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Abstract

In spite of much research effort, there is no universally applicable software reliability
growth model which can be trusted to give accurate predictions of reliability in all
circumstances. Worse, we are not even in a position to be abl_ to decide a priori which

of the many models is most suitable in a particular context. Our own r_ecent work has
tried to resolve this problem by developing techniques-whereby, for eccch program, the

accuracy of various models can be analysed. A user is thus enabled to select that model
which is giving the most accurate reliability predictf-ons for the particular program under
examination. One_of these ways of analysing predictive accuracy, which we callthe u-
plot, in fact allows a user to estimate the relationship between the predicted reliability
and the true reliability. In this paper we show how this can be used to improve

reliability predictions in a completely general way by a process of recalibration.
Simulation results show that the technique gives improved reliability predictions in a

large proportion of cases. However, a user does not need to trust the efficacy of
recalibration, since the new reliability estimates produced by the technique are truly

predictive and so their accuracy in a particular application can be judged using the earlier
methods. The generality of this approach would therefore suggest that it be applied as a
matter of course whenever a software reliability model is used.
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1 Introduction

The earliest attempts to measure and predict the reliability of software occurred about

twenty years ago. In spite of considerable research work in the intervening years, there

is still no definitive method or model which can be universally recommended as 'best'.

Perhaps this should not be surprising. Estimating and predicting software reliability is

not easy. Perhaps the major difficulty is that we are concerned primarily with design

faults.

This situation is very different from that tackled by the conventional hardware reliability

theory. Here the dramatic advances of the past quarter century have come from a

concentration on the random processes of physical failure. Thus, for example, we now

have a good understanding of how the reliabilities of complex hardware systems

depend upon, on the one hand, the detailed system structure, on the other, the

reliabilities of the constituent components. The very success of this physical hardware

reliability theory, however, is now revealing the importance of design faults to the

overall reliability of complex systems. Our ability to use intelligent strategies to

minimise the effects of physical failure of components results in a higher proportion of

system failures being caused by flawed designs. Such flaws in hardware systems are

very similar to software faults: they represent the result of human misunderstandings.

It seems likely, as a result of this, that obtaining good methods for measuring the effect

of such flaws on hardware system reliability will be as difficult as measuring software

reliability.

Software has no significant physical manifestation. Software failures are merely

inherent design faults revealing themselves under appropriate operational

circumstances. These faults will have been resident in the software since their creation

in the original design or in subsequent changes. We currently do not have good

theories of how software faults come into being. Presumably such theories would

require better understanding of human problem solving and the social processes

involved in writing software; if so, we should perhaps look to social and psychological

sciences, rather than physics, for solutions. In view of the comparative lack of success

of these sciences in arriving at quantitative understanding, it would be wise not to

expect any dramatic breakthrough in the short term.

These difficulties notwithstanding, there have been important advances in software

reliability modelling recently. In fact, there is now a plethora of models from which the

user can choose in order to make reliability estimates and predictions. However, none
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of these has been shown to be applicable in all circumstances, and we are not presently

able to decide in a particular context which would be the most appropriate model to use.

This presents difficulties for a potential user, who is solely interested in obtaining

reliability measures in which he/she can have confidence.

Our own recent work [1] has attempted to tackle this problem by devising means

whereby judgements can be made about the accuracy of past predictions on a particular

data source. The intention is that a user could apply such techniques, for each data

source (program), to the results produced by several models and select the model which

has so far performed best by giving the most accurate reliability predictions. It would

then be sensible, in the absence of any other information, to use that model for the next

prediction on that data source. This 'horses for courses' approach obviates the need for

a priori selection of a model, instead each data source is provided with its 'best' model.

Indeed, this 'best' model may change as more data is collected.

These new methods of model selection work by analysing the closeness between

predicted and actual failure behaviour. In particular, they provide information about

two especially important types of departure which we call bias (or ill-calibration) and

noise (or variability). The key idea in the present work is that this knowledge of the

nature of past errors of prediction can be used to improve future predictions. The

techniques to be described here are quite general and are not model-dependent. They

will be shown to be effective in improving predictive accuracy in a high proportion of

cases, but users need not take this efficacy on trust: their predictive accuracy in a

particular case can be analysed, just like any other model, using our earlier techniques

[11.

2 Reliability growth and predictive accuracy

In its simplest form, the software reliability growth problem concerns the random

variables T1, T2 ..... Tn, representing the execution times between successive failures

as a program is being debugged. It is generally assumed that attempts are made at each

failure to fix the fault which caused that failure. Models vary in the way that they

represent this fault-finding and fixing operation: details of different approaches can be

found elsewhere [ 1, 8, 15].



At stagei, whenobservationstl, t2.... , ti-I havebeenmadeof thefirst i-1 inter-failure

times,theobjectiveis to predictfuturefailurebehaviourrepresentedby theunobserved

Ti, Ti+l .... randomvariables. Informally, thepredictionproblemis solvedif wecan

accuratelyestimatethe joint distribution of any finite subsetof Ti, Ti+l .... This
statement,however,begsthequestionof whatwe meanby 'accurately',andit is this

issuewhichformsamajorpartof ourearlierwork [1].

In practice, of course,a user will be satisfied with much less than a complete

descriptionof all futureuncertainty.In manycases,for example,it will besufficientto

know thecurrentreliability of thesoftwareunderexamination.Thiscouldbepresented

in manydifferentforms: thereliability function,P(Ti < t); thecurrentrateof occurence

of failures (ROCOF), [3]; the mean (or median) time to next failure (mttf).

Alternatively,ausermaywishto predictwhena target reliability, perhaps to be used as

the criterion for termination of testing, will be achieved.

If we accept that prediction is our goal, it can be seen that the usual discussion of

competing software reliability growth models is misleading. We should, instead, be

comparing the relative merits of prediction systems. A prediction system which will

allow us to predict the future (Ti, Ti+l ...) from the past (tb t2 .... ti-1) comprises:

(i) the probabiIistic model which specifies the distribution of any subset of the Tj's

conditional on a (unknown) parameter o_;

(ii) a statistical inference procedure for o_ involving use of available data

(realisations of Tj's);

(iii) a prediction procedure combining (i) and (ii) to allow us to make probability

statements about future Tj's.

Of course, the model is an important part of this triad and it seems unlikely that good

predictions can be obtained if the model is not 'close to reality'. However, a good

model is not sufficient: stages (ii) and (iii) are vital components of the prediction

system. In fact disaster can strike at any of the three stages.

In principle, it ought to be possible to analyse each of the three stages separately so as

to gain trust in (or to mistrust) the predictions. Unfortunately, it is our experience that

this is not possible. There are several reasons.

4



In theIn'stplace,themodels are usually too complicated for a traditional 'goodness-of-

fit' approach to be attempted. Even the simplest exponential order statistic model [14]

does not allow this kind of analysis. This should not surprise us: the goodness-of-fit

problem for independent identically distributed random variables is hard in the presence

of unknown parameters. The reliability growth context is much worse because of non-

stationarity.

Secondly, statistical properties of the estimators of unknown parameters for a non-

Bayesian analysis of these models are usually not available. For example, several

models assume that the software contains only a finite number of faults. There is thus

an upper bound on the number of observable Tj's. This implies that we cannot even

trust the usual asymptotic theory for maximum likelihood (ML) estimators. Their small

sample properties are invariably impossibly hard to obtain.

Of course, there is a proper approach to stages (ii) and (iii) in the Bayesian framework.

It involves posterior distributions of the parameters at stage (ii) and Bayesian predictive

distributions for (iii) (see [2]). Unfortunately, this does present some analytical

difficulties for the popular software reliability growth models. However, with recent

advances in Bayesian numerical techniques [I8], coupled with powerful personal

computers, this picture may change in the near future.

Finally, it could be argued that there are models which are 'obviously' better than others

because of the greater plausibility of their underlying assumptions. We find this a

dubious proposition. Certainly, the assumptions of some models seem overly naive

and it might be reasonable to discount them. However, this still leaves others which

cannot be rejected a priori. It is our belief that understanding of the processes of

software engineering is so imperfect that we cannot even choose an appropriate model

when we have an intimate knowledge of the software under study. At some future time

it may be possible to match a reliability model to a program via the characteristics of that

program, or even of the software development methodology used. This is not currently

the case.

Where does this leave a user, who merely wants to obtain trustworthy reliability metrics

for his current software project? Our view is that there is no alternative to a direct

examination and comparison of the quality of the predictions emanating from different

complete prediction systems. In [1] we have described several ways in which this can

be done, the most important tools being the u-plot and the prequential likelihood. The

key idea in each case is that a comparison is made between what has been predicted and
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what is (later) actually observed. We believethat this emulateshow a userwould

informally gainconfidencein a sequenceof predictions.

For simplicity weshallconcentrateonpredictionof thenexttime to failureTi, basedon

observationstl, t2.... , ti-1. The u-plot usesthe predictor_i(t), the estimateof the

distributionfunctionFi(t) = P(Ti < t), via _

ui = _i(ti) (1)

where ti is the later-observed realisation of the random variable Ti. Thus ui is the

probability integral transform of the observation using the predictive distribution

function. If the sequence of predictions {_i(ti)} is good, it is easy to see that the

sequence {ui} should look like a random sample from a U(0,1) distribution [1]. There

are various types of departure from such an appearance which might show themselves;

here we shall only be concerned with whether the {ui} sequence looks uniformly

distributed. We shall do this via the u-plot which is the sample cumulative distribution

(cdf) function of the ui sequence. The departure of this plot from the cdf of U(0,1), the

line of unit slope, is an indication of a departure of the prediction system from accuracy.

We can use the Kolmogorov distance, that is the maximum vertical deviation, as a

measure of this departure and use standard tables to determine whether or not it is

statistically significant.

Figure 1 shows u-plots for Jelinski-Moranda [10] and Littlewood-Verrall [13] models

making predictions on a data set, called S1 [17], analysed in [1]. These plots are each

based on 86 predictions: _51(t) through _136(t). The Kolmogorov distances are 0.205

(JM) and 0.150 (LV). The first is significant at the 1% level, suggesting very poor

prediction from JM; the second is significant at 5%, which suggests that this model is

also performing poorly but is somewhat superior to JM.

More importantly for our present purposes, the shape of the plots tells us that JM is

making predictions which are too optimistic, whilst LV predictions are too pessimistic.

This can be seen as follows. The JM plot is everywhere above the line of unit slope

(the true U(0,1) cdf), so there are too many small ui values. But consistently too small

u values tells us that the model is underestimating the chance of small times between

failure, i.e. the model is too optimistic. A similar argument shows that a plot which is

almost everywhere below the line of unit slope, such as LV, is too pessimistic.
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If we knew that thesedeviations betweenpredicted and actual behaviour were

consistent,wecould attemptto measurethe degreeof optimism (or pessimism)and

improvefuturepredictionsby takingaccountof this tendency.It is this ideawhich we

shall develop in thenext section. Before we do that, we shall briefly describethe

prequentiallikelihood function (PL) which is a generalmechanismfor comparingthe

accuracyof predictionsystems.

ThePL is definedasfollows. Thepredictivedistribution _i(t) for Ti basedon t1,

t2..... ti_1 will beassumedto haveaprobabilitydensityfunction(pd0

_i(t) = _i'(t)

Forpredictionsof Tj+I, Tj+2, .... Tj+n, theprequential likelihood is

j+n

PLn = YI _i(ti) (2)

i=j+l

A comparison of two prediction systems, A and B, over a range of predictions of Tj+I,

Tj÷2 .... Tj+n, can be made via their prequential likelihood ratio

j-l-n

YI '_i A (t i)

i=j+l
PLRn = (3)

j+n

FI '_i B (t i)

i=j+l

Notice how, in a fashion analogous to the calculation of the u sequence, the individual

contributions to the prequential likelihood are obtained by substitution into the predictor

pdf for Ti of the the later-observed realisation ti. Dawid [7] shows that if PLRn ---) oo

as n ---) _, prediction system B is discredited in favour of A. For the finite samples

with which we inevitably have to deal, we shall argue that PLRn increasing consistently

suggests the superiority of A over B. In [1] we give intuitive reasons why the PL

works. Specifically we show that consistent bias or noisiness of a prediction system

will tend to give a smaller PL than would otherwise be the case.

To summarise, the PLR can be regarded as a general procedure for choosing the best

prediction system for a particular data source. The u-plot is a means of indicating a
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particular kind of consistentinaccuracyof prediction which could be a contributory

factor in poor predictive accuracy. Thus a poor u-plot might suggestthat poor

predictiveaccuracy(representedby apoorprequentiallikelihood) is dueto consistent
bias. For sucha case,we shallshowin thenextsectionhow it is possibleto remove

thebiasandsoimprovetheaccuracyof reliabilitypredictions.

3 Recalibration of predictions

Consider a prediction _bi(t) of the random variable Ti, when the true (unknown)

distribution is Fi(t). Let the relationship between these be represented by the function

Gi where

Fi(t) = Gi[ lbi(ti) ] (4)

Obviously, if we knew Gi we could recover the true distribution of Ti from the

inaccurate predictor, _i(ti). The key notion in our recalibration approach is that in

many cases the sequence { Gi } is approximately stationary, i.e. it is only slowly

changing in i.

If the sequence were completely stationary, i.e. Gi = G for all i, we would have a more

precise interpretation of the idea of 'consistent bias' used in the previous section. We

would also have the possibility of estimating the common G from past predictions and

using it to improve the accuracy of future predictions.

Of course, in practice such complete stationarity is unlikely to be achieved. However, it

does seem to be the case that the sequence changes only slowly in many cases. This

opens up the possibility of approximating Gi with an estimate Gi* and so forming a

new prediction

_i*(ti) = Gi*[ _i(ti)]. (5)

A suitable estimator for Gi is suggested by the observation that Gi is the distribution

function of Ui = t}i(Ti). We shall therefore base our estimate Gi* on the u-plot,

calculated from predictions which have been made prior to Ti, which is the sample cdf

formed from the ujs for j<i. The new prediction (5) recalibrates the raw model output,
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l_i(ti), in the light of our knowledgeof the accuracyof pastpredictionsfor the data

sourceunderstudy. Thenewprocedureis thereforea truly predictiveone, 'learning'

from pasterrors.

The simplestform for Gi* is theu-plot with stepsjoined up to form apolygon (Figure

2). Laterweshallconsideraversionwhich is smoothedusingasplinetechnique.The

completeprocedurefor forming arecalibratedpredictionfor thenexttimeto failure,Ti,
is then:

Stage1 Check that error in previouspredictionsis approximatelystationary.

(See [1] for a plotting technique, the y-plot, which detects non-

stationarity,althoughwe shall seelater that recalibrationoften works

well evenin thepresenceof non-stationarity)

Stage2 Find u-plot for predictionsmadebefore Ti, i.e. based on tl, t2,. • ti-1,

and join up the steps to form a polygon, Gi*.

Stage 3 Use the basic prediction system to make a 'raw' prediction, l_i(ti).

Stage 4 Recalibrate the raw prediction using (5).

This whole procedure can be repeated at each stage so that the functions Gi* used for

recalibration will be based on more information about past errors as i increases. For the

simple joined-up u-plot this is not computationally onerous: by far the greatest

computational effort is needed for the statistical inference procedures used to obtain the

raw model predictions.

It is important to emphasise that the procedure described above does in fact produce a

genuine prediction system in the sense described earlier: at each stage we are using only

past observations to make predictions about the unobserved future failure behaviour.

Figure 3 shows the effect of recalibration on the predictions made in Figure 1. In the

case of the JM model it is known that the raw predictions are too optimistic, and the

recalibration makes them less optimistic; in the case of LV, which is initially too

pessimistic, the recalibrated version is now less pessimistic. These conclusions are

confirmed in the more formal analysis based on the u-plot technique: for JM* the

Kolmogorov distance of the u*-plot is 0.119 (compared with 0.205 for the raw

predictions), for LV* it is 0.089 (compared with 0.150). Not only are these an
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improvementin eachcase,thedistancesarenownolongerstatisticallysignificantatthe
10%level.

Notice that, althoughFigure 3, for simplicity, only showsmedianpredictions, the

recalibration is working on the complete predictive distribution. Thus it could be

expected to improve other reliability estimates, such as the rate of occurence of failures,

in the examples shown here. The recalibration procedure changes the complete shape

of the distribution and can therefore correct for far more subtle errors than the mainly

simple 'optimism' or 'pessimism' of these examples.

Figure 4 shows an analysis of a data set, SS3 from [17], which exhibits startling

disagreement between raw predictions from JM and LV models. In fact, in an analysis

of this data using nine models [5], it can be seen that seven of them are in close

agreement with one another and are close to the JM plot in Figure 4; the remaining two

are close to the LV plot in Figure 4. A user might conclude that the seven models

which give similar answers are closer to the truth than the more isolated pair, but this

would be wrong. In fact for this data set none is giving acceptable answers. This is

shown by the u-plots for JM and LV predictions in Figure 5 . Clearly, the JM

predictions are optimistic, and those from LV pessimistic. The effect is a gross one, as

can be seen from the Kolmogorov distances, 0.272 (JM) and 0.238 (LV), which are

very highly significant (well beyond the I% level, the highest tabulated). The

prequential likelihood shows that LV is superior to JM [1], but neither of them, nor any

other model we have used, gives accurate reliability predictions for this data source.

The detailed shape of the u-plots in Figure 5 is interesting. As was stated above, the

most notable feature is the extreme optimism or pessimism. However, this is not a

simple effect in either case. For JM the behaviour of the plot at each extremity suggests

too many very small u values and too many very large ones. For LV there seem to be

too many fairly large u's and too few u's near to 1.0. Thus, although the statements

above about optimism and pessemism are correct to a first approximation, a more

detailed analysis shows that the u-plots are giving precise information about the

incorrect shapes of the complete predictive distributions. It can therefore be seen how

the recalibration procedure based on such u-plots can effect subtle changes in the

complete estimated distribution function for the random variable Ti.

The recalibration technique works dramatically well for this data. Table 1 shows a

comparison between raw model predictions and recalibrated predictions for the

following nine models: JM (Jelinski-Moranda, [10]), BJM (Bayesian Jelinski-
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Moranda, [11]), GO (Goel-Okumoto, [9]), MO (Musa-Okumoto, [16]), D (Duane,

[6]), L (Littlewood, [12]), LNHPP (Littlewood non-homogeneous Poisson process,

[ 1]), LV (Littlewood-Verrall, [ 13]), and KL (Keiller-Littlewood, [ 1]).

All nine raw u-plots have Kolmogorov distances which are significant well beyond the

tabulated 1%. After recalibration, all the distances have been more than halved and

none are significant at this high level. Figure 6 shows the dramatic improvement given

by recalibration on the JM and LV u-plots in comparison with the raw predictions (see

Figure 5). The differences in the detailed median predictions (only for JM and LV

again, for simplicity) can be seen by comparing Figures 4 and 7. There is much closer

agreement between the recalibrated models than between the raw ones.

In both the above examples there is evidence that prediction systems which were in

disagreement have been brought into closer agreement by the recalibration technique.

Much more important, however, we have objective evidence from the comparison of u-

plot with u*-plot that recalibrated predictions are less 'biased' than the raw ones.

These results are encouraging for the efficacy of the recalibration approach, but they are

not sufficient grounds for assuming, even in the two examples here, that the

recalibrated predictions should be preferred to the raw ones. It may be that the

advantage of less bias has been bought at the expense of some other deviation between

predicted and actual reliability. We have suggested in the previous section that the

prequential likelihood should be used as arbiter between competing prediction systems

for any particular data source. It would seem appropriate, therefore, to judge whether a

raw or recalibrated prediction system is objectively best by comparing their prequential

likelihoods for a series of predictions. Unfortunately this presents problems for

recalibrated predictions which are based on the simple polygonal joined-up u-plots

suggested above. The reason is somewhat 'technical' and is due to the fact that the PL

uses the probability density function of the predictive distribution:

j+n j+n

PLn* = YI '_i*(ti) = FI gi*(_i(ti) ). _i(ti)

i=j+l i=j+l

j+n

YI gi*(ui). '_i(ti)

i=j+l

(6)

from (5), letting gi* denote the derivative of Gi*.
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Unfortunately, since Gi* is apolygon, its derivative gi* is discontinuous. This
meansthat _'i* is also discontinuous:Figure 8 showsanexampleof this problem.

This discontinuitygenerallycausesPL to reportbadly on thepredictiveaccuracyof a

recalibrated model in competitionwith the raw version. A user might therefore

conclude that recalibration had made the predictions less accurate. We think this can be

misleading. It is tree that it would be unreasonable to believe that the true predictive pdf

is grossly discontinuous; the rejection of such a pdf by the PL criterion is therefore

strictly correct. However, in practice users are not directly interested in predictive pdfs

but in probabilities. Such probabilities will be obtained from the pdf by integration,

which has the effect of smoothing out the discontinuity. It is therefore perfectly

possible for PL to reject a recalibrated prediction system in favour of the raw version,

even when the recalibrated (probability) predictions are the most accurate. A rejection

in such circumstances is, we believe, unfair: a user needs to know which prediction

system is performing best for the kinds of prediction he is likely to make.

There are two ways forward which will be described in the next two sections.

The first approach attempts to decide whether recalibration can be trusted to give

improved results in a wide class of circumstances by comparing both recalibrated and

raw predictions with the true reliability when this is known. In practice, of course,

such knowledge of the truth is not available so we shall have to use simulated inter-

failure times. We shall show that in a high proportion of cases the recalibrated

prediction system is superior to the raw one. However, as might be expected, this is

not always the case.

Our second approach, therefore, applies a smoothing to the polygonal Gi* in order to

give a continuous recalibrated predictive pdf. This allows the use of PL as a criterion

for judging which prediction system is giving most accurate results. Use of this

smoothing is computationally more intensive than use of the simple joined-up u-plot.

A user therefore has a choice: appeal to the general efficacy of the approach as

demonstrated by the simulation results based on the simple recalibration technique, or

use the smoothed version and use PL to decide whether recalibration is working in the

particular example under study.
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4 Simulation results

The simulation experiment [4] consisted of generating 100 realisations of the inter-

failure time sequence tl, t2 .... tl00 from each of the models JM, L, LV, KL and D,

with constant _arameters being used for each model. These data sets were then

analysed using the 'wrong' models: thus, for example the JM data set was analysed

using the L, LV, KL and D models.

The model parameters were estimated based on tl, t2 .... tj-1, to obtain _j(t) for j =

20, ... 101. Then, for i = 40 .... 101, the u-plot using uj = _:(tj), forj = 20 .... i-l,

was used to obtain Gi* and hence l_i*(t). It was thus possible to compare the known

true Fi(t) with the raw predictor _i(t) and with the recalibrated predictor _i*(t) for i =

40,..., 101.

In a particular case a user is interested in knowing whether the raw or recalibrated

predicted distribution is closer to the true one. There are various ways we could

examine the differences between predicted and true distributions. Perhaps the most

obvious is a direct measure of the distance between the two functions, such as the

Kolmogorov distance. This is defined as follows. For raw predictions let _]i(t) = l_i(t)

- Fi(t) and for recalibrated _i*(t) = l_i*(t) - Fi(t), both for i = 40 .... 101. The

Kolmogorov distances are _i = supt>0 I _i(t) I = I_i(x) I and _i* = supt>0 1_i*(t) I =

I _i*(7) 1. A simpler procedure is to merely check whether the recalibrated or raw

median is closer to the true one.

The first analysis concerns only predictions of T101; there are 2000 such predictions in

the experiment. If we consider those predictions of T101 for which the u-plot (based on

predictions prior to T101) was significant at the 5% level, indicating that there was

evidence of bias, 89% of the recalibrated predictions were superior to the corresponding

raw ones. This figure rises to 92% if we only recalibrate for u-plots which are

significant at the 1% level.

Even when we recalibrated regardless of the u-plot evidence, the recalibrated

predictions improved on raw ones in 61% of cases. Here there will be many cases

where raw predictions are close to the truth; then we would not expect the recalibration

to introduce an improvement and the recalibrated and raw predictions should be close to

one another. However, since the recalibrated predictive distribution is polygonal

('lumpy'), the Kolmogorov distance (which compares the maximum deviations of the
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two predictions from the truth) will tend to discriminate against the recalibration in

favour of the raw prediction. This figure of 61% can therefore be thought of as a

conservative one.

Other simple comparisons between recalibrated and raw predictions are fairer in this

situation. For_xample, the recalibrated median is closer than the raw one to the true

median in 70% of these cases. This figure rises to 91% when we recalibrate only for u-

plots significant at 5%, and 94% when we recalibrate only for u-plots significant at 1%.

These results for T101 are supported by the more extensive recalibrations of the

predictions of T40,. •, T101: here recalibrated medians are closer to the true one in 86%

of cases when the u-plot at stage 100 was 5% significant, and are closer in 93% of

cases when the u-plot is significant at 1%.

In summary, even when we blindly used the recalibration on all predictions, there was

an improvement in about 7 out of 10 cases. More importantly, when we adopted the

more rational and discriminating approach of only using the technique when the u-plot

analysis suggested recalibration might be fruitful (by indicating the presence of 'bias'),

there was improvement about 9 out of 10 times.

Of course, we do not know whether our simulated data was typical of real software

reliability data. Indeed, since we were generating data according to several models with

very different underlying assumptions, some of the data sets are likely to be unrealistic.

However, we believe that these results are encouraging for the general power of the

approach.

In practice a user might wish to have more than a belief in the general efficacy of the

approach: he needs to know that it is working for the particular data source under

examination. The obvious approach is to use the methods of analysis of predictive

quality [1] discussed earlier. In the next section we show how this can be done.

5 Parametric spline smoothing

The u-plot is merely the sample cdf of the observed u's. Thus the problem of

estimating the approximately stationary function Gi in (4) is simply the problem of
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obtaininganestimateof acdf from afinite randomsample.Thereareseveralwaysin
which thiscanbedonesothat theestimatoris differentiableandsohasa smoothpdf.

We could,for example,fit anappropriateparametricfamily of distributionsto thedata.

An exampleis thefamilyof Beta(a,13)distributionswithpdf

f(u) = ua-l(1 _- u)B'l/B(ot, 13) O<u<l (7)

This is a fairly flexible family, but it is not sufficiently wide to represent all the general

shapes of u-plots which we have encountered in practice (see [5] for an example). This

seems likely to be a problem with other candidate parametric families of distributions.

Another, less important, difficulty is that the evaluation of the cdf is not easy for certain

regions of the parameter space.

The need for a method of fitting a very general class of u-plot data suggests the use of

parametric splines, which are widely used in computer graphics because of their

versatility. We shall use the cumulative chord as the parameter, whereupon the spline is

defined as follows. Let {xi, Yi}, for i = 1, 2,..., r, denote the r points of the u-plot

to which we want to fit the spline, and let

Pi' = Pi-l' + [(xi - xi-1) 2 + (Yi - Yi-1)2] 1/2 (8)

with P0' = 0, x0 = 0 and Y0 = 0; i.e. Pi' is the distance from the origin, along the

polygon, to the ith point. Here xi is the ith order statistic of the u's and Yi is the height

of the u-plot at xi. For convenience we shall use the normalised chord

Pi = Pi'/Pr' (9)

so that both parametric functions will have domain [0,1].

We now have two sets of data, {xi, Pi} and {Yi, Pi}, to each of which we fit a three

knot least-squares cubic spline; call these x = x(p) and y = y(p). These splines are each

constrained so that x(p) and y(p) are strictly increasing functions taking values between

0 and 1 for p in (0, 1), with x(0) = y(0) = 0 and x(1) = y(1) = 1. It follows that the

function defined parametrically as (x(p), y(p)) is also strictly increasing between 0 and

1. We call this function the parametric spline and it has the properties of a cdf. More

importantly for our needs, it is everywhere differentiable with a smooth derivative.

This means that if we use this function to recalibrate software reliability predictions we

are certain to obtain a smooth recalibrated predictive density. We can therefore use
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prequentiallikelihoodasacriterionof predictiveaccuracyandbeconfidentthatweshall
notencounterthedifficultieswemetwith thepolygonaljoined-upu-plot.

Clearly,usingthissplineis moretediousthanrecalibratingpredictionsfrom thejoined-

upu-plot; detailscanbefoundin [5]. However,run timesaregenerallymuchlessthan

arerequiredfor theoriginal rawpredictions.Sincetheserawpredictionsmustalways

be computed,the small overheadinvolved in using the spline is worthwhile. Most
importantlythis techniqueallowsauserto determine,via prequentialanalysis,whether

therecalibratedpredictionsareobjectivelybetterthantherawonesfor aparticulardata
source.It alsosimilarly allowscomparisonsto bemadebetweendifferentrecalibrated

predictionsystems.Suchknowledgeabouttheperformancein aparticularinstanceis

more valuablethan the generalassertionsof efficacy which come from the earlier
simulationexercise.

To distinguishit from theearlierpolygonalG*, we shalldenotethe splinesmoothed

recalibratingfunctionby G**. Therecalibratedpredictionsarethen

_i**(t) = Gi**[ _:i(t)] (10)

Table 2 showsthe u-plot and y-plot Kolmogorov distancesfor the samedatasetsas

thoseusedin Table1. It canbeseenthattheentriesin thetwo tablesarevery similar.

This is to beexpectedsincethesplinerecalibratedpredictivedistribution function is

designedto be a smooth function close to the joined-up recalibrated predictive

distribution. If these two functions are close, the u's based on them will be close and

thus so will the plots. In practical terms this means that the predictions of probabilities

from the two techniques will be very similar, and in particular their medians are very

close (compare Figure 9 with Figure 7). However, their predictions of probability

densities will be very different: it is this difference we wish to exploit in the use of the

prequential likelihood for the spline version.

In Figure 10 the evolution of the prequential likelihood ratios is shown for the various

recalibrated predictions against raw model predictions. Notice how, for LV, the

prequential likelihood seems to be suggesting that the joined-up recalibrated predictions

are worse than the raw ones. This is a dramatic example of the effect of the

discontinuity of joined-up recalibrated probability densities upon the likelihood: it

causes a spurious rejection of these recalibrated predictions in favour of those from the

raw model. That this is, indeed, spurious can be seen from the behaviour of the spline

recalibrated predictions: there is overwhelming evidence that the LV**:LV prequential
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likelihood ratio is increasingrapidly (it has reachedmore than e40 during these

predictions!). A usercouldthereforebeveryconfidentthattheLV** predictionshere
aremoreaccuratethantheLV ones.

A comparisonof JM** andJM is evenmoredramatic:thePLR reachese90over the

rangeof predictionsshown. This is partly dueto thefact_hatrawJM predictionsare

significantly lessaccuratethan thoseof raw LV (althoughboth are bad from u-plot

evidence). Thus JM starts off with more room for improvement. In fact, after

recalibration, the two spline predictors LV** and JM** have comparable accuracy on

the prequential likelihood evidence, with slight evidence of superiority for JM**.

Figure 11 shows an example of recalibrated probability density functions at stage 278 in

the SS3 data set.. The two raw predictive densities from LV and JM disagree greatly,

but after recalibration there is close agreement between LV** and JM**. This is

illustrated even more dramatically in Figure 12 which shows predictive densities for

stage 121 in the S1 data. Notice here the curious mode which appears in each

predictive density after recalibration. Neither of the raw predictive densities

(exponential for JM, Pareto for LV) can have a non-zero mode, which suggests that the

'learning' from past errors can give an insight not present in the raw models. What is

particularly striking, we believe, in figures like this is not only the close agreement of

the two predictions after recalibration, but how dramatically these differ from the raw

predictions.

These figures give some indication of the power of the method to change fundamentally

the raw prediction, on the evidence of analysis of past predictive error. Thus the

improvements in simple summary statistics shown in the median plots (Figures 3, 7, 9)

are merely the tip of an iceberg: when recalibration works it will do so in very general

ways and a user could reasonably expect all reliability measures to improve in accuracy.

6 Retrodictive recalibra/ion

The recalibration technique described in this paper is based on an analysis of the

accuracy of similar predictions at earlier stages in the acquisition of data from testing a

program. Thus when we came to recalibrate the prediction of T101 it was necessary to

make predictions of T20, T21 .... T101 (each based only on the data observed prior to
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making theprediction)in orderto calculatetheGi* (or Gi**), i = 40..... 101,which
transformstherawprediction, l_i(t). For all themodelseachsuchpredictionis quite

computationallyintensive,soasinglerecalibrationcanrequireconsiderableeffort. If

recalibrationis to takeplaceat eachstageaseachnew inter-failure time is observed,

thenof coursethisoverheaddisappears,sinceit will benecessaryto calculateeachraw

predictionanyway.

However,theproblemseemedsufficiently importantthat we examineda retrodictive

recalibrationprocedurewhichonly needsa singlebasiccalculation(e.g.maximisation

of a likelihood function) for eachrecalibration. For thosemodelsusingmaximum

likelihoodestimationof theparametersthis schemeworksasfollows. To predictT101,

we useall availabledata,tl .... rio0,to calculateanestimateof themodelparameters.

This is used,of course,to obtaintherawpredictionof T101. It is alsousedto retrodict

(i.e. "predict" the past) T1, T2, • • T100. Since we have the actual observations of this

past, we can compare the retrodictions with these in the same way that we do with

genuine predictions. In particular we can form the retrodictive u-plot and use this to

recalibrate the raw prediction of T101.

Unfortunately, this procedure seems to be useless! The reason is fairly subtle. It

seems to be the case that a prediction of Ti, based on tl .... ti-1, can be error in

different ways from a retrodiction of Tj (j<i) also based on tl, • •, ti-1. More precisely,

the approximate stationarity in the errors of prediction of T i (based on tl .... ti-1) as we

vary i is very different from the approximate stationarity of errors of prediction of Tj

(based on tl .... ti) as we vary j for fixed i. It seems that we can expect to obtain the

first kind of approximate stationarity, but not the second: it is, of course, such

approximate stationarity which underpins the basic idea of recalibration.

Once again this seems to suggest that in assessing software reliability we must be

careful of making unfounded generalisations. Just as we cannot assume that a model

performing accurately on one data set necessarily will give good performance on

another [1], so we cannot assume that information gained from an analysis of the

accuracy of one type of prediction will necessarily be trustworthy for another.

Although these remarks are based on the evidence of retrodictive error being a poor

guide to one-step-ahead prediction, it is likely that the implications are more far

reaching. For example, the predictive recalibration method for one-step-ahead

predictions may not be effective for predictions further ahead. Thus if we wished to

recalibrate a raw 20-step-ahead prediction it may be necessary use a form of the G
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function which is itself basedon acomparisonof 20-step-aheadraw predictionswith

actual(laterobserved)data. Wehopeto investigateissuesof thiskind in futurework.

7 Discussion and conclusion

We have shown that recalibration can be a powerful technique for improving the

accuracy of software reliability growth predictions. The technique is completely

general, and in particular is not model-dependent: it can be applied to any predictive

scheme. It can also be used for different types of prediction, but it should be

remembered that recalibration should be based on past predictions of the same type.

Our simulation results for the simple joined-up G* suggest that it offers an improvement

in accuracy over the original models in a high proportion of cases. This alone would be

sufficent reason for advocating that it be applied as a matter of course to all models:

essentially doubling the number of prediction systems available to the user.

As we have demonstrated elsewhere [1], a user cannot select a model apriori from this

plethora of available models and know that it is the best for the job. Instead, it is

necessary to apply all available models to each data source and use the techniques

described in [1], principally the prequential likelihood, to select the one which is giving

most accurate reliability predictions for the particular data source (program) under

study.

To make this method of discriminating between reliability prediction systems work for

recalibrated models, we have introduced the notion of a spline-smoothed recalibrated

prediction. The user is now in a position to apply several models, and their recalibrated

versions, to his/her data and select that which is objectively performing best. We

believe that this eclectic approach should in future be standard practice.

Our results give a new insight into reliability growth modelling. It can now be seen as

essentially a two stage process: first capturing the long term trend and then using these

new ideas to estimate local behaviour. A rich class of new models could be formed

from a distribution-free fitting of trend, followed by a later analysis of detailed

probabilistic structure along the lines described above. We are currently investigating

these possibilities: early results are encouraging.
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Data set

(no. predictions)

u

S1 u*

(86) y

y,

u

SS3 u*

(173) y

y*

JM

.2049E

.1188B

.1156B

.1018A

.2717E

.0982C

.1273E

.0577A

BJM

.1871E

.1226B

.1148B

.1016A

.2713E

.1042D
i

.1379E

.0664A

GO

.1773E

.1341C

.1190B

.1076A

.2705E

.0978C

.1263E

.0579A

I

MO

.0982A

.0499A

.0795A

.0775A

.2645E

.1057D

.1435E

.0631A

DU

.1567D

.0752A

.1029A

.0808A

.2596E

.I122D

.1835E

.0968C

L

,1123A

.0499A

.0904A

.0893A

.2717E

.0987C

.1291E

.0561A

LNHPP

.0982A

.0499A

.0793A

.0768A

.2704E

.0997C

.1300E

.0558A

LV

.1504D

.0894A

•1148B

.0901A

.2382E

.0864B

.0346A

.0415A

KL

.1457D

.0901A

.1173B

.0916A

.2372E

.1043D

.0500A

.0596A

Table 1 Kolmogorov distances for u- and y-plots for raw model and for joined-
up recalibrated predictions. The letters indicate significance levels: E is
significant at the 1% level, D at 5%, C at 10%, B at 20%, A is not
significant at 20%. Roughly: A and B are very good, C is acceptable,
D and E are poor.

Data set

(no. predictions)

S1

(86)

SS3

(173)

JM

u .2049E

u** .1168B

y .1156B

y** .1109A

u .2717E

u** .0820B

y .1273E

y** .0573A

BJM

.1871E

.1197B

.1148B

.1126A

.2713E

.0822B

.1379E

.0693A

GO

.1773E

.1277B

.l190B

.l102A

.2705E

.0782A

.1263E

.0560A

MO

.0982A

.0511A

.0795A

.0852A

.2645E i
i
i

.0901B i
I
I

.1435E1

.0632AI

DU

.1567D

.0794A

.1029A

.0762A

.2596E

.0916B

.1835E

.1016C

L

.1123A

.0507A

.0904A

.0715A

.2717E

.0859B

.1291E

.0571A

LNHPP LV

.0982A .1504D

.0526A .1027A

.0793A .1148B

.0853A .0878A

.2704E .2382E

.0846B .0834B

•1300E .0346A

.0557A .0352A

KL

.1457D

.1053A

.1173B

.0916A

.2372E

.1006C

.0500A

.0452A

Table 2 As Table 1 but for spline-smoothed recalibrated predictions.
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Figure 1 u-plots for YM and LV model predictions of T51 through T136, Musa S 1
data [17].
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Figure 2 Method of drawing the joined-up step recalibrating function, Gi*. Here

there are r u-points and each step is of size 1/(r+l).
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Figure 3 Predictive medians of T51 through T136, raw and recalibrated using

joined-up recalibrator, Gi*, for Musa System 1 data [17].
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Figure 4 Raw predictive medians of T106 through T278, for all nine models,
Musa SS3 data [17].
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Figure 5 u-plots for raw predictions of T106 through T278, JM and LV models,
Musa SS3 data [17].
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Figure 6 u*-plots for (joined-up) recalibrated predictions of T106 through T278,

JM and LV models, Musa SS3 data [17].
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Figure 7 Medians of (joined-up) recalibrated predictions of T106 through T278,
JM and LV models, Musa SS3 data [17].
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Figure 8a The joined-up recalibrator, G278", based on a u-plot of 188 points, for
the LV model on Musa SS3 data

0

0

31



GFigure 8b The derivative of 278 in Figure 8a.
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Figure 9 Medians of spline recalibrated predictions of TI06 through T278, JM and
LV models, Musa SS3 data. Note closeness to results in Figure 7 for

joined-up re.calibration.
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Figure 10 Plot of logPLR against i, showing comparison of predictive accuracy
between the each type of recalibration and the raw predictions; JM and
LV models, Musa SS3 data.
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Figure 11 Examples of individual spline recalibrated predictive probability density
functions for T278, using JM and LV models on Musa SS3 data. Note
great difference between raw predictions, and closeness of recalibrated.
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Figure 12 As Figure 11, but for T]21, Musa S1 data. Note, again, closeness of
the two recalibrated predictions and how these differ greatly from the
(very different) raw predictions.
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