
602 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 8, AUGUST 1998

Analyzing Partially-Implemented
Real-Time Systems

George S. Avrunin, Member, IEEE Computer Society, James C. Corbett,
and Laura K. Dillon, Member, IEEE Computer Society

Abstract—Most analysis methods for real-time systems assume that all the components of the system are at roughly the same
stage of development and can be expressed in a single notation, such as a specification or programming language. There are,
however, many situations in which developers would benefit from tools that could analyze partially-implemented systems, those for
which some components are given only as high-level specifications while others are fully implemented in a programming language.
In this paper, we propose a method for analyzing such partially-implemented real-time systems. Here we consider real-time
concurrent systems for which some components are implemented in Ada and some are partially specified using regular expressions
and Graphical Interval Logic (GIL), a real-time temporal logic. We show how to construct models of the partially-implemented
systems that account for such properties as run-time overhead and scheduling of processes, yet support tractable analysis of
nontrivial programs. The approach can be fully automated, and we illustrate it by analyzing a small example.

Index Terms—Real-time, concurrency, static analysis, Ada, temporal logic, hybrid systems, Graphical Interval Logic.

——————————���F���——————————

1 INTRODUCTION

HE correctness of a real-time computer system depends
not only on the logical results of its computations but

also on whether those computations satisfy certain timing
requirements. Developers of such systems, which are in-
creasingly embedded in safety-critical applications such as
air traffic control or patient monitoring, need to check that
their systems do the right computations at the right times.
Testing, executing the system with inputs chosen to reflect
the operational profile or to exercise various components
and execution paths, is an essential part of this process, but
testing alone can consider only a relatively small subset of
the possible behaviors of the system and is not adequate
even for sequential systems. Many embedded systems are
naturally concurrent, and the nondeterministic behavior
typically introduced by concurrency means that the same
set of inputs may produce different behavior at different
times. For concurrent systems, developers must supple-
ment testing with static analysis methods that consider all
possible behaviors of the system, rather than executing a
small subset of those behaviors.

Most of the static analysis methods that have been pro-
posed for use with real-time systems assume that all the
components of the system are at roughly the same stage of
development and can be naturally expressed in a single
notation, such as a specification or programming language

or a mathematical formalism such as Petri nets. It is a soft-
ware engineering commonplace that analysis should begin
at the early design stages of software development—there
is some evidence that the majority of errors are introduced
at this stage, and it is certainly true that errors caught at the
design stage can be corrected much more easily and
cheaply than if they are discovered in the later stages of
development. Analysis tools that work with specification
and design languages would, therefore, seem to be most
appropriate. The performance of a real-time system, how-
ever, may depend critically on implementation details that
cannot be captured in designs (e.g., the scheduling of proc-
esses on the available processors), suggesting that analysis
of fully-implemented systems is more appropriate, at least
for real-time properties. The complexity of analyzing fully-
implemented systems is, however, daunting even for rela-
tively small systems, and a full timing analysis of a large
and complex system is almost certainly infeasible.

Thus, neither analysis of designs nor analysis of fully-
implemented systems is adequate for real-time systems. In
practice, developers of real-time systems typically restrict
the architectures of their systems so that system compo-
nents are highly structured and interact in very limited
ways (e.g., periodic tasks with precedence constraints).
These restrictions allow the use of special scheduling tech-
niques and algorithms, such as rate monotonic scheduling
[1], to guarantee that a system’s timing requirements are
satisfied [2], [3].

In fact, there are many situations in which developers
would benefit from tools that could analyze partially-
implemented systems, those for which some components are
given only as high-level specifications while others are fully
implemented in a programming language. These include:

•� Initial Development of Complex Systems. The devel-
opment of the various components of large systems

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� G.S. Avrunin is with the Department of Mathematics and Statistics, Box
34515, University of Massachusetts, Amherst, MA 01003.
E-mail: avrunin@math.umass.edu.

•� J.C. Corbett is with the Department of Information and Computer Science,
University of Hawaii, Honolulu, HI 96822. E-mail: corbett@hawaii.edu.

•� L.K. Dillon is with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824.
E-mail: ldillon@cse.msu.edu.

Manuscript received 23 Sept. 1997; revised 1 May. 1998.
Recommended for acceptance by A. Fuggetta and R. Taylor.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 106769.

T

Laura K. Dillon
Text Box
© IEEE, (1997). This is the author's version of the work. It is posted here for your personal use.
Not for redistribution.
The definitive version was published in
http://dx.doi.org/10.1109/32.707696

Laura K. Dillon
Text Box

AVRUNIN ET AL: ANALYZING PARTIALLY-IMPLEMENTED REAL-TIME SYSTEMS 603

seldom proceeds at a uniform rate. Some compo-
nents will have been fully implemented while others
remain only partially specified. Analysis at this
stage, before the system has been completely imple-
mented, can make use of the detailed information
about implemented components to verify that the
system will meet its requirements if the unimple-
mented components meet their specifications, or
point out the need for modifications in the specifica-
tions or implementations.

•� Evolutionary Development. In order to understand
the implications of proposed modifications to an ex-
isting system, developers necessarily confront a com-
bination of fully-implemented components, those that
will not be modified, and specifications for the new or
modified components. Indeed, specifications of the
original components of the system may not be avail-
able at all during maintenance, so analysis using
high-level specifications of all components may be
impractical.

•� Compositional Analysis. Although the performance
of the system may depend on some of the details of
the implementation, it may be possible to abstract
much of the implementation detail away without af-
fecting the analysis of a particular aspect of the sys-
tem. In this case, some of the components of a fully-
implemented system could, for the purposes of analy-
sis, be represented by a high-level specification of
their interfaces with the rest of the system. Such com-
positional techniques can make analysis practical for
systems that would otherwise be far too large for ex-
isting analysis methods.

•� Modeling the Environment of the System. Most real-
time systems are reactive—they interact repeatedly
with their environments, rather than simply comput-
ing a value and terminating. Although the environ-
ment may consist largely of other computer systems,
it may involve components such as sensors that will
not be implemented in software. For the purpose of
analyzing the behavior of the system, it may be more
appropriate to express the possible behavior of the
environment in a suitable high-level specification
than to fully implement a software model with the
same behaviors.

In this paper, we propose a method for analyzing par-
tially-implemented real-time systems. We consider real-
time concurrent systems for which some components are
implemented in Ada and some are partially specified using
regular expressions and Graphical Interval Logic (GIL) [4],
a real-time temporal logic with an intuitive graphical repre-
sentation similar to the time-lines typically used by system
developers. We show how automata derived from the
regular expressions and the GIL specifications [5], [6] can be
combined with hybrid automata constructed from the Ada
code [7] to construct models of the partially-implemented
systems that account for such properties as run-time over-
head and scheduling, yet support tractable analysis of
nontrivial programs. Our method can be fully automated.
We illustrate the approach with analysis of a small example.

In the next section, we briefly discuss some related work.
In the third section, we explain our approach and apply it
to a small example. Some additional details of the approach
are given in the fourth section, and the final section pres-
ents some conclusions and directions for further research.

2 RELATED WORK

The main contribution of this paper is an approach to the
analysis of real-time concurrent systems that allows some
parts of a system to be specified in a temporal logic while
making use of detailed implementation information about
other components. The analysis thus involves combining
information from very different sorts of formal models of
real-time systems.

Many formal models have been proposed for general
real-time concurrent systems. These include timed Petri
nets, communicating finite state machines, timed automata,
timed process algebras, and real-time logics. In this paper,
we rely on hybrid automata, which are produced from Ada
code and from specifications written using GIL and regular
expressions. We believe that GIL’s graphical representation,
discussed and illustrated below, and the simple and famil-
iar semantics of regular expressions make them especially
suitable as high-level specification formalisms for use by
developers of real-time systems. We convert GIL specifica-
tions into automata using algorithms that were originally
developed for producing oracles to monitor executions of
concurrent systems [5], [6] and that evolved from the GIL
decision procedure described in [8].

For the most part, the work on formal models of real-
time concurrent systems has been intended to represent
specifications, not implementations. As such, it does not
address some of the difficult issues that arise in represent-
ing implementation details of real software. For example,
resource constraints are absent in most of these models and
are awkward to represent within them. Also, the effects of
run-time overhead, which can be significant, are not con-
sidered. Thus, although many of these models may have the
expressive power needed to represent the detailed timing
properties of fully-implemented components of a system,
researchers generally have not addressed the problem of
constructing such representations from real software. Corbett
[7], [9], [10] has developed models for concurrent Ada pro-
grams that represent these detailed timing properties.

A number of authors (e.g., [11], [12], [13]) have proposed
methods for doing compositional analysis by decomposing
a concurrent system into subsystems with simple interfaces
and replacing some of the subsystems by simpler processes
that have the same interfaces to their environments. In most
of this work, however, the simpler processes that replace
subsystems are specified in the same formalism and nota-
tion used to describe the original system. The approach we
propose here composes systems whose components are
described in two very different notations, a graphical real-
time logic and the Ada programming language.

Several researchers have considered the problem of inte-
grating different types of notations for representing the com-
ponents of a system. For example, Zave and Jackson [14] dis-
cuss the integration of different specification formalisms by

604 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 8, AUGUST 1998

translating each formalism into predicate logic. This work
does not address the problem of analyzing the systems so
specified. Pezzè and Young [15], [16] present an approach
to building state-space analysis tools that accept system
descriptions involving several formalisms, but that work
is chiefly concerned with the generation of tools rather
than analysis of systems described in specific notations
and does not discuss the representation of real-time sys-
tems. The work on Cabernet [17] involves the construction
of an environment for the specification and analysis of
real-time systems that uses a class of high-level Petri nets
as the formal kernel but provides features for customiza-
tion that could support specifications written in a variety
of other formalisms.

Perhaps the work closest in spirit to this paper is that of
Bagrodia and Shen [18], [19]. They do stochastic perform-
ance evaluation of real-time systems in which some com-
ponents are fully implemented and others are represented
by discrete-event simulation models. The main difference
between this work and ours is that their analysis is dy-
namic, executing the models and assessing a particular set
of executions, while ours considers all possible executions.

3 APPROACH

We illustrate our approach using the following example. A
signal processing system consists of a sensor that produces
data sporadically and an Ada program that processes this
data as quickly and as accurately as possible. Fig. 1 shows
the structure of the program, which contains three Ada
tasks. The Sensor task is awakened by the sensor, reads the
sensor, and offers this reading to the Control task. The
Control task accepts a reading from the Sensor task and
gives it to the Tracking task for processing. The Tracking
task processes the sensor reading and returns a trace to the
Control task for display. Only the Sensor and Control
tasks are currently implemented; the specification for the
Tracking task consists of a list of its possible interactions
with the other tasks, a regular expression specifying the
orders in which these interactions can occur, and GIL speci-
fications for some of the timing properties of those interac-
tions. The processing of the sensor reading is not described
in the specification. Further details on the program are
given below along with a description of the Ada and GIL
constructs used to express them.

Fig. 1. Structure of example.

3.1 Ada
The Ada source code for the two implemented tasks and a
specification of the interface for the unimplemented
Tracking task are shown in Fig. 2. The program runs on a
uniprocessor, so the three tasks must share a single CPU.
Ada uses a preemptive priority scheduling policy for tasks.
The priority ordering of the tasks, from highest to lowest, is:
Control, Sensor, Tracking.

In Ada, two tasks may interact via a rendezvous, a syn-
chronous communication in which one task, the caller, calls
an entry of another task, the acceptor. The caller is blocked
until the acceptor accepts the entry call with an accept
statement naming the corresponding entry. After the ren-
dezvous completes, both tasks may continue executing in-
dependently. For example, a task may call entry E of task T
with the statement T.E, and task T may accept this call with
the statement accept E. Rendezvous may be nested: if the
body of an accept statement contains an entry call or an
accept (e.g., the accept statements for entry Data of task
Control in Fig. 2), then the caller of this entry (e.g., task
Sensor) remains blocked while the inner rendezvous com-
pletes. Data may be exchanged during the rendezvous
through parameters, as in a procedure call.

The sporadic nature of the sensor complicates the pro-
gram. The sensor device awakens the Sensor task with an
interrupt that causes the entry call on SensorDevice.
Interrupt to complete. We do not model SensorDevice
explicitly, but simply assume that this entry call can com-
plete at any time. The Sensor task then constructs a read-
ing and offers it to the Control task. If the sensor reading
is not accepted within a certain time (ReadingExpire),
then it is discarded. This timeout is implemented in Ada
using a timed entry call, a version of the select statement
that bounds the amount of time a task will wait for an entry
call to be accepted.

The Control task adapts to the rate at which the sensor is
producing data by switching between two modes: fast and
slow. If a sensor reading is ready when the Control task
reaches its select statement (i.e., if the Sensor task is
blocked calling the entry Control.Data), the Control task
switches to fast mode. The Control task indicates that it is in
fast mode by calling the FastData entry of the Tracking
task, which then performs a faster but less precise calculation
to produce the trace. If a sensor reading is not ready when
the Control task reaches its select statement, the task
switches to slow mode and communicates the reading to the
Tracking task via the SlowData entry. The mode is set on
each iteration of the Control task’s loop by the conditional
select statement, which will choose the else alternative if a
rendezvous at entry Data cannot begin immediately.

The behavior of the unimplemented Tracking task is
specified by the stub in Fig. 2 and by the regular expres-
sion and GIL formulas discussed below. The stub of the
Tracking task lists its possible interactions with the other
tasks; in particular, it lists all of the communication state-
ments the task will contain (e.g., entry calls, accepts). The
Tracking task has two possible interactions with the other
tasks: it can use a select statement to block waiting for an
entry call on entry FastData or SlowData, or it can call the
Result entry of the Control task. Note that the order in

AVRUNIN ET AL: ANALYZING PARTIALLY-IMPLEMENTED REAL-TIME SYSTEMS 605

Fig. 2. Source code for example.

which these interactions are listed in the stub does not con-
strain the order in which they might occur in an execution
of the system—the stub simply lists the possible interac-
tions. We label the two interactions with the events Ready
and Result, and also label the two communication state-
ments in the first interaction with the events Fast and Slow.
These labels are used to specify the order and timing of the
events, as illustrated below. (Additional event labels could
be inserted into a stub for any events whose order or timing
is to be specified.) The stub does not specify any of the
complex signal processing actually carried out by the
Tracking task.

The hybrid automaton constructed to model the behav-
ior of the partially-implemented Ada program must repre-
sent the unimplemented tasks, but it should not constrain
their behavior. Thus, when constructing the hybrid
automaton, we assume only that an unimplemented task
alternates between performing an arbitrary amount of in-
ternal computation and nondeterministically selecting an
interaction (from its stub) in which to engage.

Although this approach provides a conservative ab-
straction of any full implementation of the task, the result-
ing model is unlikely to be accurate enough to allow verifi-
cation of interesting properties. Therefore, we specify addi-
tional constraints on the order and timing of the events in
the task in order to improve the accuracy of the model.
When the task is eventually implemented, we must verify
that the implementation satisfies these constraints.

3.2 Regular Expressions
We restrict the order of stub task interactions using regular
expressions. Each expression specifies a language over the
event labels annotating the stub task interactions; such a
language constrains the legal orderings of the event labels it
contains. For example, the Tracking task alternates be-
tween accepting sensor readings and producing results,
which we specify with the expression

(Ready Result)*

The order of interactions could also be specified by pro-
viding a skeleton of the task’s control flow or a GIL for-
mula. In our example, we could simply place a loop state-
ment around the two interactions. In general, however,
regular expressions may be preferable for specifying simple
ordering properties due to their straightforward and famil-
iar semantics. They can express regular patterns of interac-
tions very concisely, and can be easier to read and write
than code skeletons or GIL formulas.

3.3 GIL
We specify the timing constraints of stub tasks using a vari-
ant of GIL, a real-time temporal logic with an intuitive
graphical representation. We use GIL because we find its
visual formulas very natural and easy to understand. Other
real-time logics or automata could be used equally well.
The GIL specifications for a stub task constrain the order
and timing of the events that label the stub’s interactions.
We, therefore, use an event-based interpretation for GIL,
rather than the customary state-based interpretation. GIL
formulas are given in a graphical form similar to the time-
lines frequently used by system developers. We explain the

606 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 8, AUGUST 1998

features of GIL used in this example as we discuss the
specifications shown in Fig. 3.

Recall that our example program runs on a uniprocessor.
Processor sharing complicates the specification of a task’s
timing constraints—if a pre-emptible code region takes at
most 3 sec to execute, then the task runs for at most 3 sec
between the events representing the beginning and the end
of the code region; however, the task may be preempted for
part of this time, so the actual elapsed time may exceed 3
sec. When specifying the timing constraints of a task, we
employ two different kinds of time: local time advances only
when a task is running and is useful for specifying bounds
on the execution time of code regions, while global time al-
ways advances and is useful for specifying timeouts and
other intervals in absolute time. We illustrate the use of
these different kinds of time below.

GIL formulas for the timing constraints of the Tracking
task are shown in Fig. 3. We label individual formulas for
convenience in referring to them below (Run1, Run2, etc.).
The GIL formulas are read from top to bottom and left to
right. The horizontal dimension shows the progression of
time, which advances to the right. An outermost interval
represents a legal sequence of (timed) events; the
(sub)formula below it describes constraints on the ordering
of events and on the times at which they occur. More gen-
erally, an interval represents the interval of time between
two events, which designate its “endpoints”; the formula
nested directly below an interval describes real-time prop-
erties of the events that occur within this time interval. A
formula that must hold at the beginning of an interval is left
justified below the start of the interval, a formula that must
hold invariantly (at all times) in an interval is left justified
below a henceforth operator (u) and a formula that must
eventually hold (at some time) in an interval is left justified
below an eventually operator (e). Special duration predi-
cates place bounds on the amount of time, either global or
local, that can elapse between the endpoints of intervals.

GIL provides search operators for specifying the end-
points of intervals. A dotted arrow denotes a search to one
of the target events that appear (left justified) immediately
below the right arrowhead. For example, the nested inter-
val in the formula Run1 consists of all events in a legal
event sequence up to (but excluding) either the earliest Fast
event or the earliest Slow event, depending on which occurs
first. A search is said to succeed if its target event is located;
otherwise, it fails. If a search fails, evaluation of the re-
maining searches is abandoned, and the formula being
evaluated is true if the failed search is weak (indicated by a
single arrowhead) or false if the failed search is strong (indi-
cated by a double arrowhead). Thus, Run1 specifies that the
tracking task eventually reaches either Fast or Slow and it
does so within L1 to U1 msec after the start of the program.
The duration predicate in Run1 uses local time—it bounds
the time that the Tracking task can run before accepting a
call on entry FastData or SlowData. There is no bound on
the actual (global) time from the start of the program until
the Tracking task accepts a call at FastData or SlowData
since the sensor device might never fire.

A bidirectional search, indicated by arrowheads at both
ends of the dotted search line, must be preceded by another

(regular or bidirectional) search, as in the remaining specifi-
cations in Fig. 3. A bidirectional search succeeds if its target
event is located and if the event located by the prior search
is the last such event to come before the target, and fails
otherwise. In Run2, for example, if the next Result is the
last Result before a subsequent Fast or Slow, the search suc-
ceeds; it fails, however, if a second Result occurs between
the next Result and the subsequent Fast or Slow. As above, a

Fig. 3. GIL Specifications for Tracking task.

AVRUNIN ET AL: ANALYZING PARTIALLY-IMPLEMENTED REAL-TIME SYSTEMS 607

weak search may fail, but a strong search may not (unless
an earlier weak search fails). For example, the formula be-
low the henceforth operator in Run2 requires the next Re-
sult, if one occurs, to cause an eventual Fast or Slow before
any subsequent Result and also bounds the time that can
elapse between the Result and the Fast or Slow that it causes.
Run2 asserts that this formula is an invariant. Thus, it speci-
fies that the tracking task always reaches either Fast or Slow
within L2 to U2 msec (local time) after reaching Result and
that it does so before reaching another Result. This specifi-
cation thus bounds the time that the task can run between
calling Control.Result and receiving the next reading at
entry FastData or SlowData and also requires that each
Result is followed by a Fast or Slow before the next occur-
rence, if any, of Result. Similarly, the formula SMode bounds
the (local) time between receiving a reading at entry Slow-
Data and calling the Result entry of the control task to
within L3 to U3 msec.

The last two formulas, FMode1 and FMode2, specify the
time to produce a result when the system is in fast mode.
The task priorities ensure that the first set of data is proc-
essed in slow mode. Thus, there are two cases: 1) if a read-
ing is received in fast mode and the previous reading was
processed in slow mode less than K (global) msec ago, then
some of the information cached from that previous com-
putation can be used to speed the processing of the current
reading, so the time to produce the result is from L4 to U4
msec; 2) if the previous reading was processed in fast mode
or was processed more than K msec ago, then the time to
produce the result is from L5 to U5 msec (U4 < U5 < U3). In
graphical formulas, we use a vertical layout with the classi-
cal boolean operators, e.g., implication (Æ) in FMode1 and
FMode2, and disjunction (Â) in FMode2. The searches in the
antecedent of the implication in FMode1 are strong, since
the time from a Fast to the next Result must lie in [L4, U4]
only if the Slow preceding this Fast actually occurred no
more than K msec ago. The antecedent of FMode2 asserts
that either the actual time of the interval exceeds K or the
event that starts the interval is a Fast.

In addition to specifying the timing properties of unim-
plemented tasks, we can also use GIL to specify constraints
on the environment in which the program executes. For
example, the sensor device in our example can generate
interrupts at most every F msec. We express this constraint
with the GIL formula IntFreq in Fig. 4.

Fig. 4. GIL specification of constraint on environment.

3.4 Hybrid Automata
In order to perform analysis, we translate the various speci-
fications of the program into a common abstract model:
constant slope linear hybrid automata [20], [21]. Hybrid

automata combine a finite-state control with a set of real-
valued variables. The values of these variables change con-
tinuously while the automaton remains at a control loca-
tion, and may change discretely with an instantaneous
transition from one control location to another. We use the
real-valued variables of the hybrid automaton to enforce
timing constraints on its transitions.

We first construct the program automaton, a hybrid
automaton representing the program, using the method of
[7]. Each control location in the program automaton is an
abstraction of the program’s state, and each transition rep-
resents the execution of a code region transforming that
state. The execution time of a code region is modeled with
an appropriate delay before its transition; the transition
occurs instantaneously when execution of the code region
completes. The length of this delay must fall in the interval
[L, U] given by the bounds on the region’s execution time
and is measured using a stopwatch-like mechanism. A real-
valued variable, x, which advances continuously as time
passes, is reset to zero when the location representing the
beginning of the code region is reached. We attach the guard
condition x � L to the transition that prevents its occurrence
until at least L time units have passed, and we attach the
invariant condition x � U to the location that requires it to be
exited before more than U time units have passed.

Fig. 5 shows a slightly simplified1 part of the program
automaton constructed from the (partial) program in Fig. 2.
The full automaton has 70 locations. Each location is la-
beled with the task that is running there, an invariant, and
the rate at which each real-valued variable is changing. The
rate of variable x is denoted &x . Each transition is labeled
with a guard, a synchronization label, and a set of assign-
ments to the variables.

Fig. 5. Part of program automaton.

The stopwatch-like mechanism used to specify the
bounds of code regions is illustrated in location 2 of Fig. 5.
Location 2 represents the program state where the Sensor

1. Certain sequences of transitions have been collapsed into single transi-
tions and certain variables not relevant to this part of the automaton have
been omitted.

608 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 8, AUGUST 1998

task has just been awakened by the sensor device’s inter-
rupt and has preempted the Tracking task, which is still
processing the previous reading (which the Control task is
blocked waiting to receive). The QueueData transition from
location 2 to 3 represents the code region that reads the sen-
sor, queues a call on entry Control.Data, sets a timer to
expire after ReadingExpire seconds, and then blocks the
task. We denote the bounds of this interval with [La, Ua] and
use variable xs to record the CPU time allocated to the Sen-
sor task. Variable xs is reset by the transition into location 2,
where it advances at rate 1 (and hence records the amount
of time spent in the location). After La msec, xs is at least La,
so the QueueData transition may be taken; the transition
must be taken before more than Ua msec have elapsed.
Similar constraints are generated for the CancelData transi-
tion from location 4, which represents the code region that
cancels the entry call on Control.Data and blocks waiting
for the sensor’s interrupt. The bounds Li and Uj would be
derived from the code represented by the transitions, as
discussed below.

The SensorInt and Timer transitions represent the execu-
tion of code in interrupt handlers rather than in specific
tasks. The Timer transition represents the timer interrupt
that awakens the Sensor task ReadingExpire msec after
the call on Control.Data is queued. Its timing constraints
are specified using the variable now, which records the cur-
rent time, and the variable y, which records the time of the
pending timer signal. Note that &y = 0 and now& = 1 in all
locations. The constant D accounts for the inaccuracy of the
timer mechanism. The SensorInt transition represents the
interrupt caused by the sensor device that awakens the
Sensor task. This transition has no timing constraints and
thus may occur at any time.

In location 1, the Tracking task has just received a sen-
sor reading to process in slow mode (event Slow) after com-
puting a result. After a stub completes an interaction, it
then performs some amount of computation and chooses its
next interaction. The Ready and Result transitions represent
this computation and the two possible interactions that
might follow. Note that there are no timing constraints on
these transitions since a stub does not specify any timing
properties.

The program automaton generated from Fig. 2 is a con-
servative abstraction of (any full implementation of) the
program, in the sense that its behaviors are a superset of
those of any implementation, but is not accurate enough to
verify many interesting properties. For example, without
constraining the order of the stub task’s interactions, the
model contains a deadlock; in the location reached by tak-
ing the Ready transition from location 1 or 3 in Fig. 5, the
Control and Tracking tasks are in a deadly embrace (the
Control task is waiting for a call on entry Result while
the Tracking task waits for a call on entries FastData or
SlowData). To filter out these spurious locations, we con-
vert the regular expression constraining the order of the
stub task interactions that was given earlier into an
automaton and intersect this automaton with the program
automaton. (Intersection is performed using the standard
product operator for hybrid automata [20] in which transi-
tions sharing the same event label must be taken together.)

The resulting intersection eliminates the transitions on
Ready from locations 1 and 3.

Even without deadlocks, the resulting model is still not
accurate enough for timing analysis without incorporating
the timing constraints of the stub task specified with the GIL
formulas (e.g., the Tracking task may run arbitrarily long
before reaching the Ready interaction). To filter out behaviors
that violate these timing constraints, we convert each GIL
formula into a hybrid automaton that accepts only (timed)
event sequences satisfying the constraint. We then intersect
these automata with the automaton obtained by intersecting
the program automaton and the hybrid automaton derived
from the regular expression. The resulting hybrid automaton
accepts only timed event sequences that satisfy the timing
and sequence constraints of the implemented Ada tasks, the
sequence constraints of the regular expression, and the tim-
ing constraints of the GIL formulas.

For example, consider the GIL formula SMode in Fig. 3,
which specifies the CPU time to produce a trace in slow
mode. Using the method outlined in the next section, we
convert this formula into the hybrid automaton in Fig. 6. The
GIL formula specifies a bidirectional search; it says that the
local time between a Result event, if any occurs, and the most
recent Slow event is in the interval [L3, U3]. Since the formula
specifies a local timing constraint for the Tracking task, we
use a variable xt1

 that advances in locations where the
Tracking task is running. Each local timing constraint for
the Tracking task uses its own variable (e.g., x xt t1 2

, , K). If
a Slow event occurs in the initial location, there is a transition
to the second location and xt1

 is reset to 0. The invariant in
that location allows the automaton to remain there only
while x Ut1 3≤ If a Result occurs when xt1

 is at least L3, there
is a transition back to the first location.

Fig. 6. Hybrid automaton from formula SMode in Fig. 3.

Intersecting the automaton in Fig. 6 with the program
automaton effectively combines their timing constraints:
the transition on Slow shown in Fig. 5 now resets xt1

, the
condition x Ut1 3≤ is conjoined to the invariants of loca-
tions 1–4 (which appear between events Slow and Result),
and the condition x Lt1 3≥ is conjoined to the guards of the
Result transitions.

The ability to stop clocks allows a simple representation of
timing constraints in the presence of pre-emption. For exam-
ple, if code region Result is interrupted in location 1 by the
pre-emption of the Sensor task, then when the Tracking
task resumes the execution of Result in location 3, the vari-
able xt1

 will still contain the CPU time expended on Result

AVRUNIN ET AL: ANALYZING PARTIALLY-IMPLEMENTED REAL-TIME SYSTEMS 609

in location 1, but not the time spent in location 2 while the
Sensor task was running. In fact, the Tracking task may
be pre-empted many times (represented by the cycle
through locations 1–4) before it accumulates enough CPU
time (recorded in xt1

) to produce a result.
Fig. 7 shows the automaton for the formula FMode1. The

variables y1 and xt2
 represent a global clock and another

local clock that advances in locations where the Tracking
task is running, respectively. We believe this formula illus-
trates that GIL specifications of nontrivial timing properties
are generally easier to write and understand than their
equivalent automata.

Fig. 7. Hybrid automaton from formula FMode1 in Fig. 3.

Table 1 gives the bounds we used for the (implemented
and unimplemented) code regions, as well as the values of
several constants used in the specification and implementa-
tion. Since we have not integrated our model building tool
for Ada with a sequential timing analysis tool, we estimated
plausible durations for the implemented code regions, as
well as for the overhead of various run-time operations.

We note that a single transition might represent a se-
quence of code regions and that the time bounds for each
transition are polished to be multiples of a constant m. We
polish constraints in such a way that they are weakened—
the set of runs of the automaton with the polished con-
straints is a superset of the set of runs of the original
automaton. In particular, all lower bounds are rounded
down to the nearest multiple of m and all upper bounds are
rounded up to the nearest multiple of m. The constant m
controls the accuracy of the analysis, but also affects the
cost. In general, larger values of m will degrade the accu-
racy (i.e., tightness) of the bounds, but speed up the analy-
sis. For our example, we set m = 25.

3.5 Analysis
Once we have combined the hybrid automata con-

structed from the Ada code, the regular expressions, and
the GIL formulas (including the formula IntFreq of Fig. 4
that constrains the behavior of the environment) into a sin-
gle hybrid automaton MS capturing the behavior of the
system, we can use standard techniques for analyzing hy-
brid automata to verify that the system has certain proper-

ties. To verify that the system has a property P, we con-
struct a hybrid automaton MP that accepts timed event se-
quences violating P. We then compose MP with MS and
check to see whether MP is in an accepting location for any
states of the composition reachable from the initial state
(the reachable states of a hybrid automaton are computed
using a fixpoint calculation; see [20] for details). The prop-
erty automaton MP does not constrain the behavior of MS; it
simply observes the behavior (via synchronizing transi-
tions) and accepts violations of P.

The system designer would specify the property P with a
GIL formula, which is then negated and converted into a
hybrid automaton. We use the HyTech verifier for hybrid
systems [22] to analyze the hybrid automata we construct.
We illustrate our technique by verifying several properties
of our example.

First, we verify that the Sensor task will never time out
waiting to deliver the data to the Control task. We label all
transitions in MS representing this timeout with the event
label Expire and construct the automaton Expire in Fig. 9
from the negation of the GIL formula NeverExpire in Fig.
8. Using HyTech, we determine that there are no reachable
states of the composition of MS and automaton Expire in
which Expire is in an accepting location. This result proves
that no data can be dropped by the Sensor task. Note that,
although this property does not explicitly mention time, its
proof depends on the timing of events.

An analyst evaluating the performance of the system
may be concerned about the possible degradation of the
quality of tracking if two or more consecutive sensor read-
ings are processed in fast mode. To determine whether this
can occur, we compose MS with the automaton TwoFast in
Fig. 9, which was constructed from the negation of the for-
mula NeverTwoFast in Fig. 8. (The e is the standard
“eventually” operator of temporal logic, so this specification
asserts that a Slow event occurs between any two occurrences

TABLE 1
DURATIONS USED IN EXAMPLE (mSEC)

Duration/Delay Range/Value

ReadSensor [100, 200]
ReadingExpire 1500
Update_Display [75, 100]

Code to queue/pend call in caller
(before blocking)

[60, 80]

Code to complete call in caller
(after being signaled)

[10, 20]

Code to begin rendezvous in acceptor
(before body)

[25, 50]

Code to complete rendezvous in acceptor
(after body)

[25, 50]

Code to set timer request [25, 50]
Code to process timer expiration [25, 50]
Timer interrupt period (D) 100

Cache life (K) 2500
Max sensor interval (F) 2000
Start to first data ([L1, U1]) [60, 120]

Result to next data ([L2, U2]) [60, 120]

Process slow data ([L3, U3]) [1000, 1500]

Process fast data (with cache) ([L4, U4]) [200, 400]

Process fast data (without cache) ([L5, U5]) [400, 600]

610 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 8, AUGUST 1998

of Fast.) This time, HyTech reports that there are reachable
states of the composition in which automaton TwoFast is
accepting and displays a time-stamped sequence of transi-
tions containing two Fast events without an intervening
Slow event. This sequence can help the analyst understand
how such degraded tracking can occur, and perhaps sug-
gest ways to modify the program to avoid it. As in the case
of NeverExpire, the proof of NeverTwoFast depends on
the real-time behavior of the program.

We can also verify explicit timing requirements. One
common timing requirement is that the time from a stimu-
lus to a response is bounded by a given constant. In our
example, we verify that the time from a sensor interrupt
(event SensorInt) to a result being produced (event Result) is
less than M msec. We specify this property using the GIL
formula MaxResponse in Fig. 8, whose negation can be
converted to the hybrid automaton ViolMaxResponse in
Fig. 9. Although we could fix M at a specific value and pro-
ceed with the analysis as before, we instead instruct HyTech
to perform a parametric analysis to determine the longest
time from a SensorInt event to the following Result event. In
particular, HyTech can solve for the (weakest) constraints
on M that are required for the composition of ViolMaxRe-
sponse and MS to reach an accepting location of ViolMax-
Response. HyTech reports that this constraint is M � 3,075,
thus an upper bound on the time between these events is
3,075 msec. HyTech also produces a time-stamped sequence
of transitions illustrating this bound, which we diagram in
Fig. 10. Note that the implementation of the rendezvous
mechanism and the priority scheduling of the tasks on a
single CPU produces a fairly complex behavior.

In the analyses described above, we used the model
building tool for Ada described in [7] to construct the hy-
brid automaton representing the program from an Ada-like
specification2 of the code in Fig. 2. The time bounds of the
code regions are specified using special computation events
embedded in this specification; in a real timing analysis
tool, these durations would be derived from the sequential
code comprising these regions using techniques like [23].
The automata for the GIL formulas were constructed by
hand using a set of reduction rules and the tableau method
of [6]. These automata are fed to HyTech, which takes their
product and computes the set of reachable states. The per-
formance of HyTech (version 1.04) on the analyses de-
scribed above is given in Table 2. Times are in seconds on a
Sun SPARCstation 10 with 96 MB of memory and include
both user and system time.

TABLE 2
ANALYSIS TIMES FOR EXAMPLE (SEC)

Property Time (sec)

Expire 106
TwoFast 139
MaxResponse 207

4 DETAILS

The approach presented here combines two separate bodies
of work: Corbett’s method for constructing timed models of

2. Our specification language contains (a subset of) Ada’s constructs, but in
a Lisp-like syntax to facilitate parsing. For example, we write �FDOO 7 (�
rather than 7�(�

Fig. 8. GIL Specifications of properties.

Fig. 9. Automata for properties.

Fig. 10. Behavior illustrating bound on time from sensor interrupt to
result (time in units of 25 msec).

AVRUNIN ET AL: ANALYZING PARTIALLY-IMPLEMENTED REAL-TIME SYSTEMS 611

Ada tasking programs [7] and Dillon et al.’s method for
using Graphical Interval Logic to construct test oracles [5],
[6]. In this section we briefly sketch the two methods and
outline the modifications and extensions that were neces-
sary to combine them.

4.1 Ada to Hybrid Automata
The program automaton is generated using the method of
Corbett [7], with some slight modifications to allow unim-
plemented tasks. Here, we sketch the basic method and de-
scribe the necessary modifications for analysis of partially-
implemented programs.

An Ada tasking program is transformed into a hybrid
automaton in two stages. In the first stage, we derive a
state-transition system from the program representing the
program’s untimed behavior. Each state in the transition
system represents an abstraction of the program’s state, and
each transition represents the execution of program code
transforming that state. The program’s state comprises the
control locations of the tasks, the values of any critical pro-
gram variables (identified by the analyst), and the contents
of the run-time systems structures used to implement the
tasking constructs (e.g., the ready queue, the entry queues,
task priorities). Each tasking statement is expanded via
source-level transformations into sequential code that
checks/updates run-time structures and invokes thread
primitives to block/signal the appropriate tasks. This proc-
ess results in a very accurate model, which is reduced using
a virtual coarsening method described in [7].

In the second stage, we capture the timing constraints of
the program by adding timing constraints to the state-
transition system, thus transforming it into a hybrid
automaton. The state of the hybrid automaton consists of
the state of the transition system (i.e., the location of the
hybrid automaton) and the values of continuous variables
used to measure the current time, the time of pending inter-
rupts, and the amount of CPU time allocated to each task.
The timing constraints for a transition are derived from the
time bounds of the code it represents and are expressed in
terms of the continuous variable representing the CPU time
allocated to the task executing the code.

In order to construct models of partially implemented
programs, we modified this basic method to allow stub
tasks. A stub task is defined by a set of interactions (com-
munication statements) and has no timing constraints from
the Ada code. For this paper, we use a simple source-level
transformation to rewrite a stub task as a normal task that
nondeterministically selects a sequence of interactions. For
example, the stub on the left below would be translated
into the task body on the right:

task stub T is task body T is
begin begin
 interaction loop
 A; if... then
 end interaction; A;
 interaction –> elsif... then
 B; B;
 end interaction; end if;
end T; end loop;

end T;

The ... is an additional language primitive recognized by
the tool that generates the hybrid automata and represents
a nondeterministic choice. In addition to this transforma-
tion, we suppress generation of timing constraints for stub
tasks. Instead, we specify a set of variables for each stub
task that are to be advanced when the stub task is running;
these variables can be used by the automata generated from
GIL formulas to specify the local timing constraints of the
stub task.

In the future, we may be able to generate some or all of
the Ada stubs automatically from the implemented tasks.
For instance, in the example of Fig. 2, we can infer from the
bodies of the implemented tasks that the unimplemented
Tracking task accepts FastData and SlowData, and must
call Control.Result. We cannot tell, however, whether
the FastData and SlowData entries should be accepted
together in one interaction, or separately in two interac-
tions. Also, any of these interactions might have a time limit
implemented with a timed entry call or select statement.
The regular expression(s) and GIL formulas can sometimes
provide clues to the intended interaction, but we are still
exploring how much information must be provided in a
task stub to yield a useful model.

The scalability of modeling/analysis techniques for con-
current systems is limited by the state explosion problem,
and our technique is no exception. Using a deterministic
task scheduling policy, however, significantly mitigates the
state explosion since it greatly reduces the number of possi-
ble interleavings of task actions (most concurrency analysis
techniques assume scheduling is arbitrary). We believe that
the severity of the state explosion is largely dependent on
the number of delay statements/alternatives in the Ada
code. Since task scheduling is deterministic, most of the
nondeterminism in the transition system is caused by tran-
sitions representing timeouts (although nondeterminism
may also be introduced by unmodeled program variables).
Currently, we believe our technique is limited to programs
with a small number of tasks and a very modest amount of
modeled data. Nevertheless, we have shown the technique
can still be applied to programs that are far too difficult to
analyze by hand.

4.2 GIL to Hybrid Automata
The standard interpretation for GIL formulas is state-based:
A GIL formula is evaluated at a state within a linear se-
quence of states, where a state maps primitive propositions
to boolean values and has an associated duration (the
amount of time spent in the state). To model timed event
sequences by timed state sequences, we introduce a primi-
tive proposition for each event, which is true in “states”
immediately following the event. The durations associated
with states indicate the amount of time that elapses be-
tween event occurrences.

Hybrid automata are produced from GIL formulas by a
tableau procedure like that described in [5], [6], but ex-
tended to handle duration predicates and bidirectional
searches. A tableau procedure uses rules encoding the se-
mantics of a logic to generate a graph, called a tableau, that
encodes all alternative ways to satisfy a formula. For exam-
ple, the formula in node 1 of Fig. 11 yields two alternatives:

612 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 8, AUGUST 1998

one where the leading target a is not satisfied immediately
(i.e., is not the next event to occur), so the formula must be
satisfied at the next time (i.e., after the next event occurs);
and one where the leading target a is satisfied immediately,
in which case the interval starts at the current time, so the
formula shown in node 2 must hold. Similarly, the formula
in node 2 may be satisfied by satisfying c immediately and
finding a b event in the future (node 3), or by satisfying a
immediately and satisfying the formula at the next time. As
shown in Fig. 11, temporal succession is represented as suc-
cession in the graph, with alternatives producing multiple
successors. Node 1 is the start node of the tableau. Nodes 1
and 4, which do not require that any events occur, are final
nodes. (Node 1 only requires c and b if a occurs.) The tab-
leau is thus seen to accept all event traces in which the first
a event results in a future b event, but only after an inter-
vening c event. The nodes become locations in the hybrid
automaton. Note that we do not use the final nodes in our
analysis, thus the hybrid automata we generate from the
GIL formulas actually accept any prefix of a trace satisfying
the formula. This allows us to find a prefix of a system be-
havior that violates a property, but does not satisfy the
strong searches of one or more GIL formulas. See [24], [25]
for more complete descriptions of tableau procedures for
propositional temporal logics.

Fig. 11. Tableau.

The tableau algorithm for the untimed fragment of GIL
is thus driven by a table of rules that specify the alterna-
tives for the various operators—”u,” “e,” intervals, etc.
Duration predicates, such as “L2 � local � U2,” are handled
by special rules, which describe clock activities. These rules
introduce various nonlogical terms to indicate the clocks
that a transition must activate, inspect, and/or deactivate.

Bidirectional searches are not expressible in standard
GIL, which was designed to be insensitive to finite repeti-
tion of states in order to facilitate refinement of specifica-
tions. However, when specifying properties of event se-
quences, we often want to express properties relating to the
frequency of event occurrences, e.g., IntFreq. To express
such properties, a logic must be able to detect repeated
events. Bidirectional searches are defined by translation to
formulas expressed using the standard GIL operators and
the next state operator of propositional temporal logic. Our
current implementation of the tableau algorithm for GIL
uses semantic rules for bidirectional searches that perform
this translation; however, we found that this approach ex-
plodes the size of the automaton produced from a GIL for-
mula that uses bidirectional searches. Therefore, we are
currently modifying our tool to use rules that directly en-
code the semantics of bidirectional searches. The automata
in the previous examples were produced by hand using
these new rules for bidirectional searches.

We determinized the hybrid automata produced from the
GIL specifications in Fig. 3 to permit analysis with HyTech.
(It is not necessary to determinize property automata.) While
it is not possible, in general, to represent an arbitrary GIL
formula by a deterministic hybrid automaton, we are able to
determinize automata for formulas in which all intervals to
be timed are specified using a bidirectional search. For the
experiment, we determinized the automata by hand using a
subset algorithm that we adapted to use the semantics of
nodes in simplifying and pruning the subsets. Automation of
this method is a topic of ongoing research.

5 CONCLUDING REMARKS

Existing static analysis methods for real-time systems as-
sume that all the components of the system can be ex-
pressed in the same notation, typically a specification or
programming language. For many reasons, however, ana-
lysts would benefit from static analysis techniques that can
be applied to partially-implemented systems. These reasons
include the different rates of development of different com-
ponents, evolutionary modification or maintenance in
which new or modified components are added to an exist-
ing system, the use of compositional analysis methods, and
the need to model the environment of the system.

In this paper, we have presented a method for analyzing
partially-implemented systems for which some components
are written in Ada and others are specified using the real-
time temporal logic GIL. Our method combines Corbett’s
method for constructing timed models of Ada tasking pro-
grams and the work of Dillon et al. on producing automata
from specifications in GIL. We believe that the basic idea of
our method is quite general and that it could be extended to
apply to systems in which the fully implemented compo-
nents were written in a programming language other than
Ada and the high-level specifications were given in a specifi-
cation formalism other than GIL. To carry out such an exten-
sion, it would be necessary to develop a method for building
hybrid automata reflecting the concurrency and timing con-
structs of the programming language and to produce an algo-
rithm for producing hybrid automata from the specifications.
Such a project would certainly involve some significant

AVRUNIN ET AL: ANALYZING PARTIALLY-IMPLEMENTED REAL-TIME SYSTEMS 613

challenges (though the work of Dillon and Ramakrishna [6]
might simplify the generation of automata from temporal
logic specifications), but there is nothing in our basic ap-
proach that limits its applicability to Ada and GIL.

We are currently pursuing a number of research direc-
tions aimed at improving the performance and scalability of
our analysis tools. We are currently completing the auto-
mation of our algorithm for producing hybrid automata
from GIL formulas. As noted above, we are experimenting
with rules that directly encode the semantics of higher-level
operators, such as the bidirectional searches, which the cur-
rent implementation translates into more primitive opera-
tors. Past experience has shown that this direct approach
can often produce simpler automata more quickly. We are
also looking at other kinds of optimizations for the GIL-to-
hybrid automata translation process that might reduce the
number of clock variables needed. As mentioned in Section
4.1, we are exploring ways to reduce the amount of infor-
mation that must be provided in the task stubs of the un-
implemented tasks. Finally, we are exploring ways to make
the automata we generate more amenable to analysis by
reducing the number of clocks used and deactivating clocks
as soon as possible.

ACKNOWLEDGMENTS

This research was partially supported by the National Sci-
ence Foundation under Grant Nos. CCR-9308067, CCR-
9407182, CCR-9505392, and CCR-9708184; by the Air Force
Materiel Command, Rome Laboratory, and the Defense
Advanced Research Projects Agency under Contract No.
F30602-94-C-0137; and by the Regents of the University of
California and Hughes Electronics Corporation under MI-
CRO Grant UCM-20880. This is a revised and expanded
version of a paper that appeared in the Proceedings of the
19th International Conference on Software Engineering.

REFERENCES

[1]� C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[2]� M.G. Härbour, M.H. Klein, and J.P. Lehoczky, “Timing Analysis
for Fixed-Priority Scheduling of Hard Real-Time Systems,” IEEE
Trans. Software Eng., vol. 20, no. 1, pp. 13–28, 1994.

[3]� L. Sha and J.B. Goodenough, “Real-Time Scheduling Theory and
Ada,” Computer, vol. 23, no. 4, pp. 53–62, Apr. 1990.

[4]� L.K. Dillon, G. Kutty, L.E. Moser, P.M. Melliar-Smith, and Y.S.
Ramakrishna, “A Graphical Interval Logic for Specifying Concur-
rent Systems,” ACM Trans. on Software Eng. and Methodology, vol.
3, no. 2, pp. 131–165, Apr. 1994.

[5]� L.K. Dillon and Q. Yu, “Oracles for Checking Temporal Properties
of Concurrent Systems,” Proc. Second ACM SIGSOFT Symp. Foun-
dations of Software Eng., D. Wile, ed., pp. 140–153, New Orleans,
ACM Press, Dec. 1994. (Proceedings appeared in Software Engi-
neering Notes, vol. 19, no. 5.)

[6]� L.K. Dillon and Y.S. Ramakrishna, “Generating Oracles from Your
Favorite Temporal Logic Specifications,” Proc. Fourth ACM SIG-
SOFT Symp. Foundations Software Eng., D. Garlan, ed., San Fran-
cisco, ACM, Oct. 1996. (Proceedings appeared in Software Eng.
Notes, vol. 21, no. 6, pp. 106–117.)

[7]� J.C. Corbett, “Timing Analysis of Ada Tasking Programs,” IEEE
Trans. Software Eng., vol. 22, no. 7, July 1996.

[8]� Y.S. Ramakrishna, P.M. Melliar-Smith, L.E. Moser, L.K. Dillon, and
G. Kutty, “Interval Logics and Their Decision Procedures, Part II:
A Real-Time Interval Logic,” Theoretical Computer Science, vol. 170,
nos. 1/2, pp. 1–46, Dec. 1996.

[9]� J.C. Corbett, “Modeling and Analysis of Real-Time Ada Tasking
Programs,” Proc. Real-Time Systems Symp., pp. 132–141, San Juan,
Puerto Rico, IEEE CS Press, Dec. 1994.

[10]� J.C. Corbett, “Constructing Abstract Models of Concurrent Real-
Time Software,” Zeil [26], pp. 250–260.

[11]� E.M. Clarke, D.E. Long, and K.L. McMillan, “Compositional
Model Checking,” Proc. Fourth Ann. IEEE Symp. Logic in Computer
Science, pp. 353–362, 1989.

[12]� W.J. Yeh and M. Young, “Compositional Reachability Analysis
Using Process Algebra,” Proc. Symp. Testing, Analysis, and Verifica-
tion (TAV4), ACM SIGSOFT, pp. 178–187, ACM, New York, Oct.
1991.

[13]� S.C. Cheung and J. Kramer, “Enhancing Compositional Reach-
ability Analysis with Context Constraints,” Proc. First ACM SIG-
SOFT Symp. Foundations of Software Eng., D. Notkin, ed., pp. 115–
125, Dec. 1993,

[14]� P. Zave and M. Jackson, “Conjunction as Composition,” ACM
Trans. on Software Eng. and Methodology, vol. 2, no. 4, pp. 379–411,
1993.

[15]� M. Pezzè and M. Young, “Generation of Multi-formalism State-
Space Analysis Tools,” Zeil [26], pp. 172–179.

[16]� M. Pezzè and M. Young, “Constructing Multi-Formalism State-
Space Analysis Tools: Using Rules to Specify Dynamic Semantics
of Models,” Proc. 19th Int’l Conf. Software Eng., Boston, pp. 239–
249, May 1997.

[17]� M. Pezzè, “A Formal Approach to the Development of High In-
tegrity Programmable Electronic Systems,” High Integrity Systems,
vol. 1, no. 6, pp. 531–540, 1996.

[18]� R.L. Bagrodia and C.-C. Shen, “MIDAS: Integrated Design and
Simulation of Distributed Systems,” IEEE Trans. Software Eng., vol.
17, no. 10, pp. 1,042–1,058, Oct. 1991.

[19]� C.-C. Shen and R.L. Bagrodia, “Parallel Hybrid Models in System
Design,” Proc. Winter Simulation Conf.—WSC ‘93, G.W. Evens, M.
Mollaghasemi, E.C. Russell, and W.E. Biles, eds., pp. 589–594,
Dec. 1993.

[20]� R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X.
Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The Algorithmic
Analysis of Hybrid Systems,” Theoretical Computer Science, vol.
138, pp. 3–34, 1995.

[21]� R. Alur, T.A. Henzinger, and P.-H. Ho, “Automatic Symbolic Veri-
fication of Embedded Systems,” IEEE Trans. Software Eng., vol. 22,
no. 3, pp. 181–201, Mar. 1996.

[22]� T.A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: The Next
Generation,” Proc. Real-Time Systems Symp., pp. 56–65, IEEE CS
Press, 1995.

[23]� C. Yun Park and A.C. Shaw, “Experiments with a Program Timing
Tool Based on Source-Level Timing Schema,” Computer, pp. 48–57,
May 1991.

[24]� Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems:
Safety. New York: Springer-Verlag, 1995.

[25]� P. Wolper, “The Tableau Method for Temporal Logic: An Over-
view,” Logique et Analyse, vols. 110–111, pp. 119–136, June–Sept.
1985.

[26]� Proc. 1996 Int’l Symp. Software Testing and Analysis (ISSTA), S.J.
Zeil, ed., San Diego: ACM Press, Jan. 1996.

George S. Avrunin received the PhD degree in
mathematics from the University of Michigan,
Ann Arbor. He is a professor in the Department
of Mathematics and Statistics and an adjunct
professor in the Department of Computer Sci-
ence at the University of Massachusetts at
Amherst. In addition to formal methods and
tools for the analysis of concurrent and real-time
software systems, his research interests include
the cohomology and representation theory of
finite groups. Dr. Avrunin is a member of the

IEEE Computer Society, the Association for Computing Machinery, and
the American Mathematical Society.

614 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 8, AUGUST 1998

James C. Corbett received the BS degree in
computer science from Rensselaer Polytechnic
Institute, and the MS and PhD degrees in com-
puter science from the University of Massachu-
setts at Amherst. He is currently an associate
professor in the Department of Information and
Computer Science at the University of Hawaii at
Manoa. His research interests include methods
and tools for analysis of concurrent and real-
time software. Dr. Corbett is a member of the
Association for Computing Machinery.

Laura K. Dillon received the BA and MS de-
grees in mathematics from the University of
Michigan, Ann Arbor, and the MS and PhD de-
grees in computer science from the University
of Massachusetts at Amherst. She is an associ-
ate professor in the Department of Computer
Science at Michigan State University. Her re-
search interests include formal methods for
modeling and analysis of real-time software
systems, formal specification and verification of
software, and specification-based software

testing. Dr. Dillon is a member of the Association for Computing Ma-
chinery, the IEEE Computer Society, and Computer Professionals for
Social Responsibility.

