
142 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 6. JUNE 1988

The Common Ada Programming Support
Environment (APSE) Interface Set

(CAIS)
PATRICIA A. OBERNDORF

Abstract-This paper discusses the Common APSE Interface Set
(CAIS) and its relationship to issues, in the development of environ-
ments. The CAIS concepts and features are described, followed by a
discussion of several ways in which the CAIS provides valuable capa-
bilities for environment architectures and construction.

Index Terms-Interfaces, operating system interfaces.

I. INTRODUCTION
HE Common Ada Programming Support Environ- T ment (APSE) Interface Set (CAIS) is a set of operat-

ing system level interfaces designed to facilitate the
source-level transportability of tools between APSE’s. For
the purpose of the CAIS, transportability is defined as:

“the ability of the tool to be installed on a different
Kernel APSE (KAPSE); the tool must perform with
the same functionality in both APSE’s. Transporta-
bility is measured in the degree to which this instal-
lation can be accomplished without reprogram-
ming” [2].

The interfaces are defined at the level at which tools
customarily interact with operating systems. The CAIS
provides interfaces to those traditional operating system
services that affect tool transportability, such as file
administration and manipulation as well as process con-
trol. The interfaces are specified as Ada procedures and
functions and are presented as a group of Ada packages.
The CAIS is intended to provide the transportability in-
terfaces most often required by common software devel-
opment tools. It is not intended to provide all interfaces
that might ever be needed by all tools.

The DoD Ada Joint Program Office (AJPO) initiated
the development of the CAIS in 1982. A group of inter-
national experts from government, industry and academia
was tasked with defining the CAIS. This team, called the
KAPSE Interface Team (KIT), defined the initial version
of the CAIS over the course of about four years. The in-
terface specification, designated DOD-STD- 1838 [11, was

approved as a military standard on October 9, 1986 and
officially issued in 1987. In December 1985 a contract
was awarded for definition of the first revision, DOD-
STD-l838A, which is due for completion and standard-
ization by the end of 1988. Prototyping work has been
done by several different groups on a variety of host sys-
tems, and several Ada tools that use CAIS interfaces have
been developed.

The original concept, motivation, and requirements for
the CAIS were derived from STONEMAN [3]. STONE-
MAN defined the architecture for an Ada Programming
Support Environment (APSE). This architecture is rep-
resented in Fig. 1. The innermost layer represents the un-
derlying host machine and operating system. The next
layer, the KAPSE, represents a layer of software which
provides, in a host-independent manner, the host services
required by tools. The tools of an APSE are divided into
those minimally required to support Ada programming
(e.g., the editor, compiler, linker), called the Minimal
APSE (MAPSE), and the broader spectrum of tools
needed to support software engineering in general (e.g.,
those supporting requirements, design, testing, document
production), called the APSE. The CAIS can be thought
of as the interface at the surface of the KAPSE layer, lying
between the tools and the KAPSE software which realizes
the CAIS services by translating them into the codes of
the underlying host system.

The CAIS has been designed on these foundations and
in keeping with more recent, evolving ideas about the re-
quirements for integrated software engineering environ-
ments. Thus the CAIS provides many features that are
important to the development of environments in general.
The next section of this paper gives a technical overview
of the CAIS, covering those features which are found in
DOD-STD- 1838 (Sections 11-A-11-D) and then discussing
(in Section 11-E) the ways in which DOD-STD- 1838A will
build on these basic features. Section I11 describes how
these features are of benefit in the construction of envi-
ronments.

Manuscript received January 15, 1988. This work was performed under 11. TECHNICAL OVERVIEW
The concepts underlying the CAIS are designed to pro-

vide a common, partial host system encapsulation that can
the sponsorship of the Ada Joint Program Office.

The author is with the Naval Ocean Systems Center, San Diego, CA
92152.

IEEE Log Number 8820969. be implemented on virtually any existing host operating

U.S . Government work not protected by U.S . copyright

OBERNDORF: COMMON APSE INTERFACE SET 743

Fig. 1. Components of an Ada Programming Support Environment

system or on a bare machine. This host encapsulation is
a reflection of the common practice today for writing
transportable tools.

Within this context, the CAIS provides a common, uni-
form, and simple system model, based on entity-relation-
ship-attribute (ERA) concepts. Most current efforts to de-
velop integrated environments utilize ERA models. Such
models support the environment goal of making admin-
istrative information (i.e., information about the infor-
mation) visible for tools in a common framework, thus
facilitating transportability and integration of whole proj-
ects. The ERA approach allows the user to define entities,
the interrelations between them, and the properties (attri-
butes) known about the entities and the interrelations. In
this way information which today is typically encoded in
naming conventions or registered only in someone’s
memory is made explicit in the database. The common
model avoids the dangers of multiple tools maintaining
duplicate (and possibly inconsistent) data while providing
a framework for integrating tools. The uniformity and
simplicity are intended to make it natural and comfortable
for tool writers to develop CAIS-hosted tools.

The ERA model provides a basis for tools to share and
understand common data. It makes it possible for tools to
operate effectively on all shared administrative informa-
tion in an implementation across homogeneous and even
heterogeneous host systems. This explicit sharing of in-
formation establishes another aspect of the framework in
which additional integration issues can be addressed.

The CAIS is designed to be open-ended and capable of
evolving over time as the technologies of environments
and host systems evolve. The interfaces are also designed
to be usable by any tool, regardless of methodological
considerations. They allow access to underlying host op-
erating system capabilities where needed while imposing
almost no restrictions on tool writer methodology. This
open-endedness is essential to providing the basis for the

realization of the goals for modern (current and future)
environments.

There are three basic groups of interfaces which pro-
vide the most important features of the CAIS. These sup-
port the node model, process management, and input and
output.

A . The Node Model
At the heart of the CAIS is an ERA-based concept called

the node model. It provides for the administration of the
entities which are commonly dealt with during software
development projects, such as files, processes and de-
vices. In the node model, each such entity is represented
by a node. Interrelations between nodes are represented
by relationships. Both nodes and relationships have attri-
butes describing their properties. In addition, nodes may
be used to group other nodes in the node structure, not
directly representing a file, process, or device themselves.
In this way they can be used like directories in conven-
tional operating system file systems. Within this frame-
work it is possible to administer the people, items, and
activities which make up software development projects
in a very natural way. An example of a CAIS database
using the node model is shown in Fig. 2.

Relationships can be either primary, providing a hier-
archical back-bone to the node structure, or secondary,
providing a network orientation. Every node is the target
of exactly one primary relationship, but secondary rela-
tionships have no such restriction. There is a conceptual
root node to the overall hierarchy, thus providing (via pri-
mary relationships) at least one unique path to every node.
Nodes are identified by the concatenation of the names
associated with the relationships along a path from some
starting node ending at the desired node. Since always
having to use full pathnames could result in significant
performance penalties, two mechanisms for pathname ab-
breviations are provided.

Interfaces are provided to perform the functions which
are expected. Thus tools can create, copy, delete, and re-
name nodes and copy and delete subtrees (based on the
hierarchy provided by the primary relationships). Both
predefined and user-defined relationships and attributes
can also be created and manipulated. Interfaces are pro-
vided for iterating over the relationships or attributes of a
given node.

The CAIS definition provides several predefined attri-
butes which provide special information about nodes.
Chief among these are the timestamp attributes which re-
cord when a node was created and when the relationships,
attributes, and contents were last written. Such attributes
are key to most configuration management schemes.

Support for both discretionary and mandatory access
control, as defined in [4], is provided in the CAIS. Access
to nodes is controlled at the level of the whole node and,
for discretionary access control, at the granularity of con-
tents, attributes, or relationships. Access control is rep-
resented using the node model and so is completely inte-
grated into the CAIS structure. Processes can change roles

~

14 4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 6, JUNE 1988

SYSTEM LEVEL NODE

standard-output

FILE NODES

STRUCTURAL NODES

U
0
0 PROCESS NODES

I 4 PRIllhRY RELATIONSRIPS I I / secondary relationshipi

Fig. 2 . CAIS Node Model Example.

and set access control information using interfaces which
modify relationships and attributes. Access synchroniza-
tion is provided at the same granularity as discretionary
access control for establishing exclusive access, i .e.,
locking against simultaneous access by two different pro-
cesses. The ability to lock at this level of granularity has
distinct performance advantages.

B. Process Management
The CAIS interfaces support a process model. Pro-

cesses are also represented as nodes in the node model,
so process naming is consistent with the naming of all
entities in the information base. Most of the information
in Section 11-A applies equally to the process nodes. A
CAIS process represents the execution of an Ada pro-
gram. The CAIS process model provides the ability to
spawn (i.e., continue in parallel with) or invoke (i.e., wait
for) a child process. Other process control operations such
as suspend, resume, await and abort are also provided.
Both dependent processes (i.e., a process which cannot
continue to exist if its creator no longer exists) and inde-
pendent processes (i.e., one that can continue after its cre-
ator has ceased to exist) can be created. Several prede-
fined attributes peculiar to process nodes are supported,
giving such information as the times at which the process
started and finished, the machine-time consumed and the

process size (i.e., the amount of memory currently in use
by the process).

It is important that the CAIS provide a process model
in addition to Ada’s tasking model because there are some
important differences between task interaction within a
single program and process interaction between indepen-
dent programs. The most critical difference is that task
interactions require that the tasks be compiled together
within a single program. An environment cannot afford to
be limited to such a paradigm. It would require that por-
tions of the environment be recompiled and the entire en-
vironment be relinked every time a new, concurrently ex-
ecuting tool is added, which would be entirely
unacceptable. In today’s environments, it cannot even be
guaranteed that separate tools will be compiled with the
same compiler, let alone as part of the same monolithic
program. Instead, an environment must provide a means
of process interaction which depends only on what inde-
pendent programs can be reasonably expected to know
about one another.

C. CAIS Input and Output
The CAIS provides several basic forms of input and

output. First, it supports forms of DIRECT-IO, SE-
QUENTIAL-IO, and TEXT-IO which are very nearly
identical to what is provided in Chapter 14 of the Ada

OBERNDORF: COMMON APSE INTERFACE SET 745

Reference Manual [5] and which can be used to imple-
ment Ada input and output on top of the CAIS. The main
differences are in the additional semantics required in or-
der to maintain consistency in the underlying CAIS infor-
mation base.

Secondly, the CAIS supports three basic types of ter-
minals: scroll (e.g., TTY’s), page (e.g., VTlOO’s) and
form (e.g., IBM 327x). These support the main kinds of
user interactions which are found in many of today’s en-
vironments, as appropriate to the features of the respec-
tive terminal types. All three of these terminal packages
are based on ANSI standards.

Thirdly, the CAIS supports the ability to control and
make use of magnetic tape drives, including the abilities
to mount and load tapes and to query various status indi-
cators. This, too, is based on ANSI standards.

Finally, the CAIS supports the ability to export files to
the underlying host file system and to import files from
the underlying host file system to the information base.

definition of a common external form designed to fa-
cilitate the movement of node model databases from one
environment to another

transactions
explicit support for distribution
more devices for input and output, including more

sophisticated terminal capabilities.
These features will serve to increase the sophistication

of the support available from the CAIS. By and large,
they are features which are either currently in use in to-
day’s environments or which have been identified as being
important to architectural concepts for the environments
of the future. In the work now underway to define DOD-
STD-l838A, all effort will be made to add these features
in a way that is upwardly compatible with DOD-STD-
1838.

111. RELATIONSHIPS TO THE DEVELOPMENT OF

INTEGRATED ENVIRONMENTS
All files and devices in the CAIS are represented as file

nodes (i.e., nodes whose contents are Ada external files).
While device nodes have some special characteristics
(e.g., arbitrary users cannot create them), they are de-
signed to fulfill all of the basic needs of tools for input
and output.

D. Other Features

The CAIS is designed for use i n the of in-
tegrated environments. Although the driving motivation
has been Ada tool transportability, there are many aspects
of the CAIS design which can be of benefit in the design
and construction of environments in general. Some of
these are related to architectural issues and others to con-
struction approaches. These are discussed in Sections 111-
A and 111-B. Section 111-C discusses some more intangible
benefits of using the CAIS in building environments and

sets. Section 111-D discusses some of the more concrete
benefits.

In addition to the three basic groups of interfaces dis-

which are used in the CAIS to represent values of attri-
butes. The CAIS also supports the observance of certain
pragmutic limitations which are important for the

cussed above, the the processing Of lists, of these aspects to other similar interface

achievement of transportability. If the CAIS did not spec-
ify some practical limitations, then it might become very
difficult to achieve transportability between some combi-
nations of different implementations (e.g., a tool imple-
mented on a host which supported very liberal limits
would not be able to perform correctly on a host with very
restricted ones without the ability to query these values
and adjust its processing accordingly).

E. Future Features
DOD-STD-1838 is an initial version of the CAIS, and,

as was indicated in the introduction, work is already un-
derway on Revision A (DOD-STD-1838A). In parallel
with the development of DOD-STD-1838, a set of re-
quirements was developed which embodies the most
widely accepted definition to-date of what is required for
a transportability interface set which provides an appro-
priate framework for future integrated environments. The
features listed below are the most significant ones which
do not appear in DOD-STD-1838 but are part of the re-
quirements set for DOD-STD- 1838A:

user-defined typing of the node model, including ex-
plicit representation of the typing information in the node
model and inheritance of types

triggering (i.e., the ability of defined events in the
database to trigger further actions)

A. Conceptual Relationship to Environment
Architectures

One significant area of architectural agreement among
most environment projects regards the need for a central
database capable of supporting large projects in the cap-
ture and retention of all of the information developed and
required during system development and maintenance.
The CAIS provides such a central database capability. The
ERA model on which CAIS is based is probably the most
widely accepted database model for use in environments
today. With the node model, the CAIS supports in a nat-
ural way the kinds of recording, interactions, and man-
agement techniques required for large projects to be suc-
cessful today. Thus the CAIS can play a central role in
the architecture for almost any modern environment.

As a part of the node model, the CAIS incorporates
support for discretionary and mandatory access control.
While many software support systems provide some basic
form of discretionary security, few environments today
have adequately addressed the needs for mandatory se-
curity or more demanding discretionary security. But even
projects outside of the DoD are beginning to recognize
requirements for greater security than before, and man-
datory security is something that cannot be left to be added
on ‘‘later.’’ It must be architected into the system from

746 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 6 . JUNE 1988

the beginning. The CAIS provides an appropriate basis
for environments that have this requirement. At the same
time, the specification of security features in the CAIS is
such that there is no penalty to the performance of the
environment if support for mandatory access control is
not required.

Another essential feature which the CAIS can offer to
the architectures of today’s integrated environments is a
common substrate and framework for discourse. With the
CAIS a common basis is provided and effort can be con-
centrated on the very difficult issues in tool integration
which builds on this basis. In particular, the CAIS node
model provides a paradigm for tool interaction upon which
such things as intertool interfaces and conventions for in-
formation sharing can be based.

Flexibility is another CAIS feature which is quite im-
portant architecturally. While providing a common basis
for integrated environments, the CAIS remains quite gen-
eral. It does not impose any preconceived ideas regarding
methodological approaches (e.g., use of structured anal-
ysiddesign), management disciplines, or tool-writing
techniques. It provides the primitives necessary for envi-
ronments to achieve all that they require without dictating
any of the policies. This is important for the production
of effective, usable environments because flexibility is a
key feature for supporting different methodologies and
project management approaches. No one environment will
be appropriate for all time for all projects. Environment
architectures must accommodate this variation in needs
through flexibility, leaving the imposition of specific pol-
icies to the ways in which tools and projects utilize the
primitives.

Distribution of an environment over a variety of hard-
ware resources is a fact of life for today’s systems. The
CAlS has been designed so as not to preclude distributed
implementations. The CAlS design in 111 does not sup-
port the explicit control by tools over the distribution (al-
though future versions will; see Section 11-E), but it also
does not require that tools be aware of whether or not the
underlying hardware is made up of one processor or many
or where a particular device is located. This increases the
flexibility of the architectural basis provided by the CAIS.

B. Relutionship to Coristructiori oj. Erivirorimerits
Because most environments of today are being con-

structed on top of conventional operating systems and
CAIS has been designed with this level of interaction in
mind, it can be said to provide a (partial) virtual operating
system for the implementation of tools. Thus it fits natu-
rally into today’s usual approach to constructing environ-
ments. Experience so far [6] has shown that tools written
in Ada can fairly readily be converted over to the use of
the CAIS from use of the host operating system for which
they were originally designed.

The CAIS objective of transportability is an important
feature. One of the key issues in providing quality envi-
ronments to a wide variety of projects is how to cost-ef-
fectively obtain the broad spectrum of tools which is re-

quired for lifecycle support. There is far too much work
to be done for any one organization (even the U . S . DoD)
to do the whole job of generating all those tools alone.
Only through sharing and common availability of a vari-
ety of tools can individual organizations ever hope to
achieve the sorts of lifecycle-support environments that
are required. The CAIS can provide the common basis
which makes wide availability of tools, and therefore tool
sharing, practical. In addition, through extensive use by
a variety of projects, the maturity and therefore the qual-
ity of our tools will increase.

The CAIS has also been designed to be open-ended and
extensible. That is, it does not claim to provide all inter-
faces that will ever be needed by any tool. Too many spe-
cialized interfaces simply cannot be provided in trans-
portable ways, and there are often so many desirable
choices (e.g., which graphics standard to provide) that it
would be too limiting to provide one and not support oth-
ers. By being extensible itself, the CAIS facilitates exten-
sibility of environments, a critical feature at a time when
complete, fully integrated environments are still a goal
and rarely a reality.

The open-endedness of the CAIS also implies that ar-
rangements can be made for non-Ada tools to properly
interact with a CAIS-based environment. While this is best
facilitated by an Ada compilation system that supports the
use of programs written in other languages, there are other
approaches. It should be noted that, although the CAIS
interfaces are specified in a style which takes advantage
of and is consistent with Ada, it is not required that they
be implemented in Ada.

C. Bene$ts for Building Environments
There are several benefits which the CAIS provides

when used as a basis for building environments today.
It is possible to implement the CAIS without requiring

dedication of the host machine(s); in other words, a CAIS
implementation can coexist with another previously ex-
isting operating system. This means that the wide avail-
ability needed is possible with CAIS, and it does not re-
quire that every project invest in new suites of equipment.

The achievement of tool transportability through the
CAIS has additional benefits beyond making a lot of tools
available. Normally tool writers devise their own host-
encapsulations in order to achieve transportability of their
tools. While this achieves transportability of each tool by
itself, it does not provide a common basis for a tool suite
and thus for future integration with other tools (unless the
same tool writer is developing all tools in the suite and so
writes all the tools to the same host encapsulation). There
is also considerable duplication of effort across all such
tools and tool writers. Use of the CAIS host-encapsula-
tion instead, even when a CAIS implementation is not
available, would result not only in a reduction of the tool
writer’s design effort, but also in a potential for future
rehosting to the CAIS without any potential disadvantages
from retrofitting.

People portability is another benefit of the CAIS trans-

OBERNDORF. COMMON APSE INTERFACE SET 741

portability feature and the commonality which results.
Tool writers can avoid perpetually learning new systems
and better concentrate their energies on writing superior
tools for a common basis. In addition, as people move
from one project to another, they can move their favorite
tools with them, thus saving the time required to relearn
a whole new environment. They can become productive
immediately, and productivity is one of the most impor-
tant objectives in building environments.

There are a few other interface sets which claim some
of the same benefits as described here for the CAIS. Most
notable among these is the Portable Common Tool En-
vironment (PCTE) [7] defined by a consortium under a
contract with the Commission of European Communities
(CEC) European Strategic Programme for Research and
Development in Information Technology (ESPRIT).
PCTE is a UNIX@-oriented common interface which ful-
fills many of the same goals as the CAIS. There are ver-
sions of the interface set in both C and Ada. Another al-
ternative mentioned frequently is UNIX itself. Both of
these share most of the benefits discussed above. But,
when compared to these and others, the CAIS has some
benefits which set it apart.

The CAIS has been carefully designed to be indepen-
dent of any particular operating system. This provides a
degree of vendor independence not possible with the oth-
ers. More importantly, it provides a more modern and
adaptable basis for environments than UNIX or any
UNIX-based approaches can. Without the central data-
base provisions of CAIS and PCTE, UNIX cannot pro-
vide the support required for modern integrated software
engineering environments. An ordinary file system, even
a hierarchical one such as that found in UNIX, cannot
provide the robustness of the ERA model or the explicit-
ness of information representation which the ERA model
supports.

A major difference between the CAIS and both PCTE
and UNIX is in its support of security requirements. The
current version of PCTE supports no such requirements,
and UNIX has achieved a level of support for such fea-
tures only through the definition of restricted kernels.

The CAIS is also a controlled Department of Defense
(DOD) standard. This means that it is stable and subject
to well-known procedures which utilize public inputs to
evolve the standard as technologies advance. It has also
been specified with sufficient rigor to make validation of
implementations possible, and a validation suite is under
development. Standardization plus validation means that
the commonality that is so attractive can be achieved,
maintained, and enforced. I n contrast, PCTE has not been
standardized, although there is only one set of definers
and a control board is now in place, under the auspices of
the CEC. However, public input to this control process is
limited. UNIX has the opposite problem: there are so
many candidates for “standard” UNIX that there is no

‘*LJNIX is a registered trademark o l AT&T Bell Laboratories

single standard. There is a new IEEE trial-use standard
(known as POSIX), but there is also AT&T’s System V
and the de facto “standard” of Berkeley 4.3, just to men-
tion a few of the contenders. Because PCTE is UNIX-
based, it potentially falls victim to this same confusion.

The CAIS has limitations as well. One is the fact that
the only language binding of CAIS is Ada-oriented, which
is understandable since the sponsor of the work has been
the Ada Joint Program Office. For the purposes of the
DoD, this is quite adequate, as Ada has been directed to
be the common language for defense systems. For the
purposes of the general community, this is an acceptable
limitation, as Ada provides a very robust foundation for
software engineering activities in general and has the lan-
guage features necessary for interfacing with other lan-
guages.

Another aspect which might be called a limitation of
the CAIS is that compromises have been made on some
features in the interest of creating an interface set which
can be implemented effectively on a wide range of exist-
ing operating systems. This is in contrast, for example,
with PCTE, where the adoption of UNIX means that there
are no considerations of generality or compromises to be
made. However, one pays for this lack of generality every
time one attempts to implement a feature that is unique to
UNIX on some other operating system. If the objective is
to make an environment widely available, the occasional
compromises are worth the generality.

The CAIS does not attempt to define either intertool or
user interfaces. These can be considered to be outside the
scope of CAIS, but they are also important to the produc-
tion of integrated environments. Unfortunately, today
there is far too little agreement on any of these to be able
to establish viable standards. The identifiable user inter-
face standards are evolving far too quickly, and too little
is known about which intertool interfaces should be stan-
dardized or how these should be defined. The CAIS does
not attempt such definitions, but rather provides a flexi-
ble, extensible backdrop for experimentation in these
newer areas.

D. Available Resources jbr Building Environments with
CAIS

Several CAIS prototype implementations exist today.
Most implement various-sized subsets of the standard, and
many are hosted on VAX@ systems, some running UNIX
and others VMS. Some other non-VAX implementations
also make use of UNIX or UNIX-look-alikes. A variety
of tools has been hosted on these prototype implementa-
tions, including a compilation suite. Some tools have been
rehosted from other operating systems, while others have
been written directly for the CAIS. The DoD is currently
sponsoring two full near-production-quality implementa-
tions of DOD-STD-1838 which will be completed during
1988. One will be hosted on VAX/VMS and the other on
IBM 370/MVS.

W A X is a registered trademarl of Digital Equipment Corporation.

74 8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 6. J U N E 1988

IV. CONCLUSION
The motivations and basic features of the CAIS have

been discussed, along with its relationships to architec-
tures and the construction of environments. In the last
three years much experience has been gained with CAIS
implementations and what is necessary to make sound use
of the CAIS features in the development of integrated
software engineering environments. It is anticipated that
in the near future there will be substantial evidence that
the CAIS makes significant contributions to the develop-
ment and evolution of software engineering environ-
ments.

V . REFERENCES
[I] U.S. Dep. Defense. Milirury Standard Common Ada Programming

Support Environment (APSE) Interface Set (CAIS), DOD-STD- 1838,
Oct. 9 , 1986.

121 P. A. Oberndorf, KAPSE Interface Team: Public Report, vol. 1, Apr.
1, 1982, p. C l .

131 J . N. Buxton, Requirements for AUU Programming Support Environ-
ments, “STONEMAN”, U.S. Dep. Defense, Feb. 1980.

[4] U. S. Dep. Defense Computer Security Center, Department of Defense
Trusted Compurer System Evaluarion Criteria, CSC-STD-001-83, Aug.
15, 1983.

[5] U.S. Dep. Defense, Reference Manual for the Ada Programming Lan-
guage, ANSI/MIL-STD-I815A, Jan. 1983.

[6] M. R. Gardner. R. L. Hutchison, and T . P. Reagan, “A portability
study based on rehosting WIS Ada tools to several environments.”
WP-8600396, MITRE Corp.. Sept. 30, 1986.

171 European Strategic Programme for Research and Development i n In-
formation Technology, “PCTE, A basis for a portable common tool
environment,” in Functionul Specifications. 4th ed. , 1986.

Patricia A. Oberndorf received the B S degree
in mathematics and computer science from Ore-
gon State University, Corvallis, in 1971. and the
M S degree in computer science lrom the Uni-
versity of California at San Diego in 1974

In 1974 she started work at what 15 now the
Naval Ocean Systems Center (NOSC) i n San
Diego Her first involvement w i t h wftware engi-
neering environments was the result of the Sys-
tems Design Laboratory (SDL) project, on which
her assignments included design, implementation,

introduction of tools such as URL/URA, and consultation w i t h uwrs I n
1978 she traveled to Europe at the request of the London branch of the
Office of Naval Research to survey relevant research and development work
in England, Germany, and France She has been involved in the Pebble-
man/Stoneman process and has represented the Navy dnd the DoD in many
environment-related meetings and conferences. She was the Chief Engi-
neer and shared management and planning responsibilities for the Sottware
Engiheering Automation for Tactical Embedded Computer System5 (SEA-
TECS) project before accepting responsibility for the definition of the CAlS
in 1982. Her present assignments also include continual investigation and
assessment of research and development work relating to software and 5y5-

tern engineering

T-

