
object performance (e.g., caching, the use of knowledge about object semantics expressed by
attributes[36], etc.). Fourth, in contrast to the research of Shapiro on fragmented objects[46],
we explicitly consider the communication structure linking object fragments in order to exploit
application-specific knowledge of the object’s communication patterns.

The fifth difference of our work to other research concerns our previous kernel-level imple-
mentation of DSA functionality on hypercube machines[41]. In contrast to those implemen-
tations, the layering of DSA objects on a basic remote invocation mechanism has resulted in
library portability to various target platforms, including the aforementioned shared memory
platforms and a recently completed implementation on a network platform[27]. Last, shared
abstractions are easily instrumented, evaluated[41, 37, 26|, and even dynamically adjusted, us-



ing custom[35] or library-provided[19] mechanisms for on-line program monitoring and without
exposing such instrumentation to application programs[35].

The remainder of this paper first presents a sample parallel application and the abstractions
shared by its concurrent processes (Section 2). Next, the performance effects of alternative,
shared memory implementations of such shared abstractions are evaluated experimentally on
32-node BBN Butterfly and KSR multiprocessors. In Section 3, the same abstractions are
implemented using the DSA library developed in our research. In Section 4, the DSA library
is described and evaluated in detail. Section 5 compares our work with related research and
finally, Section 6 describes our conclusions and future research.

2 Shared Abstractions in Parallel Programs

Programmers use a variety of methods for decomposition of programs into concurrently exe-
cutable processes, including the static or dynamic decomposition of programs’ data domains,
divide and conquer strategies, functional decompositions, and pipelining. Many parallel pro-
grams resulting from such decompositions exhibit coordinator/server structures, where coordi-
nator processes generate work units processed by workers[24] or at least supervise a number
of workers. Sample applications structured in this fashion range from (1) domain-decomposed
scientific applications to (2) MultiLisp implementations on parallel machines, where “futures”
are entered into queues and removed and processed by available processors[20], to (3) parallel
optimization codes[13, 40], and (4) even operating system services like file or I/O servers.

The sample parallel program used in our research is a client/server structured application,
a parallel branch-and-bound algorithm solving the Traveling Salesperson problem (TSP). We
employ the algorithm of Little, Murty, Sweeney and Karel (LMSK algorithm)[23], and we use
a parallelization first described in [32]. The resulting parallel algorithm essentially conducts
a search in a dynamically constructed search space, where two abstractions are shared among
searcher threads: (1) a global best tour value, which is used for pruning the search space, and
(2) a work sharing abstraction for the dynamic distribution of work among the searcher threads.

The sample parallel algorithm described in this paper is interesting for three reasons. First,
branch-and-bound algorithms are commonly used in the solution of optimization problems and
have therefore, been frequently studied and evaluated on parallel machines. Second, experi-
mental evaluations of the algorithm’s implementation on distributed memory platforms[43, 40]
and on workstation networks[13] have already demonstrated the importance of the work shar-
ing and tour abstractions to parallel program performance, where different implementations
of the queue itself and of load balancing among queue fragments significantly effect speedup
and scalability. In part, this importance is derived from the relatively fine granularity of this
application, where few computations are necessary between communications. Not all branch
and bound applications have this property. Third, this paper demonstrates that the efficient
implementation of both shared abstractions is equally important on NUMA multiprocessors,
including the BBN Butterfly machine and the KSR supercomputer.

2.1 The LMSK Algorithm

The traveling salesperson problem is to find the least cost round trip tour of a salesperson who
must visit each of N cities. There is an integer cost ¢(%,j) to travel from city 7 to city j, where



total cost is the sum of the individual costs along the edges of the tour. The problem to be
solved is represented as a N X N cost matrix encoding the directed graph being traversed.

The LMSK algorithm partitions the original problem into progressively smaller subprob-
lems, which are represented as nodes of a dynamically constructed search tree. The algorithm
computes a lower bound on the cost of the best tour in each node, and then expands the search
tree incrementally toward the goal node, using two heuristics to guide the search. Specifically,
starting with the root node representing the original problem, the algorithm repeatedly executes
the following steps: (1) it selects a node from among all leaf nodes of the current tree (node
selection heuristic), (2) it chooses an edge (i,j) from the cost matrix associated with the selected
node (edge selection heuristic), (3) it expands the selected node into two child nodes, the right
child including the selected edge among its possible tours, the left child excluding it, and (4)
it computes for each child node the lower bound cost of all possible tours defined by the child.
The size of the right child (the number of cities to be visited) is decreased by one compared to
its parent node. The algorithm continues to choose leaf nodes and expand the search tree until
a tour has been found (i.e., a leaf node is of size 2). Once a tour is found, the tree representing
the search space may be pruned by deletion of all leaf nodes with lower bounds greater than or
equal to the value of the found tour. When all leaf nodes have been expanded or pruned, the
lowest of all the found tours is the solution of the problem. A more complete description of the
algorithm can be found in [23].

2.2 Parallel Implementation of the LMSK Algorithm

Our parallel LMSK algorithm is implemented as a collection of asynchronous, cooperating
searcher threads each of which independently executes the algorithm’s main procedure. The
resulting code is outlined in Figure 1 (it implements the LMSK search algorithm as described
in Section 2.1). A searcher executes the program steps during each iteration of the while loop.
It repeats this process until it reaches consensus with all other searchers that the best tour has
been found. The searchers cooperate using two shared abstractions: (1) a work sharing queue
(“work_queue”) storing the leaf nodes of the tree representing the search space and permitting
the dynamic distribution of work among searchers, and (2) a shared integer value (“best_tour”)
representing the current best tour found so far and used by searchers to prune the search space.

A TSP computation is initiated by a single thread, by first enqueuing a representation of the
initial problem (the root node) in the work sharing queue, and then forking some predefined
number of searcher threads. The computation terminates upon completion of all searcher
threads.

2.3 Shared Memory Implementation of TSP Abstractions

When using shared memory to implement the TSP “tour” and “work queue” abstractions, two
important factors affect the resulting parallel program’s performance: (1) contention due to
concurrent abstraction access (synchronization overhead) and (2) remote memory access costs
(communication overhead). For example, for the BBN Butterfly, the ratio of access costs to
local vs. remote memory is approximately 1:12, which implies that the costs of executing an
operation on a shared abstraction strongly depends on the number of remote references per-
formed by the operation[6]. Since this ratio tends to be even worse on modern NUMA machines
and in order to reduce contention and take advantage of locality, implementations of shared



/ void find best_tour( work_queue, best_tour ) \

tsp_queue_t work_queue;
tsp_tour_t best_tour;
tspmnode_t node, left _node;

int i, j;

while( node = work.queue->get( work_queue ) ) {

if( node->size == 2 )
best_tour->new( best_tour, node->lower bound );

else if( node->lower bound < best_tour->read( best_tour ) ) {
matrix = rebuildmatrix( node );
choose best_edge( matrix, &i, &j );
expand left( node, leftmnode, i, j );
work_queue->put( work_queue, left node );
expand right( node, matrix, i, j );

work_queue->put( work_queue, node );

N J

Figure 1: The Parallel LMSK Algorithm

abstractions in NUMA machines often explicitly distribute their state and code data to partic-
ipating processors’ memory units, and then use abstraction-specific communication structures
to maintain consistency among such distributed information. Alternative implementations of
the shared work queue abstraction are described and evaluated next. We continue to use shared
memory for implementation of the “tour” abstraction, since the performance impacts of alter-
native implementations of this abstraction are small in our application (this may not hold when
tours are found more frequently and/or for implementations on distributed memory machines,
as described in [41]).

The work sharing queue implementation for TSP stores the current leaf nodes of the search
tree. In a parallel implementation, this abstraction implements: (1) a node selection heuristic,
(2) a work distribution strategy, and (3) a protocol for program termination. The node selection
heuristic is implemented as an ordering of queue elements. Queue elements (nodes) are ordered
(a) by their lower bound on the problem’s solution and (b) by their sub-problem sizes. When
using a double-priority queue ordered by (a) and (b), retrieval and processing of the first node
on the queue implements a best first heuristic for node selection. In other words, best first node
selection always chooses for expansion the node with the least subproblem size from the set of
nodes that have the least lower bound value. This strategy favors nodes that are likely to lead
to good solutions fast. It has been shown useful in other LMSK implementations[40], since it
tends to minimize the total number of nodes present in the final search tree.

We term a queue implementation consistentif a global priority ordering is maintained among
queue elements. A consistent queue faithfully implements the ‘best first’ node selection heuris-
tic, whereas queue implementations that do not maintain a total queue ordering — termed



inconsistent — decrease the effectiveness of the node selection heuristic. Decreased effectiveness
is undesirable since it leads to substantial additional computations in the parallel algorithm due
to the expansion of nodes that would not be expanded by the sequential algorithm — termed
additional nodes.

Since the TSP’s search space is constructed dynamically, another important role of the work
sharing abstraction is to ensure the equal distribution of work (i.e., nodes) among searchers.
This is trivially ensured when using a global queue. In fragmented queue implementations,
however, load-balancing must be performed among queue fragments. Since such load balancing
must take into account both the sizes of queue fragments (number of nodes per fragment) and the
ordering among nodes, it is henceforth termed gquality balancing. An effective quality balancing
strategy, then, ensures both a global ordering of nodes and an equal distribution of nodes among
queue fragments. Tradeoffs in effectiveness vs. efficiency of queue implementation and quality
balancing are apparent in three alternative queue implementations on the BBN Butterfly; they
will be evaluated experimentally in Section 2.4.

a) ‘Global’ queue representation: A first implementation using a single queue copy takes
advantage of shared memory. Each searcher thread allocates new nodes in its processor’s local
memory. However, all such nodes are linked into a single queue that spans all processors’
memories. A predetermined, single processor maintains the queue’s head as well as a spin lock
for mutual exclusion in queue access. In this implementation, no work distribution strategy is
needed, and the termination protocol is implicit: searchers terminate when the queue is empty.
b) Distributed representation without quality-balancing: A second implementation
attempts to maximize locality of access to queue elements, while performing minimal load
balancing. Specifically, the global priority queue is split into several subqueues, which are
interconnected via a unidirectional ring. Each searcher thread owns a local queue fragment,
which is implemented as a priority queue and protected by a local spin lock. The searcher
thread enters and removes nodes into/from its local subqueue, and allocates new nodes in
local memory. The work distribution strategy performs load-balancing as follows: if a searcher
performs a ‘get’ operation on an empty local queue fragment, it then simply removes the ‘best’
node from the next non-empty remote queue fragment along the ring. This results in the
sharing of ‘good’ nodes among searchers only when searchers have exhausted their own parts
of the search space. This queue representation also requires an explicit termination protocol.
In this case, a searcher terminates when all of the queue fragments along the ring are empty
and at least one tour has been found.

c) Distributed representation with quality-balancing: A third implementation is like
the previous one, but also performs continuous quality-balancing. Specifically, similar to the
strategy used by Felten in [12], every two ‘get’ operations by a searcher thread on its local
queue trigger a move of the second best node from the local queue to the next subqueue along
the ring. As a result, ‘good’ nodes are frequently shared among different searcher threads. This
increases the overall quality of nodes used by searcher threads, but it also increases the total
number of accesses made by threads to non-local node representations®.

2.4 The Scalability of Parallel Programs: A Case Study of Shared Queues

All measurements given in this section are performed on a 32-node GP 1000 BBN Butterfly. The
measurements shown are the averages of the executions of 100 different, randomly generated

! Sharing of nodes more (for every ‘get’ operation) or less (every four ‘get’ operations) frequently results in per-
formance degradation. Similarly, the association of node sharing with ‘getting’ vs. ‘putting’ nodes appears to have
no visible performance effects. Use of a doubly linked list and the resulting sharing of nodes with two neighbors may
increase performance in larger-scale shared memory m@tiprocessors, but will (1) decrease performance in the DSA
library implementation of TSP due to the required additional remote invocations and (2) may decrease performance

in message based systems due to the required additional message operations[41].



TSP problems. Each TSP problem has 32 cities and is described by an initial random cost
matrix, with costs in the range of 1 to 50. Each TSP problem is executed for each of the three
work sharing abstractions, with the same initial cost matrix. Each searcher thread executes
on its own dedicated processor with local copies of its code, stack, local data, and with a local
copy of the cost matrix.

The first set of experimental results shown below demonstrate that the achievement of good
scalability of parallel programs must use representations of shared abstractions that take into
account a program’s semantics as well as its implementation details. Specifically, in Figures 2
and 3, we show the execution times and speedups of the TSP application when it is executed
with 1 to 25 processors using each of the three different queue implementations. Variant “global”
is the global queue implementation, where searcher threads share all subproblems ranked by
knowledge about program semantics, which is subproblem size and quality. In contrast, variant
“distributed” is the distributed queue without quality balancing, where searcher threads share
no knowledge concerning such program semantics. Variant “distributed@B” is the distributed
queue with quality balancing. Speedup is computed as the ratio between sequential and parallel
execution times, where sequential execution cost is determined by execution of the application
on a single processor with a single thread that does not experience any of the synchronization
costs arising for multiprocessor executions.

The results depicted in Figure 3 demonstrate that significant execution speedups are possible
with the distributed queue implementations (execution time of the sequential implementation of
the application is 18484 milliseconds). Similar speedups should be achievable on larger parallel
machines as long as the problem size is increased beyond the 32 cities used in our measurements.
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Figure 2: Execution times (milliseconds) of variants of the TSP application

It is apparent from both Figures 2 and 3 that variant distributed@B — the distributed queue
with quality balancing — behaves best. In other words, while improvements in locality of access
to queue elements exist in wvariant distributed compared to variant global, the disadvantages
incurred by additional work performed by searcher threads outweigh the accrued performance
gains. In effect, unless tours are found, in wvariant distributed each searcher thread ignores the
information about the search space available to other searchers. Therefore, while the distrib-
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Figure 3: Speedups of variants of the TSP application

uted implementations (variants distributed and distributed@B) are superior to wariant global
regarding the locality of access, the complete loss of the total ordering maintained by the global
queue in variant global is not acceptable. In other words, it is not an effective strategy to
implement shared abstraction without using information about program semantics. This may
be stated as the first important insight from these results:

e To attain acceptable performance, it may be critical to use information about program
semantics in the implementation of distributed shared abstractions.

These results and similar results reported for distributed memory machines[13, 40] are our main
motivation for rejecting conceptually simpler approaches like distributed shared memory|[4] for
the implementation of shared abstractions in parallel programs.

Figure 4 provides additional explanation of the results depicted in Figures 2 and 3, by
depicting the total number of nodes expanded in order to arrive at a solution. As stated in the
previous paragraph, the total number of expanded nodes is highest when load sharing ignores
semantic information in wvariant distributed (i.e., no quality balancing), whereas the number
of expanded nodes with quality balancing (variant distributed@B) closely approximates the
number attained with the globally ordered priority queue (variant global).

The importance of alternative queue implementations to parallel TSP performance is further
underlined by the measurements depicted in Figure 5. They demonstrate the second insight we
derive from the measurements presented in this section:

e The development of scalable parallel programs requires ease of change in the implemen-
tation of abstractions shared by multiple application processes.

The demonstration of this fact presented here concerns the effects of alternative queue im-
plementation. Specifically, we measure the ratio of the time searchers spend in the queue
abstraction vs. their total execution times. The elapsed time in the queue abstraction consists
of time spent in the ‘get’ and ‘put’ operations, which can be decomposed into: (1) the time
spent for managing the queue, (2) the time spent for explicit communication between queue
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fragments (generating messages, processing requests, etc.), (3) the time spent waiting for locks
protecting the queue from concurrent accesses, and (4) the wait time experienced during termi-
nation detection. Of these times, (1) is insignificant since the time spent managing the double
priority queue is only about 1.75% of total program execution time. In variant global, the time
spent in the work sharing abstraction is almost entirely due to (3) — queue access contention.
This time significantly increases with the number of processors and beyond 15 processors, it
exceeds the time spent doing useful work (i.e., expanding nodes). It is the main cause for the
degradation of speedup in variant global as shown in Figure 3.

In wvariant distributed, contention is insignificant, because searchers almost always access
local queue fragments and therefore, the time searchers spend in the queue is primarily due to
queue management and termination detection, neither of which are very time-consuming. As
expected, the quality balancing performed in variant distributed@B increases the time spent in
the queue abstraction, but it is outweighed by the significant reduction in the total number of
node expansions performed during problem solution.

An issue not discussed above is the storage of node data, which results in performance
differences regarding the expansion of locally vs. remotely stored nodes. In this implementation
of TSP on the BBN Butterfly machine, such differences are not as significant as in distributed
memory implementations[13, 40]. Expansion of a locally vs. remotely stored node can be
performed in 25 milliseconds vs. 27 milliseconds.

To summarize, we have used the shared queue abstraction in a parallel branch-and-bound
program to demonstrate that the TSP program’s speedup is limited by the performance of
the abstractions shared by its processes. This demonstration is important since it provides evi-
dence that suitable performance cannot be attained without permitting programmers to employ
application-level knowledge about abstraction usage when implementing shared abstractions.
One way of using such knowledge is the development of compile-time or even runtime config-
urable abstractions. This paper shows that even complex implementations of such configurable
abstractions can significantly improve program performance. In this section, for example, we
show that the most complex implementation of the major shared abstraction in TSP — the
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fragmented, quality balanced queue — is superior to its simpler and presumably, less costly al-
ternatives. Unfortunately, such implementations are not easily done, which reduces the much-
heralded ease of implementation offered to application programmers by the multiprocessor’s
shared memory model.

Ease of programming is the topic of the remainder of this paper, where we describe an
object-based programming library for the implementation of shared, distributed objects, called
the DSA library. The library’s functionality is stated in Section 3 using the ‘tour’ object from
the TSP code as an illustrative example. The library’s evaluation in Section 4 demonstrates
its lightweight nature, and it shows how locality of access to such abstractions is improved
by use of the library’s primitives. In fact, we demonstrate similar performance for the TSP
application with a library-supported fragmented queue to the queue’s custom, shared memory
implementation described in this section. Performance evaluation is performed on two different
target machines: (1) a 32-node GP1000 BBN Butterfly multiprocessor and (2) a 32-node Kendall
Square Research KSR-1 supercomputer. The library’s portability to those machines is due to
its implementation on top of a portable lightweight threads package developed by our group[33].

3 The DSA Library: Implementing Distributed Objects

The DSA lLibrary facilitates the implementation of shared, distributed abstractions in parallel
programs in two ways:

1. at user-level, by providing application programs with a uniform interface to shared ab-
stractions, and

2. at representation-leveland implementation-level, by providing machine-independent mech-
anisms for the efficient and portable implementation of object fragments and access meth-
ods on the underlying parallel machines.

A library-constructed DSA object defines a communication structure — called a topology — and
a communication protocol among object fragments represented as vertices of that structure

10



Object binding. Bindings are established, and broken using the following library routines:

TOP_RESULT top_open( obj_handle, obj_id, vertex_id );
TOP_RESULT top_close( obj_handle );

The ‘top-open’ routine returns a handle for future accesses to the specified object’s vertex (i.e., the
vertex number ‘vertex_id’ of the object instance identified by ‘obj_id’ ). Vertex specification is necessary
since it is possible to map multiple vertices of an object to the same processor node (ie., a vertex plays
a role somewhat similar to a ‘context’ in Nexus[14]). An error status is returned if the specified vertex
is not located on the calling thread’s node. The ‘top_close’ routine breaks the binding associated with
‘obj_handle’, but it does not ‘clean up’ object state for future use. Such cleanup has to be implemented
by additional operations called explicitly by application programs.

Object invocation. A thread can invoke any bound vertex’s operations, using one of the following
four library routines:

TOP_RESULT top_send( obj_handle, srv_id, param, param_size, tag );
TOP_RESULT top_send_w( obj_handle, srv_id, param, param_size, tag );
TOP_RESULT top_receive( obj_handle, srv_id, param, param_size, tag );
TOP_RESULT top_receive_w( obj_handle, srv_id, param, param_size, tag );

The effect of ‘top_send’ is the invocation of the service identified by ‘srv_id’ in the vertex identified by
handle ‘obj_handle’. Invocation parameters must reside in parameter block ‘param’, where ‘param size’
indicates the block’s size. Each invocation may also specify an arbitrary, user-provided ‘tag’ value, which
may be used for communication of sequencing information, etc.

If user programs require synchronization with output generation at the local vertex, they may invoke
the vertex operation ‘top_send_w’. This operation will block the invoker until the invoked service and
vertex have generated all of the required outputs.

A user thread obtains the result of a service executed by an invoked vertex by calling ‘top_receive’. This
routine copies the parameters returned by service ‘srv_id’ into the buffer pointed to by ‘param’. The
‘tag’ parameter permits a wild card value.

The ‘top_receive_w’ routine blocks the caller thread until the requested return value is available at the

local vertex. Since such threads resume execution in the ‘top_receive_w’ routine, they will complete the

receive upon being dispatched.

Figure 6: User Level: Object Binding and Invocation
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///’7 void new_tour( obj_handle, new_value ) ‘\\\
top_h obj_handle;
int new_value;

{
top_send( obj_handle, NEW_TOUR, &new_value, sizeof( int ), 0 );
}

int read_tour( obj_handle )
top_h obj_handle;
{

int tour_value;

top_send( obj_handle, READ_TOUR, &tour_value, sizeof( int ), 0 );
top_receive( obj_handle, READ_TOUR, &tour_value, sizeof( int ), 0 );

\\\\7 return tour_value;
) J

Figure 7: User level: Procedural Interface of the “tour” Object

and interacting with user threads. Uniformity implies that to such user threads, a fragmented
DSA object appears as a single abstraction shared among them. This is attained by having
each fragment of the object export the same operations that may be invoked by any thread
able to access it. We call this the user-level view of a shared abstraction. In contrast, to
attain efficiency in implementation, the implementor of a DSA object (viewing the object at
representation-level) may fragment the object’s representation into the aforementioned set of
connected object vertices, where different vertices (1) may be stored in different memory units,
and (2) must explicitly communicate with each other in order to execute some (or all) of the
operations performed on the object. Object vertices, then, must be implemented to jointly and
cooperatively execute the object’s operations and store and maintain the object’s internal state
(i.e., the tmplementation-level view).

3.1 Object Binding and Invocation

At user-level, the DSA library offers routines for binding a user thread to an already defined
object and for invoking the object’s operations. These routines are described and discussed
in Figure 6, where we list the library’s calls with which user threads first bind themselves to
some fragment of the shared abstraction using the ‘open’ call, then invoke its methods using
‘top_send’ and ‘top_receive’ calls, and finally, ‘close’ the binding when they no longer need it.
In DSA programs, each vertex may be bound to zero or multiple threads, and each thread may
be bound to multiple vertices of the same or of different DSA object instances. However, the
current version of the library requires that a binding is performed only between a thread and
locally stored vertices.

Object implementors can use the ‘top send’ and ‘top_receive’ calls explained in Figure 6 to
create procedural interfaces to DSA objects. A sample procedural interface is shown for a shared
‘tour’ object in Figure 7, where the ‘new_tour’ operation updates the shared tour object with
a new tour value discovered by the application thread. The ‘read_tour’ operation retrieves the

12




P1

<--- Tour Object

PO FO F2 P2
\Processors
P4 F4 F3 P3

ASY A
[
1
1
|

) *Object Fragments (Vertices)

Figure 8: The Tour Object

current tour value from the shared object. This operation first executes the ‘READ _TOUR’
service by performing a ‘top_send’ operation, then retrieves the result of that service using
the subsequent ‘top_receive’ call. ‘Top_send’ inserts the the local fragment’s (called a vertez)
best tour value in the vertex’ output queue. The inserted value may be propagated to other
object fragments, as per the consistency policy implemented by this shared abstraction, and it
may be retrieved by local threads using the subsequent ‘top_receive’ call shown in ‘read_tour’.
Therefore, in our implementation of the DSA library, the execution of ‘top_receive’ cannot
cause the execution of services. Services are executed only in response to ‘top_send’ operation.
This simplification resulted in performance increases for the ‘top_send’ and ‘top_receive’ calls
described in more detail in Section 4.

Finally, to an end user, the object fragment shown in Figure 8 appears much like a ‘proxie’[45],
since it locally emulates the object’s complete functionality by exporting all of its operations.
Namely, end users only know that the object’s fragments ‘F0’ to ‘F4’ reside on processors ‘P0’
and ‘P1’ and that this tour object offers the operations ‘read _tour’ and ‘new_tour’ and contains
the current, global ‘best_tour’ value as private data.

3.2 Object Creation

As apparent from Figure 8, a shared abstraction like the ‘tour’ object is represented as a set of
multiple object fragments potentially located on different processors and connected via a sta-
tically defined logical communication structure. Such information is described at the library’s
representation-level. Again consider the tour value shared by all searcher threads in the TSP
application. For simplicity, we represent this object as identical vertices ‘F0’ to ‘F4’% linked by
a ring communication structure (on distributed memory machines, alternative communication

2The use of different versions of object vertices in a single DSA object is not supported in the current imple-
mentation of the DSA library. Such a generalization of DSA objects can be useful, and is discussed further in
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structures using hardware-supported broadcast instructions or broadcast trees are commonly
used). Figure 8 depicts the directed graph representing the object’s internal communication
structure and the vertices representing the object identical fragments. Communications among
vertices are not visible to object invokers. In the case of the tour object, such communications
concern updates to the local copies of ‘best_tour’ values stored in object fragments. Specifically,
in this implementation (see Figure 7), both ‘read_tour’ and ‘new_tour’ can initiate the propa-
gation of a new tour value around the ring to other object vertices. This propagation may be
performed synchronously or asynchronously to the execution of additional operations on the
local or remote object vertices, so that the desired consistency of the multiple copies of tour
values around the ring can be controlled by the tour object’s implementation.

At representation-level, the DSA library offers routines for implementing individual object
vertices, including their operations, their communications with other vertices, the mapping of
object vertices to processors, etc. This is described in Figure 9, where we define the implemen-
tations of the ‘new_tour’ and ‘read tour’ operations exported by the tour object as consisting
of the two service routines ‘new_tour_srv’ and ‘read_tour_srv’. Pre- and post-conditions may
be associated with calls to these routines (explained in more detail in Section 3.3). Temporary
and permanent state used by these service routines and resident in object fragments is stored
in a data structure of type ‘ADT’ (explained in the following section).

In Figure 9, following the specifications of services are the descriptions of the communication
structure, the mapping of the fragmented object to the underlying parallel machine, and the
call used for object creation. The creation of DSA object instances is typically performed at
the time of program initialization. Once created, an object instance cannot be removed until
program termination. Furthermore, when creating an object instance, an application has to
describe the DSA object in its entirety, as evident from the details of the ‘top_create’ call shown
in the Figure.

3.3 Object Fragments

At implementation-level and in the heart of the implementation of the DSA library’s support
for distributed objects are mechanisms for the implementation of object fragments, services,
conditions, etc. These mechanisms are explained in this section.

The key insight concerning the implementation of DSA objects is the realization that a user
thread’s invocation of an object fragment may occur at a time different from the receipt of
communications from other fragments. As a result, it must be possible for object implementors
to explicitly describe the conditions under which object fragments’ services execute with respect
to the receipt of communications from other fragments and/or invocations from end users. To
permit such asynchrony, the DSA library maintains queues at the input and output edges
of vertices (as indicated in Figure 10), and it permits implementors to state pre- and post-
conditions that can make the execution of a service conditional on fragment state (e.g., on the
availability of inputs to the fragment). In addition, pre- and post-conditions may be used to
implement asynchrony between service invocation and execution. This is particularly important
when services are executed by their own threads. Pre- and post-conditions are stated separately
from basic service functionality in order to improve service reusability.

Each service itself may be represented as an ADT (Abstract Data Type) or as a TADT
(Threaded Abstract Data Type), so that a service may be executed synchronously with the
receipt of an invocation from a bound thread (i.e., executed by the invoking thread (ADT)),
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Services. The two operations of the tour object are implemented by routines ‘read_tour_srv’ and
‘new_tour_srv’, respectively. These routines and any required local state (e.g., local copies of tour values)
are stored with each vertex. The following services table is located in each vertex of the tour object:

static top_srv_s tour_srv_table[] = {
{READ_TOUR, read_tour_precond, read_tour_srv, read_tour_postcond, ADT },
{NEW_TOUR, new_tour_precond, new_tour_srv, new_tour_postcond, ADT }
};
TOpOlOgy. The logical communication structure of an object is described as a N x N from/to

connection matrix, where N is the number of vertices. For instance, the structure of an object that has
8 vertices connected by a ring may be described as follows:

static int comnections[][] = {

{o0,1,0,0,0,0,0, 073},
{o0,0,1,0,0,0,0, 03},
{0,0,0,1, 0,0,0, 03},
{0,0,0,0,1, 0,0, 03},
{0,0,0,0,0,1, 0, 03},
{0,0,0,0,0,0,1, 0%},
{0,0,0,0,0,0,0, 13},
{1, 0,0,0,0,0,0, 0%}

};

A value of ‘0’ states that no link exists between two vertices, whereas a value of ‘1’ represents a uni-
directional link between two vertices (i.e., an edge). The vertices of an object are numbered from ‘0’
to ‘N-1’. A specific vertex is identified by its ‘vertex_id’, which is the vertex number. Routines able
to generate such a matrix at the time of program initialization[44] may be used in place of the simple
statically defined structure shown in this example.

Mapplng. The mapping of vertices to physical nodes is described by a table with ‘N’ entries. The
indices into this table are the vertex numbers, and the table elements are physical node numbers. For
example, a one-to-one mapping of the ring structure shown above is described by the following table,
but is typically computed by initialization-time routines:

static int mapping_table[] = { 0, 1, 2, 3, 4, 5, 6, 7 };

Creation. Given the matrix and table structures shown above, an application creates a mapped
object instance by calling:

TOP_RESULT top_create( object_id, size_of_private_data,
nb_of_services, services_table,
nb_of_vertices, connection_matrix,

mapping_table, nb_of_free_ib, max_param_size );

This routine returns a unique instance identifier, called an ‘object_id’. The first seven parameters describe
the new object’s id, the space required for each fragment’s state, the number of service routines whose
addresses appear in the ‘services_table’, the number of vertices and the connection matrix, and the
mapping of vertices to physical processor nodes. The last two parameters determine the size of the pool

of pre-allocated invocation blocks associated with each object fragment.

Figure 9: Representation level: Creation of a Sample DSA Object
15



or it may be executed by a separate thread scheduled in response to changes in truth values of
preconditions (TADT). In summary and as shown in Figure 9, the components of a fragment’s
service are (1) a unique identifier, (2) three procedure addresses, including (a) a procedure
performing precondition evaluation, (b) a procedure implementing the actual operation, called
a service routine, and (c) a procedure performing postcondition evaluation, and (3) a represen-
tation specifier. Each of these components is discussed in detail below.

Pre- and Post-conditions. The successful execution of certain DSA object operations may
depend on their invocation by several user threads on different processors, and it may depend
on the successful forwarding of information between different object fragments. As an example,
consider the computation of a global sum using a ‘combining tree’ for the incremental collection
and addition of individual threads’ contributions to the sum[41]. Here, a service in a vertex at a
certain level in the combining tree cannot be scheduled for execution until its bound thread has
performed its invocations (i.e., contributed its partial sum) and until tree nodes at the lower
levels of the combining tree have contributed their partial sums. This example demonstrates
that one general role of preconditions is the definition of a service scheduling policy, based on
the availability of inputs for that service in a particular vertex. For instance, a precondition may
require that inputs from all input edges must be present in order to activate a service, as shown
useful in synchronization objects implemented as combining trees or in certain implementations
of objects implementing global sums or minima.

Postconditions associated with service routines can control the propagation of values across
the object’s communication structure by controlling output generation at vertices. An output
may be generated after each service execution, or after some delay required or desired by the
application. Furthermore, the result of a service’s execution may be sent to one, some, or all
output edges of a vertex, or to a user thread requiring it. For example, in a tree-structured
global sum object, while each vertex can incrementally perform its addition operations upon the
arrival of each input, each single output cannot be generated until all inputs have been received
and added. This requires the use of a postcondition. By default, a DSA service routine is
activated incrementally as each input for that service arrives.

In summary, the purpose of the precondition and postcondition procedures executed with
each object invocation (if such routines have been specified) is to determine (1) when a ser-
vice routine is activated in response to an invocation (service scheduling), (2) when control is
returned to the user thread (invocation control), and (3) what, if any, other object fragments
must be accessed for execution of the desired service (fragment management). In the tour ob-
ject, a ‘new_tour’ operation has no precondition, but its postcondition states that control can
be returned to the user thread after the local copy of the value has been read. In addition,
the postcondition routine automatically initiates the execution of the service routine associated
with the ‘new_tour’ operation on all other tour fragments. This is performed by invoking the
next fragment along the ring, which in turn invokes its neighbor, etc. Such updates terminate
when the postcondition routine detects that its local copy was equal to the received value.

Input and output queues. It is apparent from the discussion above that each object ver-
tex is constructed such that its operations (services, pre- and postconditions) can be executed
asynchronously with the invoking program. Furthermore, a vertex’ services may be executed
in response to invocations from other fragments or from a locally bound user-level thread. As
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a result, each fragment’s implementation contains addressing information about bound threads
and connected vertices, and it contains several queueing structures in addition to the aforemen-
tioned object state and its user-specified services and pre- and postconditions. These queues
shown in Figure 10 for a sample object fragment with three input edges, three output edges,
and any number of bound threads include: (1) an input queue shared by all threads bound to
the vertex, (2) an edge queue for each edge providing input to the vertex from other vertices
(two such queues exist for each ‘tour’ fragment, one for its inputs from another vertex, one for
invocations by the single bound user thread), and (3) output queues for each vertex output.
Two such output queues should exist for the ‘tour’ vertex, one for the outputs generated for
invocations from user threads, another for outputs to the vertex to which it is linked. An opti-
mization in the shared memory implementation of the DSA library is the elision of all explicit
output queues linking vertices to each other. Instead, each vertex uses as its output queues the
edge queues of the vertices to which it is linked.
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Table

Service Routine

Pool of
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Figure 10: Object Fragments

Service representation. Since services may range from simple, low-latency message switching
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to complex computations, the DSA library offers two different execution modes for service
routines:

e ADT - small grain computations can be performed by service routines implemented as
procedures called in response to an invocation. Execution of such a service is atomic
(non-preemptible), and multiple invocations of it are thus implicitly serialized.

o TADT - larger grain computations can be performed by service routines represented as
preemptible threads. A new thread is created for each invocation of such a service. Ex-
plicit synchronization is required for protecting a vertex’s private data. Threads executing
service routines are scheduled in a round robin fashion. Since application threads may
block waiting for a service routine to be completed, threads executing service routines
have priority over user-level threads.

Additional detail on DSA library support for service routines appears in Appendix A.

Service routines. Service routines perform the computations implementing an object’s op-
erations, and they are executed in response to fragment invocations by attached user threads
or in response to message receipts from neighboring fragments. In either case, the information
required for service execution is contained in an #nvocation block queued in the fragment’s input
queue. Each invocation block contains routing information (source and destination vertices),
an identifier of the invoked service, a buffer into which the parameters required by this service
have been packed, and a tag value. The invocation block only contains a pointer to the actual
parameters, so that unnecessary copy operations are avoided. Detailed examples of service rou-
tines, using postconditions and implementing some application-dependent notion of memory
consistency are demonstrated for the ‘tour’ object in Appendix A.1 and in Figure 18.

Remote invocations. The edges connecting object fragments are uni-directional, logical
communication links. While the physical representation of such an edge is the appropriate edge
queue of the target vertex, all communications across edges use a remote fragment invocation
mechanism. As an example, consider a link from vertex v1 to v2. Whenever a service routine
in vl outputs a new tour value across this edge (i.e., enters data into the appropriate edge
queue of v2), it also initiates the execution of the target vertex’ service routine ‘new_tour_srv’.
The resulting remote queue access coupled with remote service routine execution comprises
the remote invocation protocol used by the library for fragment communications. Such remote
invocations can be immediate, which means that the control flow on the target vertex’ processor
is interrupted (using Unix ‘signal’ operations), or they can be delayed, which means that the
remote service will be executed only when the user thread bound to the remote vertex executes
one of the vertex’ operations. Both alternatives have been implemented and are evaluated in
Section 4.

4 Evaluation of the DSA Library

The DSA library provides support for the implementation of efficient fragmented objects on
multiprocessor platforms. Its evaluation must demonstrate:

o the library’s utility for constructing fragmented objects exhibiting high performance, and
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e the library’s generality in terms of its use on different target platforms, and its use with
a wide variety of objects, including ‘small’ objects accessible with low latencies.

In this section, library wutility is demonstrated by presenting (1) the low costs of the implemen-
tation of its basic constructs, and (2) the high performance attained by application programs
using objects constructed with the library. Specifically, we use the DSA library to construct
a distributed queue object that replaces the custom, shared memory distributed queue imple-
mentation used with the TSP program and evaluated in Section 2. We will show that the
TSP program’s performance with the DSA queue object is similar to its performance with the
object’s custom implementation. In addition, we describe some interesting tradeoffs between
different implementations of the library’s low level mechanisms. These tradeoffs concern the
use of active messages vs. polling for remote fragment invocation.

The DSA library’s generality is demonstrated by its use on two different target parallel

machines, 32-node GP1000 BBN Butterfly and KSR-1 multiprocessors. Additional implemen-
tations existing for SGI multiprocessors and for distributed systems[27] are not evaluated in
this paper.
Descriptions of target hardware. The GP1000 BBN Butterfly used in this research is a
MIMD, shared-memory parallel machine, where each processor node contains a 25Mhz Mo-
torola MC68020 processor, a 68881 floating point processor, a 68851 Memory Management
Unit (MMU), 4M bytes of RAM, and a microcoded co-processor called the Processor Node
Controller (PNC) which handles shared memory requests. Processor nodes are connected by
a 32 megabits per second per path multistage switch which allows processor nodes to share
their local memories with other nodes. For reference, a procedure call without parameters costs
approximately 3 useconds on the BBN Butterfly, a call to a local abstract data type (an ADT)
costs about 18 useconds, and a thread context switch in our lightweight threads library costs
about 215 useconds.

The KSR-1 supercomputer is a NUMA (non-uniform memory access) shared memory, cache-
only architecture with an interconnection network that consists of hierarchically interconnected
rings, each of which can support up to 32 nodes or 34 rings (the largest machine delivered
to date consists of 256 processors). Each node consists of a 64-bit processor, 32 MBytes of
main memory used as a local cache, a higher performance 0.5 MBytes sub-cache, and a ring
interface. CPU clock speed is 20 MHz, with peak performance of 40 Mflops per node, an access
time to the subcache of 2 processor cycles (with a 64-byte cache line), an access time of 18
processor cycles to local memory, and an access time of 126 cycles to remote memory using a
128-byte cache line. Therefore, severe penalties exist concerning accesses to sub-cache, cache,
and remote memory. Such penalties increase when additional rings exist in the memory access
hierarchy. Programmers do not perceive the memory hierarchy existing in the machine (other
than by potentially observing performance penalties). Access to non-local memory results in
the corresponding cache line being migrated to the local cache, so that future accesses to that
memory element are relatively cheap[18, 35]. For reference, a procedure call without parameters
costs approximately 1.8 useconds on the KSR-1, a user-level thread fork using our Cthreads
library costs about 71 pseconds, and a thread context switch in our lightweight threads library
costs 38 pseconds.
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4.1 Basic Costs

Efficiency concerns have resulted in the optimization of frequently used internal library code
and data structures, which can be described in terms of three layers: (1) object access via
library routines, (2) local service execution and remote service execution by interaction with
other fragments, and (3) inter-fragment communication mechanisms. Evaluations of (1) - (3)
are presented next.

Object representation and creation. The performance of DSA objects depends in part on
their internal representation. In addition to the queueing structures used for fragment inputs
and outputs, each fragment is referenced via lists maintained on their processors. Specifically,
all vertices located on a processor are linked via a local vertex queue as shown in Figure 11.

Vertex Control Service Routine
Block

Local Vertex

Q |

Service

Service Table

Cbject id service id

Service Address

Figure 11: Addressing mechanism used in service invocation

As shown in the figure, each vertex is internally described by a vertex control block (ab-
breviated vcb). A vcb contains identifiers and several critical data structures, including (1) a
private data buffer, (2) an input queue for the vertex input(s), (3) an output queue used by
any threads bound to the vertex, (4) a waiting queue for threads blocked on services, (5) a pool
of free invocation blocks, (6) a table describing the object’s services, (7) a table describing the
output edges (vertex id and node number of each linked vertex), and (8) an array of pointers
to all of the object’s vcb’s. The latter array permits a vertex to access any remote vcb of the
object by direct reference.

Object creation has not been optimized in the current implementation, in part because
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objects are typically created at the time of program initialization and are deleted only when
the program terminates. However, it is instructive to consider the steps necessary for object
creation and undertaken by the library routine ‘top_create’. This routine first allocates each
of the object’s vcbs on the appropriate nodes according to the given mapping table. It then
initializes these vcbs as per the object’s description. Finally, ‘top_create’ sends a creation event
with the appropriate vcb to each target node. Upon reception of a creation event, the event
dispatcher calls a setup procedure, which enqueues the transmitted vcb in the local vertex
queue. Given these steps, the performance of this call depends primarily on the performance
of the threads library’s calls for memory allocation (see [42]) and on the DSA library’s calls for
remote fragment invocation. The latter are reviewed below.

Object binding. A user thread binds itself to an object’s vertex using the ‘top_open’ routine.
This routine first performs a linear search for the vcb of the specified vertex on the local vertex
queue. It then allocates a user control block and binds the calling thread to the specified
vertex by storing the thread identifier and the vcb address in the user control block. As
an optimization, the latter also contains a single invocation block for use in ‘top_send’ and
‘top_receive’ calls by the bound thread. The ‘top_open’ routine returns a pointer to the user
control block as an object handle.

Object access. The performance of program using DSA objects critically depends on the
performance of object access. We first consider ‘top_send’. Its current implementation consists
of four steps: (1) disable events, thereby preventing other operations on the local vertex while
it is operating on it, (2) acquire and initialize the single invocation block ‘owned’ by the bound
thread, which includes noting the service id, sizes and addresses of the call’s parameters, (3)
perform a local invocation of the requested service, and (4) enable events. Invocation parameters
resident in the invocation block are directly accessed by the service; they are not copied out of
the parameter block unless otherwise indicated.

The performance of ‘top_send’ operations on the GP1000 BBN Butterfly is depicted in Ta-
ble 1 for representation of services as ‘procedures’ (abstract data types — ADTs) or as threads
(TADTs)®. The latency of a simple ‘top_send’ operation with a no_op service demonstrates
the basic overheads of invocation block manipulation and event disable/enable. When a post-
condition associated with the service results in output being performed, call costs increase due
to output queue manipulation. The table also depicts the additional costs arising from a call
of ‘top_output_user’ with a single invocation block. The cost of allocation for a single remote
invocation block is 43 pseconds.

H Operation ADT TADT H

top_send 109 912
top_send + top_output_user 232 1020

Table 1: Costs (useconds) of ‘top_send’ operations

When ‘top_send’ is performed for services represented as threads (TADTs), additional con-
text switch overheads arise, since the invoking thread has to release the processor, followed by

®These measurements are attained on a single processor node, using the average latency derived from 1000 con-
secutive calls.
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the processor’s acquisition by the thread executing the service. Two alternative implementa-
tions of such context switching on the BBN Butterfly (1) use an un-optimized operating system
call that saves signal masks vs. (2) use an optimized context switch for lightweight threads.
The costs of (1) are 2.5 milliseconds on the BBN Butterfly, whereas (2) requires 215 pseconds.
A service invoked in ‘delayed’ mode (i.e., assuming that any required remote fragment’s ser-
vices will poll for inputs) can take advantage of the low costs of (2), whereas (1) must be used
when using a user-level implementation of active messages for remote service invocation on the
BBN Butterfly (i.e., invocation in ¢mmediate mode) using Unix signals rather than using the
low-level interrupts available at kernel level. This results in unacceptable latency for invocation
of threaded, immediate services, vs. the 912 usecond cost of service invocation for threaded
services in delayed mode shown in Table 1.

The ‘top_receive’ routine executes the following four steps: (1) disable events, (2) perform a
linear search for the requested invocation block in the vertex’s output queue and remove it, (3)
copy the parameters stored in the invocation block to the user provided buffer, and (4) enable
events. ‘Top_receive_w’ executes the same four steps; in addition, it blocks the caller thread
if the invocation block is not present in the output queue, as explained in Appendix A.1. As
apparent in Table 2, the performance of ‘top_receive’ is same for ADT and TADT services since
service execution is not performed in response to ‘top_receive’.

H Operation ADT TADT H
H top_receive 123 123 H

Table 2: Costs (useconds) of ‘top_receive’ operations

These timings assume that the required invocation block is available, and that there are no
other threads waiting to receive from the vertex being invoked.

In summary, it is apparent from the measurements presented above that the cost of accessing
a shared abstraction’s local fragment are moderate, resulting in acceptable performance (i.e.,
overheads of 20% or less) for abstractions with service execution times exceeding 500 pseconds.
As shown in Sections 4.3 and 4.4 below, despite these overheads, the use of DSA abstractions
with the TSP application results in performance gains similar to those attained with the custom
queue implementation.

4.2 Remote Service Invocation

The DSA library uses remote invocation as an inter-vertex communication primitive. While
low cost of remote invocation is critical to the performance of fragmented objects, the use
of remote invocation vs. remote access provides several performance advantages on NUMA
multiprocessors: (1) it tends to improve the locality of reference of programs by removing
remote references, and (2) it provides implicit synchronization for cooperating threads.

The tradeoffs between remote invocation and remote memory access are empirically evalu-
ated on the BBN Butterfly in [6, 8]. Results reported by the authors show that the overheads
associated with explicit synchronization and remote references increase with increasing ‘sizes’ of
remotely accessed data and code (i.e., with the complexity of remote operations), whereas the
overheads associated with remote invocation do not depend on those sizes. Therefore, remote
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references outperform remote invocation only on ‘simple’ operations. Such results are part of
our motivation for implementation of the low-level remote invocation construct for inter-vertex
communication.

In DSA, a remote invocation is initiated by calls to the ‘top_output_edges’ or
‘top_output_vertex’ routines. The resulting remote service invocation is similar to active mes-
sages, but is actually derived from the active message mechanism employed in our earlier work
on distributed objects on hypercube machines[41]. A remote invocation is comprised of the
following steps: (1) extract a free invocation block from the target vertex’ pool using remote
references, (2) copy the invocation data into this block, including parameters, and (3) send a
request containing the invocation block to the target fragment and processor. Such a request
is described by an event, which defines an asynchronous action that is to be performed on
the remote processor’s fragment. When processing such an event, the target event dispatcher
associated with that fragment (1) performs a local invocation of the appropriate service, and
upon its completion, (2) places the invocation block back into the pool of its home vertex.

The performance of remote fragment invocation depends on the costs of event transmission
via an event transmission facility and the costs of event activation at the target in either
tmmediate or delayed service modes mentioned earlier. In order to reduce the costs of event
generation, each processor locally maintains an event queue and a pool of pre-allocated event
descriptors. These two data structures are protected by a spin lock. In the shared memory
implementation, the message associated with the event is transmitted by reference using a low-
level mailbox communication facility. In the distributed memory implementation described in
[41], event transmission employed modifications of the low-level communication protocol on
the iPSC hypercube. The implementation described in [27] sends messages between daemon
processes when events are transmitted.

H Operation Cost H

event generation 66
sending an event 187
event handling 153

| total 406 ||

Table 3: Cost Breakdown (useconds) of a remote invocation in delayed mode

As listed in Table 3, the total cost of a single remote invocation is 406 useconds in delayed
mode. Delayed modeimplies that the remote invocation is not executed until the target fragment
checks for its event’s existence, then picks it up and executes the event. In immediate mode, a
Unix signal is generated when the event is transmitted, which interrupts the target processor
and prompts it to execute the event immediately, resulting in an execution time (not elapsed
time) of 1.15 milliseconds on the BBN Butterfly, of which more than 700 pseconds are due to
the cost of Unix signal generation. Both of these measurements are attained with an invocation
block containing a two byte parameter. A kernel-level implementation of remote invocations in
immediate mode like the one described in [6] (using hardware interrupts instead of Unix signals)
would reduce the cost of immediate remote invocations to roughly 500 pseconds on the BBN
Butterfly. Such an implementation would also remove the second obstacle on the BBN machine
for attaining high performance for immediate invocations, namely, the total elapsed time for
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invocations in immediate mode depends not only on the time required to generate an event
and signal but also on the time required to deliver this signal. On the GP1000 BBN Butterfly,
signal delivery has been observed to vary from 1 to 110 (!) milliseconds by our group.

It should be apparent from the discussion in the previous paragraph and from the discussion
addressing Table 1 that the performance of immediate events using Unix signals is not satis-
factory. For instance, consider an asynchronous DSA object resembling the tour object in the
TSP application. This object links one thread to itself with a 8 vertices ring spanning 8 nodes.
The evaluated service performs only routing of incoming invocation blocks. Due to the extreme
variability of Unix signal delivery times, we have measured total round trip times ranging from
18 to 400 milliseconds for invocations traversing this ring.

Due to the high costs of event generation and delivery in immediate mode, the DSA library’s
BBN Butterfly implementation employs several optimizations of event transmission and servic-
ing. First, since event generation is expensive, several simultaneous events can be grouped into
a single event, by simply generating a single event descriptor for multiple invocation blocks
entered into the target vertex’ input edges. Upon receipt of the event, the target vertex’ ser-
vice routine processes all invocation blocks found in the appropriate input edges. Second, the
remote event queue is checked prior to signal generation. An empty queue implies that the re-
mote vertex is currently running the event handler, so that a signal need not be generated. The
third optimization concerns event masking. Specifically, signal generation requires disabling
and enabling events when applications currently execute inside certain critical sections or when
the target process is currently executing an event handler. Since such event handling is quite
expensive on Unix systems (Unix signal masking/unmasking system calls cost 800 pseconds on
the BBN Butterfly), our implementation maintains ‘events enabled’” and ‘events disabled’ flags
on each processor. These flags are set by the local event handlers and inspected at the time of
event generation. The event generation routines do no issue signals to the target vertex when
its events are currently disabled, since that implies that the event handler is currently running
on the target processor and will receive and process the invocation blocks that have already
been generated and added to the appropriate input edge queues.

To summarize, the DSA library’s implementation of event generation and delivery on the
BBN Butterfly favors the use of simultaneous events and therefore, total event generation and
processing overheads are reduced for increasing numbers of total events generated in the DSA
abstraction’s execution. In addition, delayed are preferable to immediate events due to the
high cost and instability of Butterfly’s Unix signal implementation and due to the library’s
increased portability with delayed events (we have experienced many ‘minor’ differences in
Unix signal implementations on different parallel or sequential machines). We hypothesize that
the availability of efficient operating system support for active messages would not change one
basic insight derived from these measurements:

o Delayed mode invocations are most efficient — remote fragment invocations are most effi-
ciently implemented by permitting the receiving fragment to poll for incoming messages in
conjunction with user-level accesses to fragments. Such polling is possible when user-level
access rates are high (e.g., for the shared queue in the TSP application).

o Immediate mode invocations are necessary — active message implementations of remote
invocations are important when fragment access rates are low or differ widely across
fragments (e.g., as in the shared tour example), since they permit a fragment to participate
in communications even when its bound threads are inactive or do not use it. They
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also enable the fragment to interrupt its bound threads, perhaps to discontinue useless
computations being performed (e.g., when a new tour is found by another fragment’s

thread).

Both implementations meet the paper’s original goal of improving the locality and reducing the
contention of access to shared abstractions.

4.3 Performance of TSP with DSA Objects

This section provides additional demonstrations of the utility of the DSA library by evaluat-
ing its use with the TSP application. The first set of measurements reported below compare
the performance of TSP’s variant distributed@B when using the custom, shared memory im-
plementation of the distributed queue vs. using the DSA library and immediate mode for
implementation of the same queue variant (see Figure 12). Despite the significant overheads of
event generation and handling experienced with this signaling implementation of DSA, perfor-
mance results indicate that the DSA library is suitable even for larger-scale parallel systems:
good speedup is attained when using the library.
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Figure 12: TSP Execution Times with or without the DSA Library

The speedup results depicted in Figure 12 are explained with additional measurements
shown in Figure 13. This figure depicts the ratio of time spent in the work sharing abstraction
vs. the application’s total execution time. It is apparent from the observed ratios that the
cost of DSA object use is roughly three times higher than the cost of using the direct shared
memory implementation of queue variant distributedQB (due to the high cost of signaling in the
BBN Butterfly’s Unix implementation). However, some compensation for those additional costs
arises from increases in program locality. Specifically, searcher threads interact only with the
locally stored vertices, and all operations on remote vertices are performed by event handlers
on remote pProcessors.

Figure 14 demonstrates improved performance of DSA compared to the results shown in
Figure 12) by eliminating the overheads of signaling. In these measurements, event activation
on remote processors is performed in delayed mode. This means that no signal is generated
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Figure 13: Percentage of time spent in the work sharing queue

when an event is entered in a remote event queue. Instead, the event queue is checked (polled)
each time a local thread accesses the fragment (i.e., performs an operation on the fragment) and
at that time, all events found in the queue are processed in arrival order. This polling approach
works well for frequently accessed abstractions; it does not work for abstractions with vertices
that are not bound to local threads (intermediate vertices used for communication only) or for
abstractions that exhibit widely varying access frequencies to different fragments. Interestingly,
the performance improvement seen in Figure 14 is not as significant as expected due to the
various optimizations we performed on the signalling version (e.g., event batching, event flags,
etc.).
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Figure 14: Execution times (milliseconds) of variants of the TSP application

26



4.4 Generality of the DSA Library

The most interesting observation from the KSR measurements shown in this section is that the
sequentially consistent memory model offered by the KSR machine does not make it unneces-
sary for programmers to use libraries like the DSA library. This validates a basic premise of our
research. Namely, any larger-scale parallel machine exhibiting NUMA memory properties must
be used in a fashion similar to distributed memory machines, including the explicit distribution
of the state and functionality of programs’ shared abstractions. We next review KSR-1 per-
formance measurements, followed by their discussion and interpretation in light of this paper’s
results and insights.
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Figure 15: Execution times (useconds) of variants of TSP on the KSR-1

Measurements of DSA performance on the KSR platform indicate results similar to those
attained on the BBN Butterfly. Specifically, when using delayed event generation (i.e., event
polling rather than signalling), we have shown that parallel programs written with the DSA
library can deliver performance improvements for larger-scale parallel applications. Measure-
ments of execution times achieved for the TSP application with the DSA library on a 32-node
KSR-1 multiprocessor are shown in Figure 15. Actual execution times are comparatively smaller
to those on the BBN Butterfly due to the KSR’s faster processors.

Figures 16 and 17 show additional measurements on the KSR-1 machine, depicting the total
number of nodes expanded in order to arrive at a solution, and the total percentage of time
spent in the work sharing queue, respectively. These results are attained with an un-optimized
implementation of the DSA library for the KSR machine. They generally mirror the results
obtained on the BBN Butterfly machine. The remainder of this section discusses the impact of
distribution on the BBN Butterfly vs. the KSR-1 machine. Toward this end, we next briefly
describe the KSR machine’s memory model.

KSR’s ALLCACHE memory consists of a collection of local caches and a search engine
that interconnects the local caches and provides routing and directory services for them. ALL-
CACHE implements a “sequentially consistent” shared address space programming model. Un-
like the BBN Butterfly multiprocessor’s memory architecture, data moves to the point of refer-
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Figure 16: Total number of node expansions (KSR-1)

ence on demand. The underlying consistency protocol allows data replication (a read request
gets a copy of the data in the local cache), and implements invalidation of all copies on a write
request.

Given the ALLCACHE memory model, it should be clear that a centralized implementation
of the shared queue is likely to be as inefficient on the KSR machine as on the BBN Butterfly, in
part because such an implementation causes frequent cache invalidations and misses, resulting
in significant amounts of data movement. This in turn results in high access ratios of remote
to local memory for the TSP program. Given the extensive performance penalties for remote
vs. local memory accesses on the KSR machine (worse than those on the BBN Butterfly),
centralized queue implementations cannot be recommended for programs that frequently access
such queues. This is particularly true for the TSP programs, where each searcher process tends
to both write and read its own queue fragment, thereby causing it to be resident in its local
cache.

Similar performance penalties can arise for queues used by one producer and many con-
sumers, even when their elements are across different processor caches. This is because queue
descriptions will tend to move from one cache to another depending on the access pattern to the
queue. As a result, the DSA library should link any one of its vertices to several other vertices
(i.e., inter-vertex communication) using multiple rather than single mailboxes. In addition, the
performance of mailbox communications among each single producer/consumer pair (a unidi-
rectional link between two vertices) may be improved further by using the KSR’s poststore
instruction, which permits the producer to immediately update data contained in the con-
sumers’ caches. Other optimizations involve packing messages into one cache line (128 bytes)
and the elimination of queue locks for statically allocated structures (so that a queue element
can always be accessed atomically).

In summary, the KSR measurements outlined in this section demonstrate that hardware
support for sequentially consistent shared memory does not obviate the use of the DSA library,
supporting the explicit fragmentation of shared abstractions and resulting in increases in locality
of access. We posit that future tradeoffs in processor vs. memory and cache speeds will make
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it increasingly important that programmers either use libraries like DSA or use the ‘distributed
memory’ programming style it supports, even on small scale parallel machines like the SGI
Powerchallenge multiprocessors. This hypothesis is borne out by initial measurements we have
conducted on an SGI machine.

5 Related Research

The main topic of this paper is the efficient implementation of shared abstraction in NUMA
multiprocessor programs, using a branch-and-bound solution to the traveling salesperson prob-
lem as a sample parallel application program. Previous work on parallel TSP includes that of
Mohan in [32] employing the LMSK algorithm which we adopted for use with the DSA library.
Finkel’s distributed implementations of branch-and-bound algorithms[13] are difficult to com-
pare to ours, because he analyzes the performance of TSP for alternative work distributions
rather than for alternative methods of work sharing, for distributed termination, and for fault
tolerance. Furthermore, his implementations carefully avoid the use of global knowledge. How-
ever, we share the notion of ‘fairness’ regarding work distribution among searcher threads with
Finkel’s work.

In [12], issues concerning the implementation of a best-first branch-and-bound algorithm
on a hypercube multicomputer are discussed. Felten uses a structure called a ‘decentralized
queue’ for storage of the nodes of the search tree. This structure is similar to our work sharing
abstractions (variants distributed and distributedQB). Felten also points out the importance of
ensuring that ‘good’ descriptions of work are scattered across the system. He proposes (but does
not evaluate experimentally) a work sharing scheme similar to the one used in queue variant
distributedQB in our research: to insert newly generated nodes into the local queue, but to
send the locally second best node to a randomly chosen processor.

Other issues regarding parallel TSP implementations on hypercube machines are discussed
in [40], as well as various alternative representations of the work sharing and tour abstractions
on distributed memory machines.
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There has been some earlier work on parallel program portability [10, 1, 9]. In [1, 9],
authors have proposed portable models analogous to programming languages. Similar to our
work, their approach is based on abstractions where interfaces and implementations of libraries
are clearly separated. Based on the execution environment, an interface is bound to an efficient
implementation. Although the DSA run-time system is based on a similar object oriented
approach to increase portability, the focus of our work is quite different. While their emphasis
is on portability based on models [1], late binding and program annotation [9] , our focus is on
an active message style mechanism to implement object fragments to support efficient shared
abstractions in parallel programs.

Related research regarding weak memory or fragmented memory in distributed systems[4,
46| has already been reviewed in the introductory sections of this paper.

6 Conclusions and Future Research

This paper presents the DSA runtime library for the efficient implementation of distributed
shared abstractions in medium-scale multiprocessor systems. Measurements of the library’s
primitives and their evaluation with a sample parallel program on 32-node BBN Butterfly and
Kendall Square multiprocessors demonstrate:

1. The DSA library supports the implementation of shared abstractions such that they
are efficiently executable on medium-scale parallel machines. Scalability is achieved by
explicit representation of such abstractions as multiple fragments located on participating
processors.

2. The implementation of the DSA library assumes the availability of an efficient remote
invocation mechanism used for communication among object fragments. The DSA library
offers two implementations of this mechanism, one delaying the execution of a fragment’s
method until the fragment is accessed by a local thread, the other using active messages —
resulting in immediate execution of a fragment’s method asynchronously to the execution
of other threads on the same processor.

3. The DSA library has been ported to and demonstrated efficient on multiple parallel ma-
chines, including a 32-node KSR supercomputer, the GP-1000 BBN Butterfly, and SGI
multiprocessors.

The importance of the research presented in this paper derives from its exposition of object
fragmentation as one important technique when implementing high performance objects. Our
future research will address the topic of high performance objects with greater breadth. First, we
will explore a variety of implementation techniques for high performance distributed and parallel
objects for multiple target platforms. For example, we have already developed a first prototype
of a framework for implementation of distributed shared abstractions and of distributed shared
memory on networked machines[27]. In addition, on the KSR-2 multiprocessor platform, we
have evaluated the extension of the underlying Cthreads packages with multiple, heterogeneous
schedulers[34], so that one scheduler runs threads that perform event execution and a second
scheduler runs application threads. Second, we will explore additional topics concerning the
efficient support and implementation of distributed shared abstractions, including: (1) the
customization and parallelization of network protocols for use in DSA implementations[30],
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(2) the embedding of DSA objects in a more general system for the construction of object-
oriented parallel programs|[17], including the development of language-level and user interface
support for object-based parallel programming, and (3) the interfacing of Cthreads and the DSA
library with distributed programs written using existing general frameworks for programming
networked, heterogeneous parallel machines, such as Nexus, PVM, or MPI. In general, the
future platform for the construction of high performance distributed and parallel objects to be
implemented as part of our research will offer support for both the construction and the tuning
of objects, since the porting of existing objects to new platforms will probably be a more
common activity than their initial construction. Third, we are developing application programs
able to use such parallel and distributed machines, and we are constructing monitoring support
for on-line program viewing and evaluation[11, 19].

The DSA library software is available in the public domain by remote FTP access to
ftp.cc.gatech.edu.
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A Library Support for Service Implementation

This section reviews the DSA library’s low-level support routines used for service implementa-
tion. Toward this end, we first present some sample service routines in detail. Next, we describe
some implementation aspects.

A.1 Sample Service Routines for a DSA Object

The tour object’s operations ‘read_tour’ and ‘new_tour’ are implemented using the ‘top_send’
and ‘top_receive’ operations offered by the library, which in turn assume the existence of the
service routines ‘read_toursrv’ and ‘new_tour_srv’ as shown in Figure 18. ‘ New_tour: The
routine ‘new_tour_srv’ is executed either as a result of invocation of the ‘new_tour’ operation on
the local fragment, or when a message carrying a new tour value arrives at a fragment’s input
edge. If executed as a result of a message receipt from another fragment, the new tour value
is contained in an invocation block ‘ib’ queued in the fragment’s input queue. If executed as
part of the ‘new_tour’ operation, the ‘top_send’ routine within ‘new_tour’ first acquires and fills
an invocation block (ib) and then enters it in the bound vertex’ input queue. Each invocation
block contains routing information (source and destination vertices), an identifier of the invoked
service?, a buffer into which the parameters required by this service have been packed, and a
tag value. This tag is an arbitrary value that may be used to identify a particular set of input
invocation blocks. For instance, in a ring topology, the application code or pre-/postconditions
can use the tag value to identify a previously sent invocation block that has fully traversed the
ring.

Invocation block allocation is optimized in the tour object’s implementation, by pre-allocating
a single invocation block when a ‘top_open’ operation is performed on the local vertex. This
single invocation block is used for all tour fragment invocations, thereby avoiding unnecessary
invocation block allocations. However, the DSA library does not offer any general support for
allocation optimization or for the optimization of parameter marshalling and the minimization
of parameter copying, as done in other RPC implementations[39].

Service routines simply remove invocation blocks from the vertex’ input or edge queues. For
the tour object, whenever the ‘new_tour’ parameter is better than the locally stored value of
‘best_tour’, ‘new_tour_srv’ updates the local ‘best_tour’ value, and ‘new_tour_postcond’ enters
the invocation block carrying the ‘new_tour’ parameter in the vertex’ logical output queue (i.e.,
in the appropriate edge queue of the next vertex along the ring). Since propagation around
the ring proceeds only in one direction, the best ‘new_tour’ values are fully propagated around
the ring. Furthermore, the ‘new_tour’ service can propagate new tour values asynchronously to
‘read_tour’ operations performed on object fragments. Therefore, no guarantees are made as
to the consistency of the tour values stored and read at different ring vertices at any one time.
Experimental results on shared and distributed memory multiprocessors demonstrate that such
inconsistencies only marginally degrade TSP performance.

‘Read_tour’: Reading tour values is a bit more complex. ‘Read_toursrv’ is executed as
a result of invocation of the ‘read_tour’ operation by a user thread, which in turn executes
the ‘top_send’ and ‘top_receive’ routines. Let us ignore the ‘top_send’ since it is similar to
the ‘new_tour’ operation described above. ‘Top_receive’ initiates the local execution of the
appropriate service, which is ‘read_tour_srv’ in this case. The service routine ‘read_tour_srv’

*The services defined in a DSA object are uniquely identified by an integer value.
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\\\\7 top_output_user( ib );
1 /

void new_tour_srv( ib ) ﬂ\\\

top_ib_t ib;
{
int *local_best_tour = (int *)top_data_p( ib );

int new_tour = *(int *)top_param_p( ib );

if( new_tour < *local_best_tour )
{
*local_best_tour = new_tour;

top_postcond( ib );

void new_tour_postcond( ib )
top_ib_t ib;
{

top_output_edges( ib );

void read_tour_srv( ib )
top_ib_t ib;
{
int *local_best_tour = (int *)top_data_p( ib );

*(int *)top_param_p( ib ) = *local_best_tour;
top_postcond( ib );
void read_tour_postcond( ib )

top_ib_t ib;
{

Figure 18: Sample Service Routines
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removes ‘ib’ from the vertex’ input queue and accesses all required parameters using the pointers
stored in ‘ib’. The service routine then copies the vertex’s local ‘best_tour’ (stored in the local
vertex’ private data, termed ‘top_data_p’) into one of the operation’s parameters. Next, the
procedure ‘read_tour_postcond’ decides that ‘ib’ contains a value that should be made available
to the invoking thread, and finally, the procedure ‘top_output_user’ returns the invocation
results to the user thread by entering ‘ib’ into the vertex’ output queue. ‘Top_receive’, then,
simply scans the vertex’ output queue for any invocation block matching the provided ‘srv.id’
and ‘tag’ arguments. In this case, such an invocation block is always available, and is promptly
returned to the user for reuse in future invocations. If the postcondition routine is written
such that output values may be witheld, then ‘top_receive’ may fail to find an appropriate ‘ib’
in the local fragment’s output queue. In that case, ‘top_receive’ returns with an error status.
Alternatively, if the user thread used the blocking variant of ‘top_receive’ (‘top_receive_w’), the
user thread is removed from the processor’s ready queue and inserted into a queue of blocked
threads associated with the vertex’ output queue, noting the requested values ‘srv_id’ and ‘tag’.

The potential existence of threads waiting for vertex output is another reason for the use of
postconditions in the DSA package. When a postcondition generates vertex output to a user
thread by calling the ‘top_output_user’ routine with a specific ‘ib’, the routine actually first
enqueues ‘ib’ in the vertex’s output queue, then scans the vertex’s waiting queue for threads
blocked waiting for ‘ib’. If such threads are found, they are removed from the waiting queue,
placed onto the processor’s thread ready queue, and will eventually complete their ‘top_receive’
instructions.

A.2 Implementation Detail

Recall that a service is comprised of an optional precondition, the service routine, and an
optional postcondition. We elide details of the implementation of invocation blocks and of the
addressing information maintained in those blocks. Instead, we assume that such blocks are
the atomic units manipulated at this level of the DSA library.

Preconditions. A local fragment invocation or an invocation from a remote fragment (using
the library’s remote invocation mechanism) initiates the execution of the appropriate service
routine when there exists no precondition, else it calls the precondition procedure, in either
case providing an invocation block (ib). The precondition is executed non-preemptively, and it
must explicitly activate the actual service using the support routine:

void top_service( ib );

Activation of a service either involves calling the procedure defining the service, or creating a
new thread that will execute this procedure, depending on the service’s representation.

The aforementioned queueing structures inside each vertex are required because services can
be implemented to execute asynchronously with the user threads requesting them. Precondition
procedures can check and manipulate those queues using the routines:

void top_enqueue_input( ib );
top_ib_t top_dequeue_input( service_id, tag );
bool top_check_input( service_id, tag, condition );

‘Top_dequeue_input’ scans the vertex’s input queue and dequeues the first invocation block that
matches the given service identifier and tag value. The tag parameter admit a wild-card value.
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‘Top_check_input’ checks the vertex’s input queue for ib’s that match the given parameters.
‘Condition’ may be a combination of different flags for specifying complex conditions like: ‘ib’s
must be available from all input edges’, ‘from at least one input edge’, ‘from a user threads’,
etc.

Service routines. A service routine implements the actual functionality of the operation
performed by a service. When this procedure accesses the data stored in its vertex, mutual
exclusion is implicit for the procedure’s non-preemptive execution. When the procedure is
executed by a preemptible thread, it must use the synchronization primitives offered by the
thread library to protect the vertex’s private data. The address of the vertex’ private data and
the address of the parameter block referenced in the invocation block are generated using the
macros:

top_data_p( ib )
top_param_p( ib )

Once completed, a service that wishes to send output parameters to other vertices, or to a
user thread, can activate its postcondition procedure with the library routine:

void top_postcond( ib );

Postconditions. As with preconditions, all postconditions are executed non-preemptively. A
postcondition defines a service’s output policy. Specifically, each vertex contains an output
queue for temporary storage of output ib’s, and the DSA library offers the aforementioned
access routines for queue manipulation:

void top_enqueue_output( ib );
top_ib_t top_dequeue_output( service_id, tag );
bool top_check_output( service_id, tag, condition );

A postcondition procedure can use these routines to define an output propagation policy for its
vertex.

The most important action taken by postconditions is to generate vertex output. The
following routines are used for output generation:

TOP_RESULT top_output_edges( ib );
TOP_RESULT top_output_vertex( ib, vertex_id );
TOP_RESULT top_output_user( ib );

‘Top_output_edges’ sends a copy of the specified invocation block across all of the vertex’
output edges. For exception handling or when a vertex’ output edges cannot be defined as
part of the object’s creation, the precondition procedure can alternatively use the routine
‘top_output_vertex’, which sends a copy of invocation block only to the single specified vertex.
This routine is particularly useful when an object’s communication structure is constructed
dynamically, such as in dynamic broadcast trees, or for message routing in distributed systems.
Finally, ‘top_output_user’ is used for transmission of results to a user thread. Such transmissions
are performed via the vertex’s output queue. Namely, the routine first enqueues the specified
invocation block on the output queue and then checks if a user thread is waiting for it. If
a thread is waiting, the routine signals it (i.e., puts the thread back in the processor’s ready
queue).
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