
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998 331

Connectors for Mobile Programs
Michel Wermelinger, Student Member, IEEE, and José Luiz Fiadeiro

Abstract—Software Architecture has put forward the concept of connector to express complex relationships between system
components, thus facilitating the separation of coordination from computation. This separation is especially important in mobile
computing due to the dynamic nature of the interactions among participating processes. In this paper, we present connector
patterns, inspired in Mobile UNITY, that describe three basic kinds of transient interactions: action inhibition, action synchronization,
and message passing. The connectors are given in COMMUNITY, a UNITY-like program design language which has a semantics in
Category Theory. We show how the categorical framework can be used for applying the proposed connectors to specific
components and how the resulting architecture can be visualized by a diagram showing the components and the connectors.

Index Terms—Software Architecture, connectors, transient interactions, UNITY.

——————————���F���——————————

1 INTRODUCTION

S the complexity of software systems grows, the role of
Software Architecture is increasingly seen as the uni-

fying infrastructural concept/model on which to analyze
and validate the overall system structure in various phases
of the software life cycle. In consequence, the study of
Software Architecture has emerged, in recent years, as an
autonomous discipline which requires its own concepts,
formalisms, methods, and tools [1], [2].

The concept of connector has been put forward to express
complex relationships between system components, thus
facilitating the separation of coordination from computation.
This is especially important in mobile computing due to the
transient nature of the interconnections that may exist be-
tween system components. In this paper we propose an ar-
chitectural approach to mobility that encapsulates this dy-
namic nature of interaction in well-defined connectors.

More precisely, we present connector patterns for three
fundamental kinds of transient interaction: action inhibi-
tion, action synchronization, and message passing. Each
pattern is parameterized by the condition that expresses the
transient nature of the interaction. The overall architecture
is then obtained by applying the instantiated connectors to
the mobile system components. To illustrate our proposal,
components and connectors will be written in COMMUNITY
[3], [4], a program design language based on UNITY [5], and
IP [6].

The nature of the connectors proposed in the paper was
motivated and inspired by Mobile UNITY [7], [8], an exten-
sion of UNITY that allows transient interactions among
programs. However, our approaches are somewhat differ-

ent. Mobile UNITY suggests the use of an interaction sec-
tion to define coordination within a system of components.
We advocate an approach based on identified connectors, in
order to make the architecture of the system more explicit
and promote interactions to first-class entities (like pro-
grams). Moreover, while we base our approach on the
modification of the superposition relation between pro-
grams, Mobile UNITY introduces new special program-
ming constructs, leading to profound changes in UNITY’s
syntax and computational model. However, we should
point out that some of these syntactic and semantic modifi-
cations (like naming of program actions and locality of
variables) were already included in COMMUNITY.

To make it easier for interested readers to compare our
approach with Mobile UNITY we use the same example as
in [7]: a luggage distribution system. It consists of carts
moving on a closed track transporting bags from loaders to
unloaders that are along the track. Due to space limitations
we have omitted many details which, while making the
example more realistic, are not necessary to illustrate the
main ideas.

In this paper, we follow the approach proposed in [9]
and give the semantics of connectors in a categorical
framework. In this approach, programs are objects of a
category in which the morphisms show how programs can
be superimposed. Because in Category Theory [10] objects
are not characterized by their internal structure but by their
morphisms (i.e., relationships) to other objects, by changing
the definition of the morphisms we can obtain different
kinds of relationships between the programs, without hav-
ing to change the syntax or semantics of the programming
language. In fact, the core of the work to be presented in the
remainder of this paper is an illustration of that principle:
by changing program morphisms in a small way such that
actions can be “ramified,” transient action synchronization
becomes possible.

Section 2 presents the language and the morphisms, Sec-
tion 3 defines the architectural diagrams, while Section 4
shows the connector patterns and instantiates them for the
example application.

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� M. Wermelinger is with the Departamento de Informática, Universidade
Nova de Lisboa, 2825 Monte da Caparica, Portugal.
E-mail: mw@di.fct.unl.pt.

•� J.L. Fiadeiro is with the Departamento de Informática, Faculdade de Ciên-
cias, Universidade de Lisboa, Campo Grande, 1700 Lisboa, Portugal.
E-mail: llf@di.fc.ul.pt.

Manuscript received 30 June 1997; revised 16 Dec. 1997.
Recommended for acceptance by C.-G. Roman and C. Ghezzi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 106410.

A

332 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

2 MOBILE COMMUNITY

The framework to be used consists of programs and their
morphisms. This section introduces just the necessary defi-
nitions. For a more thorough formal treatment, the inter-
ested reader should consult [11].

A COMMUNITY program is basically a set of named,
guarded actions. Action names act as rendezvous points for
program synchronization. At each step, one action whose
guard is true executes. Each action consists of one or more
assignments to execute simultaneously. Each attribute
used by a program is either external—its value is pro-
vided by the environment and may change at any time—
or local—its value is initialized by the program and modi-
fied only by its actions.

Attributes are typed by a fixed algebraic data type
specification 〈S, Ω, Φ〉 where S is a set of sort symbols, Ω is
an S* × S-indexed family of function symbols, and Φ is a
set of first-order axioms defining the properties of the op-
erations. We do not present the specification of the sorts
and predefined functions used in this paper. The main
differences to UNITY are: actions are named, all names are
local, and there are two kinds of attributes. Except for the
latter, Mobile UNITY also has these characteristics.

A COMMUNITY program has the following structure:

program P is
var V
read R
init I
do [] g : [B(g) → a := F(g, a)]

 g∈Γ a∈D(g)

where

•� V is the set of local attributes, i.e., the program “vari-
ables”;

•� R is the set of external attributes used by the program,
i.e., read-only attributes that are to be instantiated
with local attributes of other components in the envi-
ronment;

•� each attribute is typed by a data sort in S;
•� Ι is the initialization condition, a proposition on the lo-

cal attributes;
•� Γ is the set of action names, each one having an associ-

ated statement (see below);
•� for every action g ∈ Γ, the guard B(g) is a proposition

on the attributes stating the necessary conditions to
execute g;

•� for every action g ∈ Γ, its domain D(g) is the set of lo-
cal attributes that g can change;

•� for every action g ∈ Γ, and local attribute a ∈ D(g),
F(g, a) is a term denoting the value to be assigned to a
each time g is executed.

Formally, the signature of a program defines its vocabu-
lary (i.e., its attributes and action names).

DEFINITION 1. A program signature is a tuple 〈V, R, Γ〉 where:

•� V = Us S sV∈ is a set of local attributes;
•� R = Us S sR∈ is a set of external attributes;
•� Γ = Ud V d⊆ Γ is a set of actions.

The sets Vs, Rs, and Γd are finite and mutually disjoint.
The domain of an action g ∈ Γ is the set d ⊆ V such that
g ∈ Γd.

NOTATION. The program attributes are A s S= ∈U As

= ∈Us S s sV R()< . The sort of attribute a is denoted by

sa. The domain of action g is denoted by D(g). In-
versely, for each a ∈ V the set of actions that can
change a is D(a) = {g ∈ Γ : a ∈ D(g)}.

A program’s body defines the initial values of its local
attributes and also when and how the actions modify them.
For that purpose the body uses propositions and terms
built from the program’s attributes and the predefined
function symbols.

DEFINITION 2. A program is a pair 〈θ ∆〉 where θ = 〈V, R, Γ〉 is a
program signature and ∆ = 〈I, F, B〉 is a program body
where

•� Ι is a proposition over V;
•� F assigns to every g ∈ Γ and to every a ∈ D(g) a term

of sort sa;
•� B assigns to every g ∈ Γ a proposition over A.

NOTATION. If D(g) is empty, then F is denoted by skip.

Locations are an important aspect of mobility [12]. We
take the same approach as Mobile UNITY and represent
location by a distinguished attribute. However, our frame-
work allows us to handle locations in a more flexible way.
We can distinguish whether the program controls its own
motion or if it is moved by the environment by declaring
the location attribute as local or external, respectively.

The formal treatment of locations is the same as for any
attribute because they have no special properties at the ab-
stract level we are working at. However, any implementa-
tion of COMMUNITY will have to handle them in a special
way, because a change in the system’s location implies a
change in the value of the location attribute and vice versa.
We assume, therefore, some special syntactic convention for
location attributes such that a compiler can distinguish
them from other attributes. Following the notation pro-
posed by Mobile UNITY, in this paper location attributes
start with λ.

To give an example of a COMMUNITY program, we pres-
ent the specification of a cart. Like bags and (un)loaders,
carts have unique identifiers, which are represented by ex-
ternal integer attributes, so that a cart cannot change its own
identity. A cart can transport at most one bag at a time from a
source loader to a destination unloader. Initially, the cart’s
destination is the loader from which it should fetch its first
bag. The unloader at which a bag must be delivered depends
on the bag’s identifier. After delivering a bag, or if a loader is
empty, the cart proceeds to the next loader. Absence of a bag
will be denoted by the identifier zero.

The track is divided into segments, each further divided
into 10 units. The location of a cart is, therefore, given by an
integer. Carts can move at two different speeds: slow (one
length unit per time unit) and fast (two length units). A cart
stops when it reaches its destination. The action to be per-
formed at the destination depends on whether the cart is
empty or full.

WERMELINGER AND FIADEIRO: CONNECTORS FOR MOBILE PROGRAMS 333

program Cart is
var bag, λ, dest : int
read id, nbag : int
init bag = 0 ∧ dest = InitDest(id) ∧ λ = InitLoc(id)
do slow: [λ ≠ dest → λ := λ + 1]
[] fast: [λ ≠ dest → λ := λ + 2]
[] load: [λ = dest ∧ bag = 0

→ bag := nbag || dest := Dest(nbag, dest)]
[] unload: [λ = dest ∧ bag ≠ 0

→ bag := 0 || dest := Next(dest)]

We now turn to program morphisms, the categorical no-
tion that expresses relationships between (certain) pairs of
programs. In the previous definitions of COMMUNITY [4],
[9], a morphism between two programs P and P′ is just a
mapping from P’s attributes and actions to those of P′,
stating in which way P is a component of P′. It is therefore
called a superposition morphism, since it captures the no-
tion of superposition of [5], P being the underlying pro-
gram and P′ the transformed one.

In this paper, we keep the basic intuition but introduce a
small, although fundamental, change. In a mobile setting, a
program may synchronize each of its actions with different
actions from different programs at different times. To allow
this, a program morphism may associate an action g of the
base program P with a set of actions {g1, …, gn} of the su-
perimposed program P′. The intuition is that those actions
correspond to the behavior of g when synchronizing with
other actions of other components of P′. Each action gi must
preserve the basic functionality of g, adding the functional-
ity of the action that has been synchronized with g. The
morphism is quite general: the set {g1, …, gn} may be empty.
In that case, action g has been effectively removed from P′.
Put in other words, it has been permanently inhibited, as if
the guard had been made false. Due to technical reasons the
mapping between actions of P and sets of actions of P′ is
formalized as a partial function from P′ to P. However, in
examples and informal discussions we use the “set version”
of the action mapping.

Morphisms must preserve the types, the locality, and the
domain of attributes. Preserving locality means that local
attributes are mapped to local attributes, and preserving
domains means that new actions of the system are not al-
lowed to change local attributes of the components.

DEFINITION 3. Given program signatures θ = 〈V, R, Γ〉 and θ′ =
〈V′, R′, Γ〉 , a signature morphism σ : θ → θ′ consists of a
total function σα : A → Α′ and a partial function σγ : Γ′ →
Γ such that

•� ∀s ∈ S σα(Vs) ⊆ ′ ∧ ⊆ ′V R As s sσα () ;
•� ∀ ∈ ′ ⊆a V D a D aσ σγ ((())) ()α ;

•� ∀ ′ ∈ ′g Γ if σγ ()′g is defined, then σα((()))D gσγ ′
⊆ ′ ′D g().

NOTATION. In the following, the indices α and γ are omitted.
We denote the preimage of σγ by σ←. Also, if x is a

term (or proposition) of θ, then σ()x is the term (resp.
proposition) of ′θ obtained by replacing each attribute
a of x by σ()a .

Notice that through the choice of an appropriate mor-
phism, it is possible to state whether a given component
and a given system are colocated (i.e., whenever one
moves, so does the other) or if the component can move
independently within the system. This can be modeled by a
morphism that maps (or not) the location attribute of the
component to the location attribute of the system.

Our first result is that signatures and their morphisms
constitute a category. This basically asserts that morphisms
can be composed. In other words, the “component-of” rela-
tion is transitive (and reflexive, of course).

PROPOSITION 1. Program signatures and signature morphisms
constitute a category 6,*.

Superposition of a program P′ on a base program P is
captured by a morphism between their signatures that
obeys the following conditions:

•� the initialization condition is not weakened;
•� the assignments are equivalent;
•� the guards are not weakened.

DEFINITION 4. A superposition morphism σ : 〈θ, ∆〉 → 〈θ′, ∆′〉
is a signature morphism σ : θ → θ′, such that:

•� Φ| ()= ′ ⇒′θ σI I ;

•� ∀g ∈ Γ ∀a ∈ D(g) ∀g′ ∈ σ ← (g) Φ| (, ())= ′ ′′θ σF g a
= σ((,))F g a ;

•� ∀g ∈ Γ ∀ g′ ∈ σ ← (g) Φ| ()= ′ ′′θ B g ⇒ σ(())B g .

where |= ′θ means validity in first-order sense.

The category of signatures extends to programs.

PROPOSITION 2. Programs and superposition morphisms consti-
tute a category 352*.

To give an example of a program morphism, consider
the need to prevent carts from colliding at intersections. We
achieve that goal in two steps, the second of which to be
presented in Section 4.2. When two carts enter two seg-
ments that intersect, due to the semantics of COMMUNITY
allowing only one cart to move at each step, one of the carts
will be further away from the intersection. The first step to
avoid collisions is to force that cart to move slowly. In other
words, its fast action is inhibited. Notice that in this case the
inhibition depends on the presence of another cart, and
therefore a second (external) location attribute λ′ is needed.
The Cart program is thus transformed into an InhibitedCart
as given by the diagram in Fig. 1, where the inhibition con-
dition is I = CrossingSegments(λ′, λ) ∧ DistanceToCross-
ing(λ′) < DistanceToCrossing(λ). Action fast may execute
only when this condition is false. The morphism is an injec-
tion: λ a λ, fast a fast, etc. The next section shows how
the InhibitedCart program can be obtained by composition
of two components.

3 THE ARCHITECTURE

The configuration of a system is described by a diagram of
components and channels. The components are programs,
and the channels are given by signatures that specify how
the programs are interconnected. Given programs P1 and
P2, the signature S is constructed as follows: for each pair of

334 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

attributes (or actions) a1 ∈ P1 and a2 ∈ P2 that are to be
shared (resp. synchronized), the signature contains one at-
tribute (resp. action) a; the morphism from S to Pi maps a to
ai. We have morphisms only between signatures or only
between programs, but a signature θ = 〈V, R, Γ〉 can be seen
as a program)(θ) with an “empty” body [9]. In categorical
terms, the operator) is a functor (i.e., a map between ob-
jects and morphisms of different categories).

As a simple example consider the diagram in Fig. 2,
which connects (through a channel that represents attribute
sharing) the generic cart program with a program that ini-
tializes an integer attribute with the value 2.

The program that describes the whole system is given by
the colimit of the diagram, which can be obtained by com-
puting the pushouts of pairs of components with a common
channel. The program P resulting from the pushout of P1
and P2 is obtained as follows. The initialization condition is
the conjunction of the initialization conditions of the com-
ponents, and the attributes of P are the union of the attrib-
utes of P1 and P2, renaming them such that only those that
are to be shared will have the same name. An attribute of P
is local only if it is local in at least one component.

For the above example, the resulting pushout will repre-
sent the cart with identifier 2.

program Cart2 is

var bag, λ, dest, id : int
read nbag : int
init bag = 0 ∧ dest = InitDest(id) ∧ λ = InitLoc(id) ∧ id = 2
do …

As for the actions of P, they are basically a subset of all
pairs of actions g1g2 where gi ∈ Γi (for i = 1, 2). Only those
pairs such that g1 and g2 are mapped to the same action of
the channel may appear in P. If an action of P1 (or P2) is not
mapped to any action of the channel—i.e., it is not synchro-
nized with any action of P2 (resp. P1)—then it appears “un-
paired” in P. Synchronizing two actions g1 and g2 (i.e.,
joining them into a single one g1g2) involves taking the un-
ion of their domains, the conjunction of their guards, and
the parallel composition of their assignments. If the actions
have a common attribute a then the resulting assignment is
a := F(g1, a) and the guard is strengthened by F(g1, a) = F(g2,
a). If the actions are “incompatible” (i.e., the terms denote
different values for a) then the equality is false and there-
fore the synchronized action will never execute, as ex-
pected.

As an illustration, the pushout of the diagram in Fig. 3 is
program InhibitedCart shown in the previous section: ac-
tions fast and i were paired together, joining their guards
and assignments. Notice that attribute λ of the Inhibitor
program has been renamed to λ′ because names are local.

The next result states that every finite diagram has a co-
limit.

PROPOSITION 3. Category 352* is finitely cocomplete.

Channels (i.e., signatures) only allow us to express sim-
ple static connections between programs. To express more
complex or transient interactions, we use connectors, a ba-
sic concept of Software Architecture [2]. A connector con-
sists of a glue linked to one or more roles through channels.

Fig. 1. A program morphism.

Fig. 2. Variable initialization.

Fig. 3. Action synchronization.

WERMELINGER AND FIADEIRO: CONNECTORS FOR MOBILE PROGRAMS 335

The roles constrain what objects the connector can be ap-
plied to. In a categorical framework, the connectors (and
therefore the architectures) that can be built depend on the
categories used to represent glues, roles, and channels, and
on the relationships between those categories. It is possible
to use three different categories for the three parts of a con-
nector (e.g., [9] proposes roles to be specifications written in
temporal logic) but for simplicity we assume that roles and
glues are members of the same category. We, therefore,
adopt only the basic definitions of [9].

DEFINITION 5. A connection is a tuple 〈C, G, R, γ, ρ〉 where

•� C : 6,*1 is the channel;
•� G : 352*� is the glue;
•� R : 352*� is the role;
•� γ :)(C) → G and ρ :) (C) → R are morphisms

 in 352*.

A connector is a finite set of connections with the same
glue.

The semantics of a connector is given by the colimit of
the connections diagram. By definition, there are superpo-
sition morphisms from each object in the diagram to the
colimit. Therefore, superposition becomes in a sense “sym-
metric,” a necessary property to capture interaction [8].

A connector can be applied only to programs which are
instantiations of the roles. In categorical terms, there must
exist morphisms from the roles to the programs.

DEFINITION 6. An instantiation of a connector {〈Ci, G, Ri, γi, ρi〉}
with programs Pi is a set of morphisms ιi : Ri → Pi in
352*. The resulting system is the colimit of the diagram
formed by morphisms γi and ιi ο ρi .

As an illustration, an instantiated connector with two
roles has the diagram

P R C G C R P1 1 1 2 2 2

1 1 2 2
← ← → ← → →

ι ρ γ γ ρ ι1 2
))() ()

4 INTERACTIONS

An interaction between two programs involves conditions
and computations. Therefore, it cannot be specified just by
a signature; we must use a connector, where the programs
are instances of the roles, the interaction is the glue, and
each channel states exactly what is the part of each program
in the interaction.

A distributed system may consist of many components,
but usually they can be classified into a relatively small set
of different types. Since interaction patterns normally do
not depend on the individual components but on their
types, it is only necessary to define connectors for the ex-
isting component types. To obtain the resulting system, the
connectors will be instantiated with the actual components.
Therefore, in the following we only consider the programs
that correspond to component types. In the luggage distri-
bution example there are only three different program
types: carts, loaders, and unloaders. The programs for the
individual components only differ in the initialization con-
dition for the identifier attribute.

In a mobile setting one of the important aspects of inter-
actions is their temporary nature. This is represented by

conditions: an interaction takes place only while some
proposition is true. Usually that proposition is based on the
location of the interacting parties. We consider three kinds
of interactions:

•� Inhibition. An action may not execute.1

•� Synchronization. Two actions are executed simultane-
ously.

•� Communication. The values of some local attributes of
one program are passed to corresponding external
attributes of the other program.

For each kind of interaction we develop a connector
template which is parameterized by the interaction condi-
tions. This means that, given the interacting programs (i.e.,
the roles) and the conditions under which they interact, the
appropriate connector can be instantiated.

Given the set of components that will form the overall
system, the possible interactions are specified as follows:

•� An inhibition interaction states that an action g of
some program P will not be executed whenever the
interaction condition I is true.

•� A synchronization interaction states that action g of
program P will execute simultaneously with action g′
of program P′ whenever I is true.

•� A communication interaction states that the value of
the local attrbutes M (the “message”) of program P
can be written into the external attributes M’ of pro-
gram P’ if I is true. The sets M and M′ must be com-
patible. Moreover, each program must indicate which
action is immediately executed after sending (resp.
receiving) the message.

DEFINITION 7. Given a set 3 of programs, a transient interac-
tion is either one of the following:

•� a transient inhibition 〈g, P, I〉;
•� a transient synchronization 〈g, P, g’, P’, I〉;
•� a transient communication 〈g, M, P, g’, P’, I〉;

where

•� P, P′ ∈ 3;
•� M ⊆ V, M’ ⊆ R’ and there is a bijection f : M → M’

such that ∀a ∈ M sa = sf(a) ;
•� g ∈ Γ, g′ ∈ Γ′;
•� I is a proposition over attributes of 3.

The following sections present the connector patterns
corresponding to the above interactions. The glue of a con-
nector only needs to include the attributes that occur in the
interaction condition. However, to make the formal defini-
tions easier, the glue patterns will include all the attributes
of all the roles. Due to the locality of names, attributes from
different roles must be put together with the disjoint union
operator (written v) to avoid name clashes.

For further simplication, we assume that the interaction
condition only uses attributes from the interacting pro-
grams P and P′, and thus only those roles are presented in
the patterns. If this is not the case, the instantiated connec-
tor must have further roles that provide the remaining at-
tributes. The next section provides an example.

1. In this case the interaction is between the program and its environment.

336 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

4.1 Inhibition
Inhibition is easy and elegant to express: if an action is not
to be executed while I is true, then it can be executed only
while ¬I is true.

DEFINITION 8. The inhibition connector pattern corresponding
to inhibition interaction 〈g, P, I〉 is the diagram of Fig. 4.

For illustration, the action inhibition example of Sections
2 and 3 can be achieved through the connector given in Fig.
5. Notice that the connector has two roles, one for the cart
whose action is to be temporarily inhibited, the other for
the cart that provides the context for the inhibition to occur.

An application of this connector and the resulting colimit
will be presented in the next section.

4.2 Synchronization
Synchronizing two actions g and g′ of two different compo-
nents can be seen as merging them into a single action gg′ of
the system, the only difference between the static and the
mobile case being that in the latter the merging is only done
while some condition is true. When gg′ executes, it corre-
sponds to the simultaneous execution of g and g′. Therefore,
if g would be executed by a component, the system will in
fact execute gg′ which means that it is also executing g′, and
vice versa. To sum it up, when two actions synchronize ei-
ther both execute simultaneously or none is executed.

This contrasts with the approach taken by Mobile
UNITY which allows two kinds of synchronization: coex-
ecution and coselection [8]. The former corresponds to the
notion exposed above, while the latter forces the two ac-
tions to be selected simultaneously but if one of them is
inhibited or its guard is false then only the other action exe-
cutes. This extends the basic semantics of UNITY where
only one action can be selected at a time. We will not handle
coselection because we believe that the intuitive notion of
synchronization corresponds to coexecution.

The key to represent synchronization of two actions
subject to condition I is to ramify each action in two, one
corresponding to its execution when I is false and the other
one when I is true. Put in other words, each action has two
“subactions,” one for the normal execution and the other
for synchronized execution. As the normal subaction can
only execute when the condition is false, it is inhibited
when I is true, and the opposite happens with the synchro-
nization subaction. Therefore, we can use the same tech-
nique as for inhibition. Since there are two actions to be
synchronized, and the synchronization subaction must be
shared by both, there will be three (instead of four) subac-
tions. To facilitate understanding, the name of a subaction
will be the set of the names of the actions it is part of.

DEFINITION 9. The synchronization connector pattern corre-
sponding to synchronization interaction 〈g, P, g’, P’, I〉 is
the diagram of Fig. 6.

In the colimit, the action gg′ will have the guards and the
assignments of g and g′. Therefore, if either B(g) or B(g′) is
false, or if the assignments are incompatible, then gg′ will
not get executed.

This connector describes what is called “nonexclusive
coexecution” in [8]: outside the interaction period the ac-
tions execute as normal. It is also possible to simulate ex-

clusive coexecution which means that the actions are only
executed (synchronously) when the interaction condition is
true. To that end, simply eliminate actions g and g′ from the
synchronization connector pattern, just keeping the syn-
chronized action gg′.

Continuing with the example, the second step to avoid
collisions at crossings is to force the nearest cart to move
fast whenever the most distant one moves. Since the latter
can only move slowly, the nearest cart is guaranteed to pass
the crossing first. Using the same interaction condition as in
Fig. 5 one gets the diagram in Fig. 7.

To prevent collisions between Cart1 and Cart2 (obtained
as shown in Section 3) one must consider two symmetrical
cases, depending on which cart is nearer to the intersection.
Let us assume that Cart1 is nearer. Thus we must block the
fast action of Cart2 with the inhibitor shown in the previous
section and synchronize its slow action with the fast action
of Cart1 using the synchronization connector (Fig. 7). The
diagram is:

Cart ← Context → InhibitCrossing ← Target → Cart

↓ ↓
Cart1 Cart2

↑ ↑
Cart ← C1 → SynchCrossing ← C2 → Cart

with the following colimit (where i ranges over 1 and 2 to
abbreviate code duplication)

program System is

var bagi : λi, desti, idi, : int

read nbagi : int

init bagi = 0 ∧ desti = InitDest(idi) ∧
λi = InitLoc(idi) ∧ idi = i

do slow1: [λ1 ≠ dest1 → λ1 := λ1 + 1]

[] fast1: [λ1 ≠ dest1 ∧ ¬I → λ1 := λ1 + 2]

[] slow2: [λ2 ≠ dest2 ∧ ¬I → λ2 := λ2 + 1]

[] fast1 slow2: [λ1 ≠ dest1 ∧ λ2 ≠ dest2 ∧ I

→ λ1 := λ1 + 2 || λ2 := λ2 + 1]

[] fast2: [λ2 ≠ dest2 ∧ ¬I → λ2 := λ2 + 2]

[] loadi: [λi = desti ∧ bagi = 0

→ bagi := nbagi || desti := Dest(nbagi, desti)]

[] unloadi: [λ1 = desti ∧ bagi ≠ 0

→bagi := 0 || desti := Next(desti)]

To see that synchronization is transitive, consider the ex-
ample in Fig. 8 where action g′ is synchronized with two
other actions g and g′′ whenever I1 and I2 are true, respec-
tively. The resulting system must provide actions for all
four combinations of the truth values of the interaction
conditions. For example, if I1 ∧ I2 is true then all actions
must occur simultaneously, but if I1 ∨ I2 is false, then any
one of the actions can occur. This happens, indeed, because
the pushout of two morphisms σ(g) = {g1, …, gn} and

′ = ′ ′σ () { , , }g g gm1 K is basically given by the pairs
{ , , , , }g g g g g gm n m1 1 1′ ′ ′K K with morphisms µ(gi) =
{ , , }g g g gi i m′ ′1 K and ′ ′ = ′ ′µ () { , , }g g g g gj j n j1 K . Putting into
words: if an action g “ramifies” into actions σ(g) = {g1, …,

WERMELINGER AND FIADEIRO: CONNECTORS FOR MOBILE PROGRAMS 337

Fig. 4. Inhibition connector pattern.

Fig. 5. Inhibition when I = CrossingSegments (λ1, λ2) ∧ DistanceToCrossing (λ1) < DistanceToCrossing (λ2).

Fig. 6. Synchronization connector pattern.

Fig. 7. Synchronizing fast and slow.

Fig. 8. Transitivity of synchronization.

338 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

gn}, it means that whenever g would be executed, any
member of σ(g) executes in the superposed program, and
vice versa, the execution of any gi implies that g is exe-
cuted in the base program. Therefore, if g can be ramified
in two distinct ways, in the pushout any combination of
the subactions can occur whenever g executes. The
pushout morphisms just state to which combinations each
subaction belongs.

As one can see in Fig. 8, for all combinations of I1 and I2
the correct actions are executed. The colimit includes the
combination of all actions that share the name g′: actions g′
and gg′ of the left middle pushout are synchronized with g′
and g′g′′ on the right in four possible ways.

4.3 Communication
In Mobile UNITY communication is achieved through vari-
able sharing. The interaction x < y when C engage I disen-
gage Fx Fy states the sharing condition C, the (shared)
initial value I of both variables, and the final value Fx and Fy
of each variable. The operational semantics states that
whenever a program changes x, y gets the same value, and
vice versa. This approach violates the locality principle.
Furthermore, as pointed out in [8], several restrictions have
to be imposed in order to avoid problems like, e.g., simul-
taneous assignments of different values to shared variables.

We also feel that communication is a more appropriate
concept than sharing for the setting we are considering,
namely mobile agents that engage into transient interac-
tions over some kind of network. In the framework of
COMMUNITY programs, communication can be seen as
some kind of sharing of local and external attributes, which
keeps the locality principle. We say “some kind” because
we cannot use the same mechanism as in the static case, in
which sharing meant to map two different attributes of the
components into a single one of the system obtained by the
colimit. In the mobile case the same local attribute may be
shared with different external attributes at different times,
and vice versa. If we were to apply the usual construction,
all those attributes would become a single one in the re-
sulting system, which is clearly unintended.

Therefore, we will obtain the same effect as transient
sharing using a communication perspective. To be more
precise, we assume program P wants to send a message
M, which is a set of local attributes. If P′ wants to receive
the message, it must provide external attributes M′ which
correspond in number and type to those of M. Program P
produces the values, stores them in M, and waits for the
message to be read by P′. Since COMMUNITY programs
are not sequential, “waiting” has to be understood in a
restricted sense. We only assume that P will not produce
another message before the previous one has been read
(i.e., messages are not lost); it may however be executing
other unrelated actions. To put it in another way, after
producing M, program P is expecting an acknowledge to
produce the new values for the attributes in M. For that
purpose, we assume P has an action g which must be exe-
cuted before the new message is produced. Similarly, pro-
gram P′ must be informed when a new message has ar-
rived, so that it may start processing it. For that purpose

we assume that P′ has a single action g′ which is the first
action to be executed upon the receipt of a new message.2

That action may simply start using M′ directly or it may
copy it to local attributes of P′.

To sum up, communication is established via one single
action for each program:3 the action g of P is waiting for M
to be read, the action g′ of P′ reads M (i.e., starts using the
values in M′). As expected, it is up for the glue of the inter-
action connector to transfer the values from M to M′ and to
notify the programs.

The solution is to explicitly model the message transmis-
sion as the parallel assignment of the message attributes,
which we abbreviate as M′ := M. For this to be possible, the
local attributes M of P must be external attributes of the
glue, and the external attributes M′ of P′ must be local at-
tributes of the glue. The assignment can be done in parallel
with the notification of P. Moreover, the programs may
only communicate when a given proposition I is true.
Therefore the glue contains an action wait : [I → M′ := M] to
be synchronized with the “waiting” action g of P. The
“reading” action g′ of P′ can only be executed after the mes-
sage has been transmitted. The solution is to have another
action read in the glue that is synchronized with g′. To make
sure that read is executed after wait we use a boolean attrib-
ute. Thus g′ is inhibited while no new values have been
transferred to M′. Again, this is like a blocking read primi-
tive, except that P′ may execute actions unrelated to M′.

Since a receiver may get messages from different senders
i = 1, …, n (at different times or not), there will be several

possible assignments M′ := Mi. Due to the locality principle,
all assignments to an attribute must be in a single program.
Therefore, for each message type a receiver might get, there
will be a single glue connecting it to all possible senders.
On the other hand, a message might be sent to different
receivers j = 1, …, m. Therefore, there will be several possi-
ble assignments ′Mj := M associated with the same wait

action of the sender of message M. So there must be a single
glue to connect a sender with all its possible recipients. To
sum up, for each message type there will be a single glue
acting like a “demultiplexer”: it synchronizes sender i with

receiver j when interaction condition Iij is true. This as-
sumes that the possible communication patterns are known
in advance.

DEFINITION 10. The communication connector pattern corre-
sponding to communication interactions 〈gi, Mj, Pi, ′gj ,

′Mi , ′Pj , Iij〉 (for i = 1, …, n and j = 1, …, m) is the dia-
gram in Fig. 9.

In the luggage delivery example, communication takes
place when a cart arrives at a station (i.e., a loader or an un-
loader), the bag being the exchanged message. Loaders are
senders, unloaders are receivers, and carts have both roles.
The bags held by a station will be stored in an attribute of
type queue of integers. Although the locations of stations are
fixed they must be represented explicitly in order to represent

2. It is always possible to write P′ in such a way.
3. This is similar to pointed processes in the π-calculus, or to ports in dis-

tributed systems.

WERMELINGER AND FIADEIRO: CONNECTORS FOR MOBILE PROGRAMS 339

Fig. 9. Communication connector pattern.

the communication condition, namely that cart and station
are colocated. Since it is up for the connector to describe the
interaction, the programs for the stations just describe the
basic computations: loaders remove bags from their queues,
unloaders put bags on their queues. The loader program
must have separate actions to produce the message (i.e., the
computation of the value of the bag attribute) and to send
the message (i.e., the bag has been loaded onto the cart).

The c carts are connected to the l loaders through a con-
nector with c identical roles (each one being the Cart pro-
gram of Section 1) and l identical roles, each being the Loader
program. In Fig. 10 we only show the roles and respective
morphisms for the ith loader (sender) and the jth cart (re-
ceiver). Similarly, there is a connector with u roles for the
unloaders and c roles for the carts. The ith cart (sender) is
connected to the jth unloader (receiver) as shown in Fig. 11.

Let Xi be the program obtained by the pushout of pro-
grams Initi (of Section 3) and X. Then the program corre-
sponding to a system consisting of two carts, one loader,
and one unloader is obtained by computing the colimit of
the diagram in Fig. 12, which only shows the role instantia-
tion morphisms between the connectors (which have the
same name as their glues) and the components. Notice that
the binary connectors dealing with crossings are not sym-
metric; they distinguish which cart is supposed to be nearer
to the crossing. Therefore, one must apply those connectors
twice to each pair of carts.

5 CONCLUDING REMARKS

We have shown how some fundamental kinds of transient
interactions, inspired by Mobile UNITY [7], [8], can be rep-
resented using architectural connectors. The semantics has
been given within a categorical framework, and the ap-
proach has been illustrated with a UNITY-like program
design language [3], [4].

As argued in [3], [13], the general benefits of working
within a categorical framework are:

•� mechanisms for interconnecting components into
complex systems can be formalized through universal
constructs (e.g., colimits);

•� extralogical design principles are internalized through
properties of universal constructs (e.g., the locality of
names);

•� different levels of design (e.g., signatures and pro-
grams) can be related through functors.

For this work in particular, the synergy between Software
Architecture and Category Theory resulted in several con-
ceptual and practical advantages.

First, systems are constructed in a principled way: for
each interaction kind there is a connector template to be
instantiated with the actual interaction conditions; the in-
stantiated connectors are applied to the interacting pro-
grams thus forming the system architecture, which can be
visualized by a diagram; the program corresponding to the
overall system is obtained by “compiling” (i.e., computing
the colimit of) the diagram.

Second, separation between computation and coordina-
tion, which is already supported by Software Architecture,
has been reinforced by two facts. On the one hand, the glue
of a connector uses only the signatures of the interacting
programs, not their bodies. On the other hand, the super-
position morphisms impose the locality principle.

Third, to capture transient interactions, only the mor-
phism between program actions had to be changed; the
syntax and semantics of the language remained the same.

There are two ways of dealing with architectures of mo-
bile components. In a system with limited mobility or with
a limited number of different component types, all possible
interaction patterns can be foreseen, and thus a static archi-
tecture with all possible interconnections can represent such
a system. To cope with systems having a greater degree of
mobility, one must have evolving architectures, where com-
ponents and connectors can be added and removed unpre-
dictably. This paper, being inspired by Mobile UNITY, fol-
lows the first approach. Our future work will address the
second approach.
One of the ideas we wish to explore is to remove the inter-
action condition from the glue’s actions and instead asso-
ciate it to the application of the whole connector. The dia-
gram of the system architecture thus becomes dynamic, at
each moment including only the connectors whose condi-
tions are true. A preliminary description of this approach is
described in [14]. Another possibility is to apply graph re-
writing techniques to the system diagrams. A third venue is
to change (again) the definition of morphism to represent
the notion of “changes-to” instead of “component-of.” In
other words, a morphism from P to P′ indicates that P may

340 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

Fig. 10. Communication between loaders and carts.

Fig. 11. Communication between carts and unloaders.

Fig. 12. The system architecture.

become P′. For the moment, these are just some of our ideas
to capture Software Architecture evolution in a categorical
setting. Their suitability and validity must be investigated.

ACKNOWLEDGMENTS

We would like to thank Antónia Lopes for many fruitful
discussions and the anonymous referees for suggestions on
how to improve the presentation. This work was partially

supported by JNICT through contract PRAXIS XXI
2/2.1/MAT/46/94 (ESCOLA) and by project ARTS under
contract to EQUITEL SA.

REFERENCES

[1]� “Special Issue on Software Architecture,” D. Garlan and D. Perry,
eds., IEEE Trans. Software Eng., vol. 21, no. 4, Apr. 1995.

[2]� M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

WERMELINGER AND FIADEIRO: CONNECTORS FOR MOBILE PROGRAMS 341

[3]� J.L. Fiadeiro and T. Maibaum, “Interconnecting Formalisms:
Supporting Modularity, Reuse and Incrementality,” Proc. Third
Symp. Foundations of Software Eng., SIGSOFT’95, pp. 72–80, ACM
Press, 1995.

[4]� J.L. Fiadeiro and T. Maibaum, “Categorial Semantics of Parallel
Program Design,” Science of Computer Programming, vol. 28, pp.
111–138, 1997.

[5]� K.M. Chandy and J. Misra, Parallel Program Design—A Foundation.
Addison-Wesley, 1988.

[6]� N. Francez and I. Forman, Interacting Processes. Addison-Wesley,
1996.

[7]� G.–C. Roman, P.J. McCann, and Jerome Y. Plun, “Mobile UNITY:
Reasoning and Specification in Mobile Computing,” ACM TOSEM,
vol. 6, no. 3, pp. 250–282, July 1997.

[8]� P.J. McCann and G.–C. Roman, “Mobile UNITY: A Language and
Logic for Concurrent Mobile Systems,” Technical Report WUCS-
97-01, Dept. of Computer Science, Washington Univ., St. Louis,
Dec. 1996.

[9]� J.L. Fiadeiro and A. Lopes, “Semantics of Architectural Connec-
tors,” Proc. TAPSOFT’97, pp. 505-519, Lecture Notes in Computer
Science, 1214. Springer-Verlag, 1997.

[10]� B.C. Peirce, Basic Category Theory for Computer Scientists. MIT
Press, 1991.

[11]� M. Wermelinger and J. Fiadeiro, “Connectors for Mobile Pro-
grams,” Technical Report DI-FCUL TR-98-1, Dept. of Computer
Science, Univ. of Lisbon, Portugal, Jan. 1998.

[12]� U. Leonhardt and J. Magee, “Towards a General Location Service
for Mobile Environments,” Proc. Third Int’l Workshop Service in
Distributed and Networked Environments, 1996.

[13]� J.L. Fiadeiro and T. Maibaum, “A Mathematical Toolbox for the
Software Architect,” Proc. Eighth Int’l Workshop on Software Specifi-
cation and Design, pp. 46–55. IEEE CS Press, 1996.

[14]� M. Wermelinger and J.L. Fiadeiro, “Towards an Algebra of Ar-
chitectural Connectors: A Case Study on Synchronization for Mo-
bility,” Proc. Ninth Int’l Workshop Software Specification and Design,
pp. 135-142, IEEE CS Press, Apr. 1998.

Michel Wermelinger is a PhD candidate in the
Computer Science Department at the New Uni-
versity of Lisbon, Portugal, working on dynamic
reconfiguration of Software Architectures. He is
a student member of the ACM and the IEEE
and a member of the IEEE Computer Society.

José Luiz Fiadeiro is an associate professor in
the Computer Science Department at the Univer-
sity of Lisbon, Portugal. His research interests
include software specification formalisms and
methods, especially as applied to component-
based, reactive systems, and their integration in
the wider area of general systems theory. His
main contributions have been in the formalization
of specification and program design techniques
using modal logics (temporal and dynamic), and
of their underlying modularization principles using

 Category Theory.

