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Abstract

In spite of much research effort, there is no universally applicable software reliability
growth model which can be trusted to give accurate predictions of reliability in all
circumstances. Worse, we are not even in a position to be able to decide a priori which
of the many models is most suitable in a particular context. Our own_recent work has
tried to resolve this problem by developing techniques whereby, for each program, the
accuracy of various models can be analysed. A user is thus enabled to select that model
which is giving the most accurate reliability predictions for the particular program under
examination. One of these ways of analysing predictive accuracy, which we call the u-
plot, in fact allows a user to estimate the relationship between the predicted reliability
and the true reliability. In this paper we show_how this can be used to improve
reliability predictions in a completely general way by a process of recalibration.
Simulation results show that the technique gives improved reliability predictions in a
large proportion of cases. However, a user does not need to trust the efficacy of
recalibration, since the new reliability estimates produced by the technique are truly
predictive and so their accuracy in a particular application can be judged using the earlier
methods. The generality of this approach would therefore suggest that it be applied as a
matter of course whenever a software reliability model is used.
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1 Introduction

The earliest attempts to measure and predict the reliability of software occurred about
twenty years ago. In spite of considerable research work in the intervening years, there
is still no definitive method or model which can be universally recommended as "best..
Perhaps this should not be surprising. Estimating and predicting software reliability is
not easy. Perhaps the major difficulty is that we are concerned primarily with design

faults.

This situation is very different from that tackled by the conventional hardware reliability
theory. Here the dramatic advances of the past quarter century have come from a
concentration on the random processes of physical failure. Thus, for example, we now
have a good understanding of how the reliabilities of complex hardware systems
depend upon, on the one hand, the detailed system structure, on the other, the
reliabilities of the constituent components. The very success of this physical hardware
reliability theory, however, is now revealing the importance of design faults to the
overall reliability of complex systems. Our ability to use intelligent strategies to
minimise the effects of physical failure of components results in a higher proportion of
system failures being caused by flawed designs. Such flaws in hardware systems are
very similar to software faults: they represent the result of human misunderstandings.
It seems likely, as a result of this, that obtaining good methods for measuring the effect
of such flaws on hardware system reliability will be as difficult as measuring software
reliability.

Software has no significant physical manifestation. Software failures are merely
inherent design faults revealing themselves under appropriate operational
circumstances. These faults will have been resident in the software since their creation
in the original design or in subsequent changes. We currently do not have good
theories of how software faults come into being. Presumably such theories would
require better understanding of human problem solving and the social processes
involved in writing software; if so, we should perhaps look to social and psychological
sciences, rather than physics, for solutions. In view of the comparative lack of success
of these sciences in arriving at quantitative understanding, it would be wise not to

expect any dramatic breakthrough in the short term.

These difficulties notwithstanding, there have been important advances in software
reliability modelling recently. In fact, there is now a plethora of models from which the

user can choose in order to make reliability estimates and predictions. However, none



of these has been shown to be applicable in all circumstances, and we are not presently
able to decide in a particular context which would be the most appropriate model to use.
This presents difficulties for a potential user, who is solely interested in obtaining

reliability measures in which he/éhe can have confidence.

Our own recent work [1] has attempted to tackle this problem by devising means
whereby judgements can be made about the accuracy of past predictions on a particular
data source. The intention is that a user could apply such techniques, for each data
source (program), to the results produced by several models and select the model which
has so far performed best by giving the most accurate reliability predictions. It would
then be sensible, in the absence of any other information, to use that model for the next
prediction on that data source. This 'horses for courses' approach obviates the need for
a priori selection of a model, instead each data source is provided with its 'best’ model.
Indeed, this 'best' model may change as more data is collected.

These new methods of model selection work by analysing the closeness between
predicted and actual failure behaviour. In particular, they provide information about
two especially important types of departure which we call bias (or ill-calibration) and
noise (or variability). The key idea in the present work is that this knowledge of the
nature of past errors of prediction can be used to improve future predictions. The
techniques to be described here are quite general and are not model-dependent. They
will be shown to be effective in improving predictive accuracy in a high proportion of
cases, but users need not take this efficacy on trust: their predictive accuracy in a
particular case can be analysed, just like any other model, using our earlier techniques

[1].

2 Reliability growth and predictive accuracy

In its simplest form, the software reliability growth problem concerns the random
variables Ty, Ty, ..., Tn, representing the execution times between successive failures
as a program is being debugged. It is generally assumed that attempts are made at each
failure to fix the fault which caused that failure. Models vary in the way that they
represent this fault-finding and fixing operation: details of different approaches can be
found elsewhere [ 1, 8, 15].



At stage i, when observations ty, t2, ... , tj.] have been made of the first i-1 inter-failure
times, the objective is to predict future failure behaviour represented by the unobserved
T;, Ti+1, ... random variables. Informally, the prediction problem is solved if we can
accurately estimate the joint distribution of ahy finite subset of T;, Ti4; ... . This
statement, however, begs the question of what we mean by 'accurately’, and it is this

issue which forms a major part of our earlier work [1].

In practice, of course, a user will be satisfied with much less than a complete
description of all future uncertainty. In many cases, for example, it will be sufficient to
know the current reliability of the software under examination. This could be presented
in many different forms: the reliability function, P(T; < t); the current rate of occurence
of failures (ROCOF), [3]; the mean (or median) time to next failure (mttf).
Alternatively, a user may wish to predict when a target reliability, perhaps to be used as
the criterion for termination of testing, will be achieved.

If we accept that prediction is our goal, it can be seen that the usual discussion of
competing software reliability growth models is misleading. We should, instead, be
comparing the relative merits of prediction systems. A prediction system which will
allow us to predict the future (T;, Tiyp ...) from the past (1, ta, ... ti.1) comprises:

@) the probabilistic model which specifies the distribution of any subset of the Tj's
conditional on a (unknown) parameter ¢ ;

(i) a statistical inference procedure for o involving use of available data

(realisations of Tj's);

(ii) aprediction procedure combining (i) and (ii) to allow us to make probability

statements about future Tj's.

Of course, the model is an important part of this triad and it seems unlikely that good
predictions can be obtained if the model is not 'close to reality'. However, a good
model is not sufficient: stages (ii) and (iii) are vital components of the prediction
system. In fact disaster can strike at any of the three stages.

In principle, it ought to be possible to analyse each of the three stages separately so as
to gain trust in (or to mistrust) the predictions. Unfortunately, it is our experience that

this is not possible. There are several reasons.



In the first place, the models are usually too complicated for a traditional 'goodness-of-
fit' approach to be attempted. Even the simplest exponential order statistic model [14]
does not allow this kind of analysis. This should not surprise us: the goodness-of-fit
problem for independent identically distributed random variables is hard in the presence
of unknown parameters. The reliability growth context is much worse because of non-

stationarity.

Secondly, statistical properties of the estimators of unknown parameters for a non-
Bayesian analysis of these models are usually not available. For example, several
models assume that the software contains only a finite number of faults. There is thus
an upper bound on the number of observable Tj's. This implies that we cannot even
trust the usual asymptotic theory for maximum likelihood (ML) estimators. Their small
sample properties are invariably impossibly hard to obtain.

Of course, there is a proper approach to stages (ii) and (iii) in the Bayesian framework.
Tt involves posterior distributions of the parameters at stage (ii) and Bayesian predictive
distributions for (iii) (see [2]). Unfortunately, this does present some analytical
difficulties for the popular software reliability growth models. However, with recent
advances in Bayesian numerical techniques [18], coupled with powerful personal

computers, this picture may change in the near future.

Finally, it could be argued that there are models which are ‘obviously' better than others
because of the greater plausibility of their underlying assumptions. We find this a
dubious proposition. Certainly, the assumptions of some models seem overly naive
and it might be reasonable to discount them. However, this still leaves others which
cannot be rejected a priori. It is our belief that understanding of the processes of
software engineering is so imperfect that we cannot even choose an appropriate model
when we have an intimate knowledge of the software under study. At some future time
it may be possible to match a reliability model to a program via the characteristics of that
program, or even of the software development methodology used. This is not currently
the case.

Where does this leave a user, who merely wants to obtain trustworthy reliability metrics
for his current software project? Our view is that there is no alternative to a direct
examination and comparison of the quality of the predictions emanating from different
complete prediction systems. In [1] we have described several ways in which this can
be done, the most important tools being the u-plot and the prequential likelihood. The
key idea in each case is that a comparison is made between what has been predicted and



what is (later) actually observed. We believe that this emulates how a user would

informally gain confidence in a sequence of predictions.

For simplicity we shall concentrate on prediction of the next time to failure T, based on
observations tj, t2, ..., tj.1. The u-plot uses the predictor ?i(t), the estimate of the
distribution function Fj(t) = P(T; <t), via

u = B (1)

where t; is the later-observed realisation of the random variable Tj. Thus uj is the
probability integral transform of the observation using the predictive distribution
function. If the sequence of predictions {ﬁ‘i(t;)} is good, it is easy to see that the
sequence {uj} should look like a random sample from a U(0,1) distribution [1]. There
are various types of departure from such an appearance which might show themselves;
here we shall only be concerned with whether the {u;} sequence looks uniformly
distributed. We shall do this via the u-plot which is the sample cumulative distribution
(cdf) function of the u; sequence. The departure of this plot from the cdf of U(0,1), the
line of unit slope, is an indication of a departure of the prediction system from accuracy.
We can use the Kolmogorov distance, that is the maximum vertical deviation, as a
measure of this departure and use standard tables to determine whether or not it is

statistically significant.

Figure 1 shows u-plots for Jelinski-Moranda [10] and Littlewood-Verrall [13] models
making predictions on a data set, called S1 [17], analysed in [1]. These plots are each
based on 86 predictions: 1A<51(t) through ﬁ136(t). The Kolmogorov distances are 0.205
(JM) and 0.150 (LV). The first is significant at the 1% level, suggesting very poor
prediction from JM; the second is significant at 5%, which suggests that this model is

also performing poorly but is somewhat superior to JM.

More importantly for our present purposes, the shape of the plots tells us that JM is
making predictions which are too optimistic, whilst LV predictions are too pessimistic.
This can be seen as follows. The JM plot is everywhere above the line of unit slope
(the true U(0,1) cdf), so there are too many small uj values. But consistently too small
u values tells us that the model is underestimating the chance of small times between
failure, i.e. the model is too optimistic. A similar argument shows that a plot which is
almost everywhere below the line of unit slope, such as LV, is too pessimistic.



If we knew that these deviations between predicted and actual behaviour were
consistent, we could attempt to measure the degree of optimism (or pessimism) and
improve future predictions by taking account of this tendency. Itis this idea which we
shall develop in the next section. Before we do that, we shall briefly describe the
prequential likelihood function (PL) which is a general mechanism for comparing the

<

accuracy of prediction systems.

The PL is defined as follows. The predictive distribution ﬁ‘i(t) for T; based on tj,
t2, ..., ti.1 will be assumed to have a probability density function (pdf)

ho = Ho
For predictions of Tj+1, Tj+2, ..., Tj+n, the prequential likelihood is

j+n
PL, = 11 %@ (2)

i=j+1

A comparison of two prediction systems, A and B, over a range of predictions of Tj+1,
Tj+2, - - - Tj+n, can be made via their prequential likelihood ratio

j+n
m o HA )
i=j+1
PLR, = (3)
j+n

n #B @y
i=j+1

Notice how, in a fashion analogous to the calculation of the u sequence, the individual
contributions to the prequential likelihood are obtained by substitution into the predictor
pdf for Tj of the the later-observed realisation tj. Dawid [7] shows that if PLRy; — <
as n — oo, prediction system B is discredited in favour of A. For the finite samples
with which we inevitably have to deal, we shall argue that PLR, increasing consistently
suggests the superiority of A over B. In [1] we give intuitive reasons why the PL
works. Specifically we show that consistent bias or noisiness of a prediction system

will tend to give a smaller PL than would otherwise be the case.

To summarise, the PLR can be regarded as a general procedure for choosing the best
prediction system for a particular data source. The u-plot is a means of indicating a



particular kind of consistent inaccuracy of prediction which could be a contributory
factor in poor predictive accuracy. Thus a poor u-plot might suggest that poor
predictive accuracy (represented by a poor prequential likelihood) is due to consistent
bias. For such a case, we shall show in the next section how it is possible to remove

the bias and so improve the accuracy of reliability predictions.

3 Recalibration of predictions

Consider a prediction ﬁi(t) of the random variable Tj, when the true (unknown)
distribution is Fj(t). Let the relationship between these be represented by the function
G;j where

Fit) = Gi[ f)] (4)

Obviously, if we knew Gj we could recover the true distribution of T; from the
inaccurate predictor, ﬁi(ti). The key notion in our recalibration approach is that in
many cases the sequence { Gj } is approximately stationary, i.e. it is only slowly

changing in i.

If the sequence were completely stationary, i.e. Gj = G for all i, we would have a more
precise interpretation of the idea of 'consistent bias' used in the previous section. We
would also have the possibility of estimating the common G from past predictions and
using it to improve the accuracy of future predictions.

Of course, in practice such complete stationarity is unlikely to be achieved. However, it
does seem to be the case that the sequence changes only slowly in many cases. This
opens up the possibility of approximating G; with an estimate G;” and so forming a

new prediction
B = G B 1. (5)

A suitable estimator for Gj is suggested by the observation that G; is the distribution
function of Uj = ﬁi(Ti). We shall therefore base our estimate G;* on the u-plot,
calculated from predictions which have been made prior to T;, which is the sample cdf
formed from the u;s for j<i. The new prediction (5) recalibrates the raw model output,



f}i(ti), in the light of our knowledge of the accuracy of past predictions for the data
source under study. The new procedure is therefore a truly predictive one, learning’

_from past errors.

The simplest form for Gi* is the u-plot with steps joined up to form a polygon (Figure
2). Later we shall consider a version which is smoothed using a spline technique. The
complete procedure for forming a recalibrated prediction for the next time to failure, Tj,

is then:

Stage 1 Check that error in previous predictions is approximately stationary.
(See [1] for a plotting technique, the y-plot, which detects non-
stationarity, although we shall see later that recalibration often works
well even in the presence of non-stationarity)

Stage 2 Find u-plot for predictions made before Tj, i.e. based on ty, t2, . . tj.1,
and join up the steps to form a polygon, Gi*.

Stage 3 Use the basic prediction system to make a ‘raw' prediction, ?i(ti).

Stage 4 Recalibrate the raw prediction using (5).

This whole procedure can be repeated at each stage so that the functions G;" used for
recalibration will be based on more information about past errors as i increases. For the
simple joined-up u-plot this is not computationally onerous: by far the greatest
computational effort is needed for the statistical inference procedures used to obtain the

raw model predictions.

It is important to emphasise that the procedure described above does in fact produce a
genuine prediction system in the sense described earlier: at each stage we are using only
past observations to make predictions about the unobserved future failure behaviour.

Figure 3 shows the effect of recalibration on the predictions made in Figure 1. In the
case of the JM model it is known that the raw predictions are too optimistic, and the
recalibration makes them less optimistic; in the case of LV, which is initially too
pessimistic, the recalibrated version is now less pessimistic. These conclusions are
confirmed in the more formal analysis based on the u-plot technique: for JM* the
Kolmogorov distance of the u*-plot is 0.119 (compared with 0.205 for the raw
predictions), for LV* it is 0.089 (compared with 0.150). Not only are these an



improvement in each case, the distances are now no longer statistically significant at the
10% level.

Notice that, although Figure 3, for simplicity, only shows median predictions, the
recalibration is working on the complete predictive distribution. Thus it could be
expected to improve other reliability estimates, such as the rate of occurence of failures,
in the examples shown here. The recalibration procedure changes the complete shape
of the distribution and can therefore correct for far more subtle errors than the mainly

simple 'optimism' or 'pessimism’' of these examples.

Figure 4 shows an analysis of a data set, SS3 from [17], which exhibits startling
disagreement between raw predictions from JM and LV models. In fact, in an analysis
of this data using nine models [5], it can be seen that seven of them are in close
agreement with one another and are close to the JM plot in Figure 4; the remaining two
are close to the LV plot in Figure 4. A user might conclude that the seven models
which give similar answers are closer to the truth than the more isolated pair, but this
would be wrong. In fact for this data set none is giving acceptable answers. This is
shown by the u-plots for JM and LV predictions in Figure 5 . Clearly, the M
predictions are optimistic, and those from LV pessimistic. The effect is a gross one, as
can be seen from the Kolmogorov distances, 0.272 (JM) and 0.238 (LV), which are
very highly significant (well beyond the 1% level, the highest tabulated). The
prequential likelihood shows that LV is superior to JM [1], but neither of them, nor any
other model we have used, gives accurate reliability predictions for this data source.

The detailed shape of the u-plots in Figure 5 is interesting. As was stated above, the
most notable feature is the extreme optimism or pessimism. However, this is not a
simple effect in either case. For JM the behaviour of the plot at each extremity suggests
too many very small u values and too many very large ones. For LV there seem to be
too many fairly large u's and foo few u's near to 1.0. Thus, although the statements
above about optimism and pessemism are correct to a first approximation, a more
detailed analysis shows that the u-plots are giving precise information about the
incorrect shapes of the complete predictive distributions. It can therefore be seen how
the recalibration procedure based on such u-plots can effect subtle changes in the

complete estimated distribution function for the random variable Ti.
The recalibration technique works dramatically well for this data. Table 1 shows a

comparison between raw model predictions and recalibrated predictions for the
following nine models: JM (Jelinski-Moranda, [10]), BJM (Bayesian Jelinski-

10



Moranda, [11]), GO (Goel-Okumoto, [9]), MO (Musa-Okumoto, [16]), D (Duane,
[6]), L (Littlewood, [12]), LNHPP (Littlewood non-homogeneous Poisson process,
[1]), LV (Littlewood-Verrall, [13]), and KL (Keiller-Littlewood, [1]).

All nine raw u-plots have Kolmogorov distances which are significant well beyond the
tabulated 1%. After recalibration, all the distances have been more than halved and
none are significant at this high level. Figure 6 shows the dramatic improvement given
by recalibration on the JM and LV u-plots in comparison with the raw predictions (see
Figure 5). The differences in the detailed median predictions (only for JM and LV
again, for simplicity) can be seen by comparing Figures 4 and 7. There is much closer
agreement between the recalibrated models than between the raw ones.

In both the above examples there is evidence that prediction systems which were in
disagreement have been brought into closer agreement by the recalibration technique.
Much more important, however, we have objective evidence from the comparison of u-
plot with u*-plot that recalibrated predictions are less ‘biased’ than the raw ones.

These results are encouraging for the efficacy of the recalibration approach, but they are
not sufficient grounds for assuming, even in the two examples here, that the
recalibrated predictions should be preferred to the raw ones. It may be that the
advantage of less bias has been bought at the expense of some other deviation between
predicted and actual reliability. We have suggested in the previous section that the
prequential likelihood should be used as arbiter between competing prediction systems
for any particular data source. It would seem appropriate, therefore, to judge whether a
raw or recalibrated prediction system is objectively best by comparing their prequential
likelihoods for a series of predictions. Unfortunately this presents problems for
recalibrated predictions which are based on the simple polygonal joined-up u-plots
suggested above. The reason is somewhat 'technical’ and is due to the fact that the PL
uses the probability density function of the predictive distribution:

j+n j+n
PLy = 11 H*w) = T g¥(hiaw) fiw
=j+1 i=j+1
j+n
= T gi*@. fiw (6)
i=)+1

from (5), letting gi* denote the derivative of Gi*.
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Unfortunately, since Gi* is a polygon, its derivative gi* is discontinuous. This
means that /f\i* is also discontinuous: Figure 8 shows an example of this problem.
This discontinuity generally causes PL to report badly on the predictive accuracy of a
recalibrated model in competition with the raw version. A user might therefore
conclude that recalibration had made the predictions less accurate. We think this can be
misleading. It is true that it would be unreasonable to believe that the true predictive pdf
is grossly discontinuous; the rejection of such a pdf by the PL criterion is therefore
strictly correct. However, in practice users are not directly interested in predictive pdfs
but in probabilities. Such probabilities will be obtained from the pdf by integration,
which has the effect of smoothing out the discontinuity. It is therefore perfectly
possible for PL to reject a recalibrated prediction system in favour of the raw version,
even when the recalibrated (probability) predictions are the most accurate. A rejection
in such circumstances is, we believe, unfair: a user needs to know which prediction
system is performing best for the kinds of prediction he is likely to make.

There are two ways forward which will be described in the next two sections.

The first approach attempts to decide whether recalibration can be trusted to give
improved results in a wide class of circumstances by comparing both recalibrated and
raw predictions with the true reliability when this is known. In practice, of course,
such knowledge of the truth is not available so we shall have to use simulated inter-
failure times. We shall show that in a high proportion of cases the recalibrated
prediction system is superior to the raw one. However, as might be expected, this is
not always the case.

Our second approach, therefore, applies a smoothing to the polygonal G;* in order to
give a continuous recalibrated predictive pdf. This allows the use of PL as a criterion
for judging which prediction system is giving most accurate results. Use of this
smoothing is computationally more intensive than use of the simple joined-up u-plot.

A user therefore has a choice: appeal to the general efficacy of the approach as
demonstrated by the simulation results based on the simple recalibration technique, or
use the smoothed version and use PL to decide whether recalibration is working in the

particular example under study.
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4 Simulation results

The simulation experiment [4] consisted of generating 100 realisations of the inter-
failure time sequence tj, ta, . . . tygo from each of the models JM, L, LV, KL and D,
with constant parameters being used for each model. These data sets were then
analysed using the 'wrong' models: thus, for example the JM data set was analysed
using the L, LV, KL and D models.

The model parameters were estimated based on ty, t2, . . . tj.1, to obtain ﬁj(t) forj=
20, ... 101. Then, fori =40, ... 101, the u-plot using u; = ﬁ(tj), forj=20,...1i1,
was used to obtain G;* and hence ﬁi*(t). It was thus possible to compare the known
true F;(t) with the raw predictor £(t) and with the recalibrated predictor £*(t) fori =
40, ..., 101.

In a particular case a user is interested in knowing whether the raw or recalibrated
predicted distribution is closer to the true one. There are various ways we could
examine the differences between predicted and true distributions. Perhaps the most
obvious is a direct measure of the distance between the two functions, such as the
Kolmogorov distance. This is defined as follows. For raw predictions let ai(t) = lei(t)
- F;(t) and for recalibrated ai*(t) = lei*(t) - Fij(t), both fori = 40, ... 101. The
Kolmogorov distances are Qi = SUp0 | ai(t) |= |81(r)| and Qi* = supp0 | 8;*(:) | =
[ 31*(7) [. A simpler procedure is to merely check whether the recalibrated or raw

median is closer to the true one.

The first analysis concerns only predictions of Tygp; there are 2000 such predictions in
the experiment. If we consider those predictions of Tjg; for which the u-plot (based on
predictions prior to Tjg1) was significant at the 5% level, indicating that there was
evidence of bias, 89% of the recalibrated predictions were superior to the corresponding
raw ones. This figure rises to 92% if we only recalibrate for u-plots which are

significant at the 1% level.

Even when we recalibrated regardless of the u-plot evidence, the recalibrated
predictions improved on raw ones in 61% of cases. Here there will be many cases
where raw predictions are close to the truth; then we would not expect the recalibration
to introduce an improvement and the recalibrated and raw predictions should be close to
one another. However, since the recalibrated predictive distribution is polygonal
('lumpy'), the Kolmogorov distance (which compares the maximum deviations of the

13



two predictions from the truth) will tend to discriminate against the recalibration in
favour of the raw prediction. This figure of 61% can therefore be thought of as a

conservative one.

Other simple comparisons between recalibrated and raw predictions are fairer in this
situation. For example, the recalibrated median is closer than the raw one to the true
median in 70% of these cases. This figure rises to 91% when we recalibrate only for u-
plots significant at 5%, and 94% when we recalibrate only for u-plots significant at 1%.

These results for Tyg1 are supported by the more extensive recalibrations of the
predictions of T4, . . , T101: here recalibrated medians are closer to the true one in 86%
of cases when the u-plot at stage 100 was 5% significant, and are closer in 93% of
cases when the u-plot is significant at 1%.

In summary, even when we blindly used the recalibration on all predictions, there was
an improvement in about 7 out of 10 cases. More importantly, when we adopted the
more rational and discriminating approach of only using the technique when the u-plot
analysis suggested recalibration might be fruitful (by indicating the presence of 'bias’),
there was improvement about 9 out of 10 times.

Of course, we do not know whether our simulated data was typical of real software
reliability data. Indeed, since we were generating data according to several models with
very different underlying assumptions, some of the data sets are likely to be unrealistic.
However, we believe that these results are encouraging for the general power of the

approach.
In practice a user might wish to have more than a belief in the general efficacy of the
approach: he needs to know that it is working for the particular data source under

examination. The obvious approach is to use the methods of analysis of predictive
quality [1] discussed earlier. In the next section we show how this can be done.

5 Parametric spline smoothing

The u-plot is merely the sample cdf of the observed u's. Thus the problem of
estimating the approximately stationary function G; in (4) is simply the problem of

14



obtaining an estimate of a cdf from a finite random sample. There are several ways in
which this can be done so that the estimator is differentiable and so has a smooth pdf.
We could, for example, fit an appropriate parametric family of distributions to the data.
An example is the family of Beta(a, f) distributions with pdf

fu) = uol(1 - u)B-1/B(at, B) 0<u<l1 0

This is a fairly flexible family, but it is not sufficiently wide to represent all the general
shapes of u-plots which we have encountered in practice (see [5] for an example). This
seems likely to be a problem with other candidate parametric families of distributions.
Another, less important, difficulty is that the evaluation of the cdf is not easy for certain

regions of the parameter space.

The need for a method of fitting a very general class of u-plot data suggests the use of
parametric splines, which are widely used in computer graphics because of their
versatility. We shall use the cumulative chord as the parameter, whereupon the spline is
defined as follows. Let {xj, yi}, fori=1,2,...,r, denote the r points of the u-plot
to which we want to fit the spline, and let

pi' = pi-1’ + [(xi-xi.1)2 + (i - yi-1)211/2 (8)

with pg' =0, xg = 0 and yg = 0; i.e. pj' is the distance from the origin, along the
polygon, to the ith point. Here x; is the ith order statistic of the u's and yj is the height
of the u-plot at x;. For convenience we shall use the normalised chord

Pi = Pi/pr €))
so that both parametric functions will have domain [0,1].

We now have two sets of data, {x, pj} and {yi, pi}, to each of which we fit a three
knot least-squares cubic spline; call these x = x(p) and y = y(p). These splines are each
constrained so that x(p) and y(p) are strictly increasing functions taking values between
0 and 1 for p in (0, 1), with x(0) = y(0) = 0 and x(1) = y(1) = 1. It follows that the
function defined parametrically as (x(p), y(p)) is also strictly increasing between 0 and
1. We call this function the parametric spline and it has the properties of a cdf. More
importantly for our needs, it is everywhere differentiable with a smooth derivative.
This means that if we use this function to recalibrate software reliability predictions we
are certain to obtain a smooth recalibrated predictive density. We can therefore use
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prequential likelihood as a criterion of predictive accuracy and be confident that we shall
not encounter the difficulties we met with the polygonal joined-up u-plot.

Clearly, using this spline is more tedious than recalibrating predictions from the joined-
up u-plot; details can be found in [5]. However, run times are generally much less than
are required for the original raw predigtions. Since these raw predictions must always
be computed, the small overhead involved in using the spline is worthwhile. Most
importantly this technique allows a user to determine, via prequential analysis, whether
the recalibrated predictions are objectively better than the raw ones for a particular data
source. It also similarly allows comparisons to be made between different recalibrated
prediction systems. Such knowledge about the performance in a particular instance is
more valuable than the general assertions of efficacy which come from the earlier

simulation exercise.

To distinguish it from the earlier polygonal G*, we shall denote the spline smoothed
recalibrating function by G**. The recalibrated predictions are then

£ = G EO] (10)

Table 2 shows the u-plot and y-plot Kolmogorov distances for the same data sets as
those used in Table 1. It can be seen that the entries in the two tables are very similar.
This is to be expected since the spline recalibrated predictive distribution function is
designed to be a smooth function close to the joined-up recalibrated predictive
distribution. If these two functions are close, the u's based on them will be close and
thus so will the plots. In practical terms this means that the predictions of probabilities
from the two techniques will be very similar, and in particular their medians are very
close (compare Figure 9 with Figure 7). However, their predictions of probability
densities will be very different: it is this difference we wish to exploit in the use of the
prequential likelihood for the spline version.

In Figure 10 the evolution of the prequential likelihood ratios is shown for the various
recalibrated predictions against raw model predictions. Notice how, for LV, the
prequential likelihood seems to be suggesting that the joined-up recalibrated predictions
are worse than the raw ones. This is a dramatic example of the effect of the
discontinuity of joined-up recalibrated probability densities upon the likelihood: it
causes a spurious rejection of these recalibrated predictions in favour of those from the
raw model. That this is, indeed, spurious can be seen from the behaviour of the spline
recalibrated predictions: there is overwhelming evidence that the LV**:LV prequential
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Jikelihood ratio is increasing rapidly (it has reached more than e40 during these
predictions!). A user could therefore be very confident that the LV** predictions here

are more accurate than the LV ones.

A comparison of JM** and JM is even more dramatic: the PLR reaches %0 over the
range of predictions shown. This is partly due to the fact that raw JM predictions are
significantly less accurate than those of raw LV (although both are bad from u-plot
evidence). Thus JM starts off with more room for improvement. In fact, after
recalibration, the two spline predictors LV** and JM** have comparable accuracy on
the prequential likelihood evidence, with slight evidence of superiority for JM**,

Figure 11 shows an example of recalibrated probability density functions at stage 278 in
the SS3 data set.. The two raw predictive densities from LV and JM disagree greatly,
but after recalibration there is close agreement between LV** and JM**. This is
illustrated even more dramatically in Figure 12 which shows predictive densities for
stage 121 in the S1 data. Notice here the curious mode which appears in each
predictive density after recalibration. Neither of the raw predictive densities
(exponential for JM, Pareto for LV) can have a non-zero mode, which suggests that the
'learning’ from past errors can give an insight not present in the raw models. What is
particularly striking, we believe, in figures like this is not only the close agreement of
the two predictions after recalibration, but how dramatically these differ from the raw

predictions.

These figures give some indication of the power of the method to change fundamentally
the raw prediction, on the evidence of analysis of past predictive error. Thus the
improvements in simple summary statistics shown in the median plots (Figures 3,7, 9)
are merely the tip of an iceberg: when recalibration works it will do so in very general

ways and a user could reasonably expect all reliability measures to improve in accuracy.

6 Retrodictive recalibration

The recalibration technique described in this paper is based on an analysis of the
accuracy of similar predictions at earlier stages in the acquisition of data from testing a
program. Thus when we came to recalibrate the prediction of T;¢) it was necessary to
make predictions of Tyg, T21, - . , T101 (each based only on the data observed prior to
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making the prediction) in order to calculate the Gi* (or G;**), i = 40, ..., 101, which
transforms the raw prediction, ﬁi(t) . For all the models each such prediction is quite
computationally intensive, so a single recalibration can require considerable effort. If
recalibration is to take place at each stage as each new inter-failure time is observed,
then of course this overhead disappears, since it will be necessary to calculate each raw

prediction anyway.

However, the problem seemed sufficiently important that we examined a retrodictive
recalibration procedure which only needs a single basic calculation (e.g. maximisation
of a likelihood function) for each recalibration. For those models using maximum
likelihood estimation of the parameters this scheme works as follows. To predict Tq01,
we use all available data, ty, . . , tj0g, to calculate an estimate of the model parameters.
This is used, of course, to obtain the raw prediction of Typj. It is also used to retrodict
(i.e. "predict” the past) Ty, T2, .. T1gp. Since we have the actual observations of this
past, we can compare the retrodictions with these in the same way that we do with
genuine predictions. In particular we can form the retrodictive u-plot and use this to

recalibrate the raw prediction of T1p3.

Unfortunately, this procedure seems to be useless! The reason is fairly subtle. It

seems to be the case that a prediction of Tj, based on tj,. ., ti-1, can be error in
different ways from a retrodiction of Tj (j<i) also based on ty, . ., tj.;. More precisely,
the approximate stationarity in the errors of prediction of T; (based on ty, . ., tj.]) as we

vary i is very different from the approximate stationarity of errors of prediction of Tj
(based on ty, . ., t;) as we vary j for fixed i. It seems that we can expect to obtain the
first kind of approximate stationarity, but not the second: it is, of course, such
approximate stationarity which underpins the basic idea of recalibration.

Once again this seems to suggest that in assessing software reliability we must be
careful of making unfounded generalisations. Just as we cannot assume that a model
performing accurately on one data set necessarily will give good performance on
another [1], so we cannot assume that information gained from an analysis of the
accuracy of one rype of prediction will necessarily be trustworthy for another.
Although these remarks are based on the evidence of retrodictive error being a poor
guide to one-step-ahead prediction, it is likely that the implications are more far
reaching. For example, the predictive recalibration method for one-step-ahead
predictions may not be effective for predictions further ahead. Thus if we wished to
recalibrate a raw 20-step-ahead prediction it may be necessary use a form of the G
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function which is itself based on a comparison of 20-step-ahead raw predictions with
actual (later observed) data. We hope to investigate issues of this kind in future work.

7 Discussion and conclusion

We have shown that recalibration can be a powerful technique for improving the
accuracy of software reliability growth predictions. The technique is completely
general, and in particular is not model-dependent: it can be applied to any predictive
scheme. It can also be used for different types of prediction, but it should be
remembered that recalibration should be based on past predictions of the same type.

Our simulation results for the simple joined-up G* suggest that it offers an improvement
in accuracy over the original models in a high proportion of cases. This alone would be
sufficent reason for advocating that it be applied as a matter of course to all models:
essentially doubling the number of prediction systems available to the user.

As we have demonstrated elsewhere [1], a user cannot select a model a priori from this
plethora of available models and know that it is the best for the job. Instead, it is
necessary to apply all available models to each data source and use the techniques
described in [1], principally the prequential likelihood, to select the one which is giving
most accurate reliability predictions for the particular data source (program) under

study.

To make this method of discriminating between reliability prediction systems work for
recalibrated models, we have introduced the notion of a spline-smoothed recalibrated
prediction. The user is now in a position to apply several models, and their recalibrated
versions, to his/her data and select that which is objectively performing best. We
believe that this eclectic approach should in future be standard practice.

Our results give a new insight into reliability growth modelling. It can now be seen as
essentially a two stage process: first capturing the long term trend and then using these
new ideas to estimate local behaviour. A rich class of new models could be formed
from a distribution-free fitting of trend, followed by a later analysis of detailed
probabilistic structure along the lines described above. We are currently investigating

these possibilities: early results are encouraging.

19



Acknowledgements
This work was partially supported by the SERC and Alvey Directorate (SB and BL)

under project SE-072, partially by ICL plc (PYC) and partially by National Aeronautics
and Space Administration under grants number NAG-172 and NAG 1-771.

20



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Abdel-Ghaly, A. A., Chan, P. Y., Littlewood, B., "Evaluation of competing
software reliability predictions”, IEEE Trans Software Engineering, SE-12,
pp950-967, 1986.

Aitchison, J., Dunsmore, I. R., Statistical Prediction Analysis, Cambridge
University Press, Cambridge, 1975.

Ascher, H., Feingold, H., Repairable Systems Reliability, Lecture Notes in
Statistics, No 7, Marcel Dekker, New York, 1984.

Brocklehurst, S., "On the effectiveness of adaptive software reliability
modelling”, CSR Technical Report , Centre for Software Reliability, City
University, London, October 1987.

Chan, P. Y., Software Reliability Prediction, PhD thesis, City University,
London, 1986.

Crow, L. H., "Confidence interval procedures for reliability growth analysis",
Tech Report No 197, US Amy Material Systems Analysis Activity, Aberdeen,
Md, 1977.

Dawid, A. P., "The well-calibrated Bayesian", (with discussion) J Amer Statist
Assoc, 77, pp 605-613, 1982.

Goel, A. L., Bastani, F. B., IEEE Trans Software Engineering Special Issue on
Software Reliability, SE-11, no. 12, 1985 and SE-12, no. 1, 1986

Goel, A. L., Okumoto, K. 'Time-dependent error-detection rate model for
software reliability and other performance measures', IEEE Trans Reliability,
Vol R-28, pp 206-211, 1979.

Jelinski, Z., Moranda, P. B., "Software reliability research", in Statistical

Computer Performance Evaluation (W Freiberger, ed.), New York, Academic
Press, 1972, pp. 465-484.

21



(11]

[12]

[13]

[14]

(15]

[16]

[17]

(18]

Littlewood, B., Sofer, A., "A Bayesian modification to the Jelinski-Moranda
software reliability model", Software Engineering Journal, 2, pp30-41, 1987.

Littlewood, B., "Stochastic reliability growth: a model for fault-removal in
computer programs and hardware designs”, I[EEE Trans. Reliabiliry, Vol R-30,
4, Oct 1981, pp 313-320.

Littlewood, B., Verrall, J. L., "A Bayesian reliability growth model for
computer software", J Royal Statist. Soc., C (Applied Statistics), 22, 1973,
pp- 332-346.

Miller, D. R., "Exponential order statistic models of software reliability
growth", Tech Report, T-496/84, George Washington University, Washington
DC, 1984,

Musa, J. D., Iannino, A., Okumoto, K., Software Reliability: Measurement,
Prediction and Application, McGraw-Hill, New York, 1987.

Musa, J. D., Okumoto, K., "A logarithmic Poisson execution time model for
software reliability measurement”, Proc 7th International Conference on
Software Engineering, IEEE Computer Society, New York, 1984, pp230-238.

Musa, J. D., "Software reliability data", report available from Data Analysis
Centre for Software, Rome Air Development Center, Rome NY, 1979.

Smith, A. F. M., Skene, A. M,, Shaw, J. E. H,, Naylor, J. C., "Progress with

numerical and graphical methods for practical Bayesian statistics", The
Statistician, 36, pp 75-82, 1987.

22



Data set M BIM GO MO DU L |LNHPP| LV KL

(no. predictions)

u |.2049E|.1871E}.1773E|.0982A].1567D|.1123A| .0982A|.1504D| .1457D
S1 u* |.1188B.1226B |.134:C|.0499A| .0752A] .0499A| .0499A| .0894A] .0901A
(86) y |.1156B|.1148B|.1190B |.0795A| .1029A| .0504A| .0793A].1148B | .1173B
y* |.1018A].1016A[.1076A|.0775A| .0808A | .0893A|.0768A] .0901A} .0916A

u |.2717E|.2713E| .2705E | .2645E | .2596E | 2717E | .2704E | .2382E | .2372E
S§3 u* |.0982C|.1042D|.0978C|.1057D|.1122D| .0987C}.0997C| .0864B | .1043D
(173) y |.1273E|.1379E | .1263E | .1435E | .1835E | .1291E | .1300E | .0346A | .0500A
y* |.0577A].0664A].0579A] .0631A|.0968C| .0561A].0558A].0415A|.0596A

Table 1 Kolmogorov distances for u- and y-plots for raw model and for joined-
up recalibrated predictions. The letters indicate significance levels: E is
significant at the 1% level, D at 5%, C at 10%, B at 20%, A is not
significant at 20%. Roughly: A and B are very good, C is acceptable,
D and E are poor.

Data set M BIM GO MO DU L |[LNHPP| LV KL

(no. predictions)

u |.2049E|.1871E|.1773E|.0982A].1567D| .1123A| .0982A] .1504D|.1457D
S1 u**|.1168B|.1197B | .1277B | .0511A] .0794A| .0507A| .0526A| .1027A|.1053A
(86) y |.1156B|.1148B{.1190B | .0795A| .1029A|.0904A| .0793A] .1148B | .1173B
y** 1 .1109A| .1126A].1102A| .0852A| .0762A| .0715A] .0853A}.0878A] .0916A

u |.2717E|.2713E|.2705E | .2645E | 2596E | 2717E | 2704E| .2382E | .2372E
SS3 u**|.0820B | .0822B | .0782A] .0901B | .0916B | .0859B | .0846B | .0834B | .1006C
(173) y |.1273E|.1379E |.1263E | .1435E | .1835E | .1291E | .1300E | .0346A ] .0500A
y**1.0573A] .0693A].0560A ] .0632A].1016C| .0571A] .0557A| .0352A}.0452A

Table 2 As Table 1 but for spline-smoothed recalibrated predictions.
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Figure 1 u-plots for JM and LV model predictions of Ts; through T}36, Musa S1

data [17].
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Figure 2 Method of drawing the joined-up step recalibrating function, G;*. Here
there are r u-points and each step is of size 1/(r+1).
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Figure 3
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Predictive medians of Tsy through T34, raw and recalibrated using
joined-up recalibrator, G;*, for Musa System 1 data [17].
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Figure 4
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Raw predictive medians of Tjqg through Tp7g, for all nine models,
Musa SS3 data [17].
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Figure 5 u-plots for raw predictions of Typg through T278, JM and LV models,
Musa SS3 data [17].
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Figure 6 u”-plots for (joined-up) recalibrated predictions of T through T273,
JM and LV models, Musa SS3 data [17].
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Figure 7

Medians of (joined-up) recalibrated predictions of Tjog through T:
TM and LV models, Musa S$3 data [17). 106 HITOUgH 1278,
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Figure 8a  The joined-up recalibrator, G278", b ) :
e LV model on Musa §85 dasy® + P2sed on & wplot of 168 points,for

%*
G278
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Figure 8b  The derivative of G278" in Figure 8a.
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Figure 9
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Medians of spline recalibrated predictions of Tjgg through Ta78, JM and
LV models, Musa SS3 data. Note closeness to results in Figure 7 for
joined-up recalibration.
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Figure 10  Plot of logPLR against i, showing comparison of predictive accuracy
between the each type of recalibration and the raw predictions; JM and
LV models, Musa SS3 data.
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Figure 11  Examples of individual spline recalibrated predictive probability density
functions for Tp7g, using JM and LV models on Musa SS3 data. Note
great difference between raw predictions, and closeness of recalibrated.
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Figure 12 As Figure 11, but for Ty3;, Musa S1 data. Note, again, closeness of
the two recalibrated predictions and how these differ greatly from the
(very different) raw predictions.
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