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Cost-Effective Analysis
of In-Place Software Processes

Jonathan E. Cook, Member, IEEE Computer Society, Lawrence G. Votta, Member,
IEEE Computer Society, and Alexander L. Wolf, Member, IEEE Computer Society

Abstract—Process studies and improvement efforts typically call for new instrumentation on the process in order to collect the data
they have deemed necessary. This can be intrusive and expensive, and resistance to the extra workload often foils the study before
it begins. The result is neither interesting new knowledge nor an improved process. In many organizations, however, extensive
historical process and product data already exist. Can these existing data be used to empirically explore what process factors might
be affecting the outcome of the process? If they can, organizations would have a cost-effective method for quantitatively, if not
causally, understanding their process and its relationship to the product. We present a case study that analyzes an in-place
industrial process and takes advantage of existing data sources. In doing this, we also illustrate and propose a methodology for
such exploratory empirical studies. The case study makes use of several readily available repositories of process data in the
industrial organization. Our results show that readily available data can be used to correlate both simple aggregate metrics and
complex process metrics with defects in the product. Through the case study, we give evidence supporting the claim that exploratory
empirical studies can provide significant results and benefits while being cost effective in their demands on the organization.

Index Terms—Software process, process improvement, retrospective case study, empirical case study, process measurement,

process model validation.

1 INTRODUCTION

NALYZING a software engineering process to determine

how the process impacts the resulting product is an
important task in producing quality software. Current
methods for this analysis first define what is to be learned,
and then instrument the process for data collection and
metrics calculation to support that learning. This approach
is embodied in the Goal-Question-Metric paradigm and its
descendants [1], [2], [4], [11], and reflects an orientation to-
ward experiments that are both controlled and confirma-
tory. While it has succeeded in substantially advancing our
understanding of general software engineering methods,
typified by the studies of Cleanroom Software Engineering
[10], [12], the approach can be both expensive and intrusive
when applied to in-place, specialized industrial software
processes that are seeking rapid improvements. Further-
more, it often ignores the past history of a process, only
viewing the process from a point in time after the instru-
mentation has been established.

What is overlooked is that in-place industrial processes
generally have existing, routinely collected repositories of
readily available data that can be mined for information use-
ful in empirical process analysis. The repositories derive
from the use of such facilities as source code control systems,
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problem tracking systems, time and activity reporting forms,
and the like. If one could take appropriate advantage of these
data sources, then a quantitative empirical framework be-
comes available to explore the current process and assess its
performance, without forcing additional instrumentation.

Not only does such an approach provide a cost-effective
means for analyzing an existing process, it gives one a
much stronger foundation from which to advocate for sub-
sequent instrumentation of the process. This approach
brings the people involved in the process on board by
showing early results of what may be learned from empiri-
cal process analysis, and smooths the way for further proc-
ess improvement efforts.

In this paper, we advocate a methodology of using a
historical, exploratory approach to analyze in-place, spe-
cialized software processes. Because exploratory studies
will necessarily vary in their specifics due to the inherent
differences in subject processes, we present the methodol-
ogy largely “by example” through a case study of a real-
world industrial process. What we hope to do is give the
reader new ideas for finding, combining, and using existing
data repositories to learn about and improve a process, as
well as give an awareness of the issues that arise in such a
study. We view this case study and its results as first evi-
dence of the viability of our approach.

In Section 2 we give a brief overview of the methodol-
ogy, the case study, and our results. Sections 3 and 4 pro-
vide the details: Section 3 describes the process under
study, the sources of data, and the analysis methods used;
Section 4 presents the results of our analyses. We conclude
in Section 5 with some general observations on the impor-
tance of exploratory studies and the significance of our re-
sults. Appendices A and B provide details of the data used
in the case study.
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2 OVERVIEW

Presented here is an outline and discussion of the method-
ology of exploratory study that we advocate, followed by
an overview of our specific case study as it relates to the
methodology.

2.1 The Methodology

The methodology we propose for the exploratory analysis
of a project guides a study through the following steps:

1) Commence understanding the organization, project, and
process. This involves talking with developers, reading
project and process documentation, and learning the
organizational culture. One need not completely un-
derstand all facets of these domains before proceeding
to subsequent steps. Indeed, there is a danger in lin-
gering in this step too long—that the organization will
begin to lose interest in cooperating with the study.

2) Identify possible data sources. The sources may be widely
varied, such as version control systems (for documents
as well as source code), problem tracking systems, tool
logs, project effort databases, inspection and review
databases, and communication logs. Furthermore, it
may not always be obvious how to integrate these
sources. For example, version control comments may
have keys hidden in them that identify a record in the
problem tracking system.

3) Identify success metrics of the project and process. The goal
of exploratory analysis is to find aspects of the project
and process that correlate with some measure of
goodness or success of the project. Thus, having suc-
cess metrics is important. These might take the form of
the outcome of an integration test for a change, the
speed or efficiency of the process, the defect density
per subsystem, customer satisfaction per feature, and
other similar metrics. A success metric acts as a de-
pendent variable.

4) Identify metrics computable from data sources. With the
data sources in hand, and knowledge of how they can
be integrated, metrics can be identified that are both
computable from the data sources and potentially in-
formative in content. Common examples include size
metrics (e.g., number of source lines of a change), time
metrics (e.g., total time for a change, delay between
process steps), and effort metrics. Further, with under-
standing gained in Step 1, hypotheses connecting
these metrics to the dependent variable can often be
stated. These hypotheses help to identify possible
mechanisms. These metrics are independent variables
that are then evaluated for correlation with the de-
pendent variable (the success metric).

5) Extract the data and perform analyses. Data extraction
usually will involve writing scripts that can access the
data sources and format and integrate the data. Analy-
sis will involve statistical and plotting tools, and per-
haps other tools as determined by the chosen analyses.

6) Interpret the results. Any significant results (and some-
times surprising insignificant results) should be inter-
preted in the context of the project and organization.
This will involve taking results back to the organiza-

tion, and seeing if they can provide insight and un-
derstanding for the specific results obtained.

Thus, in general, the idea is to interview the team to dis-
cover the data sources, learn how to extract information
from those sources, determine a method by which the sepa-
rate data can be integrated, and establish a procedure for
analyzing the data.

By looking at historical data, we are limited in two re-
spects. First, we can only investigate process features for
which we have data; some features that may be desirable to
examine might not have any historical data available to de-
scribe them. Moreover, the data themselves may not exactly
represent the process feature that we are interpreting from it,
so questions of construct validity (“Does the metric represent
the real-world aspect you think it does?”) arise as well. The sec-
ond limitation is that we can only present evidence, in the
form of a correlation, that a particular process feature may be
having an impact on the product. We cannot confirm
through direct manipulation of the independent variable that
a causal relationship exists. Nevertheless, given the high cost
of experimentation, the correlation is useful in suggesting
places to focus further investigation or even experimentation.

Even with these limitations, the use of historical, readily
available data allows one to explore a process in detail and
in a cost-effective manner. No extra data collection is neces-
sary and there is little intrusion into the developers’ activi-
ties. Compared to new instrumentation on a process, this
effort is minimal. A similar kind of historical data analysis
was successfully employed in a recent study conducted by
Votta and Zajac [15], in which they looked at process waiver
data (data indicating when a process was exempted from its
prescribed activities) and correlated this with the outcome
of the product.

We call a study done under this methodology a case study
because it looks at a specific, contemporary development
organization and project, although it borders on what Yin
[17] would call a historical study because it uses existing
data. Case studies generally identify correlations rather than
confirm causality, and our exploratory methodology does the
same. A common feature of case studies is that they have
preconceived hypotheses, and then collect data to test those
hypotheses. In our historical data analysis, we do not gener-
ally have preconceived quantitative hypotheses. Rather, we
explore the available data for interesting relationships—our
qualitative hypothesis is that the available data contains sig-
nificant relationships that will tell us something about our
process. In finding data sources and understanding the proj-
ect and process, however, specific hypotheses may be for-
mulated and then tested against the data.

We as researchers and scientists might prefer that every
study be experimentally controlled and to be able to con-
firm that suspected causal relationships do indeed hold.
But the fact remains that for any specific organization’s
process to be improved, controlled confirmatory experi-
ments are usually prohibitive in cost. An organization is
interested in improving their process in the most cost-
effective manner possible. We have found that exploratory
studies based on readily available data can be an effective
aid in process improvement.
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2.2 An Application of the Methodology
The case study we performed examined historical data
gathered from a repetitive software update process. We
correlated process metrics with a measure of the success of
each process execution to show how a process can be quan-
titatively understood in terms of the process features that
might be significantly affecting the resulting product. The
metrics we look at encompass both aggregate features of
the process, such as the time it takes to complete the proc-
ess, and measures of how well the process executions them-
selves correspond to a formal model used to specify how
the organization expects the project to behave.

Our study proceeded as follows, with the numbers in
parentheses denoting the methodology step that the activ-
ity encompasses.

« We started by talking to a member of the process im-
provement team about the organization and its proc-
ess (1), and about what data sources might be avail-
able (2).

« Parallel with this we began collecting and studying
the process documentation to understand what the
organization viewed as the “ideal” process (1).

« Once data sources were identified, the process team
member directed us to various people in charge of the
different data sources. They assisted us in locating
relevant data, and pointed out how to extract data
from in-house specialized databases (2). In the case of
the code inspection reports, this meant which stack of
binders to wade through!

« In the data sources we had available, the success met-
ric for each process execution was defined as whether
the fix was accepted or rejected by the customer (3).

» Metrics were identified that were computable from
the available data sources (4). These were a combina-
tion of product-based (e.g., number of source lines
changed, number of source files changed), process-
based (e.g., total time for the process execution, inter-
nal delay time, developer who was involved), and
process-behavior-based (e.g., how closely the process
execution followed a process model) metrics. Hy-
potheses were also formed with these metrics (4),
such as “the more source lines changed for a fix, the
more likely the fix is to fail (be rejected),” and “the
closer a process follows the process model, the more
likely the fix is to succeed (be accepted).”

« At this point, the effort turned to writing scripts that
would extract data from the various sources and
merge the extracted data with data from other sources
(5). Decisions on data selection (we chose to restrict
ourselves to the changes made to one system version)
and inspections for data consistency were also done at
this time.

« Once the data collection was complete, scripts, analy-
sis tools, and statistical tools were applied to perform
the actual analyses of the data (5).

« Interpretation of the results (6) was done by describ-
ing the study in a report, making this accessible to the
organization, and providing some qualitative under-
standing of the results.

The cost to the development organization of our study was
virtually negligible compared to the size of the quality
group’s annual improvement budget (<1 percent).

As a first part of our case study, simple aggregate met-
rics, such as the number of source lines changed and the
elapsed time of the process, were examined for correlation
with the process success metric. In the second part of the
study, process validation tools [6] were used to measure the
correspondence between the process as executed and the
process as prescribed by a formal process model.

We found two aggregate metrics that correlated with the
defect metric (customer rejecting the fix): the delay between
the appearance of a customer problem report and the be-
ginning of the activity to make the fix, and the developer
who performed the fix. We also found significant differ-
ences between how the successful and unsuccessful proc-
esses followed the prescribed process, with the unsuccess-
ful ones deviating from the process model more than the
successful ones.

It is important to understand these results in the context
for which they were being sought. In particular, our goal in
the case study was primarily to understand whether the
methodology held promise, and secondarily to offer sug-
gestions to the organization for improvement. Thus, if we
could show that our method uncovers facts that are well
known from established methods to be generally true, then
a certain degree of adequacy has been demonstrated. This is
clearly the case for our finding of the significant role that
the individual developer plays in the process. If we can go
farther and reveal correlations of interest in their own right,
then a certain degree of utility has been demonstrated. This
is the case for our finding of the correlation between proc-
ess deviations and process success or failure. To our knowl-
edge, this is the first empirical evidence of such a correla-
tion, although belief in this relationship has been the cor-
nerstone of process research for years.

Our results have already led to changes in the process
employed by the organization we studied. Those changes
have yielded a reduction in unsuccessful processes by ap-
proximately 50 percent, and this was accomplished with
changes based only on one of the results, namely by im-
plementing a trigger based on the delay.

Sections 3.1 and 3.2 expand on this brief overview.

3 FOUNDATIONS FOR THE CASE STUDY

This section details how we conducted the case study dem-
onstrating our methodology. In particular, we describe the
software process under study, our methods for selecting,
collecting, and combining data from the various sources,
and our methods for analyzing the data. Although this ex-
ploratory study is not an experiment (it is a case study), the
credibility of the results and the ability to interpret them is
greatly improved using a rigorous empirical framework
[13]. Therefore, we describe our study below similar to the
way we would describe an experiment.

3.1 Overview of the Subject Process

The process we studied was a customer-initiated software
update process for a large telecommunications software
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Fig. 1. Basic structure of the process under study.

product. It is a repetitive process responsible for identifying
and solving customer-reported software problems. The pre-
scribed steps in the process are depicted informally and at a
high level in Fig. 1. We are interested only in those instances
of the process that involved making actual changes to the
software. Data about the other instances were ignored.

Any problem in the field that causes the customer to call
for assistance is recorded in a customer assistance database
and identified by a so-called CAROD ticket." Most reports
are not specifically software problems, so they can be re-
solved by performing some other simple process, not part
of our study, such as supplying the customer with the
documentation they need to solve their own problem or
helping them with some confusion about the configuration
of their system.

Some number of customer reports, however, are identi-
fied as problems in the software. If there already exists a
fix for the problem, then it is released to the customer as a
software update. If not, then the problem is assigned to a
specific developer who assumes responsibility for gener-
ating a fix. We use this assignment to indicate an instance
of the process to study. Performing the fix involves open-
ing a modification request (MR) for that fix, employing
the source code control system to gain access to the code,
and subjecting the changed code to various levels of qual-
ity assurance.

Once a fix is completed, it is released to the customer as
a software update. When a customer applies the fix, they
may find that the fix does not in fact solve their original
problem. We consider this to be a failure in the process;
some unknown mechanism was at work to introduce a
defect into the software. For our purposes, the accept or
reject judgment by the customer terminates an instance of
the process. Of course, the organization will act to resolve
the problem, and in the end most such rejected fixes are
eventually corrected and accepted. But what is important
for our study is that the first attempt to fix the problem
was not successful.

1. CAROD is the name of the customer request database, and each entry
is called a ticket.

3.2 Sources of Data

As mentioned above, the approach taken in this study was
one of analyzing process data previously collected by the
organization. Therefore, we could not specify the data we
wanted; rather, we could only view the process through the
data that existed. The danger in such an approach is that
the data only reflect what the organization felt was impor-
tant. Parts of the process for which no data are collected
will be invisible to our analyses. On the other hand, no ad-
ditional data collection costs are required of the organiza-
tion and we can examine large amounts of data in a nonin-
trusive way. While certainly not true of all processes, in our
subject process we were able to find enough data of high
quality for valid statistical analysis.

There are many kinds of data we could examine, but we
chose to look at event data [3], [16] because they neatly
characterize the dynamic behavior of the process in terms
of the sequencing of its major activities. The event data
come from several sources. The customer database gives us
events concerning the interaction with the customer, in-
cluding the opening of a CAROD ticket, each update to the
status of the ticket, and when the problem was solved, the
fix delivered, and the ticket closed. The source code control
system gives us every check-in event associated with
changes to individual source files. Each process instance is
tracked by an MR number, and this tracking database gives
us the events of opening an MR, assigning an MR to a de-
veloper, accepting an MR by the developer, generating a
test plan, submitting an MR solution to system test, having
an MR accepted by system test, and eventually closing an
MR. Lastly, a database of inspection information gives us
the date of the code inspection and its result. All but the last
source of event data involved automatic collection through
tools; inspection dates and results were recorded manually.
It is our experience that there is often at least one valuable
data source that exists only on paper.

By merging the events for a particular instance of the
process from each of the data sources, we were able to cre-
ate an event stream that represented the sequence of activi-
ties occurring in a process execution. We collected 159 such
event streams. The event streams were then separated into
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two populations: one for which the customer accepted the
fix (141) and one for which the customer rejected the fix
(18). Because there is no source of data that directly records
the presence of defects in a released software update, this
partitioning of the fixes had to serve as our defect metric.

3.3 Threats to Validity

As with any empirical study, validity concerns must be ex-
plicitly addressed. Here we discuss threats to the construct,
internal, and external validity of our results. We use the
definitions of validity given by Judd, Smith, and Kidder [9].

Construct validity is concerned with how well the met-
rics used in the study faithfully and successfully reflect real-
world attributes and values. In this study, we are using the
customer’s acceptance or rejection of a fix as the metric for
the success or failure of the process; it is on this basis that
we separate the populations. But one could imagine that
there would be other reasons for a customer to reject a fix,
not necessarily related to whether or not the developer
fixed the problem as they understood it, such as simply
deciding their need for the fix did not warrant upgrading
their system. This metric, however, was the closest we
could come to a direct measure of success and failure.

In contrast to the success/failure metric, most of the
other metrics that we used measure attributes directly, such
as the number of source lines or the elapsed time of por-
tions of the process. These direct measures are only threat-
ened by the possibility of false or inaccurate data. As men-
tioned above, most of the data were automatically collected,
so inaccuracies are unlikely. During our assembly of the
data, and in interacting with those providing the data, there
was no indication that people were engaged in purposely
falsifying the data; since the data were not particularly used
before our study, there was not even a motivation for them
to do so.

A threat to construct validity is the danger of inferring
some process feature from a direct measure, where the
feature may not quite be truly represented. For example,
the elapsed time of the process is measured directly, but
this does not necessarily mean that more effort was spent
in the longer process executions. Any significant results
we obtain can only suggest some set of process features
that may be involved, but one must keep in mind the
limitations of the metrics.

The remaining set of metrics are those for measuring
how closely the process models are followed, using the
validation metrics discussed in Section 4.2.1. The applica-
tion of these metrics are to date largely untested, and this
study is part of an evaluation of whether they do measure
something useful. However, they are based on widely-used
methods for measuring differences in similar types of data,
so there is good reason to expect that the measurements are
accurate.

Internal validity is concerned with how well an experi-
mental design allows for conclusions of causality among
the constructs under study. Conclusions about causality
come from being able to control the experimental setting
and randomizing independent variable assignments. Since
ours is a historical study examining processes that already
occurred, we cannot randomize variables and so cannot

conclude causality from any statistically significant meas-
ures that we might obtain. This does not mean, however,
that we cannot learn anything from the results.

External validity is concerned with how well the study’s
results can be generalized. Even though our goal is not to
present generalizable results, but rather an example of a
methodology, it is always useful to evaluate this aspect of
any study. On the negative side, the process we studied is
more of a maintenance process than a development process,
so the results may be biased towards maintenance kinds of
processes. It is also fairly small, although the software it
manages is very large. On the positive side, this is a real-
world industrial process that is repeatable in its execution.
It is also a process that is ubiquitous in industry; almost all
organizations have a problem reporting and fault fixing
process. Thus, while the results probably do not generalize
to all processes, they are likely to shed light on many proc-
esses that are in use and important to industry.

3.4 Methods of Analysis

With the separation of populations based on the acceptance
or rejection of a fix, we then performed analyses on a vari-
ety of metrics in order to discover process characteristics
that correlate with our separation metric. Our analyses
centered on performing statistical significance tests for each
metric that was calculated.

Most of the analyses were performed using metrics
whose values are numeric. For those metrics, we used the
Mann-Whitney significance test [8, ch. 15], which does not
assume an underlying distribution of the data but is still
nearly as powerful as standard significance tests that do
assume a distribution.” The premise behind this test is that
if there is no difference between the two populations (the
null hypothesis), then when the data values from the two
populations are merged and sorted, each population should
be distributed approximately the same in the merged
ranking. For this reason, it is also called the Wilcoxon Rank-
Sum test.

Other metrics we use are two-valued, such as “an event
in the event stream is either matched or deleted when it is vali-
dated with respect to a model.” These metrics produce binomi-
ally distributed populations, and imply a test over the
population proportions, with the null hypothesis being that
true proportions in the populations are the same. The stan-
dard significance test is

pl_pz

1 1
Al T

where m and p, are the size and proportion of one popula-
tion, and n and p, are the size and proportion of the other
population. p and q are defined as

m n
P=Pimysn T P2yap 9=1-p
that is, p is the weighted sum of the two proportions and q

is its inverse.

2. Plotting the distribution of data is an effective way of quickly deter-
mining whether one can assume a type of distribution. Each metric we used
has a distribution plot shown in Appendix B.
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For each application of the Wilcoxon Rank-Sum (W) and
the proportional (Z) significance tests, the two-tailed p-
value is calculated. A p-value is a standard value that di-
rectly represents the chance that the null hypothesis is re-
jected when in fact it is true—that is, one mistakenly con-
cludes that there is a significant relationship when there is
not one. Thus, one does not need to know what values of Z
and W provide a given level of significance, one only need
look at the derived p-value.

An issue that comes up when a set of statistical tests are
done is that of obtaining “significant” results purely by
chance—that is, the result is not really significant, but hap-
pens to lie in that small range indicated by the p-value as
the likelihood of rejecting the null hypothesis when it actu-
ally is true. This likelihood increases as the number of tests
increase. For example, if one performed five independent
tests at the 95 percent confidence level, the chance of at least
one of those tests showing significance purely by chance
would be

1-0.95° = 0.226

or about 23 percent.3

A statistical result called the Bonferroni inequality allows
us to compute a conservative upper bound on the overall
significance level of a set of tests [14]. This inequality de-
duces that the joint significance level of N tests, each per-
formed at an « significance level, is at least Na. Thus, to
ensure a significance level p for some set of N tests, each
test should be evaluated at the p/N significance level. We
will call p the set-p-value and p/N the test-p-value.

Since we are exploring data for results and not trying to
establish extremely confident experimental relations, and
since the above relation can be very conservative, we will
accept set-p-values of 0.15 as indicating a probable rela-
tion, and even look at set-p-values of 0.2 as likely indicat-
ing a relation.

Finally, one metric we use is a ratio, but the independent
variable is nominal, so a significance equation cannot be
used. For this metric, we estimate the standard deviation

for each ratio using ,/p(1 - p) / t, where p is the proportion,

and t is the total. Plotting this data then, reveals nonover-
lapping error bars, which are significant at about the 0.1

4
level.

Metrics that significantly differentiate the populations
were then examined and interpreted. In addition to pre-
senting the p-values in our results, we also present the
means and standard deviations, or proportions, of these
metrics. This, along with the plot of each metric’s distribu-
tion in Appendix B, provides an understanding of the gen-
eral range and makeup of the data, and thus the process
being studied.

3. The value 0.95' is the probability that all five tests fall in the 95 percent
region. Subtracting this from 1 gives us the probability of at least one test
falling outside of this region. This assumes that all tests are completely
independent.

4. Since the error bars visually represent the standard deviations, then if
the error bars are exactly touching ends, the two proportions are two stan-
dard deviations apart. With ideal conditions (equal numbers of observa-
tions and equal standard deviations), this reduces to a Z test statistic of \/E
which has a single-tailed significance of 0.08. Thus 0.1 is a good rule of
thumb for real data.

4 RESULTS

We now present the results of our analyses on the subject
data. We separate the case study into two parts: the first
part analyzes fairly simple aggregate metrics, while the
second part uses tools to measure how the behavior of the
process executions correspond to a process model repre-
senting the prescribed process.

4.1 Part One: Simple Aggregate Metrics

We calculated several simple aggregate metrics and meas-
ured their statistical significance in separating the accepted
fix population from the rejected fix population. Definitions
for the metrics are given in Table 1. For each of the metrics, a
statistical test was performed to determine if the populations
were significantly different for that metric. The results for the
first six metrics are shown in Table 2. The results for developer,
which uses a nominal scale, are shown in Fig. 2. For the set of
six tests in the table, at a set-p-value of 0.15, a test-p-value
would have to be 0.0214. Five of the metrics were not statisti-
cally significant in separating the populations. We now ex-
amine the two metrics that were significant.

The first significant metric is dtime, the delay between
the time a customer reports a problem and the time a de-
veloper starts working on the problem. This correlation is
quite interesting, and could have several explanations. One
explanation might be that the understanding of the prob-
lem degrades during the delay, leading to a wrong or vague
problem definition being handed to the developer, and thus
the developer encounters a harder time fixing the problem.
Another might be that it takes longer for customer support,
working with the customer, to understand the problem in
enough detail to relay it the developer. This could be due to
the fact that the problem is simply a difficult one to fix, and
thus less likely to be fixed correctly. In either case, this re-
sult would warrant a closer examination of the relationship.

The other significant metric is developer, the developer
working on the fix. For each developer, we calculated the
ratio of rejected fixes to total fixes as a measure of that de-
veloper’s failure rate. Fig. 2 shows these ratios, with error
bars estimated according to the method described in Sec-
tion 3.4. Since nonoverlapping error bars are significant at
about the 0.1 level, developer is clearly a significant metric.

That the success of a change depends on the person
making the change is already a well-known result. Dupli-
cating that result here gives us evidence to believe that our
data and methods are producing meaningful results, but it
is not surprising or enlightening by itself.

One possible explanation for why certain developers
have more fixes rejected than others is that the fixes are as-
signed to developers who have an area of expertise that
matches the suspected problem. Some developers may be
working on rather simple peripheral code, while others
may be engrossed in the internals of a large subsystem that
is difficult to change.

A further examination of the event streams is shown in
Table 3, where each event type is counted for the number of
times it occurs in each process execution.” In this table, there

5. Definitions for the event types in the subject process are given in
Appendix A.
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TABLE 1
DEFINITIONS OF THE SIMPLE AGGREGATE METRICS

ncsl Number of source lines of the fix, including new, changed, and removed lines. This is calculated directly from the
source code control system.
nfiles Number of source files modified for the fix. This is calculated from the source code control system.
nevents Total number of events for each process execution. This represents a simplistic count of the number of steps
executed in a particular execution of the process.
ctime Total time, in days, from the customer ticket open to close. This is the total elapsed time of the process execution.
dtime Delay time, in days, from customer ticket open to MR open. This is the interval between the time a problem is
reported and the time a developer begins to fix the problem.
mtime Total time, in days, from the MR open to close. This is the total elapsed time of the development subprocess.
developer | The developer who performed the fix, as recorded in the MR database.
TABLE 2
VALUES OF THE SIMPLE AGGREGATE METRICS
Accept Pop. (N = 141) Reject Pop. (N = 18)
Measure | P-value (2-tailed) | Sig Test (W) Mean Std Dev Mean Std Dev
ncsl 0.230 1.20 217.22 554.31 166.22 275.62
nfiles 0.317 1.00 2.75 4.00 2.94 2.67
nevents 0.250 1.15 30.34 18.55 35.22 16.28
ctime 0.187 1.32 165.94 141.10 180.83 89.91
dtime 0.002 3.13 18.29 31.22 68.17 75.41
mtime 0.719 -0.36 96.89 110.76 87.94 85.56
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Fig. 2. Fraction of rejected fixes per developer. Only those developers who performed four or more fixes are shown. Nonoverlapping error bars

are significant at approximately the 0.1 level.

are 22 event types that have significance tests, so an indi-
vidual test would need a p-value of 0.0068 to indicate sig-
nificance at the 0.15 level for the whole set, or 0.0091 for an
overall 0.2 significance level. One can see that two event
types have significantly different average counts between
the populations, while several others are close enough to
warrant consideration.

One of the most significant is carod-dupdated, which is an
instance of someone updating the description of the cus-
tomer’s problem. The greater value of the rejected fix
population would seem to imply that it takes more effort to
figure out the problem. This could be due to the problem
being more difficult, or that communication with the cus-
tomer is breaking down and requires more iterations.

The other significant CAROD event type, and also those
that are almost significant, indicate that there are slightly
more CAROD records per MR in the rejected fix population,
as can be seen by the mean values of the event counts. This
occurs when more than one customer reports the problem
while it is open and being fixed. If the fix was already per-
formed for the first customer, then it would be a simple soft-
ware update for the next; if the fix is not yet completed, and
another customer reports the same problem, then both of the
customer CAROD tickets are associated with the same MR
number and thus the same fix process. This could cause more
customer rejections because, for example, the fix might be
directed more towards the first customer, and not quite fix
the problem reported by the second customer. This could
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TABLE 3
EVENT TYPE COUNTS PER EVENT STREAM
Accept Pop. Reject Pop.
Measure P-value (2-tailed) Sig Test (W) Mean Std Dev N Mean Std Dev
carod-dupdated 0.0052 2.79 141 3.04 3.42 18 6.00 5.38
carod-abstract 0.0074 2.67 141 1.18 0.58 18 1.56 0.92
carod-custdue 0.0098 2.58 141 1.16 0.61 18 1.56 0.92
carod-create 0.0106 2.55 141 1.18 0.58 18 1.56 0.92
carod-inhouse 0.0106 2.55 141 1.18 0.58 18 1.56 0.92
carod-response 0.0106 2.55 141 1.18 0.58 18 1.56 0.92
carod-update 0.0106 2.55 141 1.18 0.58 18 1.56 0.92
carrod-dcreated 0.080 1.75 141 1.26 0.63 18 1.61 0.98
mr-acptsys 0.099 -1.65 141 0.86 0.59 18 0.61 0.50
mr-acceptmr 0.13 1.53 141 0.96 0.51 18 111 0.32
mr-smitsys 0.17 1.37 141 1.20 0.74 18 1.39 0.61
mr-createmymr 0.18 1.35 141 0.74 0.44 18 0.89 0.32
carod-closed 0.23 -1.21 141 0.80 0.76 18 0.78 1.22
mr-asnmymr 0.24 1.17 141 1.01 0.71 18 111 0.32
mr-smit 0.29 1.06 141 1.23 0.76 18 1.39 0.61
carod-delivered 0.39 -0.87 141 0.81 0.76 18 0.83 1.20
code-checkin 0.45 0.75 141 5.96 15.63 18 4.44 5.64
mr-assign 0.52 0.65 141 1.11 0.77 18 1.1 0.32
code-inspect 0.61 -0.51 141 0.93 0.31 18 0.89 0.32
carod-solved 0.85 -0.19 141 0.91 0.78 18 1.06 121
mr-test-plan 0.89 0.13 141 0.94 0.48 18 1.00 0.59
mr-bwmbuilt 0.91 0.12 141 0.82 0.56 18 0.83 0.79
mr-rejectbwm - - 141 0.05 0.22 18 0.22 0.43
mr-asndue — - 141 0.00 0.00 18 0.06 0.24
mr-rejectmr - - 141 0.04 0.20 18 0.11 0.32
mr-create - - 141 0.21 0.41 18 0.11 0.32
mr-asnprior - - 141 0.01 0.12 18 0.00 0.00
mr-featchg - - 141 0.09 0.30 18 0.11 0.32
mr-killmdmr — - 141 0.10 0.36 18 0.11 0.32
mr-asntarg — — 141 0.01 0.17 18 0.00 0.00
mr-defer - - 141 0.01 0.08 18 0.00 0.00
mr-integrate - - 141 0.01 0.08 18 0.00 0.00
mr-killmrnm - - 141 0.01 0.08 18 0.00 0.00
mr-killok - - 141 0.01 0.08 18 0.00 0.00
mr-killmr - - 141 0.06 0.32 18 0.06 0.24
mr-killmymr - - 141 0.06 0.27 18 0.06 0.24

All events above the first horizontal line are significant, and those between the lines are possibly significant. Those without P-values do not have

enough occurrences to reliably calculate statistics.

also happen if the association was erroneous—that is, the
person who associated the two problems with the same fix
may have been wrong. A third interpretation could be that
more CAROD tickets for a given problem result from the
code being exercised more in the field, leading more custom-
ers to encounter the same problem in the code.

In general, the data reveal the presence of one or more de-
fect-producing mechanisms at work, and that the mecha-
nisms are somehow associated with the delay in beginning a
fix and the developer performing the fix. The results do not
identify the mechanisms themselves, but rather point the
organization in possible directions to look for improvements.

4.2 Part Two: Measuring Process Behavior

Our second use of the data we collected was in measuring
how well the process executions followed the prescribed
process. This organization had spent much effort in produc-
ing a process description. Showing that it was relevant, and

relating specific activities to the product outcome, were both
desirable. Below we present the tools and metrics we used to
do this, and then present the results that were derived.

4.2.1 Comparing Executing and Prescribed Processes
Process validation measures the behavioral correspondence
between an executing process and a formal model of that
process, by cataloging both the missed activities and the
extra activities A full description of the metrics that we re-
view here, and of the theory behind them, can be found
elsewhere [5], [6], [7].

Behavioral correspondence is a critical measurement for
our case study because it can help to relate process suc-
cesses and failures to deviations from the prescribed proc-
ess. For example, it could be that developers must violate
the organization’s established practices in order to success-
fully solve a problem in a timely manner. Conversely, it
could be that strict adherence to the prescribed process is
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the most reliable way to achieve a successful resolution of a
customer problem. Also interesting would be the result that
there is no correlation between deviations and success or
failure; in that case it would seem that the documented pro-
cess might not be capturing the critical aspects of the or-
ganization’s activities.

The process validation method we employ uses a finite-
state machine representation of the process model together
with the event stream representation of a process execution.
The machine specifies the “language” of event streams that it
will accept—that is, the set of valid sequences of events, while
the event stream can be viewed as a candidate string in that
language. The measurement techniques are based on string
difference metrics, which count the number of insertions and
deletions of “characters” (i.e., events) needed to transform the
event stream string into a string acceptable to the machine.
Event insertion operations are interpreted as activities that
were missed in the executing process, while event deletion
operations are interpreted as extra activities performed by the
process that were not called for by the model.

From the count of insertion and deletion operations, sev-
eral metrics are calculated. The two primary metrics are SSD,
the Simple Stream Distance metric, and NSD, the Nonlinear
Stream Distance metric. SSD calculates a simple count of the
number of insertions and deletions, then normalizes this
value to the length of the execution event stream. NSD en-
hances SSD to take into account blocks of insertions and dele-
tions. A block represents a single, longer deviation between
the executing process and the process model, so rather than
just counting single event deviations, NSD calculates its
measurement by applying a parameterized exponential
function to the block lengths. Thus, runs of deviating events
carry more weight than single event deviations.

In addition to the SSD and NSD metrics, we can look at
per-event-type and per-model-state information. For each
type of event (e.g., a check-in event of the source code con-
trol system), we record the total number of matches, inser-
tions, and deletions for each process execution. This allows
us to calculate, for each event type, the number of events of
that type that occurred correctly according to the model
(matches), the number that were missed (insertions), and
the number that were extra or at the wrong time (deletions).
Similarly, for each state in the model, we also record the
total number of event matches, insertions, and deletions
that occur at that state in the model. These counts are then
combined into meaningful metrics, as follows.

1) matches/(matches + deletions) gives, for each event type,
the proportion of event occurrences in the event
stream that are matched by the model;

2) matches/(matches + insertions) gives, for each event
type, the proportion of events predicted by the model
that are matched in the event stream;

3) matches/(matches + deletions) gives, for each state in the
model, the proportion of event occurrences in the
event stream that are matched by the model; and

4) matches/(matches + insertions) gives, for each state of
the model, the proportion of events predicted by the
model that are matched in the event stream.

In effect, the first and third metrics represent the proportion
of matches from the perspective of the event stream, while
the second and fourth metrics represent the proportion of
matches from the perspective of the model.

Further, the first and second metrics provide a measure
of on what event types the process and model may be dif-
fering, while the third and fourth metrics measure where in
the model the process and model may be differing.

With these four metrics, we can understand deviations
(missed or extra activities) both from the perspective of the
model and of the process execution, and can localize the
deviations both to areas in the model and to specific types
of activities.

4.2.2 Correspondence Results

Using the validation methods described above, we measure
the correspondence of the process executions, as repre-
sented by event streams, to the organization’s prescribed
process, as represented by a finite-state machine model of
the process.

The model, shown in Fig. 3, is based on the organiza-
tion’s paper documentation of the process, interviews with
several members of the organization, and minimal inspec-
tion of the data. This model is meant to represent the ideal-
ized view of the prescribed process. The paper documenta-
tion gave a high-level structure, and specified MR event
orderings and code check-in and inspection orderings.
Talking with members of the customer assistance team, and
looking at the CAROD data both contributed to the areas in
the model where CAROD events are occurring, with the
data inspection only used to resolve some event sequencing
that was due to how the collection and merging of the data
was done.

Using this model and the 159 event streams, we calcu-
lated the SSD and NSD metrics. We also took simple counts
of the number of matches, insertions, and deletions of
events, as well as of insertion and deletion blocks. Table 4
gives the results of our metric calculations for both the ac-
cepted fix and rejected fix populations. For these seven
tests, the test-p-value is 0.0214 for a set-p-value of 0.15.

The first thing to notice is that, based on the number of
event matches and the average number of events in an
event stream (from Table 3), only about 45-55 percent of the
total events are matched by the model. Evidently, the model
in Fig. 3 is not good at describing the actual behavior of the
processes. This is also reflected in the SSD and NSD met-
rics, which have quite large values.

Next, notice that while the SSD metric fails to differenti-
ate the populations, the NSD metric succeeds. In particular,
the deviation from the prescribed process is significantly
greater for the rejected fix population than it is for the ac-
cepted fix population. If we look at the constituents of the
NSD metric, none of them show a significant difference by
themselves. The NSD metric focuses attention on blocks of
insertions and deletions, so the fact that the NSD metric
detects a strongly significant difference in the populations
indicates that there were larger areas of deviation from the
process model in the rejected fix population than in the ac-
cepted fix population.
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TABLE 4
CORRESPONDENCE METRICS FOR THE MODEL OF FIG. 3

Accept Pop. (N = 141) Reject Pop. (N = 18)
Measure P-value (2-tailed) | Sig Test (W) Mean Std Dev Mean Std Dev

SSD 0.019 1.32 0.65 0.24 0.72 0.21
NSD 0.0064 2.72 29.75 72.59 88.58 111.67
Matches 0.62 -0.50 17.93 15.78 16.11 5.28
Insertions 0.80 -0.26 6.96 2.86 7.33 3.38
Delettions 0.09 1.72 10.77 7.32 14.56 8.99
Insertion blocks 0.22 -1.24 3.30 1.24 3.17 0.99
Deletion blocks 0.45 0.75 4.88 2.12 5.22 1.96
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Fig. 3. Finite-state machine model of the subject process.

At this level, then, we see that the model describes only
about half of the behavior, and that there is some significant
difference in how the populations relate to the model. We can
see the difference in more depth by looking at the propor-
tions of matched events, as described in Section 4.2.1. They
are shown per event type and per model state in Tables 5 and
6, respectively. In these tables, only the event types and
model states that did in fact have significant differences are
shown. For all of these tables, the number of tests that make
up a single set for computing p-values for the whole set is 18.
Thus, for a set-p-value of 0.2, the test-p-value is 0.011. For a
set-p-value of 0.15, the test-p-value is 0.008.
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The first significant difference is the check-in event,
which the model accepts near state 10. The tables show that
the check-in event is matched more often in the accepted fix
population, so we can conclude that check-in occurs with
less regularity in the rejected fix population. Because the
process documentation explicitly requests that code be
checked in before it is inspected, this result suggests both
that rejected fixes may not be following this rule as rigor-
ously as they should be and that the rule is good—it corre-
lates with successful instances of the process.

Another result shows state 16 having significantly fewer
matches of predicted events in the rejected fix population,
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TABLE 5
PER-EVENT-TYPE METRICS FOR THE MODEL OF FIG. 3
Accept Pop. Reject Pop.
Sig Test | No. of Events | Proportion | No. of Events | Proportion
Event Type P-value (2-tailed) 2 Occurring Matched Occurring Matched
code-checkin 0.0106 2.55 833 0.87 80 0.76
Only those event types that had significant measures are shown.
TABLE 6
PER-MODEL-STATE METRICS FOR THE MODEL OF FIG. 3
Accept Pop. Reject Pop.
Sig Test | No. of Events | Proportion | No. of Events | Proportion
Model State P-value (2-tailed) 2) Occurring matched Occurring Matched
16 0.0008 3.34 176 0.54 32 0.22
24 0.0116 2.52 183 0.63 39 0.41
Accept Pop. Reject Pop.
Sig Test | No. of Events | Proportion | No. of Events | Proportion
Model State P-value (2-tailed) 2 Predicted Matched Predicted Matched
16 0.0046 2.82 132 0.72 18 0.39

Only those model states that had significant measures are shown.

and also having fewer matches of events that occurred. This
may point to problems in controlling the system test or the
delivery of the fix.

Finally, two results that might be indicating something
significant is the carod-closed event and state 24. They are
both somewhat weak results, but together possibly indicate
some differences between the populations near the end of
the model. This could simply be that the rejected fix proc-
esses are already shutting down at this point, and do not
follow the model through to the end.

Overall, the validation results show that the rejected fix
processes do not follow the model as closely as the ac-
cepted fix processes, and that specific areas in the model
had significant behavior differences between the accepted
and rejected fix populations. Thus, the model seems to
capture some important, and good, process behavior. On
the other hand, the mean values of the SSD and NSD met-
rics for both populations indicate that there is much be-
havior that is not accounted for in the model. Perhaps the
model is out of date with how the process behaves; or the
process is simply highly adaptable and variable, and the
model too abstract to capture these variations and “ex-
ceptions.” In either case, it would seem that with some
effort, a better model that more accurately captured ideal
process behavior could be constructed.

4.3 Summary of Results

Our analysis of the data has revealed several interesting
things about the subject organization and its process.

« The documented model of the process does not ade-
quately capture what the members of the organiza-
tion record that they do to successfully carry out the
process.

« There is a large variance in the structure of activities
among individual process executions.

« The success of the process is highly correlated with
the person responsible for making the required fix.

« A long delay in beginning a fix is correlated with a
likely failure in the process.

« Missed or irregular code check-in is correlated with a
likely failure in the process.

While we cannot point to specific defect-producing mecha-
nisms from these results, the organization can use this infor-
mation to focus their process improvement efforts. For ex-
ample, they can better document their process in order to
communicate good practices and potential pitfalls to new
members; they can establish an alarm system that monitors
the delay between accepting a problem report and beginning
the corrective action, and have managers automatically noti-
fied when the delay exceeds some significant threshold; and
they can consider better ways to structure access to code so
that members of the organization are motivated to use the
check-in mechanism. In fact, the organization has already
begun to make improvements based on our study.

5 CONCLUSION

Empirical process improvement relies on having data col-
lected not only from the product but from the process as
well. In many cases, existing repositories of data can contrib-
ute greatly to an empirical understanding of the process. This
paper presented a methodology for exploratory empirical
studies that takes advantage of such readily available data.
We gave evidence of the adequacy and utility of the
methodology by presenting a case study that showed that
specific process features could be related to product out-
come, leading to a better understanding of the process in
enough detail that specific recommendations for improve-
ment could be made. Indeed, the development organization
has already instituted changes based on this study, includ-
ing tracking the delay time of a CAROD ticket, and using
historical data on other repetitive processes. In fact, they
now post a chart in the building entrance tracking quality
metrics over the projects’ lifetimes. On this specific project,
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their reject rate has been reduced by approximately 50 per-
cent from the time of our study.

The success of this study shows that it is feasible to per-
form a process study by using historical data that are read-
ily available—that is, already collected manually or auto-
matically during the regular course of the process for pur-
poses other than the study at hand—without the addition
of new and specific instrumentation.

The main disadvantage of this approach to data gather-
ing is that the study effectively becomes a naturally occur-
ring experiment whose subject cannot be statistically con-
trolled or varied in order to test hypotheses. Thus, substan-
tive conclusions about causality are limited.

Nevertheless, there are two benefits of this approach that
should not be undervalued. First, large amounts of data can
be collected without disturbing the process and the people
involved. This is particularly important for researchers who
are interested in studying real-world organizations. Second,
using previously collected, readily available data is much
less costly than instrumenting to collect new data. The re-
sults from a study such as this can then be used to focus
subsequent instrumentation, providing a cost-effective path
to data-driven process improvement. This two-step ap-
proach overcomes the problem of convincing an organiza-
tion to implement a potentially costly, general instrumenta-
tion of their process, and provides a solid foundation from
which to argue its benefits.

A unique aspect of this study is its use of a formal proc-
ess model in conjunction with process data to help analyze
the process. Demonstrating that process models are useful
is critical to the acceptance of process research results in
industry, which to date has been slower than some have
expected. Our study explored the relationships among pro-
cess models, executions, and outcomes for a real-world in-
dustrial process. Using both simple aggregation metrics
and sophisticated process data analysis tools, we were able
to show correlations between deviations from the pre-
scribed process and the presence of defects in the product.
Moreover, the results were gained at a sufficiently detailed
level to point to relatively specific places to improve the
process. We hope that these results, and further studies, will
encourage the application of formal process models to eve-
ryday software process improvement.

APPENDIX A—EVENT TYPE DEFINITIONS

Table 7 lists the event types and their definitions for the
subject process.

APPENDIX B—DATA CHARACTERIZATION

In Appendix B, we present a distribution plot for each of
the metrics. These are provided to give the reader a more
intuitive understanding of each metric under test. Each
point on a plot is a single data item, with both the accepted
fix and rejected fix populations being combined. All of the
metrics and their units are explained in Section 4.1.

First, in Fig. 4, distribution plots of the aggregate metric
data are shown. Next, in Fig. 5, distribution plots of the cor-
respondence metric data for the model of Fig. 3 are shown.
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TABLE 7

EVENT TYPES AND THEIR DEFINITIONS

Event

Definition

carod-abstract
carod-closed
carod-create
carod-custdue
carod-dcreated
carod-delivered
carod-dupdated
carod-inhouse
carod-response
carod-solved
carod-update

create an abstract of the customer’s problem
close the CAROD ticket (i.e., mark as complete)
create a CAROD ticket for a customer problem
promised due date for a customer solution
description of ticket created

customer solution is delivered

update problem description

problem brought in house

initial response to the customer

customer problem has been solved

update of CAROD ticket

code-checkin
code-inspect

source code module check in
source code inspection occurred

mr-acceptmr

developer accepts MR assignment

mr-acptsys system test accepts MR for a test build
mr-asndue assign due date to MR
mr-asnmymr assign my MR (to myself)
mr-asnprior assign a priority to an MR
mr-asntarg assign target to MR

mr-assign assign MR to developer
mr-bwmbuilt test build has been built for MR
mr-create create an MR

mr-createmymr create an MR (for myself)
mr-defer defer the MR

mr-featchg MR is a feature change
mr-integrate MR is integrated (into a build)
mr-killmr* kill an MR (various subtypes)
mr-rejectbwm MR is rejected from system build
mr-rejectmr MR is rejected

mr-smit submit MR to system test
mr-smitsys submit MR to system test
mr-test-plan test plan written for MR
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Fig. 4. Distribution plots of the aggregate metric data.
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