
Semantics Guided Regression Test Cost Reduction

David Binkley†

Loyola College in Maryland

ABSTRACT

Software maintainers are faced with the task of regression testing: retesting a modified program on an often large num-
ber of test cases. The cost of regression testing can be reduced if the size of the program that must be retested is
reduced and if old test cases and old test results can be reused. Tw o complimentary algorithms for reducing the cost of
regression testing are presented. The first produces a program called differences that captures the semantic
change between certified, a previously tested program, and modified, a changed version of certified. It is
more efficient to test differences, because it omits unchanged computations. The program differences is
computed using a combination of program slices.

The second algorithm identifies test cases for which certified and modified will produce the same output and
existing test cases that will test components new in modified. Not rerunning test cases that produce the same output
avoids unproductive testing; testing new components with existing test cases avoids the costly construction of new test
cases. The second algorithm is based on the notion of common execution patterns, which is the interprocedural exten-
sion of the notion introduced by Bates and Horwitz. Program components with common execution patterns have the
same execution pattern during some call to their procedure. They are computed using a new type of interprocedural
slice called a calling context slice. Whereas an interprocedural slice includes the program components necessary to
capture all possible executions of a statement, a calling context slice includes only those program components neces-
sary to capture the execution of a statement in a particular calling context (i.e., a particular call to the procedure).

Together with differences, it is possible to test modified by running the smaller program differences on
a smaller number of test cases. This is more efficient than running modified on a large number of test cases. A pro-
totype implementation has been built to examine and illustrate these algorithms.

CR Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques—programmer work-
bench; D.2.5 [Software Engineering]: Testing and Debugging; D.3.3 [Programming Languages]: Language Con-
structs—control structures, procedures, functions, and subroutines; E.1 [Data Structures] graphs

Other Keywords: slicing, regression testing.

Author’s address: Computer Science Department, Loyola College in Maryland, 4501 North Charles Street, Baltimore, Maryland
21210, 410-617-2881. email: binkley@cs.loyola.edu.

Copyright © 1997 by David Binkley. All rights reserved.

Preliminary versions of parts of this paper appeared in abridged form in the Proceedings of the IEEE Conference on Software Mainte-
nance (Orlando, FL, Nov, 1992) [4] and Proceedings of the IEEE International Conference on Software Maintenance (Nice, France,
Oct 1995) [8].

† supported in part by the David S. Lattanze Center for Executive Studies and National Science Foundation grant CCR-9411861.

− 2 −

1. INTRODUCTION

Software maintainers are faced with the task of regression testing: the process of retesting software after a

modification. This process may involve running the modified program on a large number of test cases, even

after a small change. Although the effort required to make a small change may be minimal, the effort

required to recertify the modified program after such a change may be substantial.

In a recent analysis of regression test-case selection techniques, Rothermel and Harrold define regression

testing as a task “performed on a modified program to instill confidence that changes are correct and have

not adversely affected unchanged portions of the program [36].” One form of regression testing focuses on

the automatic selection of test cases based on the code of the original and modified programs. Such tech-

niques are referred to as code based techniques. Rothermel and Harrold identify two kinds of code based

techniques: minimization techniques attempt to test the changed parts of the program with a minimal num-

ber of tests while safe coverage techniques attempt to select all tests that may test the changed parts of the

program.

This paper presents two code based algorithms for reducing the cost of regression testing. Both algo-

rithms use (safe approximations to) language semantics to identify run-time behavior of program compo-

nents (program behavior is formalized in Section 3). The first algorithm can reduce the complexity of the

program on which test cases must be rerun: given a program certified, which passes some test suite,

and a modified version of this program, modified, it produces a smaller program differences that

captures the behavior of modified that is different from the behavior of certified.

The second algorithm is a code based test-case selection algorithm with both a minimization and a safe

coverage variant. It can reduce the cost of testing by reusing test cases and test results from certified’s

testing. Test case reuse involves identifying existing test cases that test new components in modified.

Test results (i.e., the fact the certified passed a test) are reused by identifying test cases that have the

same behavior in certified and modified. Reusing test cases avoids the costly construction of new

test cases. Reusing test results avoids the expense of running modified on test cases for which it can be

guaranteed that modified and certified will produce the same results. Thus, rather than retesting

the large program modified with a large number of test cases it is possible to certify modified by run-

ning the smaller program differences on a smaller number of test cases.

Recent trends in software engineering (e.g., OOP), which encourage the use of many small procedures,

make it essential that algorithms for reducing the cost of regression testing handle the interprocedural

impact of changes. To identify reusable test cases and test results in a program with procedures and proce-

dure calls, we introduce the notion of common execution patterns, an interprocedural extension of equiva-

lent execution patterns [1]. Common execution patterns capture the semantic (not syntactic) differences

and similarities between program components.

The algorithms presented in this paper make use of program slicing [38, 19]. A slice, taken with respect

to a program component p and a variable v, includes all statements of the program that may affect the com-

putation of v at p. To identify statements that have common execution patterns a new kind of interprocedu-

ral slice, called a calling context slice, is introduced. This slice captures the behavior of a statement on a

particular invocation of its procedure. Thus, it contains fewer program components than an interprocedural

slice, but more than an intraprocedural slice. One advantage of this is that the algorithm can better handle

multiple changes to certified. Previous approaches, for example [16, 29], make the assumption that a

test case exercises the same components in certified and modified. Howev er, a change in one com-

putation might affect the path taken by a test case and invalidate this assumption.

− 3 −

Certified’s test cases are assumed to provide adequate coverage. A set of tests T is judged adequate

with respect to some test data adequacy criterion if it satisfies some coverage metric for the program [1, 26,

10, 32, 21]. For example, one metric is the all-statement criteria. Test suite T satisfies this criteria for pro-

gram P, if every reachable statement in P is executed by at least one of the tests in T . The test-case selec-

tion algorithm presented in this paper selects a reduced number of test cases by avoiding test cases that will

produce the same outcome in modified and certified; thus, the algorithm assists the tester to achieve

coverage.

The remainder of this paper is organized as follows: Section 2 presents some background material. Sec-

tions 3 and 4 present the main technical contributions of this paper: Section 3 defines “semantic difference”

in the presence of procedures and procedure calls and describes the algorithm for computing differ-

ences. Section 4 describes the test-case selection algorithm. Illustrations of these algorithms are pre-

sented in Section 5 followed by a discussion of related work in Section 6. Finally, Section 7 contains a

summary.

2. BACKGROUND

This section first discusses the controlled regression testing assumption [36]. It then discusses the language

supported by the algorithms and that used in the examples. Finally, it provides background material on the

system dependence graph (the intermediate representation use by both algorithms) and interprocedural slic-

ing [19], and the use of test data adequacy criterion in testing software [39, 1].

2.1. Controlled Regression Testing Assumption

The controlled regression testing assumption deals with the relationship between a program’s text, formal

semantics, and runtime behavior. The algorithms given in Sections 3 and 4 relate the formal semantics of

certified, modified, and differences based on their text. These relationships extend to runtime

behavior only under a deterministic computational model where each time a program is executed on the

same input, it produces the same output. This model may be violated, in practice, when a program is ported

to a different processor or a machine with a different amount of memory. Furthermore, it may be violated

on a single machine if the location at which a program is loaded changes the program’s behavior or if dif-

ferences requires less memory than modified and consequently passes a test on which modified

would run out of memory.

To facilitate comparisons with other work, we reuse the following assumption (the notation is that used

in this paper).

ASSUMPTION (Controlled Regression Testing Assumption [36]). When modified is tested with [test

suite] T , we hold all factors that might influence the output of modified, except for the code in modi-

fied constant with respect to their states when we tested certified with T .

In the sequel, we use the phrase “guarantees” to mean “guarantees given the controlled regressing testing

assumption.”

2.2. Language

The language supported by the algorithms presented in Sections 3 and 4 is not specified. The algorithms

use program slicing as a primitive operation. They can be applied to any language for which a slicing algo-

rithm exists. For example, a prototype of the differencing algorithm from Section 3 has been built for the C

language using the slicer Unravel [25].

− 4 −

In contrast, to simplify the presentation, the language used in the examples is a flat imperative (“C”-like)

language with recursive procedures where parameters are passed by value-result. It contains only simple

control structures such as if statements and while loops. It contains only simple variables, no reference

variables or pointers. Furthermore, we assume programs contain no calls to non-existent procedures (i.e.,

that programs are complete) and have no global variables.

2.3. The System Dependence Graph and Interprocedural Slicing

Programs are represented by System Dependence Graphs (SDGs). An SDG is a collection of procedure

dependence graphs (PDGs) connected by interprocedural control- and flow-dependence edges. The vertices

of a PDG represent the components (statements and predicates) of the procedure. In addition, each PDG

contains a distinguished vertex called the entry vertex. The edges of a PDG represent the control and data-

flow dependences between components. In addition, at call sites, there are transitive dependence edges that

summarize transitive dependences induced by called procedures. The dependence edges in a PDG are a

safe approximation to the semantic dependences found in the program [31], which are in general not com-

putable and therefore must be approximated.

In order to correctly handle input and output statements, input and output are modeled as streams: the

statement “print(stream, x)” is treated as an assignment “stream = append(stream, x).” The use of

streams connects (transitively) all print statements using the same stream with flow dependence edges, but

allows different streams to be independent. Symmetrically, reading from an input stream removes a data

value from the input stream, which modifies the stream. This stream model correctly handles changes such

as the deletion of a print statement.

PDGs are connected at call-sites to form the SDG. Value-result parameter passing, which involves copy-

ing actuals to formals, invoking the called procedure, and then copying formals back to actuals, is repre-

sented by a set of vertices for each parameter. The copying of values between actual parameter a and for-

mal parameter f is modeled using temporary variables fin and fout (fout is included only if f is modified

by the call) as four assignment vertices: an actual-in vertex labeled “ fin : = a”; a formal-in vertex labeled

“ f : = fin”; a formal-out vertex labeled “ fout : = f ”; and an actual-out vertex labeled “a : = fout”. Interpro-

cedural flow dependence edges connect corresponding actual-in and formal-in vertices, and corresponding

formal-out and actual-out vertices; an interprocedural control dependence edge connects each call-site ver-

tex to the entry vertex of the called-procedure (see Figure 1).

Backward and forward slices are used by the algorithms presented in Sections 3 and 4. A backward slice

of SDG G, taken with respect to a set of vertices S, contains those vertices of G whose components poten-

tially affect the components represented in S. A backward slice can be computed using two passes over G.

Pass 1, denoted by b1(G, S), starts from all vertices in S and goes backwards (from target to source) along

the edges of the SDG without descending into called procedures. Pass 2, denoted by b2(G, S), starts from

all vertices reached in Pass 1 and goes backwards along the edges of the SDG but does not ascend to calling

procedures. The result of an interprocedural backwards slice is the set of vertices encountered during Pass

1 and Pass 2: b(G, S) =df b2(G, b1(G, S)).

Example. Figure 1 shows a program and part of its SDG. The slice of this SDG taken with respect to

formal-in vertex labeled “yout = y” is shown in Figure 2. (The stream “standard-out” is assumed in all the

examples.)

The significance of a backward slice is that it is a semantically meaningful decomposition of a program.

This allows portions of a program’s behavior to be identified, isolated, and compared using backward

slices.

− 5 −

procedure Main
sum : = 0
i : = 1
while i ≤ 10 do

call A(sum, i)
od
print sum

end

procedure A(x, y)
call Add(x, y)
call Add(y, 1)

return

procedure Add(a, b)
a : = a + b

return

Enter A

x: = xin y: = yin

call Add

ain : = x bin : = y x : = aout

call Add

ain : = y bin : = 1 y : = aout

xout : = x yout : = y

Enter Add

a : = ain b : = bin a : = a + b aout : = a

Edge Key

control

flow

transitive

interprocedural

Figure 1. An example system that sums the numbers 1 to 10 and part of its SDG (only the PDGs for A and
Add are shown).

A forward slice is the dual of the backward slice: whereas a backward slice includes those program com-

ponents that potentially affect a given component, a forward slice includes those components that are poten-

tially affected by a given component. As with backward slicing, an interprocedural forward slice of G

taken with respect to S can be computed using two passes. In a forward slice, however, edges are traversed

from source to target. Pass 1, denoted by f1(G, S), starts from all vertices in S and goes forwards along the

edges of the SDG but does not descend to called procedures. Pass 2, denoted by f2(G, S), starts from all

vertices reached in Pass 1 and goes forwards along the edges of the SDG without ascending to calling pro-

cedures. The result of an interprocedural forward slice is the set of vertices encountered during Pass 1 and

Pass 2: f (G, S) =df f2(G, f1(G, S)).

2.4. Test Data Adequacy Criter ia

A test data adequacy criterion is a minimum standard that a test suite for a program must satisfy. An exam-

ple is the all-statements criterion, which requires that all statements in a program must be executed by at

− 6 −

procedure Main

i : = 1
while i ≤ 10 do

call A(i)
od

end

procedure A(y)

call Add(y, 1)
return

procedure Add(a, b)
a : = a + b

return

Enter A

y: = yin

call Add

ain : = y bin : = 1 y : = aout

yout : = y

Enter Add

a : = ain b : = bin a : = a + b aout : = a

Edge Key

control

flow

transitive

interprocedural

Figure 2. (Par t of) the slice of the SDG in Figure 1 taken with respect to the actual-out ver tex labeled
“yout : = y” and the program to which is corresponds. This program contains only the looping control from
the program in Figure 1.

least one test case in the test suite. Satisfying an adequacy criterion provides some confidence that the test

suite does a reasonable job of testing the program.

Test suite adequacy criteria can be divided into at least three groups: control-flow based criteria (e.g., all-

statements), data-flow based criteria [39], and program dependence graph based criteria [1]. While the

techniques discussed in Section 4 are applicable to any of these, they work more naturally with criteria

from the dependence graph group. We therefore consider the all-vertices and all-flow-edges criteria in Sec-

tion 4 as representative examples. These two are introduced below, but first, to relate them to the other

groups, consider the following relationships [1]:

(1) The dependence graph criterion all-vertices is equivalent to the control-flow criterion all-statements.

(2) The all-flow-edges criterion subsumes the data-flow criterion all-c-uses/some-p-uses (c-uses are compu-

tational uses and p-uses are predicate uses).

DEFINITION (All-Vertices Criterion). The all-vertices criterion is satisfied by a set of test cases T if for

each vertex v there is some test case t in T that exercises v. A vertex is exercised if its corresponding state-

ment is exercised. A statement is exercised by test case t if it is executed when the program is run with

input t.

− 7 −

DEFINITION (All-Flow-Edges Criterion). The all-flow-edges criterion is satisfied by a set of test cases T

if for each flow edge e there is some test case t in T that exercises e. The flow edge e = u → f v, where u

represents an assignment to variable x, is exercised if u is exercised; then no definition of x that lies on the

control flow graph path taken from u to v is exercised, and finally v is exercised.

3. COMPUTING differences

This section contains four technical contributions:

(1) A definition of “semantic difference” in the presence of procedures.

(2) An algorithm for computing AP(modified,certified): the set of affected points, those compo-

nents of modified that may exhibit different behavior in modified and certified.

(3) An algorithm for computing ∆(modified,certified): the set of modified’s components

needed to capture the behavior of the components in AP(modified,certified).

(4) An algorithm for constructing the program differences: an executable program that can be proven

to capture the semantic differences between modified and certified. This proof is a slight

modification of the correctness proof given in [3].

This section concludes with a recap of the algorithm and an example illustrating how differences

alone can reduce the cost of regression testing.

3.1. Defining Semantic Difference and Affected Points

Before defining “semantic difference” it is necessary to identify a correspondence between the components

of certified and modified and to define an appropriate language semantics. The components of a

program are the parts of the program represented by vertices in the program’s SDG. A correspondence

between them can be obtained using a syntactic matching algorithm such as Yang’s [43] or Laski and Szer-

mer’s [23]. It can also be maintained using a special editor that maintains statement tags. Such editors can

be created by MENTOR [12], GANDALF [28], and the Synthesizer Generator [33]. The effect of the pre-

cision of this correspondence on the differencing algorithm is an area of future work. (Where necessary in

the figures of this paper, this correspondence is represented by annotating programs with labels. See, for

example, Figure 3.)

In addition to final output, we need to reason about the internal state of the computation; thus, the seman-

tics of a program is defined in terms of the “sequence of values” produced by each component. The

“sequence of values” produced by a program component means the following: for an assignment statement

or parameter vertex, the sequence of values assigned to the target variable; for an input statement, the

sequence of values read in; for a predicate, the sequence of boolean values to which the predicate evaluates;

and, for an output statement, the sequence of values output.

This sequence alone is sufficient in the absence of procedures, but in the presence of procedures and pro-

cedure calls it provides too coarse a definition. Consider, for example, programs 1 and 2 from Figure 3.

Intuitively, these programs are semantically equivalent since the two calls to Add are independent. How-

ev er, the sequences of values produced by the program components in Add depend on the order of the calls

to Add and are consequently different.

In the presence of procedures, it is necessary to consider the sequence produced in different calling con-

texts:

− 8 −

Label Program 1 Label Program 2 Label Common Procedure Add

L1:
L2:

procedure Main
call Add(x, 1)
call Add(y, 2)

end

L2:
L1:

procedure Main
call Add(y, 2)
call Add(x, 1)

end

L3:
procedure Add(a, b)

a : = a + b
return

Figure 3. Programs 1 and 2 are intuitively equivalent; however, the components in procedure Add produce
different sequences of values.

DEFINITION (Calling Context). The calling context for procedure P (or a component in procedure P) is the

sequence of call-sites that correspond to activation records currently on the stack when a particular acti-

vation of P is begun.

A more refined definition of program semantics, which accounts for calling context, is obtained using the

concept of roll-out—the exhaustive in-line expansion of call statements to produce a program without pro-

cedure calls. Each expansion step replaces a call statement with a new scope statement that contains a copy

of the body of the called procedure. Scope statements are parameterized by assignment statements that

make explicit the transfer of values between actual and formal parameters. To preserve the correspondence

between two programs, each statement of a new scope is given a compound label constructed from the label

of the replaced call site and the label of the copied statement (see Figure 4). In the presence of recursion,

roll-out leads to an infinite program. (The meaning of an infinite program is defined by the least upper

bound of the meanings of the finite programs that approximate it [37].)

DEFINITION (Program Meaning). The meaning of program P maps each component of P to a set of

sequences of values. For component c, this set contains the sequences produced by the occurrence of c in

roll-out(P). Each element of this set is produced in a distinct calling context.

Because rolled-out programs have no procedure calls, the semantic differences between two rolled-out

programs can be defined in terms of sequences of values. The semantics of two programs can be related by

the semantics of their roll-outs because the roll-out operation is semantics-preserving [3]. It should be

emphasized that no roll-outs, which may produce infinite programs, are actually performed. The roll-out

concept is used only as a conceptual device to help formulate the semantic differences between two pro-

grams.

Example. Figure 4 shows the roll-outs of Programs 1 and 2 from Figure 3. For these programs, defining

semantic difference using roll-out produces the intuitively correct result that the two are semantically equiv-

alent. This is because corresponding occurrences of “a : = a + b” (those with the same compound label)

compute the same sequence of values.

We can now define the set of affected points.

DEFINITION (Affected Points). Component c of modified is an affected point iff it has an occurrence in

roll-out(modified) with no corresponding occurrence in roll-out(certified) or a corresponding

occurrence in roll-out(certified) that computes a different sequences of values when both programs are

evaluated on the same input.

− 9 −

Label roll-out(Program 1) Label roll-out(Program 2)

L1:

L1.L3:

L2:

L2.L3:

procedure Main
scope Add(a : = x, b : = 1;

x : = a)
a : = a + b

epocs

scope Add(a : = y, b : = 2;
y : = a)

a : = a + b
epocs

end

L2:

L2.L3:

L1:

L1.L3:

procedure Main
scope Add(a : = y, b : = 2;

y : = a)
a : = a + b

epocs

scope Add(a : = x, b : = 1;
x : = a)

a : = a + b
epocs

end

Figure 4. The roll-outs of Programs 1 and 2 from Figure 3. (Only the labels for the scope statements and
occurrences of the assignment statement “a : = a + b” are shown. The labels of the statements transferr ing
values in to and out of a scope are not shown.)

To correctly account for the computations represented by affected points, it is necessary to partition this

set into strongly affected points and weakly affected points. Whereas an affected point potentially exhibits

changed behavior in some calling context, a strongly affected point potentially exhibits changed behavior in

all calling contexts. Strongly affected points in a procedure P are caused by changes in P and the proce-

dures called by P, but not procedures that call P. A weakly affected point is an affected point that is not

strongly affected. Weakly affected points in procedure P are caused by changes in procedures that call P,

but not by changes in P or in procedures P calls:

DEFINITION (Strongly Affected Points). Component c in procedure P of modified is a strongly

affected point iff there is no corresponding component in certified or corresponding occurrences of c

in roll-out(modified) and roll-out(certified) compute different sequences of values when corre-

sponding scopes for procedure P are invoked with the same initial state (i.e., inv oked with the same initial

values for P’s formal parameters).

DEFINITION (Weakly Affected Points). Component c of modified is a weakly affected point if it is an

affected point but not a strongly affected point.

3.2. Computing Affected Points

This section describes how to compute safe approximations to the sets of affected points, strongly affected

points, and weakly affected points (denoted AP(modified,certified), SAP(modified, certi-

fied), and WAP(modified,certified), respectively). The sets SAP(modified,certified) and

WAP(modified,certified) are then used in the next section to compute ∆(modified,certi-

fied) the sub-graph of modified’s SDG that captures the computation of the affected points.

Since determining any non-trivial property of a program is undecidable, any algorithm for identifying

semantic differences must be approximate. The algorithms discussed in the paper are safe: they correctly

identify all semantically changed components of the program but might also identify unchanged compo-

nents of the program as changed. Any component not identified as changed is guaranteed to have the same

behavior in certified and modified.

− 10 −

First, a safe approximation of the set of affected points is computed by taking an f (full forward) slice

with respect to a special subset of the affected points called the directly affected points (DAPs):

DEFINITION.

DAP(modified,certified) =df

{ v ∈V (Gmodified) | v /∈V (Gcertified) ∨ or

v has different intraprocedural edges in Gmodified and Gcertified }.

For a discussion of why interprocedural edges are ignored in this definition see [7]. In addition to obvious

cases of new components, edge changes result, for example, when a program component is moved from

within a control structure to outside the control structure or from one branch of an if statement to the other.

The first changes the source of the edge; the second changes the edge’s label (from true to false or false to

true).

The set AP(modified,certified) contains all the affected points:

DEFINITION.

AP(modified,certified) =df f (Gmodified, DAP(modified,certified)).

Recall that a strongly affected point from procedure P is affected by a change in P or a procedure (tran-

sitively) called by P. Consistent with this observation, SAP(modified,certified) is defined using an

f1 (forward Pass 1) slice. An f1 slice taken with respect to a vertex in P (or a procedure called by P) does

not descend into called procedures. The set SAP(modified,certified) contains all the strongly

affected points.

DEFINITION.

SAP(modified,certified) =df f1(Gmodified, DAP(modified,certified)).

Finally, WAP(modified,certified) contains all the weakly affected points (the affected points that

are not strongly affected):

DEFINITION.

WAP(modified,certified) =df AP(modified,certified) −
SAP(modified,certified).

3.3. Constr ucting ∆(modified,certified)

The operator ∆ applied to modified and certified produces a subgraph of Gmodified containing all

the components necessary to capture the behavior of the components in AP(modified,certified).

As expressed below, ∆ is defined in two parts: one part captures changes associated with strongly affected

points; the other captures changes associated with weakly affected points:

(1) Because the execution behavior at each strongly affected point v is potentially modified in every

calling context in which v is executed, it is necessary to incorporate all of v’s possible calling contexts

in ∆. This is accomplished by taking a b slice with respect to v.

(2) Because the execution behavior at each weakly affected point v is potentially modified only in some

calling contexts in which v is executed, it is necessary only to incorporate some of v’s possible calling

contexts in ∆. Since the vertices of the call sites that make up the calling contexts in which v has

potentially modified execution behavior are themselves affected points, it is only necessary to take a b2

slice with respect to v.

This second point deserves some clarification. Suppose v is a weakly affected point. A b2 slice with

respect to v will only include vertices in P and procedures called by P. It does not include any vertices in

− 11 −

procedures that call P. Initially this may seem incorrect because some calling context must have changed.

However, at least one of the call site, actual-in, or actual-out vertices associated with any changed calling

context would itself be an affected point; thus, any changed calling context for P will also be included in ∆
as desired.

Putting the two parts of ∆ together produces the following definition of ∆(modified,certified).

DEFINITION.

∆(modified,certified) =df b(Gmodified, SAP(modified,certified)) ∪
b2(Gmodified, WAP(modified,certified)).

Operationally, each of the two main terms in the definition of ∆ represents three linear-time passes over the

SDG of modified. During each pass, only certain kinds of edges are traversed.

Example. Figure 5 shows the two parts of ∆(modified,certified) computed from modified

and certified shown in the figure. In this example, DAP(modified,certified) contains the new

assignment statement “t : = 2” and the actual-in vertex for t at the second call site on Q in P (this vertex has

different incoming flow dependence edges: in Gcertified it has an edge from the vertex labeled “t : = 1,”

while in Gmodified it has an edge from the vertex labeled “t : = 2”). These two points are also the only

strongly affected points; thus, the first part of ∆(modified,certified),

certified modified b(Gmodified, SAP†) b2(Gmodified, WAP‡) ∆(modified,certified)

procedure Main
a : = 1
b : = 2
call P(a)
call P(b)

end

procedure P(x)
call Q(x)
t : = 1
call Q(t)
x : = 2

return

procedure Q(z)
t2 : = z

return

procedure Main
a : = 1
b : = 2
call P(a)
call P(b)

end

procedure P(x)
call Q(x)
t : = 2
call Q(t)
x : = 2

return

procedure Q(z)
t2 : = z

return

procedure Main

call P()
call P()

end

procedure P()

t : = 2
call Q(t)

return

procedure Q(z)
t2 : = z

return

procedure Main

call P()
call P()

end

procedure P()

t : = 2
call Q(t)

return

procedure Q(z)
t2 : = z

return

† SAP(modified,certified)
‡ WAP(modified,certified)

Figure 5. The third and four th columns show the two par ts of ∆(modified,certified) computed from
programs certified and modified shown in the first two columns. (The box indicates the modification
made in modified.) The union of these two programs (really their SDGs) yields a program (SDG) that
captures the changed computations of modified with respect to certified. This union is shown in the
rightmost column.

− 12 −

b(Gmodified, SAP(modified,certified)) includes all calling contexts for procedure P. The weakly

affected points are the formal-in vertex for z in procedure Q, and the assignment statement “t2 : = z”.

Therefore, the second part of ∆(modified,certified), b2(Gmodified, WAP(modified,certi-

fied)), includes the necessary parts of procedure Q without including any call sites on Q. Together these

two parts capture all the affected calling contexts in modified: the one modified calling context for Q and

all the calling contexts for P.

3.4. Computing differences from ∆

To produce the program differences from the SDG ∆(modified,certified) requires making

∆(modified,certified) feasible. (An infeasible SDG is not the SDG of any program.) This is done

in two steps that remove interprocedural infeasibilities [5] and intraprocedural infeasibilities [18, 9]. Once

∆(modified,certified) is feasible, it is reconstituted into a program that has ∆(modified,certi-

fied) as its SDG. This is done by projecting the statements of modified that are represented in

∆(modified,certified). In other words, the statements of differences are the statements of

modified represented by vertices in ∆(modified,certified) and these statements appear in dif-

ferences in the same order and at the same nesting level as in modified.

3.5. Recap

Putting all the pieces together, a complete algorithm for computing the semantic differences between mod-

ified and certified appears in Figure 6. The significance of the program differences is that it

can be used to reduce the cost of regression testing by reducing the size of the program that test cases must

be run on. If ∆(modified,certified) does not contain a parameter mismatch, then the differencing

algorithm is a special case of the program integration algorithm developed in [7]. In this case, the proof of

correctness for the integration algorithm implies the correctness of the differencing algorithm. Otherwise,

if ∆(modified,certified) contains a parameter mismatch, then minor modifications to the correct-

ness proof for the integration algorithm imply the correctness of the differencing algorithm [5]. Illustration

1 in Section 5 demonstrates the use of differences.

function Difference(modified,certified) returns a program
declare

A, Base, B, M : programs
G : an SDG

begin
Gcertified : = computeSDG(certified)
Gmodified : = computeSDG(modified)
G : = ∆(modified,certified)
if G is infeasible then

G : = augment(G)
fi
differences : = ReconstituteProgram(G)
return (differences)

end

Figure 6. The function Difference takes as input two programs certified and modified and produces
the program differences that captures the semantic differences between modified and certi-
fied.

− 13 −

4. TEST CASE SELECTION

This section describes how test cases from certified’s test suite are selected. Before doing so this sec-

tion first introduces the notion of common execution patterns. It then describes how the components of

modified are partitioned and how these partitions are used to perform test-case selection. It then dis-

cusses the computation of these partitions using calling-context slices, and finally, presents a recap of the

complete test-case selection algorithm. Program differences can be run with these tests to recertify

modified.

4.1. Common Execution Patter ns

Common execution patterns extend equivalent execution patterns [1] to programs that contain procedures

and procedure calls.

DEFINITION (Equivalent Execution Patterns [1]). Components c1 and c2 have equivalent execution patterns

iff c1 and c2 are exercised the same number of times on any giv en input.

This definition and the following definition of common execution patterns assume that both programs ter-

minate normally. A program may fail to terminate normally if it contains a non-terminating loop or if a

fault occurs, such as division by zero. If one program fails to terminate normally, it may not get (or get

back to) the component being tested; thus, that component would execute fewer times in the non-terminat-

ing program. The extension of these definitions to handle the additional three cases involving one or both

programs not terminating is straitforward. Bates and Horwitz detail this extension for equivalent execution

patterns [1].

Equivalence of execution patterns is too strong in the presence of procedures; thus, equivalent execution

patterns, while safe, prove too coarse in the presence of procedures and procedure calls. For example, if a

call on procedure P is added, none of P’s components can be safely determined to have equivalent execu-

tion patterns; however, they may have common execution patterns. Common execution patterns require

equivalent execution patterns to exist in some (but not all) calling contexts:

DEFINITION (Common Execution Patterns). Components c1 of procedure P1 and c2 of procedure P2 have

common execution patterns if there exists calling contexts CC1 from P1 and CC2 from P2 in which c1 and

c2 have equivalent execution patterns.

Recall that a vertex is exercised when the corresponding statement is executed. A flow edge is exercised

when the source and target of the flow edge are exercised and the definition at the source reaches the target.

4.2. PARTITIONING OF modified’s COMPONENTS

To facilitate the test-case selection algorithm developed in Section 4.3, the components of modified are

divided into four partitions. It should be noted that the meaning of “component” varies depending on the

testing criteria. For the two criteria considered below (all-vertices and all-flow edges), a component is a

vertex or a flow-edge, respectively.

The four partitions are affected, deleted, new, and preserved. New and deleted compo-

nents are easily computed given the mapping between the statements of certified and modified.

The bulk of the work in the computation of the set affected is done in the computation of the set of

affected points AP. Finally, the preserved components are those components that are not in

affected, deleted, or new. For the all-vertices and all-flow-edges these sets are defined in Table 1.

− 14 −

Partition All Vertices All Flow Edges

affected

new

deleted

preserved

AP −new
VertexSet(modified) − VertexSet(certified)
VertexSet(certified) − VertexSet(modified)
remaining vertices

{ u → f v | v ∈ AP } −new†

FlowEdges(modified) − FlowEdges(certified)
FlowEdges(certified) − FlowEdges(modified)
remaining flow edges

†Note that with the all-flow-edges criteria, the computation of AP ensures that the target of any flow edge whose source
is in AP is also in AP.

Table 1: par tition definitions

Example. Figure 7 illustrates these four sets for the all-flow-edges criterion.

4.3. Test Case Selection

We now describe how test cases are selected for each of the four partitions.

Components of preserved and deleted

Test cases that only exercise preserved or deleted components need not be rerun (test cases that exer-

cise only deleted components can be removed from the test suite). Assuming that for a small change,

most test cases test preserved components, not rerunning these test cases should significantly reduce the

cost of regression testing.

Certified Modified Identified Sets

[1]
[2]
[3]
[4]

[5]

[6]

read(a)
read(b)
if (a < 0)

x = 1 / pow(a, − b)
else

x = pow(a, b)
fi
print (x)

read(a)
read(b)
if (b < 0)

x = 1 / pow(a, − b)
else

x = pow(a, b)
fi
print (x)

affected = { [1] → f [4], [1] → f [5], [2] → f [4],

[2] → f [5], [4] → f [6], [5] → f [6] }

new = { [2] → f [3] }

deleted = { [1] → f [3] }

preserved = ∅

Figure 7. Program “Cer tified” has a bug in it: a rather than b appears in the if statement (the auxiliary func-
tion pow takes only positive pow ers). For illustration purposes, assume the only directly affected point of
modified is the predicate of the if statement (in fact statements [4] and [5] are also DAPs because they
have new incoming control dependence edges). The affected points of modified are all the ver tices sub-
ordinate to the if statement (which are reachable from the if statement via control dependence edges), and
statement [6], which can be reached via a flow dependence edge from affected points [4] and [5]. Because
their targets are affected points, all the flow dependence edges to the two calls on procedure pow are in
affected.

− 15 −

Components of new

For new components, which by definition have no test case devised for them, it may still be possible to

reuse certified’s test cases. This is possible when, for example, a new vertex in a while-loop is tested

by a test case for another vertex in the loop. More formally, if in some calling context CC, a component

new ∈new and an existing component c have common execution patterns, then new is exercised by any

test case t which exercises c. If no such component c exists then a new test case must be found (certi-

fied’s test suite provides a place to start looking for such test cases).

Components of affected

The mistake most often made when considering an affected component a is to assume that a test case t

that tests a in certified continues to test a in modified. The problem with this is that one of the

changes to certified may have altered the components exercised by t. For example, replacing “≤” with

“<” in “if x ≤ 0” changes the path through the if statement that a test case with x = 0 would take. To avoid

this mistake, components are matched by common execution pattern to identify appropriate test cases. This

is facilitated by the auxiliary function exercises:

DEFINITION (Exercises). Exercises(t) maps test case t to the set of components exercised when certi-

fied is run on t.

Similar to new components, identifying test cases for an affected component a begins by identifying

test cases that exercise a component c of certified such that a and c have common execution patterns.

Let T be the set of all test cases t for which c ∈exercises(t) and c and a have a common execution pattern.

All tests in T exercise a; howev er, not all test cases in T must be rerun. Component a is an affected

point because its computation is reached by the computation of a directly affected point (DAP). Thus, test

cases for modified that execute a, but do not execute a DAP need not be rerun. Only test cases that exer-

cise both a and a DAP are chosen by the test case selection algorithm; test cases that involve a but no DAP

will behave the same in certified and modified.

Example. Consider two calls on a procedure. If an affected component c in the called procedure is

created by a change at the first call-site, then tests involving (only) calls from the second call-site need not

be rerun.

Example. Consider the programs shown in Figure 8. In this example the vertex representing statement

[9] is in affected. Although both test cases exercise this vertex, only test t1 causes a DAP to be

executed. Test case t2 is guaranteed to produce the same result in certified and modified and there-

fore does not need to be rerun.

Note that if the statement “read(a)” is replaced by “a = 2” in Figure 8, then “read(b)” would be a

directly affected point because of the stream model used for input. This not only illustrates the use of the

stream model, but also demonstrates how the algorithm handles deletions (“read(a)” was deleted) from

certified.

A further reduction in the number of test cases to be rerun is possible if, with each affected compo-

nent, the set of the DAPs that cause the component to be in affected is kept. This set is used to weed

out test cases that exercise c and only DAPs that do not affect c. Such test cases produce the same results

in modified and certified. This further identification may not prove to be cost effective.

− 16 −

Cer tified Modified Certified’s Test Cases

[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]

[9]

read(a)
read(b)
read(c)
if (b < 0)

x = pow(a, − b)
x = c * x

else
x = pow(a, b)
x = c * x

fi
print x

read(a)
read(b)
read(c)
if (b < 0)

x = 1 / pow(a, − b)
x = c * x

else
x = pow(a, b)
x = c * x

fi
print x

t1 = 2 − 1
(vertices tested) [1] − [6], and [9]

t2 = 2 4
(vertices tested) [1] − [4], [7], [8], and [9]

Figure 8. This example assumes all-ver tices coverage. The “certified” program, which should print c * ab,
has a bug in it: when b is less than zero, the result of pow(a, − b) should be inverted. The fix introduces
DAPs [5] and [6] ([6] has different incoming flow dependence edges in certified and modified), and
affected points [5], [6], and [9]. While the execution of test case t2 includes affected point [9], this case need
not be rerun because it tests [1], [2], [3], [4], [7], [8], and [9] which does not include a DAP.

4.4. Identifying Components with Common Execution Patter ns

Identifying components with common execution patterns is undecidable; therefore, in practice we must find

a safe approximation. This section describes one such approximation for partitioning the components of

certified and modified into equivalence classes based on common execution patterns. The algo-

rithms uses calling context slices:

DEFINITION (Calling-Context Slice). A calling-context slice, taken with respect to vertex v and calling con-

text CC, includes those statements necessary to capture the computation of v in calling context CC, but no

other calling contexts.

Thus, a calling-context slice contains less of the program than an interprocedural slice, but more of the pro-

gram than an intraprocedural slice.

An algorithm that computes calling-context slices is shown in Figure 9. This algorithm uses b2 (second

pass) interprocedural slices, which include the necessary statements in a procedure (and called procedures),

but ignore calling procedures. By repeatedly taking b2 slices back through the call-sites that make up the

calling-context, only those parts of the program that contribute to the execution of the statement represented

by v in calling context CC are included.

Common execution patterns depend on the number of times a component is exercised in a given calling

context. The number of times component c is exercised is determined by the behavior of the components

on which c is control dependent. Calling context slices with respect to these components are used to iden-

tify components with common execution patterns as follows: for a vertex v, it is sufficient to capture the

complete execution behavior of the vertex upon which v is control dependent. This is done by taking the

calling-context slice with respect to v’s control predecessor. For a flow edge u → f v, it is necessary for u,

v, and all intervening definitions of the variable defined at u to have equivalent execution patterns in the

same common calling context. This is done by taking the union of the calling-context slices with respect to

the control predecessors of these vertices using the same calling-context in each slice. It is shown in [6]

− 17 −

function CallingContextSlice(G, v, CC) returns a set of vertices
declare

G: an SDG
v: a vertex from G
CC: a calling context (a list of call-sites)
tmp, Answer: sets of vertices of G

begin
Answer : = ∅
tmp : = { v }

while CC ≠ empty do
Answer : = Answer ∪ b2(G, tmp)
tmp : = { a | a is an actual-in vertex at call-site head(CC) whose corresponding formal-in vertex is in b2(G, tmp) }
CC : = tail(CC)

od

Answer : = Answer ∪ b2(G, tmp)
return(Answer)

end

Figure 9. Function CallingContextSlice returns all ver tices of G that affect the behavior of v when v’s proce-
dure is called through the sequence of call-sites in calling context CC.

that two vertices (flow edges) whose control successors have isomorphic1 calling context slices have com-

mon execution patterns.

4.5. Complete Algorithm

The complete algorithm for test-case selection is shown in Figure 10. It has two outputs: the subset of

certified’s test cases to be rerun and the components of modified not guaranteed to be covered by

any of certified’s test cases. Reusing test cases avoids the costly construction of new test cases.

Reusing test results avoids the expense of testing modified on test cases for which it can be guaranteed

that modified and certified will produce the same results.

This algorithm can be combined with the program differences to reduce both the number of test

cases that must be rerun and the size of the program they must be run on. The semantic properties of slices

allow us to prove the algorithm’s correctness [6].

1 Tw o slices are isomorphic if their induced subgraphs are isomorphic. The subgraph of graph G induced by vertices V contains V
and the edges of G whose endpoints are in V . Two (induced sub)graphs G1 and G2 are isomorphic iff the following conditions are sat-
isfied:
(1) There is a 1-to-1 mapping g from the vertex set of G1 onto the vertex set of G2 and for every v in G1, v and g(v) hav e the same

text.
(2) There is a 1-to-1 mapping h from the edge set of G1 onto the edge set of G2 and for every edge e in G1, e and h(e) are of the same

type (e.g., both control edges, or both flow edges, etc.) and have the same label.
(3) For every edge v → u in G1, h(v → u) = g(v) → g(u).

When G1 and G2 are isomorphic or when we are trying to prove G1 and G2 are isomorphic, for brevity, we will say v and g(v) are
the same vertex and e and h(e) are the same edge.

− 18 −

function TestCaseSelection(certified, modified, T) returns the set of tests to be rerun and the set of
components of modified that need new tests

declare
certified, modified: the SDG’s for programs certified and modified
T : certified’s test suite
t, t′: test cases
c: a component of certified
m: a component of modified
TestsToRerun: the set of certified’s test cases to be rerun
ComponentsThatNeedTests: the set of modified’s components not guaranteed to be tested by any

of certified’s test cases

begin
TestsToRerun : = ∅
ComponentsThatNeedTests : = ∅

for each new or affected component of modified m do
Let C = { c ∈certified | c and m have common execution patterns }
if C = ∅ then

Insert m into ComponentsThatNeedTests
else

if no c ∈C exists such that t′ ∈TestsToRerun and c ∈exercises(t′) then
Insert a test case t ∈T such that c ∈exercises(t) and t exercises a DAP into TestsToRerun

fi
fi

od

return(TestsToRerun, ComponentsThatNeedTests)
end

Figure 10. Function TestCaseSelection returns the set of certified’s test cases that must be rerun and
the set of components from modified for which the algorithms can find no test cases in certified‘s
test suite. As stated, the algorithms has quadratic worst case running time. This can be improved by com-
puting, in a liner time preprocessing step, all components with common execution patterns. This computa-
tion marks certain directly affected points as “tainted” and then propagates taints using forward slices. The
resulting algorithm has linear worst case running time.

The algorithm in Figure 10 is an example of a minimization technique [36]. It attempts to select a mini-

mal set of tests that cover all modified components. In addition to minimization techniques, Rothermel and

Harrold define safe coverage techniques as “selection algorithms that include 100% of the modification

revealing tests (a test is modification revealing iff it causes the outputs of certified and modified to

differ) [36].” A simple change to the above algorithm satisfies a similar kind of safety. The change collects

all test cases that can be shown to test affected or new components of modified by replacing the

innermost if statement in Figure 10 with

TestsToRerun = TestsToRerun ∪ { t | c ∈exercises(t) and c ∈C }.

The resulting algorithm is not safe in the Rothermel and Harrold sence because of its treatment of deleted

components. If a deleted component affect other components in certified that exists in modified,

then these other components are affected and their tests are selected. If the deleted component does not

affect any other components in certified then its tests are not selected by the modified algorithm, but

are include by Rothermel and Harrold’s definition of safe.

− 19 −

This change does not improve coverage, as selecting one test is sufficient to ensure every affected com-

ponent that can be shown to be tested by an existing test case is tested. The larger test set may however

help uncover faults caused by violations of the controlled regression testing assumption. Future empirical

work is necessary to determine if the additional testing produces any added benefit.

5. ILLUSTRATIONS

This section presents three programs that illustrate differences, test-case selection, and their combina-

tion. Screen dumps from a prototype implementation are shown for each example. This prototype was

written in C/C++ with a Tcl/Tk front end. After the illustrations, empirical results, obtained using the pro-

totype, are presented.

5.1. Illustration 1

Figure 11 contains a modified version of the program in Figure 1 used to illustrate the computation of

differences. Modified extends certified by adding the lines of procedure main involving prod

and the procedure Product. Following the steps of the algorithm, the vertices representing these new state-

ments are the directly affected points. They are also the strongly affected points. The new call on add in

procedure Product causes the vertices representing procedure add to be weakly affected points. The full

backward slice with respect to the strongly affected points includes the loop and the assignment to i from

main ad the call to increment i in A. The second pass slice with respect to the weakly affected points

includes procedure add , but does not ascend out of procedure add; thus, differences correctly omits

the call “add(x, y)” in A and the computation of sum from main.

Even without performing test-case selection, the computation of differences tells us that the compu-

tations of i and sum are preserved. Thus, if certified was tested by two test cases, one testing the com-

putation of i and the other testing the computation of sum, neither of these test cases need be re-run. Mod-

ified is guaranteed to produce the same output as certified for these test cases. All that is required

is a test case for the computation of prod .

Looking ahead, test-case selection would determine that an existing test case tests all the new statements

in main and all the statements in Product except those inside the while loop. The reason for this is that the

call to Product in modified and the call to A in certified have common execution patterns. Thus

any test case that tests the call to A in main also tests the call to Product and the “top level” statements of

Product. The test-case selection algorithm cannot guarantee that the condition of the while loop will ever

be true. In this example, it happens to be true; thus, the body of the loop is also tested.

5.2. Illustration 2

The second example illustrates the use of test-case selection on an example where differences fails to

reduce the size of the program. The program, shown in Figure 12, has two computations whose results are

joined. The computations compute the shipping cost and tax due on a purchase. A change in either compu-

tation affects the join point and thus causes differences to include both computations. (Note that for

larger programs it should be increasingly unusual for differences to contain all of modified.)

In modified the shipping charge for packages between 5 and 25 dollars has increased from $3.00 to

$3.50. Figure 12 includes five test cases (tests 1, 3, and 5 provide adequate all-vertices coverage). The

affected and new components are the statements “shipping_cost = 3.50,” “total_cost = cost + ship-

ping_cost + tax,” and “output(total_cost).” The statement “shipping_cost = 3” of certified and the

statement “shipping_cost = 3.50” of modified have common execution patterns. The other affected

− 20 −

Figure 11. Certified, modified, and differences for Illustration 1.

− 21 −

Figure 12. Certified, modified, and differences for Illustration 2.

components of modified have common execution patterns with their corresponding component in cer-

tified. Test case 2 (input cost = 7) tests these three statements in certified. Test case selection cor-

rectly selects Test 2 as the only test case that needs to be re-run. It ignores the test cases for other shipping

costs and the various tax brackets. (If Test 2 is omitted from the test suite, test-case selection correctly

selects Test 3.)

− 22 −

5.3. Illustration 3

The third illustration is the word count program shown in Figure 13. This program reads a file and outputs

the number of lines, words, and characters in the file. The “certified” version contains an error: the count of

the number of lines is off by one. The modification that corrects this is a one line change in the initializa-

tion of the program. The computation of differences and test-case selection help to reduce the cost of

testing modified.

Program differences captures the change made to lines in an executable program. In the computa-

tion of differences, the directly affected points are the new assignment statement “lines = 0” and the

statements “lines = lines + 1” and “output (lines)”, which have incoming flow dependence edges from

“lines = 0.” These three vertices are also the affected points (all are strongly affected). The backward slice

with respect to these vertices includes the controlling while loop and the statements for reading input. The

computation of the number of characters and number of words are not used in the computation of any

affected points. Consequently, they are not included in differences.

Test-case selection also reduces the cost of testing modified. For each affected vertex of modified

there is at least one vertex of certified with common execution behavior. (The new statement in mod-

ified, “lines = 0,” has common execution patterns with any “top level” statement in certified (e.g.,

“inword = 0” or “lines = 1”). Thus, no new test cases are needed. Of the test cases shown in Figure 13

(one input “file” is shown per line ending with a “\0”), tests 1 and 3 are selected. (In fact Test 3 is sufficient

as Test 1 tests a subset of the vertices tested by Test 3. At present the implementation does not check for

this subset situation.) None of the tests that examine the character counting or the paths through the word

counting logic are selected.

5.4. Empir ical Results

Tables 2 and 3 below summarize results obtained when the prototype implementation was applied to five

programs. The first three programs are the proceeding illustrations. The last two are representative sam-

ples of (1) programs that are computationally intensive, and (2) programs that contain complex control

flow. The programs used are a program for predicting the weather, which mis-computes the next days

expected wind speed, and an ALU emulator, which requires the correction of a bug in the increment

instruction. These two are discussed in more detail at the end of this section.

The first table shows the size of certified, modified, and differences for each of the five pro-

grams. The size reduction ranges from 0% to 85%. For small changes, the following trend develops: as the

size of modified increases, so does the percent reduction. For slicing this trend continues to much larger

programs [25]. Differences is computed using slicing, so it is expected to follow this trend. For larger

changes that can be broken down into a collection of smaller changes, the size of differences is pro-

portional to the number of the small changes.

Program certified modified differences size reduction

Sum / Product 22 36 33 8%

Shipping Costs 28 28 28 0%

Word count 41 41 15 63%

Weather 251 251 132 47%

ALU 623 623 93 85%

Table 2: sizes of the example programs (in statements)

− 23 −

Figure 13. Certified, modified, and differences for Illustration 3. The change is hi-lighted in
modified. (In the input files, the # character is used to represent a blank.)

The second table contains timing results, in milliseconds, for the five programs. The times were obtained

on a DECstation 5000/133 with 16Mb of memory running Ultrix 4.3a. They are intended to give a rough

idea of the algorithm’s performance. These numbers do no represent a statistical study. Such a study is one

area for future work (see Section 7). Note that differences of less than 10 milliseconds are meaningless due

to the resolution of the timer. For example, in the shipping cost example certified, modified, and

differences are all identical, but their times vary from 15 to 19 milliseconds. Note also that times do

not include the time to build the SDG as we assume that it is stored and incrementally updated with the pro-

gram as is done in a programming environment [30].

− 24 −

(1) (2) (3) (4) (5) (6) (7)

certified modified computing differences test-case differences

Program on all tests on all tests differences on all tests selection on selected tests

Sum / Product 47 109 16 105 23 67

Shipping Costs 15 19 8 16 27 4

Word count 121 102 12 23 20 19

Weather 75,434 107,027 117 29,996 168 29,789

ALU 2024 1797 489 844 949 27

Table 3: analyses times for the example programs (in milliseconds)

Table 3 can be used to compare the time taken to recertify modified by directly retesting modified

and the time taken to recertify modified by testing differences. Figure 14 shows some of this data

graphically. First consider using differences without test-case selection. This is done by comparing

column 3 (modified on all tests) with the sum of columns 4 and 5 (i.e., the cost of computing differ-

ences and then running it on all tests). The sum is smaller for the last three programs where differ-

ences contains less than half of modified. For the other two programs differences contains most

of modified and thus the pay back for using differences does not outweigh the cost of computing it.

The difference in time taken is dramatic for the computationally intensive weather program.

The second comparison adds the costs and benefits of test-case selection by comparing column 3 with

the sum of columns 4, 6, and 7, which gives the cost of computing differences, selecting test cases,

and then running differences on the selected test cases. (It is not necessary to include column 5 as

differences is run on selected test cases only.) The sum is smaller for all but the second program. For

three of the example programs this sum is greater than the cost of running differences on all tests. The sum

of columns 4, 6, and 7 is greater than the sum of columns 4 and 5 for 3 of the 5 example programs. This

indicates the time taken to select test cases is not paid back by running differences on fewer tests.

200ms-

150ms-

100ms-

50ms-

0ms-
Program:

3

4

5

4

6

7

Sum / Product Shipping Costs Word Count Weather ALU

Figure 14. The execution times from Table 3 shown graphically. The Sum/Product graph includes the col-
umn numbers from Table 3 used for each bar. The data for Weather and ALU have been scaled by 1000
and 10 respectively.

− 25 −

This should be less true for programs with larger test suites. Further, experimentation on larger programs

with larger test suites is needed to determine if this is true in practice.

An additional comparison provides some idea of the benefits of performing test-case selection. Compare

column 5, which is the cost of running differences on all tests cases, with column 7, which is the cost

of running differences on only the selected test cases. Test-case selection yields an improvement in all

five cases.

Some explanation of the two programs not used as illustrations is in order. The weather program com-

putes tomorrow’s temperature, wind, and barometric pressure as the results of fixed point computations.

The wind computation in certified stops prematurely. Modified corrects this problem and com-

pletes the computation (thus its increased running time). Differences omits the temperature and baro-

metric pressure computations. Thus, running it on all tests cases reduces the testing time by about two

thirds. Test case selection omits the test cases for these computations. Consequently modified on

selected test cases (not shown in the table) and differences on all tests cases takes essentially the same

time.

The ALU program emulates an ALU with 16 instructions. The test suite contains 32 test cases as some

instructions contain multiple control-flow paths. The emulation of the increment instruction is incorrect in

certified and corrected in modified. In addition to the corrected increment procedure, differ-

ences contains code shared by all instructions (e.g., instruction de-code, code to perform bit shifts, etc.).

When differences is run on all test cases, test cases that do not need to be re-run still exercise this

shared code. Thus there is room for test-case selection to make an improvement. For this program, test-

case selection correctly determines that no new test cases need to be developed and that only one of the 32

original test cases needs to be re-run. Running differences on only the selected test cases provides a

substantial time reduction over running differences on all test cases.

6. RELATED WORK

This section has two parts. The first and smaller part deals with finding semantic differences; the second

larger part deals with reducing the cost of coverage based regression testing. In order to concentrate on the

aforementioned two kinds of related work, which more closely relate to the topic of this paper, this section

does not discuss the more general topic of software testing. White provides a broader and more complete

survey of software testing methods [40].

Several algorithms for computing semantic differences have been described [7, 18, 20, 42, 17]. The algo-

rithm described by Binkley et al. [7] generalizes that described by Horwitz el al. [18]. It is the foundation

of the semantic differencing algorithms presented in this paper. Both of these algorithms perform seman-

tics based program integration: given a program Base and two variants, A and B, each created by modify-

ing separate copies of Base, the goal of program integration is to determine whether the modifications inter-

fere, and if they do not, to create an integrated program that incorporates changed behavior of A and B with

respect to Base along with the behavior common to all three programs. The same ∆ operator used in the

computation of the program differences, is used to capture changed behavior: ∆(A, Base) captures the

changed behavior of A with respect to Base and ∆(B, Base) captures the changed behavior of B with

respect to Base. Reps and Horwitz overviewed program integration and the related uses of dependence

graphs [20].

The potential usefulness of computing differences can be illustrated by comparing it with certain

control-flow graph based techniques [2, 13, 29, 16]. The goal of one [2], for example, is to determine which

paths in the control-flow graph are affected by a change. Unfortunately, control-flow-graph paths

− 26 −

techniques can suffer because multiple computations can share a single control-flow graph path. For exam-

ple, Procedure A in Figure 1 contains a single control-flow graph path but two computations (the new val-

ues of x and y). Since the need to retest the computation of x or y includes this path, it forces the need to

retest both. This is observed in the following quotation:

if, indeed, the first program block is modified by, for example, the addition of a variable initialization, then

all the program paths will be modified . . . and will thus have to be retested. It may, howev er, be the case

that only a small subset of these paths actually use the initialized variable [2].

Because dependence graphs “throw away” unnecessary sequencing information contained in control-flow

graphs, the technique presented herein is capable of identifying the two distinct computations in Procedure

A of Figure 1 and including only the affected one in differences.

An improvement to the single procedure program integration algorithm [42] leads to an improved algo-

rithm for intraprocedural differencing [17]. These algorithms use a modified dependence graph called the

Program Representation Graph (PRG), which combines features of the PDG and Static Single Assignment

(SSA) form [11]. Even though PRG based algorithms better identify components with equivalent behavior

in the absence of procedures and procedure calls, attempts to extend this work to handle procedures and

procedure calls have thus far been unsuccessful.

The second kind of related work deals with reducing the cost of regression testing by performing test-

case selection. Previous coverage based test-case selection algorithms can be viewed as optimistic solu-

tions to the test-case selection problem because they assume that test cases exercise the same components

in certified and modified (for example see [29] and [16]). This is in contrast to the pessimistic

solution presented herein. Optimistic solutions make the assumption that a test case will exercise the same

components in certified and modified. Since another change may affect the flow of control through

modified, this assumption may be invalid. To handle cases in which this optimism is misguided these

techniques run the test cases they believe are required and record the actual components tested. New test

cases are then devised to cover untested components. In comparison, the pessimistic approach described in

this paper deals with multiple changes to certified by partitioning components based on common

execution patterns regardless of the number of changes made.

In terms of computational costs, the optimistic approach avoids the cost of determining components with

common execution patterns, but incurs the costs of running unnecessary test cases and of creating and run-

ning new test cases. The cost of computing common execution patterns is bounded by the size of the pro-

gram. The cost of running test cases is unbounded in the program’s size; it is bounded only by the execu-

tion time of the program. Empirical experience would be useful in further comparing these two possibili-

ties.

One advantage of the optimistic approach is when the pessimistic approach cannot safely show that any

test tests a component even though such a test exists. For example, consider replacing “if a > 0” with

“if a ≥ 0.” This change may affect the direction taken by the if statement; thus, the pessimistic approach

cannot safely determine that the same path is taken. But it does not affect the direction for a test with

a = 10. Here the optimistic approach would discover this when it ran the a = 10 test. The pessimistic

approach will identify components in the if statement’s body as needing new test cases. One place to

search for new test cases is in certified’s test suite; for example, the test with a = 10.

Many previous approaches account for direct changes to the program but may miss indirect ones. Con-

sider the following problem:

Many debugging or updating fixes involve only simple changes One frequently made error is to change

a variable assignment because the [right-hand-side expression] is incorrect, but not to check that the new

− 27 −

[right-hand-side] expression is appropriate for all the [left-hand-size] variables’ uses. If the results are used

in several places, it is easy for the programmer to concentrate on only one or two of those uses, and not to be

aw are of the uses in other places [29].

Retesting of directly affected definition-use pairs (flow dependence edges) is sufficient if the use is directly

affected by the change. However, a change may affect a use “down stream” in the computation. The tech-

niques presented in this paper correctly identify affected down-stream uses.

Rothermel and Harrold recently compared 13 regression test cost reduction techniques using four met-

rics: inclusiveness, precision, efficiency (complexity) and generality [36]. The following discussion of

related work does not attempt to duplicate their work. Rather, we consider first the test-case selection algo-

rithm of Rothermel and Harrold [34, 35], which produces results very similar to the test-case selection algo-

rithm presented in Section 4, and then three other algorithms that use program slicing.

Rothermel and Harrold’s first test-case selection method concentrates on the use of control dependence

to identify cases that must be rerun [34]. The algorithm does not directly incorporate the effects of changes

in data dependence when identifying changes and their effects. To capture semantic changes and thus pro-

vide coverage guarantees, it is necessary to consider both control and data dependence changes.

An extension of their work [35], which accounts for both control and data dependence, first considers

intraprocedural test-case selection and then interprocedural test-case selection. This new work makes sev-

eral insightful observations about reducing the cost of retesting software. Both algorithms begin with the

enter vertices of the (main) procedures of certified and modified and perform side-by-side post-

order traversals of the two graphs. During the traversals, tests to be rerun are collected. The traversals stop

at leaf nodes or predicates that are directly affected points. A second pass is made over modified’s graph

to discover components that are not tested. This pass uses slicing to identify untested components.

Their extension to interprocedural test-case selection essentially applies the intraprocedural test-case

selection algorithm to (a minor modification of) the SDG. This extension is less precise (selects a larger

number of tests) than the approach presented herein because of approximations in certain cases involving

interprocedural data dependences present in the modified SDG. The interprocedural coverage algorithm

represents a more substantial overhaul of the intraprocedural algorithm and is correspondingly more com-

plex. Their approach and the one considered in Section 4 produce very similar results, but contain radically

different internals. While a thorough comparison would require stating Rothermel and Harrold’s algorithm

in detail, the following two differences are representative.

First, the approach in this paper formalizes “exercised flow dependence edge” better and consequently

deals better with identifying new, affected, preserved, and deleted flow dependence edges. This

leads to better identification of which flow dependence edges need to be re-tested. For example, when an

intervening definition (nested within a control predicate) is executed, the definition of exercises correctly

captures only test cases that do not execute this intervening definition.

Second, the statement of the algorithm developed in this paper makes use of higher-level operators (e.g.,

slicing operators). This allows the hard problem of performing test-case selection to be separated from the

hard problem of capturing semantic properties of programs using dependences. In contrast, Rothermel and

Harrold’s algorithm considers individual data and control dependences directly in the test-case selection

algorithm, which is in general more complicated and thus more error prone.

Three techniques that make use of program slicing are presented by Gupta et al. [15], Bates and Horwitz

[1], and Kamkar et al. [22]. The first of these makes the observation that existing techniques identify

directly affected def-use pairs, but not indirectly affected def-use pairs [15] (A def-use pair contains the

− 28 −

same information as a flow dependence edge.) It then goes on to use program slicing to capture both

directly and indirectly affected def-use pairs, which are categorized as new, value (affected in the terminol-

ogy of this paper), and path (a kind of transitive dependence). Finally, it presents several algorithms includ-

ing an algorithm for identifying the definitions that reach a given statement.

Bates and Horwitz [1] proposed the use of dependence graph based test data adequacy criterion. Their

algorithms are efficient since slicing a dependence graph is a linear time operation. Bates and Horwitz

introduce a number of test data adequacy criterion based on dependence graphs and then relate them to con-

trol flow and data flow criterion. Finally, they present algorithms for test-case selection based on their new

criterion.

Third, Kamkar et al. apply dynamic slicing to interprocedural data flow testing [22]. Their goal is to

increase the reliability of testing and not test case reduction. The use of dynamic slicing in place of static

slicing should be considered. Whereas a static slice uses static analysis to determine dependences, a

dynamic slice uses a particular execution of a program. This allows a more precise identification of depen-

dences (in particular data dependences) because information about aliases and the values of predicates are

known at run time. However, a dynamic slice applies to a particular run of a particular program. The ram-

ification to test-case selection, after a modification to a certified program, is that a change in the certified

program may change the statements executed by a test case; therefore, changing the dynamic slice. Thus,

while dynamic slicing is useful in increasing the reliability of testing, it cannot be applied to the test-case

selection problem.

7. SUMMARY AND FUTURE WORK

Knowing the semantic differences between two programs is useful in many program maintenance activities,

not the least of which is reducing the cost of regression testing. The techniques described in this paper can

reduce costs in three ways: they can reduce the complexity of the program on which tests must be run, they

can reduce the number of existing test cases that must rerun, and they can reduce the number of new test

cases that must be created. This algorithm is an important improvement over previous algorithms in one or

more of the following three ways:

(1) It uses semantic changes rather than syntactic changes to identify affected components of the program

and the test cases that must be rerun. To be clear, the semantics of a program are approximated by our

techniques. Program semantics form the basis for the definitions of dependence, program slicing, com-

mon execution behavior, and differences. Howev er, the actual algorithms, which are based on the

semantic definitions, must necessarily work with programs. These algorithms compute safe approxima-

tions to the semantic definitions. For example, if the algorithm in Figure 9 determines that two compo-

nents have isomorphic calling-context slices (a syntactic condition) then the components have common

execution patterns (a semantic condition). However, if the algorithm cannot determine that two compo-

nents have isomorphic calling-context slices, then it makes the safe assumption that they do not have

common execution patterns. Erring on the safe side is necessary, since exact static analysis of semantic

properties is an unsolvable problem.

(2) On test cases that the algorithm determines do not need to be rerun, it guarantees that certified and

modified will have the same behavior. A proof appears in [6].

(3) It works in the presence of procedures and procedure calls, which is increasingly important as

paradigms such as object-oriented programming produce programs with large numbers of procedures.

We also defined the notion of common execution pattern, which is useful in understanding which test

cases for certified test components of modified. The algorithm for calling-context slices provides a

− 29 −

method of determining when two components have common execution patterns.

Most of the algorithms presented in this paper are based on the operation of program slicing. We hav e

constructed a prototype implementation for a subset of C that uses a simple slicer. We are exploring an

implementation of these algorithms using Unravel (an ANSI C slicer) [25]. This would allow us to study

larger “real-world” programs. Such a study could be carried out using the techniques presented in [24],

which describes a model for comparing the cost of the selective regression testing strategies with traditional

retest-all strategy.

In particular, the following tradeoffs will be explored. First, the tradeoff between minimal coverage and

safe coverage. Minimal techniques are expected to select fewer test cases. We may find that minimal tech-

niques do nearly as well at detecting faults in practice as safe coverage techniques, but save a great deal of

time over safe coverage techniques. Or, we my find that minimal approaches detect far fewer faults than

safe coverage techniques, but are a cheap way to get some testing done in certain situations. Some evi-

dence that minimization techniques may be “just as good” as safe techniques is given in a study of mini-

mization and safe coverage techniques perform by Wong et al. [41].

Tw o comparisons are needed. The first will compare the number of faults detected by minimization and

by safe coverage techniques. The number of faults detected for minimization techniques should be less

than or equal to the number detected by safe techniques. If it is less, then a comparison of the cost of miss-

ing faults with the cost of running additional tests is necessary.

The implementation will also be used to access the significance of the controlled regression testing

assumption. If a significant number of faults are related to factors such as memory placement and available

memory then selective regression testing of differences is of limited use. If, on the other hand, all or

ev en most faults are found using selected tests, then selective regression testing becomes more attractive.

In particular, the implementation will be used to access the impact of testing differences in place of

modified. An example of a failure not caught when testing differences is a test on which modi-

fied would run out of memory but differences does not. This study will be a comparison between

the savings gained by running differences in place of modified, and the cost of missing a fault that

would have been caught by testing modified directly. By analogy, early compilers were viewed with

skepticism, but ultimately prove to be cost savers and thus are in common use. If techniques such as the

selective regression testing are cost savers, they too will come into common use. This may require signifi-

cant empirical evidence to build the necessary confidence in the new approach.

In conclusion, the algorithms presented in this paper allow a smaller number of test cases to be run on a

smaller program. These algorithms are expected to work best on small to moderate changes of large pro-

grams where high cost may make maintainers reluctant to perform the regression testing. Consider the fol-

lowing remark by Brian Marick [27]:

While the long-term benefits of an automated test suite are enormous, the startup cost can be high. For ex-

ample, testing individual routines in isolation (unit testing) is too expensive except for most critical routines.

You spend too much time writing test drivers and the stubs that emulate the subroutines the routine-under-

test calls. . . . Initial test development is bad enough; maintenance becomes a nightmare, and the unit tests

are often abandoned.

Having a lower cost method that guarantees the same testing coverage as complete regression testing could

remove this reluctance.

− 30 −

Acknowledgments

The limiting of tests to directly affected points was suggested to the author by Gregg Rothermel while the

author was visiting Clemson University. Ned Chapin provided early guidance and encouragement. Ed Bir-

rane is responsible for the Tcl/Tk front end. Discussions with Keith Gallagher improved this paper. Roger

Eastman, Brad Kuhn, and Ed Birrane’s comments also improved the exposition.

REFERENCES

1. Bates, S. and Horwitz, S., “Incremental program testing using program dependence graphs,” in Conference Record
of the Twentieth ACM Symposium on Principles of Programming Languages, (Charleston, SC, January 10-13,
1993), ACM, New York, NY (1993).

2. Benedusi, P., Cimitile, A., and De Carlini, U., “Post-maintenance testing based on path change analysis,” pp.
352-368 in Proceedings of the IEEE Conference on Software Maintenance, (Phoenix, Arizona, Oct, 1988), IEEE
Computer Society, Washington, DC (1988).

3. Binkley, D., “Multi-procedure program integration.,” Ph.D. dissertation and Technical Report TR-1038, Computer
Sciences Department, University of Wisconsin, Madison, WI (August 1991).

4. Binkley, D., “Using semantic differencing to reduce the cost of regression testing,” pp. 41-50 in Proceedings of the
IEEE Conference on Software Maintenance, (Orlando, FL, Nov, 1992), IEEE Computer Society, Washington, DC
(1992).

5. Binkley, D., “Precise executable interprocedural slices,” ACM Letters on Pro gramming Languages and Systems
2(1-4)(1993).

6. Binkley, D., “Interprocedural test case selection,” Tech Rep. TR95001, Department of Computer Science, Loyola
College, Baltimore, MD. (January 1995).

7. Binkley, D., Horwitz, S., and Reps, T., “Program Integration for Languages with Procedure Calls,” ACM Transac-
tions on Software Engineering and Methodology 4(1) pp. 3-35 (January 1995).

8. Binkley, D., “Reducing the cost of regression testing by semantics guided test case selection,” pp. 251-260 in IEEE
International Conference on Software Maintenance, (Nice, France, Oct, 1995), IEEE Computer Society, Washing-
ton, DC (1995).

9. Choi, J. and Ferrante, J., “Static slicing in the presence of goto statements,” ACM Transacton on Programming
Languages and Systems 16(4) pp. 1097-1113 (July 1991).

10. Clarke, L.A., Podgurski, A., Richardson, D.J., and Zeil, S.J., “A formal evaluation of data flow path selection crite-
ria,” IEEE Transactions on Software Engineering SE-15(11) pp. 1318-1332 (November 1989).

11. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., and Zadeck, K., “An efficient method of computing static
single assignment form,” pp. 25-35 in Conference Record of the Sixteenth ACM Symposium on Principles of Pro-
gramming Languages, (Austin, TX, Jan. 11-13, 1989), ACM, New York, NY (1989).

12. Donzeau-Gouge, V., Huet, G., Kahn, G., and Lang, B., “Programming environments based on structured editors:
The MENTOR experience,” pp. 128-140 in Interactive Programming Environments, ed. D. Barstow, E. Sandewall,
and H. Shrobe, McGraw-Hill, New York, NY (1984).

13. Fischer, K.F., Raji, F., and Chruscicki, A., “A methodology for re-testing modified software,” pp. B6.3.1-6 in IEEE
National Telecommunications Conference Proceedings, (Nov. 1981).

14. Gallagher, K.B. and Lyle, J.R., “Using program slicing in software maintenance,” IEEE Transactions on Software
Engineering SE-17(8) pp. 751-761 (1991).

15. Gupta, R., Harrold, M.J., and Soffa, M.L., “An approach to regression testing using slicing,” pp. 299-308 in Pro-
ceedings of the IEEE Conference on Software Maintenance, (Orlando, Florida, Nov, 1992), IEEE Computer Soci-
ety, Washington, DC (1992).

16. Harrold, M.J. and Soffa, M.L., “An incremental approach to unit testing during maintenance,” pp. 362-367 in Pro-
ceedings of the IEEE Conference on Software Maintenance, (Phoenix, Arizona, Oct, 1988), IEEE Computer

− 31 −

Society, Washington, DC (1988).

17. Horwitz, S., “Identifying the semantic and textual differences between two versions of a program,” Proceedings of
the ACM SIGPLAN 90 Conference on Programming Language Design and Implementation, (White Plains, NY,
June 20-22, 1990), ACM SIGPLAN Notices 25(6) pp. 234-245 (June 1989).

18. Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” ACM Trans. Program.
Lang. Syst. 11(3) pp. 345-387 (July 1989).

19. Horwitz, S., Reps, T., and Binkley, D., “Interprocedural slicing using dependence graphs,” ACM Transactions on
Programming Languages and Systems 12(1) pp. 26-60 (January 1990).

20. Horwitz, S. and Reps, T., “The use of program dependence graphs in software engineering,” in Proceedings of the
14th IEEE Conference on Software Engineering, (Melbourne, Australia, June, 1992), IEEE Computer Society,
Washington, DC (1992).

21. Howden, W.E., “Reliability of the path analysis testing strategy,” IEEE Transactions on Software Engineering
SE-2(3) pp. 208-215 (September 1976).

22. Kamkar, M., Fritzson, P., and Shahmehri, N., “Interprocedural dynamic slicing applied to interprocedural data
flow testing,” pp. 368-395 in Proceedings of the IEEE Conference on Software Maintenance, (Montreal, Quebec,
Canada, Sep, 1993), IEEE Computer Society, Washington, DC (1993).

23. Laski, J. and Szermer, W., “Identification of program modifications and its applications in software maintenance,”
pp. 282-290 in Proceedings of the IEEE Conference on Software Maintenance, (Orlando, FL, Nov, 1992), IEEE
Computer Society, Washington, DC (1992).

24. Leung, H.K.N. and White, L., “A cost model to compare regression test strategies,” pp. 201-208 in Proceedings of
the IEEE Conference on Software Maintenance, (Sorrento, Italy, Oct, 1991), IEEE Computer Society, Washington,
DC (1991).

25. Lyle, J.R., Wallace, D.R., Graham, J.R., Gallagher, K.B., Poole, J.E., and Binkley, D.W., “A CASE tool to evaluate
functional diversity in high integrity software,” U.S. Department of Commerce, Technology Administration,
National Institute of Standards and Technology, Computer Systems Laboratory, Gaithersburg, MD, (1995).

26. Marick, B., “A Survey of test effectiveness and cost studies,” Report No. UIUCDCS-R-90-1652, Dept. of Com-
puter Science, University of Illinois at Urbana-Champaign, Urbana, IL (December 1990).

27. Marick, B., “Three ways to improve your testing,” in Unpublished Report (Testing Foundations, Champaign IL),
(1993).

28. Notkin, D., Ellison, R.J., Staudt, B.J., Kaiser, G.E., Kant, E., Habermann, A.N., Ambriola, V., and Montangero, C.,
Special issue on the GANDALF project, Journal of Systems and Software 5(2)(May 1985).

29. Ostrand, T.J. and Weyuker, E.J., “Using data flow analysis for regression testing,” in Proceedings of the Sixth
Annual Pacific Northwest Software Quality Conference, (Portland, Oregon, September 19-20, 1988), ACM, New
York, NY (1988).

30. Ottenstein, K.J. and Ottenstein, L.M., “The program dependence graph in a software development environment,”
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-
ment Environments, (Pittsburgh, PA, Apr. 23-25, 1984), ACM SIGPLAN Notices 19(5) pp. 177-184 (May 1984).

31. Podgurski, A. and Clarke, L.A., “A formal model of program dependences and its implications for software test-
ing, debugging, and maintenance,” IEEE Transactions on Software Engineering 16(9)(September 1990).

32. Rapps, S. and Weyuker, E.J., “Selecting software test data using data flow information,” IEEE Transactions on
Software Engineering SE-11(4) pp. 367-375 (1985).

33. Reps, T. and Teitelbaum, T., The Synthesizer Generator: A system for constructing language-based editors,
Springer-Verlag, New York, NY (1988).

34. Rothermel, G. and Harrold, M.J., “A safe, efficient algorithm for regression test selection,” Proceedings of the
IEEE Conference on Software Maintenance, (Montreal, Quebec), pp. 358-367 IEEE Computer Society, (Septem-
ber 1993).

35. Rothermel, G. and Harrold, M.J., “Selecting tests and identifying test coverage requirements for modified soft-
ware,” Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis Seattle,

− 32 −

Washington), pp. 169-84 (August 1994).

36. Rothermel, G. and Harrold, M.J., “Analyzing regression test selection techniques,” IEEE Transactions on Software
Engineering 22(8)IEEE Computer Society, (1996).

37. Stoy, J.E., Denotational Semantics: The Scott-Strachey Approach to Pro gramming Language Theory, The M.I.T.
Press, Cambridge, MA (1977).

38. Weiser, M., “Program slicing,” pp. 439-449 in Proceedings of the Fifth International Conference on Software
Engineering, (San Diego, CA, March 1981), (1981).

39. Weyuker, J., “The complexity of data flow criteria for test data selection,” Information Processing Letters 19 pp.
103-109 (1984).

40. White, L., “Software Testing and Verification,” pp. 335-390 in Advances in Computers,Vol 26., Academic Press
(1987).

41. Wong, W., Horgan, J., London, S., and Mathur, A., “Effect of test set minimization of faults detection effec-

tiveness,” pp. 41-50 in Proceedings of the 17th International Conference on Software Engineering, (Seattle WA,
October 1995), (April 1995).

42. Yang, W., Horwitz, S., and Reps, T., “A program integration algorithm that accommodates semantics-preserving
transformations,” Proceedings of the 4th ACM SIGSOFT Symposium on Software Development Environments,
(Irvine, CA, December 3-5, 1990), ACM SIGSOFT Software Engineering Notes, (1990).

43. Yang, W., “Identifying syntactic differences between two programs,” Software—Practice and Experience
21(7)(July 1991).

