
IEEE TRANSACTIONS O N S O F T W A R E ENGINEERING. VOL. 16. NO 7. J U L Y 1990 729

Evaluating Software Design Processes by Analyzing
Change Data Over Time

L. J . CHMURA. A. F. NORCIO. A N D T . J. WICINSKI

Abstract-This paper presents analyses o f eady design and code
change data f r o m the Software Cost Reduction (SCR) project, a well-
reported ef for t conducted at the Naval Research Laboratory f r o m 1978
t o 1988. The analyses are mostly time-based studies o f the change data
and relationships between the data and SCR personnel activity data.
This analytical approach seems t o allow useful insights in to software
design processes even when data are l imi ted t o a single software pro j -
ect. I t also enables project personnel t o notice favorable o r unfavorable
patterns w i th respect to project goals dur ing the course o f the project.

Some analyses o f the change data show patterns consistent w i th a
major goal o f the SCR project-the design and development o f easy-
to-change software. Specifically. most changes took a day o r less t o
uncover and resolve; the major i t y o f changes updated at most one mod-
ule. Moreover, these percentages remained fair ly stable. Also, no pos-
it ive relationship appeared between error-correction effort and the
number o f days that an er ro r remained in the SCR design documen-
tation. Other analyses suggest that consistency may have been tempo-
rary. For example, the analyses suggest a stepwise growth in average
change effort, and an increasing percentage o f changes resulted in
module interface updates.

Certain specific ratios between SCR change data and personnel ac-
t iv i ty data show promise as possible indicators o f design incomplete-
ness. The ratios are based o n data o f the k inds that are typicall) col-
lected on software projects.

Index Terms-Data collection, Software Cost Reduction project,
software design.

I . INTRODUCTION
ASILI and Weiss describe a methodology for collect- B ing valid software engineering data [2]. The intent is

to capture data that can yield insights into software de-
velopment and maintenance processes, that help confirm
or reject claims made for different software engineering
technologies, and that point to better techniques for pre-
vention, detection, and correction of errors. Since the
1970’s, their methodology has been applied to a few proj-
ects at the Naval Research Laboratory (NRL). The appli-
cation has been limited for a number of reasons. One is
that such data collection tends to be time consuming and
costly. Indeed, a major effort can add as much as 5-15%
overhead to a project [9]. A second reason is that there is
a major limitation to the goal directed data collection ap-
proach in a actual development environments-the inabil-

Manuscript received January 13, 1988: revised February 15. 1990. Rec-
ommended by N. Schncidewind.

L. J . Chmura and T. J . Wicinski are with the Naval Research Labora-
tory. Human-Computer Interaction Laboratory. Washington, DC 20375.

A . F. Norcio is with the Department o f Information Systema Manage-
ment. University of Maryland. Baltimore County. Catonsville. MD 2 1228,
and the Naval Research Laboratory. Human-Computer Interaction Labo-
ratory. Washington. DC 20375.

IEEE Log Number 9035724.

ity to isolate the effects of single factors. As a conse-
quence, project managers have been less than enthusiastic
about data collection.

A result of the limited application is that we have data
for a few projects that differ greatly in staffings, goals,
and applications. Further, for some projects, our data are
incomplete because the collection efforts were terminated
before project completion. This has caused difficulties in
analyzing and reporting on the data; for example, we often
cannot generate summary statistics at the end of a project
and compare them with similar statistics from past proj-
ects. Furthermore, when we do produce summary statis-
tics, they have provided us with little insight into the soft-
ware design processes and have proven difficult to
compare with similar statistics published in the open lit-
e rat ure .

An approach we have adopted for dealing with these
difficulties is to view and analyze software engineering
data over time. Often, time-based measures allow project
personnel to detect favorable and unfavorable trends even
before project completion. An added advantage is that the
underlying data sets can be subjected to statistical tech-
niques that can highlight trends and potential relation-
ships between measures. As part of our approach, we have
established some guidelines for presentation of such anal-
yses. One guideline is to avoid a jittery graph by plotting
the cumulative value of a measure instead of its incre-
mental values, which tend to vary greatly between time
periods. A second is to avoid changing the historical pat-
tern of a graph associated with change in a measure’s
range by plotting a measure as a percentage of the total.
A percentage plots is, of course, a special kind of ratio
plot. Accordingly, a third guideline is to encourage com-
parison between different components of a software de-
sign and to highlight relationships between different data
by examining ratios between data, specifically change data
and personnel activity data. In short, our experience has
reemphasized the importance of observing and under-
standing system dynamics as an approach to understand-
ing software development and evolutionary processes that
Belady and Lehman [3] discussed in the 1970’s and that
has been illustrated more recently by Grady in 1987 [161.

This paper illustrates the above ideas and the time-based
approach to the analysis of software engineering design
change data. It presents analyses of design changes pro-
posed and made by software development engineers who
worked on the Software Cost Reduction (SCR) project at

U.S. Government work not protected by U.S. Copyright

730 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 7. JULY 1990

NRL. There are five sections in the paper. The remainder
of this section contains a brief overview of NRL's SCR
project and Software Technology Evaluation project. The
second section is a description of the techniques and strat-
egies that were used in collecting and categorizing the
data. The third section is a detailed discussion of the
change and error data. The final two sections contain the
analyses of the data and their possible implications.

A . The Software Cost Reduction Project
The Software Cost Reduction Project began in 1978 at

NRL as a cooperative effort with the Naval Weapons Cen-
ter (NWC). The purpose was to redevelop version 2 of
the Operational Flight Program for the A-7E aircraft using
improved software technology [IO]. Two major goals
were to 1) demonstrate the feasibility of using selected
software engineering techniques in developing complex,
real-time software, and 2) provide a model for later NWC
software designers [24]. Software engineering techniques
such as formal requirements specification [191, informa-
tion hiding [22], abstract interfaces [23], and cooperating
sequential processes [131 were prominent among the tech-
nologies applied. The claimed advantage of these tech-
nologies was that they facilitate the development of soft-
ware that is easy to change and maintain.

A complete discussion of the project's software re-
quirements was provided by Heninger et al. [171. Britton
and Parnas provided a detailed description of the module
design structure [5]. Fig. 1 presents an example of a mod-
ule interface specification (i.e., a design specification)
taken from a specification for the device interface module
[21]. A standard organization for such specifications was
described by Clements et al. [1 I] .

The SCR project terminated at the end of 1987 after
implementing three subsets of the operational flight pro-
gram requirements. The subsets were evaluated and tested
using ground using ground-based test facilities at NWC.

B. The Sofwure Technology Evaluation Project
The data reported here was collected and analyzed by

researchers working on the Software Technology Evalu-
ation (STE) project, which was an NRL project separate
from the SCR project in terms of goals, staffing, and fund-
ing.' The goal of the STE project was to evaluate alter-
native software development technologies. A major task
of the STE project, therefore, was to provide the basis for
an objective evaluation of the methodology used in the
SCR project.

The approach followed in the STE project was to mon-
itor, evaluate, and compare software development tech-
nologies used in different software projects. The monitor-
ing and evaluating processes consisted of goal-directed
data collection and analyses techniques (21. For the SCR
project, data was collected in three areas: personnel ac-

'The project was at one time funded by the DoD STARS Program as
Measurement Area Task 13-06.

DLVI: VISUAL INDICATORS (Auto-Cal and Non-Align Indicators)

I . Introduction

There are two visual indicators conmlled by h e OFP on the A-7E aircraft; one that can, and
one that cannot, be seen by the pilot during flight. These are cumntly labeled "IMS Non-Aligned
and "Auto-CAL, respectively. Each can be on steady. on blinking. or off.

2. Interface overview

2.1 ACCESS PROGRAM TABLE

Proer * P m t c r s DescriDrion

ffiISKAUTOCAL_INDICATOR+ pl: VISXind_cnul: O/l !+Aut+cal+! None

+S_AUTOCAL_BLINK-RATE+ pl: real; I blinWsec

ffi/S_NON_ALIGNKINDICATOR+ pl: VIS_ind_cnut On !+Non-align+!

+S_NON_ALICN_BLINK_RATE+ pl: timint; I !!me!!
___.._.._.....__ Efie,-fs___.....___

+S_AUTOCAL_INDICATOR+ IF pl=On THEN " A u w W indicator turned on: IF
pl=$Offs THEN "Aut+Cal" indicator Nmed off; IF
pl=$lnrennittentS TH!XN "Auto-W indicator tumed on
and off at the rate set by +S_AUTCCALKBLINK_RATE+.
or at the system default rate.

+S_AUTOCAL_BLINK-RATE+ When commanded to blink, the blink !!rate!! will be pl .

+S_NON_ALIGN_INDICATOR+ IF PI=$&$ THEN "Non-Align" indicator turned on; IF
pl=$Ofpb THEN "Non-Align" indicator turned off; IF
oa=flntermittentS THEN "Non-Alien" indicator fumed on
k d off at the rate set bv
+S_NON_ALIGN_BiMK_RATE+, or at the system
default rate.

+S_NON_ALIGN_BLINK_RATE+ When commanded to blink, the blink !!rate!! will be pl

3. Local type definitions

VIS_ind_cnul Enumerated On, Off. $Intermittent$

4. Dictionary

!+Auto-cal+! The sate of the autwal indicator as last set by
+S-AUTOCAL_INDICATOR+

The state of the non-align indicator as last set by
+S_NON_ALIGN_INDICATOR+

! +Non-align+!

5. Undesired event dictionary None

6. System generation parameters

#Autccal blink default#* Type: timint. Default blink interval for"Auto-Cal"
indicator.

#Aut+Cal init state(r

#Nonalign blink default#*

Type: VIS_ind_cnul. The system-load-time value fo1
!+Autocal+!

Type: timint. Default blink interval for "Non-Align"
indicator.

#Non-AIign init state#* Typc: VIS_ind_cnul. The system-load-time value foi
!+Nomalign+!

The valve of h e system genuauon paramcm may be xi by uw SolRvSrc. See wuon 2 2 of the

Fig. I . Example module interface specification.

I"lmduclw3l w IhlS document

tivity [20], changes to requirements [8], and changes to
design and code.

The STE project terminated in the mid-1980's.

11. COLLECT~ON OF CHANGE DATA
From 1980 until early 1985, SCR project engineers re-

ported design and code problems, suggested design
changes, and logged their modification activity to base-
lined (i.e., published and change-controlled) interface
specifications, pseudocode, and TC2 code' on Change
Report Forms (CRF's). An example of a completed CRF
is presented in Fig. 2. There were two reasons for this
procedure. First, it was required as part of the SCR proj-
ect's configuration management (CM) procedures. Sec-
ond, such data were needed by STE researchers for eval-

'TC-2 code is the assembly language code for the IBM System 4 PI
madel TC-2 computer. The A-7E Operational Flight Program runs on this
mac h ine.

CHMURA (’ r (1 1 . . EVALUATING SOF-rWARt- DkSIGN PKOCESSES 73 I

SCR PROJECT: DESIGN AND CODE CHANGE REPORT FORM

CRFID

SUGGESTED CHANGE [Filled In By CRF Originator]

Onginoror Z+y2 L Dnre a/ A p l q 3
Change Descriprion [Idennh all nffecred documenrslversrons and wges 1

Effort For Undersrandng And Specifiing Change.

................................... f : :
I work hour I a k day I work wmk I work month

Whar acriviry led ro discovery of needfor change7

~ Code
__ Module Test
~ SuhsetTest

_____ Non-Project Activity
Miscellaneous

CHANGE CLASSIFICATION [Filled In By Originator And Change Engineers]

Basis For Chante.

Correction ofonginal error
~ Correction or completion of earlier change. CW:
~ Adaptanon to requirements CRF ,that is - -

~ requirements error
~ expected requirements change

Adaptanon IO change in suppon environment
unexpected requirements change

& improvement in - -

~ Other

performance
clanty, or rnamtamahility

(see hack vdt

CHANGE CLASSIFICATION [Filled In By Originator And Change Engineers]

Change Areas: /Mark nll opdored by change I

~ acmal input-output device, formats, or protocols
timing of systems functions
set of processes or their timing

~ UEhandling

(Nwnberj Baselined Borrom-Level Dcsign Modules Updared- (+) E C ‘ I o
(Nwnberj Baselined Bottom-Level Design Inrerfnces Updared’ (-) F C. I-0
(Number) Bnselined Docwnenrs Updated. (A) F= f 5 2 a c -

ERROR CLASSIFICATION [Filled In By Originator And Change Engineers]

Error Ca!&e(s)

Clerical
Designer or coder misunderstood
-Requirements
-interface specification
pPseudcode
-Pseudocode language
pProgramming environment
-Uses hierarchy
-Other

~ Other

Techniques Lending To Error Discmery And Resolurion

RESOLUTION LOG [Filled In By Change Engineers]

ngrneer Dnre /z JL4l)g3

Effort For Undemanding And Specihing Change-

:.... ../.. ;.. ;. ..
0 I work hour I w a k day I work week I work month -

DISPOSITION [Filled In By Head Of Configuration Control]

Dare: / 2 && 87
Fig. 2 . Completed CRF t o r m .

uating achievement of SCR project goals. The specific
design of the CRF form was based on a goal-directed data
collection approach [6]. In 1985, the use of paper CRF’s
was replaced by a computer-based CM tool.

STE researchers validated primarily those CRF’s that
were resolved either by official acceptance and incorpo-
ration into the baselined documentation, or by official re-
jection of the proposed change. Ideally, validation should
have been a continuing activity that occurred as CRF’s
were generated and resolved. Validation of SCR CRF’s,
however, tended to be an aperiodic activity in which large
groups of CRF’s were validated at one time. The valida-
tion consisted of checking completeness, accuracy, etc. It
often included discussions with persons who submitted the
CRF’s, authors of affected documents, and SCR CM per-
sonnel. A major validation point concerned what consti-
tuted a design or code change. Basically, the view taken
was that a change was conceptual: that is, one should have
been able to state a proposed change in a simple declar-
ative sentence and the change may comprise alterations to
one or more baselined interface specification or imple-
mentation documents. In addition, a change that was de-
scribed in one CRF similar to a change in a CRF resolved
and implemented in earlier baselines (i.e., a change that
required completion or correction to earlier baselined al-
terations) was considered a unique or new change. Thus,

a change was to have a unique basis-error correction,
adaptation to outside change, improvement, or other (see
Fig. 2). The notion of basis followed the scheme pre-
sented by Swanson (271. A proposed change that was re-
jected obviously resulted in no alterations.

This definition of a design or code change caused prob-
lems. Occasionally a CRF was submitted that incorpo-
rated more than one change, and different engineers
sometimes submitted the same change on difTerent CRF’s.
For example, it was not unusual for a CRF to describe
two conceptual changes as in the following:

“The last sentence of the description is ambiguous.
Replace it with . . * Note also that the word descrip-
tor is misspelled.”

A workable and reasonable solution used by STE re-
searchers for dealing with these situations was to split
submitted CRF’s that incorporated more than one change
into an appropriate number of CRF’s, such that each de-
scribed a single change. Multiple CRF’s that describe
identical changes were consolidated into one CRF. One
result of this policy was that there was not a one-to-one
correspondence between submitted CRF’s and validated
CRF’s. The other result was, of course, that there was a
one-to-one correspondence between proposed changes and
validated CRF’s.

7.12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 7. JULY 1990

There were other sections of the CRF that caused dif-
ficulties. One was the basis of an accepted change. A
problem was that it was not sufficient to define an error as
a discrepancy between a specification and its implemen-
tation. For example, an inadequate interface design was
considered an error; an adequate interface design needing
enhancements was considered an improvement. The only
reasonable solution to this problem was to let SCR lead
engineers decide in such situations. Another problem was
determining whether or not a change was a correction or
completion of an earlier change that was already incor-
porated in a baseline. The fact was, that after a long pe-
riod of time or after many versions of a document, authors
frequently forget earlier changes that had addressed the
same issues presented in current CRF's. For each of the
CRF's reported in this study, STE researchers reviewed
all versions of all documents baselined prior to resolution
of the CRF and discussed all questions with lead SCR
engineers. This was a laborious process but was necessary
to ensure that corrections or completion errors were prop-
erly identified.

Lastly, the SCR project's CM procedures were not per-
fect. Validators found a few CRF's that were not re-
solved, but, nevertheless, were implemented in published
specifications. The only reasonable solution for this was
to resolve such CRF's with the date of the latest baselined
specification and to submit CRF's for remaining aspects
of the change. Validators also found modifications for
which there were no corresponding CRF's. The policy for
this was to submit CRF's and record them as immediately
resolved with the date of issue of the appropriate base-
lined specifications.

111. OVERVIEW OF EARLY SCR CHANGE DATA
A. General

This paper is a summary of 325 validated CRF's that
were resolved by January 1984 (i.e., through the CRF's
were no longer validated by STE researchers.

By January 1984, engineers had submitted 424 CRF's.
The 325 CRF's reported here map to 296 (70%) of those
submitted and resolved by SCR CM personnel by that
date. Figs. 3 and 4 are profiles of resolution activity for
the CRFs.' By January 1984, approximately 47 500 per-
son hours had been expended on the SCR project. The
400 hours of resolution effort accounted for approxi-
mately 1 % of project activity. Table I presents the distri-
bution of the CRF's categorized by the originators' activ-
ities when the CRFs were generated.

A large proportion of CRF's originated during design
activity. In addition, by January 1984 only 15% of SCR
project hours were spent on pseudo coding, coding, and
testing activities. This means the changes reviewed in this
study can be characterized as changes that are typically
proposed and made early in software development. in
contrast with changes reported elsewhere [11, [151, (29).

'These figures. together with many of the following tigures. are plots of
cumulative data.

250

- Z I X I

C - 10 R

Fig. 3 . CRF accumulation

I - 350

- Z U I ::
5 I - ZlXl

- 51,

0

Ian 80 lrn-81 Jan-nz Jsn-83 J l R . 8 4
Dale orRcaluizon

Fig. 4. Cumulative efort in resolving CRF's

TABLE I
ACTIVITIES LEADING TO CRF ORIGINATION

Design (e.g.. Module Interface Specification)
Project Activiry:

Pseudo Code
Code
Test
Misc
unknown

209 (64%)
53 (16%)

1 (0%)
26 (8%)
I5 (5%)

Total: 16(5%)
Non-Project Acfivity (e.g.. CRF validation):

Twenty-eight (9 $6) of the 325 proposed changes were
rejected; this required approximately 18 hours (4 %) of the
total hours expended on the changes (see Figs. 5 and 6).
The 9 % figure is small compared to the 37% figure re-
ported by Day for major maintenance updates to an op-
erational Army command and control system [12]. It is
also smaller than the 20% figure reported by Shooman and
Bolsky for errors discovered and corrected during test and
integration of a modest-size control program at Bell Tele-
phone Laboratories [26]. The 4 % effort figure is compa-
rable to the 3 % figure reported by Day. Care must be taken
with these comparisons, however. These figures are from
different times in different project life cycles, and it is not
clear that there is a common definition of change. More
important, SCR requirements changes were a separate
SCR CM concern and were not incorporated in the data
reported here [8].

C H M U R A er U / : F,VALUATING S O F T W A R E DESIGN PROCESSES 733

< '

1 '
1

I"" Mi n i I an X I I*" x i Jan X-1

LMr (It Kc\"l"l.m

Fig. 5 . Rejected CRF's: percentage of total

1*n xi) Jan U I x? Jan 8 1 Jan X 1

Urlr <If RIIolulllln

Fig. 6 . Rejected CRF resolution etfort: percentage o f total.

The remaining 297 accepted CRF's resulted in modifi-
cations to 47 baselined module interface specifications,
most of which are packaged in two documents. No mod-
ule implementation documents (which include psuedo-
code) or code were affected for the simple reason that none
were baselined prior to January 1984. This limit of impact
to interface specifications means that the 297 changes can
be further characterized as early design changes.

The bases for the 297 accepted changes are presented
in Table 11. None of the changes were the result of changes
to the software requirements specification. This can prob-
ably be attributed to the following:

1) an extensive requirements specification was gener-
ated prior to design [171,

2) the requirements specification has been shown to be
relatively error free and remarkably free of ambiguities
t81,

3) as noted earlier, the changes reported can be char-
acterized as early changes, and

4) the SCR project is redeveloping software for a fixed
operational version of the A-E flight software.

The percentage of error corrections (see Table I1 and
Fig. 7) is higher than the range (40-64%) reported Basili
and Weiss [11, [29]. But it is far lower than the 96% figure
reported by Shooman and Bolsky [26] and is decreasing.
The proportion of total CRF effort spent on error correc-
tions (Fig. 8), even though decreasing. sharply contrasts
with the 17% figure reported by Lientz and Swanson [18)
for commercial data processing software maintenance ef-
forts, and the 2 1 % figure reported by Day [121. It should

Error Corrections:
Original 144 (486)
Continuation or Completion 55 (19%)

Total: 199 (67%)
Modijcatiom:

Adaptation to requircments change 0 (0%)

Improvement in performance 2 (I%)

Other 1 (2 %)

Adaptation to suppon environment change 0 (0%)

Improvement in clarity 89 (30%)

Total: 98 (33%)

1 I

I*" U 0

I,, ti

Fig. 8. Error corrcction etfort: percentage of acccptcd CRF resolution
c.llOrt.

be noted again, however, that the SCR requirements doc-
ument change data are not included in this summary.

The proportion of error corrections that involved com-
pleting or correcting a prior change (see Fig. 9) is large
as compared to the 6-12% range of figures reported by
others [l] , 1281, [29] and seems to be increasing in a step
fashion. The 12% figure is computed from data presented
by Weiss (281 and by Weiss and Basili (291. This large
proportion could be the result of the many hours spent by
STE and SCR engineers in assuring the correct identifi-
cation of correction and completion errors.

B. The SCR Euse-oj-Cliciiige Goul
A major objective of the SCR project was to produce

software design, code. and a documentation set that could
be used to scope and to implement changes easily. The
SCR design and code change CRF was designed explic-

~

734

v1

1 ,
T

g 20-

k

l*"~sO lan-81 la"-82 la" R3 la" XJ
D m of R ~ s l u u o n

Fig. 9. Correction or completion errors: percentage of error corrections.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 7. JULY 1990

itly to collect data to try to evaluate achievement with
respect to this objective.

Fig. 10 presents the distribution of effort required for
understanding and incorporating the 297 accepted changes
into the SCR project's design documentation set; Fig. 11
presents the distribution for error corrections only. Only
one of the 28 rejected CRF's was not implemented be-
cause the proposed change was deemed not worth the ef-
fort. Most changes (81%) took'an hour or less to under-
stand and resolve; 98% took a day (i.e., 8 person hours)
or less. Eighty-six percent of the error corrections took an
hour or less to understand and resolve; 99 % took a day or
less. Although the data presented in Figs. 10 and 11 ex-
hibit downward trends, these data seem to suggest that,
for early changes and error corrections, SCR engineers
were meeting their major objective. For errors uncovered
and corrected late in the life cycle of a NASA/Goddard
Software Engineering Laboratory project, Basili and Per-
ricone [11 report 36% of the error corrections took an hour
or less; 55% took a day or less. For errors uncovered and
corrected late in the Wuhan University Problem Analysis
Diagram Translator project, Xu reports 24% of the error
corrections project took an hour or less; and 80% took a
day or less [30].

Fig. 12 presents the cumulative average effort for all
SCR changes and error corrections. There appeared to be
a step growth in cumulative average change effort as the
SCR project proceeded. This is consistent with Boehm's
data that show an exponential growth in cost to fix or
change software for successive phases of the software life
cycle [4]. Although consistent, the average change effort
for the early SCR design changes nevertheless seems quite
small. Fig. 13 presents the effort for an error correction
based on number of days that the error was in the system.
The figure "days in system" is the difference between
CRF resolution date and the earliest issue date for the in-
terface specifications containing the error. Boehm's data
imply that the longer an error remains undetected and un-
corrected in a system, the greater the cost of the eventual
error correction. Surprisingly, this effect does not appear
in the SCR data; the correlation between days in system
and average effort is 0.07, which is not significant at the
0.05 level. There may be several reasons for this. The
first is that SCR requirements change data are not in-

- 10 .a
0

-6 0 F

T - ' 0 0
T A

- 40

- 10

,an R I 1%" 82 la" 83 la" 84 Jan RO

-"ourorLerr -Hour< 6Day - D a y < l W c c k

Fig. 10. Accepted CRF's categorized by resolution effort

- 80

pu - m

- 6 0 p
T

T
. 50 o

- 40 ;
- 30
- 20

Jan-81 la" R2 lan-83 la" R4
o.lr"rr~*l"rm ~ ~ ~

J r n - R O

- H ~ ~ ~ ~ ~ L ~ ~ ~ - Hour< <Day - Day < I Wcck
~ ~~

Fig. 1 1 . Error corrections categorized by resolution effort

- 1 6

- 06

- 04

- 0 2

Fig. 12. Cumulative average CRF effort.

jO]

30

0 100 200 300 400

DAYS IN SYSTEM

Fig. 13. Duration of an error in the system.

.- I ~~ .

C H M U R A ('/ U / . : E V A L U A T I N G S O F T W A R F DESIGN PROCESSES

,

735

,ti

*ti ,;
,

3 ,) y

i I

I,, -. ..
-

cluded here. The second is that the changes reported here
can be considered to be only design-phase changes, and
more of the SCR project's life cycle might have had to
pass before any relationship appeared. The third is that
there were many very low effort changes. And the fourth,
of course, is that the SCR methodology may, indeed, have
lessened the impact of long-term unresolved errors!

The information hiding principle was used in the SCR
project for identifying and specifying a hierarchy of de-
sign modules [2 5] . A module was supposed to hide a likely
changeable aspect of the A-7E flight software. This meant
that a module's interface specification must be written
such that the hidden information was not revealed; that is,
a module's hidden information was available only to the
implementors of that module. The anticipated result was
that, when an expected change occurs, only one or two
low-level module implementations (i.e.. no interfaces)
would need modification. Fig. 14 presents the distribution
for the number of lowest-level modules updated by
changes (i .e. , the ripple efi'ect of changes). Such modules
were considered to be "updated" if their interface spec-
ifications (implementation documents. or code) were up-
dated. unless the updates were to ancillary items such as
indexes and tables of contents. Most early SCR changes
(90%) updated zero or one modules, and this percentage
is relatively constant. The data presented in Fig. 15 are a
special case of the data presented in Fig. 14. Fig. 15 pre-
sents the distribution for the number of lowest-level mod-
ules which had interface specifications updated (i.e., in-
terfaces updated because of changes). A module interface
is considered to be "updated" if a change to its specifi-
cation (or implementation document. or code) caused, or
would have conceivably caused, a change to programs of
other modules that use, or would eventually use, capabil-
ities provided by the module. Examples of interface up-
dates are the moditication of a parameter type and the ad-
dition of a sysgen parameter. The percentage of early SCR
changes that resuited in updated interface updates (56%)
was growing. The percentage of changes updating two or
more interfaces (12%) was also growing. These latter
trends seem to suggest that a greater ripple effect and a
more uniform distribution of change effort could have been
expected later in the SCR pro.ject.

C. Clzarige Data Related to Personriel Acri1,ity Datu
SCR project engineers reported their activity weekly

using activity forms designed by STE researchers (see
Norcio and Chmura) [20]. The design and code data can
be related to collected personnel activity data because
origination activity was captured for each CRF (see Fig.
2). Fig. 16 presents the ratio of the cumulative changes
uncovered during specific SCR activity (i.e., design,
code, and test) to the cumulative project hours expended
on that activity. Fig. 17 presents the ratio of cumulative
hours for changes uncovered during an activity to the cu-
mulative pro.ject hours expended on the activity. Interest-
ingly, both show a similar pattern. Coding activity, which
also includes pseudo coding activity, was the most "ef-

/I

- fL ; . ,

.

0 I

l,,

. __ . . . ,I

- 0 I I - ,,>Ore Ih.3" 2

Fig. 15. Accepted CRF'\ catcporized hy numhrr of interliices updiitcd.

/-

x
, I " X l i , i n X I I,<" h l I d " *: J i l L

L) / I C . J , on,, -. - c , x , r c
Fip. 17. Ratio o t cumulative CRF resolution etl'ort f o r CRF'\ unco\cred

by an activit) to cuniulativc pro.jcct h o u r a expended o n activit).

ficient" way for uncovering needed niodifications and er-
rors, followed closely by testing activity. But. this was
true only initially. In the long run for the SCR project, it

136 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 7, JULY 1990

- I 2

x

I -0
Jan 80 Jan 81 Ian 82 Jan 81 Jan 84

- Accepted CRFs - Error Corrections

Fig 18 Ratios of cumulative accepted CRF’s and error corrections to cu-
mulative project months.

seems that that design, code, and test activity were all
equally efficient in terms of uncovering the need for
changes. It should be noted, however, that the amount of
coding (6504 hours) and testing (1 188 hours) that accu-
mulated by January 1984 were small compared to the
amount of design (21 742 hours).

The ratio of cumulative error corrections to cumulative
project work months and the ratio of cumulative accepted
changes to cumulative project months appear in Fig. 18
(one work month equals 160 person hours). Although the
ratios appear to be increasing, both are small compated to
the data reported by Weiss and Basili [29]. They report
approximately 2-3 error corrections per work month.

IV. DATA ANALYSES
In previous analyses of SCR personnel activity data,

Norcio and Chmura discovered that one ratio between two
subactivities of SCR design activity correlates signifi-
cantly over time with the cumulative design hours for the
module [20]. The ratio is between a SCR module’s cu-
mulative design discussing hours and its cumulative de-
sign creating hours. The ratio has been referred to as the
progress indicator ratio (PIR). When the release dates for
module specification baselines are examined with respect
to a graph of the PIR, patterns are readily apparent that
may indicate relative instability of the module interface
specification. SCR module interface specifications were
rarely updated more than twice after this ratio became
“stable” (i.e., showed small monthly change). In other
words, if a specification baseline is issued before the ratio
rises sharply or during a sharp rise, such a pattern seems
to suggest that the baseline is probably far from complete.

A major complication with the PIR is that it requires a
data collection scheme that accurately captures intricate
information about personnel activity during the design
process. Even though this seems possible to do accurately
[7], it is fair to say that few software development efforts
could readily afford and tolerate the collection operation.
Because many design efforts routinely record software
change data, we have looked at the SCR change data for
information similar to that provided by the PIR. Fig. 16
suggests an alternative-a ratio between cumulative
CRF’s uncovered during design of a module and cumu-
lative design hours for the module. It is an attractive al-

TABLE 111
SECOND-LEVEL SOFTWARE MODULES WITH SPECIFICATION BASELINES B Y

J A N U A R Y 1984

Abbreviation

Extended Computer
Function Driver
Shared Services

TABLE IV
TOTAL NUMBER OF CRF’s A N D DESIGN HOURS B Y DECEMBER 1983

CRFs Resulting Earliest CRF
Module From Design Date Of Origin Design Hours

Mar8 1
Sep8O
Mar81 1418

FD Sep8O 1235
ss Jan81 1848

ternative because intuition suggests that a module’s inter-
face design might be unstable while its designers are
generating and resolving CRF’s.

Table 111 lists some of the second-level modules of the
multilevel hierarchy of information-hiding modules re-
sulting from the SCR design activity [5] . These modules
had interface specifications with one or more baselines by
January 1984. For each of the modules, two time-based
ratios between the number of CRF’s resulting from that
module’s design activity and the module’s cumulative de-
sign hours can be computed and plotted. One ratio is based
upon CRF date of origin; the other on date of resolution.
Table IV is a summary of the data underlying these ratios
for the modules listed in Table III.4

A . Date of Origin Ratio
For each module, the date of origin ratio (DOOR) is

defined as the ratio of the cumulative CRF’s by date of
origin uncovered during design of the module to the cu-
mulative design hours for the module. DOOR’s for SCR
modules are presented in Figs. 19-23. The vertical lines
in these figures indicate isue dates for module specifica-
tion baselines. Pearson product moment moment corre-
lation coefficients (r) and coefficients of determination (2)
between DOOR’s and the original PIR’s for each module
with ten or more CRF’s are presented in Table V [141.
The time period over which correlations are computed be-
gins with the date of origin of the earliest CRF as pre-
sented in Table IV.

As can be seen in Table V, the correlation between
DOOR and PIR for FD module is negative. This is not a
problem. It merely means the two ratios are slightly os-
cillating in opposite directions. The important and signif-
icant point is that (2) is necessarily positive and signifi-

‘Even though the number o f CRFs for the AT module is only 2. these
data are reported here and in Figs. 14 and 24 for completeness. These data
for this module were not used in the subsequent statistical analyses.

CHMURA EI r r l EVALUATING SOFTWARE DFSIGN PROCESSFS 771

n

TOTALCKbr ?

Fig. 19. Date of origin ratio for AT.

'I
I*".?# la" 7Y Ian 311 Id" XI 1.3" x2 Jd" x1 J r n *a

D r , c o i i h p n

Fig. 20. Date of origin ratio for D1

Jan 7" ,a" 79 Jan 80 Jan 81 I"" xz I*" " 3 I"" x 1
llllr "i(h,E,,>

Fig. 21. Date of origin ratio tor EC

h

Fig. 23. Date of origin ratio lor SS

~ 1 0.985 0.970 ~

-0.679 0.461

cantly high, which means that both ratios are behaving in
very similar fashions.

B. Date of Resolutiorz Ratio
The date of resolution (DORR) is the same as the

DOOR except that CRF date of resolution is used rather
than date of origin. DORR's for SCR modules are pre-
sented in Figs. 24-28. Again, vertical lines indicate base-
line issue dates. Pearson product moment correlation coef-
ficients (r) and coefficients of determination (r ') between
DORR's and the original PIR's for each module with ten
or more CRF's are presented i n Table VI [141. The time
period over which correlations are computed is the same
as for the DOOR.

C. Possible Iiylicatioris
Analyses of the design CRF data suggest that. in sonic

cases, fairly simple change and personnel activity data
may be used as an alternative to the originally proposed
PIR. The DOOR'S and the DORR's for modules with a
significant number of design changes show a strong rela-
tionship to the original PIR's. The DOOR explains 52. 97
and 46% of the variation in the original PIR's for the DI.
EC, and FD modules; the DORPIR. 49, 94, and 50%.

When issue dates for published baselines are superin-
posed upon the DOOR and DORR plots, patterns rem-
niscent of those observed with the original PIR are ob-
served. Baselines that appear during times of instability
in the DOOR or DORR are soon followed by other base-
lines. For module designs that have been specified with
only one or two baselines, one sees a prior instability with
the DOOR and DORR, a downward trend, issuance of the
baseline, and then relative stability. For other modules.
this pattern is lacking for one or more of the earlier base-

738 lEEE TRANSACTIONS ON S O F T W A R E ENGINEERING. VOL. 16. NO 7. JULY 1990

TOTALCKFr *

O!"",'

I ._-__ <I

Jan-78 J r n - 7 V Jm 80 Id" 81 Im-82 Jan 81 Jan "1
D ~ W "r ncToiullon

Fig. 24. Date of resolution ratio for AT.

TOTALCRFr I 1

Fig. 25 . Date of resolution ratio for DI.

TOTALCKF, 21

I

(101

Fig. 2 7 . Date of resolution ratio for FD

N
I

I'!> 7x I*" 79 la"-UII 14" x i Jrn-ti? lan-81 Jan 81
Ih,. O f R<WI",l""

Fig. 28 . Date of resolution ratio for SS

TABLE VI
PEARSON CORRELATION C O E F F I C I ~ N T S BETWEEN DORR A N D PIR

lines. In other words, the DOOR and DORR both may
indicate the incompleteness of interface specifications. If
these ratios have not surged and then turned downwards
prior to appearance of a baseline and, subsequently sta-
bilized, then the design of the module's interface may not
be complete, irrespective of the claims of software engi-
neers and the information in published documents.

V. SUMMARY A N D CONCLUSIONS

A study of the SCR project's early change data and
analyses of time-based relationships shows the following.

1) There was a high proportion of error corrections and
error correction effort, although time-based plots of these
statistics show that both were on the decrease.

2) The percentage of error corrections that involved
completing or correcting a prior change was far higher
than has ever been reported, and this percentage was in-
creasing.

3) The percentage of changes that took a day or less to
resolve was extremely large, but was decreasing. Con-
sistent with this decrease was a stepwise growth in aver-
age change effort, a growth in the percentage of changes
that involve modifying module interfaces, and a growth
in the percentage of changes involving two or more mod-
ule interfaces.

4) Surprisingly, no relationship was shown between
change effort and number of days that an error exists in
the documentation.

5) Coding activity, followed by testing activity, was
the most efficient way of uncovering needed modifications
and error corrections. In the long run, however, it seems

C H M U R A ('f (I / . : E V A L U A I I N G S O F T W A R E IlhSIGN PKO('ESSC.S 739

that design, code, and test activity were all equally effi-
cient.

Analyses of the design CRF data and their relationships
to personnel activity data show two ratios that may be
useful to design managers in assessing the progess of the
software design process. Referred to as the DOOR and
DORR, the ratios exhibit patterns seemingly related to the
incompleteness of interface specifications. If these ratios
have not surged and then turned downwards prior to the
appearance of a baseline and, subsequently stabilized,
then it would not be surprising to see several more spec-
ification baselines in the future. The ratios are attractive
alternatives to an earlier-reported PIR ratio because they
are based on simple design activity data and on change
data close to the kinds typically collected on software
projects.

There are some drawbacks to the DOOR and the DORR
as potential indicators of design progress. One is that they
are later indicators as compared to the original PIR. An-
other is that they are based heavily on the responsiveness
and timeliness of a project's change control process. If
changes are not resolved promptly, any potential relation-
ships between these ratios and design progress may be
weakened.

It must be noted that we do not claim that the DOOR
or DORR are measures of the completeness of an inter-
face design. There may be many reasons why the ratios
stabilize (e.g., personnel have been assigned to another
module or have taken vacations). For SCR modules, how-
ever, the ratios do show readily apparent patterns that are
strikingly different for modules with a history of many
specification baselines than for those without such a his-
tory.

ACKNOWLEDGMENT

We are especially indebted to P. Clements who, as lead
SCR software engineer, patiently assisted CRF validators
in resolving problems that were encountered. Another
contributor was Ms. IC. Kragh, who for several years en-
tered change and activity data into a computer database,
checked the accuracy of each entry, and updated every-
thing when, for example, the names of modules changed.
Without her diligence, this paper could not have been
written. We would also like to thank the referees and ed-
itor for thoughtful and helpful suggestions on earlier drafts
of this paper.

REFERENCES

[I] V . R. Basili and B. T . Perricone. "Software errors and complexlty:
An empirical investigation." Corwriirrt. ACM, vol. 27. pp. 42-52.
1984.

[?I V . R. Basili and D. M. Weiss, " A methodology for collecting valid
software engineering data." / € € E Trtrii.\. S~Jii i~rrt , €,i,q. . vol. SE- IO .
no. 6. pp. 728-738. 1984.

131 L. A. Belady and M. M. Lehman. "A model of large program de-
velopment." IBM S w . J . . vol. 3 . pp. 225-252. 1976.

1-11 B. W. Boehnl. S~fii ivrrc, €rt,qimvriii,q Ecor io i r i i~~ . \ . Englewood Cl~ffs.
NJ: Prentice-Hall. 1981

[SI K . H. Britton and D. L. Parnas. A-7E Module Guide. Naval Res.
Lab.. Washington, DC. Rep. 4702. 1981.

161 L. J . Chmura. "Proposed new design and code change report fcirin
(CRF) for the software cost reduction (SCR) pro.ject." Naval Res.
Lab.. Washington. DC. Tech. Memo. 7590-34:LC. 1983.

171 L. J . Chmura and A. F. Norcio. "Accuracy of software activity data:
The software cost reduction project." Naval Res. Lab.. Washington.
DC. Rep. 8780. 1983.

181 L. J . Chmura and D. M. Weiss, "The A-7E software requirements
document: Three years of change data." Naval Res. Lab., Washing-
t o n , DC. Memo. Rep. 4938. 1982.

191 V. Church. D. Card. F. McGarry. and V . Basili. "Guide to data
collection." NASA/Goddard SEL. Greenbelt. MD. Tech. Rep. SEL-
81-001. 1981.

[I O] P. C. Clements, "Software cost reduction through disciplined de-
sign." Nrriul Res . Ltrh. 1984 R r i , . , pp. 79-87. 1985.

[I I] P. C. Cleinents. R. A . Parker. D. L. Parnas. and J . Shore. "A stan-
dard organization for specifying abstract interfaces." Naval Res. Lab..
Washington. DC, Rep. 8815. 1984.

[I?] R. Day. " A hiatory ofsoftware maintenance fora complex U.S . Army
battlefield automated system. ' ' in Proc. CoriJ: So$it.crrc, Mtr i~irrr~cr i~c~c~.
1985. pp. 181-187.

1131 E. W. Dijkstra. "Cooperating sequential processes." i n Pro,yrtrr?r-
i i i i n x Lorisqutrgr.s, F. Genuys. Ed. New York: Academic. 1968. pp.

141 W. J . Dixon and F. J . Masscy. Jr . . /r~froc/ i~c.f ior~ IO Sfcrfi.sfictrl A m / -
v t i s . Nev, York: McGraw-Hill, 1969.

IS] A . Endreh. "An analysis of errors and their causes in system pro-
grams," 1EEE Trtrns. Soffii.trrt, 0 1 , y . . vol. SE-I. n o . 2. pp. 140-149.
1975.

161 R. B. Grady. "Measuring and managing software maintenance."
/ € € E S o J h r r r . pp. 35-45 Sept. 1987.

171 K . L. Heninger. J . W. Kallander. J . E. Shore. D. L. Parnas. and
Staff. "Software requirements for the A-7E aircraft." Naval Res.
Lab.. Washington. DC. Memo. Rep. 3876. 1978.

[181 B. P. Lientz. E. B. Swanson. and G. E. Tompkins. "Characteristics
of application software maintenance." C ~ J J ~ I L O I . ACM. vol. 2 I. no.
6. pp. 466-471. 1978.

[191 B. Meyer. "On formalism in specifications." lEEE S ~ f i i i ~ r r ~ , vol. 2.
no. I. pp. 6-27. 1985.

1201 A. F. Norcio and L. J . Chmura. "Design activity in developing mod-
ules for complex software." in €irtpiric.tr/ Sf i td ies o/ Pri,,qrrrr~rr"t,r.s,
E. Soloway and S. Iyengar. Eds.

1211 A. Parker. K . L. Heninger, D. Parnas. and J . Shore. "Abstract in-
tert'ace specification for the device interlace module." Naval Res.
Lab.. Washington. DC. Memo. Rep. 4385. 1980.

1221 D. L. Parnas. "On the criteria to be used in decomposing systems
into modules." Corrwrirtr. ACM. vol. 15. pp. 1053-1058. 1972.

1231 -. "Use of abstract interfaces in the development of software for
embedded systems." Naval Res. Lab.. Washington. DC. Rep. 8047.
1977.

1241 D. L. Parna\ and P. C . Clements. " A rational design process: How
and why to fake it." lEEE Trriti.5. S(:fiii~ire Errg.. vol. SE-12. n o . 2 .
pp. 251-257. 1986.

(251 D. L. Parnas. P. C . Clcmenta. and D. M. Weiss. "The modular
structure of complex systems." lEEE Trcrm. Sofiiiwrc E n q . . vol. SE-
I I. no. 3. pp. 259-266. 1985.

126) M. L. Shooman and M. I . Bolhky. "Types. distribution. and test and
correction times for programming errors." in Pro(, . / t i l . Cotif: Rrli-

1271 E. B. Swanson. "The dimensions of maintenance." in P r r ~ . S c w m l
1 1 1 f . Cor!/. Sofiiwrc, 01,qiricc,riit,q. 1976. pp. 492-497.

[28] D. M. Weish. " A comparison of errors In ditlkrent aoftware-dcvcl-
opment environments," Naval Res. Lab.. Washington. DC. NRL
Rep. 8598. 1982.

1291 D. M. Wetss and V . R. Basili. "Evaluating software development by
analysis of changes: Some data t m m the Software Engineering Lab-

Trtr1i.s. S , ! f i i i ~ r r c E I I , ~ . . vol. SE- I I. n o . 2 . pp. 157-
168. 1985.

1301 R. Z. X u . "An cnipirical investigation: Soltwarc crrors and their in -
fluence upon development of WPADT." in Proc. COMPSAC 85.
1985. pp. 4-8.

43-1 12.

Norwood. NJ: Ablex. 1986.

trhlc, Sofill~trr<,, pp. 347-357.

740 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. N O . 7. JULY 19YO

L. J. Chmura, Jr. received the Bachelor's degree in mathematics and the
Master's degree in computer science.

He is a Computer Scientist with the Terrestrial Systems Branch of the
Naval Research Laboratory in Washington. DC. His research interests in-
clude software development methodologies. development environments.
empirical studies of methodologies. and human-computer interfaces.

A. F. Norcio received the Bachelor's degree in economics. the B.S. degree
in statistics. and the Ph.D. degree in psychology.

He is an Associate Professor in the Department of Information Systems
Management of the University of Maryland. Baltimore County. He is also
a Computer Scientist at the Human-Computer Interaction Laboratory ot
the Naval Research Laboratory in Washington. DC. His research interests

are in the areas of human-computer interfaces. software design. and intel-
ligent systems. He has published several dozen papers in a variety ofjour-
nals and periodicals. He has served on planning committees for many major
national and international conferences. and regularly reviews papers for
journals of several learned societies and professional publishers.

Dr. Norcio is a member of the American Association for Artificial In-
telligence, the Association for Computing Machinery, the Human Factors
Society, and the IEEE Computer Society.

T. J. Wicinski, photograph and biography not available at the time of
publication.

