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Abstract

We describe a general technique for identifying modules in legacy code. The
method is based on concept analysis—a branch of lattice theory that can be used
to identify similarities among a set of objects based on their attributes. We dis-
cuss how concept analysis can identify potential modules using both “positive”
and “negative” information. We present an algorithmic framework to construct
a lattice of concepts from a program, where each concept represents o poten-
tial module. We define the notion of a concept partition, present an algorithm
for discovering all concept partitions of a given concept lattice, and prove the
algorithm correct.

1 Introduction

Many existing software systems were developed using programming languages
and paradigms that do not incorporate object-oriented features and design prin-
ciples. In particular, these systems often lack a modular style, making mainte-
nance and further enhancement an arduous task. The software engineer’s job
would be less difficult if there were tools that could transform code that does not
make explicit use of modules into functionally equivalent object-oriented code
that does make use of modules (or classes). Given a tool to (partially) auto-
mate such a transformation, legacy systems could be modernized, making them
easier to maintain. The modularization of programs offers the added benefit of
increased opportunity for code reuse.

A major difficulty with software modularization is the accurate identification
of potential modules and classes. This paper describes how a technique known
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as concept analysis can help automate modularization. The main contributions
of this paper are:

s We show how to apply concept analysis to the modularization problem.
We focus on one variant of the modularization problem—the conversion
of a C program to a C+-+ program, where the C program’s struct types
are the starting point for the C++ program’s classes.

e Previous work on the modularization problem has made use only of “pos-
itive” information: Modules are identified based on properties such as
“function f uses variable x” or “f has an argument of type t”. It is
sometimes the case that a module can be identified by what values or
types it does not depend upon—for example, “function £ uses the fields
of struct queue, but not the fields of struct stack”. Concept analysis
allows both positive and negative information to be incorporated into a
modularization criterion. (See Section 3.2.)

e Unlike several previously proposed techniques, the concept-analysis ap-
proach offers the ability to “stay within the system” (as opposed to ap-
plying ad hoc methods) when the first suggested modularization is judged
to be inadequate:

— If the proposed modularization is on too fine a scale, the user can
“move up” the partition lattice. (See Section 4.)

— If the proposed modularization is too coarse, the user can add ad-
ditional attributes to identify finer-granularity concepts. (See Sec-
tion 3.)

o We demonstrate how concept analysis can be used to identify distinct
modules amid “tangled” code. (See Section 3.2.)

o We define the notion of a concept partition and present an algorithm to
generate partitions from a concept lattice. (See Section 4.)

e We have implemented a prototype tool that uses concept analysis to find
potential modularizations of C programs. The implementation has been
tested on several medium-to-large-sized examples. (See Section 5.)

As an example, consider the C implementation of stacks and queues shown
in Figure 1. Queues are represented by two stacks, one for the front and one
for the back; information is shifted from the front stack to the back stack when
the back stack is empty. The queue functions only make use of the stack fields
indirectly—by calling the stack functions. Although the stack and queue func-
tions are written in an interleaved order, we would like to be able to tease the
two components apart and make them separate classes, one a client of the other,
as in the C++ code given in Figure 2.

"This paper discusses a technique by which modules (in this case C-+4- classes)
can be identified in legacy C code. The resulting information can then be




attributes
four-legged | hair-covered | intelligent | marine | thumbed
cats Vv N
objects | dogs v v
dolphins Vv Vv
gibbons _ Y Vi Vv
humans N v
whales Vv Vv

Table 1: A crude characterization of mammals.

supplied to a suitable transformation tool that maps C code to C++ code, as
in the aforementioned example. Although other modularization algorithms are
able to identify the same decomposition [3, 24], they are unable to handle a
variant of this example in which stacks and queues are more tightly intertwined
(see Section 3.2). In Section 3.2, we show that concept analysis is able to group
the code from the latter example into separate queue and stack modules.

The remainder of this paper is structured as follows: Section 2 introduces
contexts and concept analysis, and an algorithm for building concept lattices
from contexts. Section 3 discusses a process for identifying modules in C pro-
grams based on concept analysis. Section 4 defines the notion of a concept
partition and presents an algorithm for finding the partitions of a concept lat-
tice. Section 5 discusses the implementation. Section 6 concerns related work.

2 A Concept-Analysis Primer

Concept analysis provides a way to identify sensible groupings of objects that
have common attributes [23].

To illustrate concept analysis, we consider the example of a crude classifica-
tion of a group of mammals: cats, gibbons, dogs, dolphins, humans, and whales.
Suppose we consider five attributes: four-legged, hair-covered, intelligent, ma-
rine, and thumbed. Table 1 shows which animals are considered to have which
attributes. We can interpret this data in a variety of ways. For example, we
might observe that whales, dolphins, humans, and gibbons are all intelligent.
On the other hand, gibbons, dogs, and cats are all hair-covered, but only the
latter two are four-legged.

In order to understand the basics of concept analysis, a few definitions are
required. A context is a triple C = (O, A, R), where O and A are finite sets (the
objects and attributes, respectively), and R is a binary relation between O and
A. In the mammal example, the objects are the different kinds of mammals,
the attributes are the characteristics four-legged, hair-covered, etc. The binary
relation R is given in Table 1. For example, the tuple (whales, marine) is in R,
but (cats, intelligent) is not.

Let X C O and Y C A. The mappings 0(X) = {a € AVo€ X : (0,a) € R}



#define QUEUE_SIZE 10
struct stack { int *base, *sp, size; };
struct queue { struct stack *front, ¥back; };

struct stack* initStack(int sz)

{ struct stackx s = (struct stack*) malloc(sizeof (struct stack));
s->base = s->sp = (int*)malloc(sz * (sizeof(int)));
s->size = sz;
return s; }

struct queuex initQ()

{ struct queue* q = (struct queue*) malloc(sizeof (struct queue));
g->front = initStack(QUEUESIZE);
g->back = initStack(QUEUESIZE);
return q; }

int isEmptyS(struct stack#* s)
{ return (s->sp == s->base); }

int isEmpty((struct queuex @)
{ return (isEmptyS(q->front) && isEmptyS(q->back)); }

void push(struct stack* s, int i)
{ *(s->sp) = i; s=>sp++; } /* no overflow check */

void eng(struct queuex g, int i)
{ push(gq->front, 1); }

int pop{(struct stack* s)

{ if (isEmptyS(s)) return -1;
s->sp--;
return (*(s->sp)); }

int deq(struct queuex q)
{ if (isEmptyQ(q)) return -1;
if (isEmptyS{g->back))
while(!isEmptyS(q->front)) push(q->back, pop(q->front));
return pop(gq->back); }

Figure 1: A queue using two stacks in C.




const int QUEUE.SIZE = 10;

class stack {
private:
int#* base;
int* sp;
int size;
public:
stack(int sz) {
base = sp = new int[sz];
size = sz; }
int isEmpty() {

return (sp == base); }
int pop() {

if (isEmpty()) return -1;

sp==;

return (*sp); }

void push(int i) {
// no overflow check
*sp = i; sp++; }

}
class queue {
private:
stack *front, *back;
public:
queue() {
front = new stack(QUEUESIZE);
back = new stack(QUEUE.SIZE); }
int isEmpty() { return (front->isEmpty() && back->isEmpty()); }
int deq() {
if (isEmpty()) return -1;
if (back->isEmpty())
while(!front->isEmpty()) back->push(front->pop());
return back->pop(); }
void enq(int i) { fromt->push(i); }
}s

Figure 2: Queue and stack classes in C++.



(the common attributes of X) and 7(Y) = {0 € O|Va € Y : (0,a) € R} (the
common objects of V') form a Galois connection. That is, the mappings are
antimonotone:

X1 € Xp = 0(X2) Co(Xy)
Y CYe = 7(Ys) C (Y1)

and eztensive:
X Cr(o(X)) and Y Co(r(Y)).

In the mammal example, o({cats, gibbons}) = {hair-covered} and 7({marine}) =
{dolphins, whales}.

A concept is a pair of sets—a set of objects (the eztent) and a set of at-
tributes (the intent) (X,Y)—such that ¥V = o(X) and X = (). That is,
a concept is a maximal collection of objects sharing common attributes. In
the example, ({cats, dogs}, {four-legged, hair-covered}) is a concept, whereas
({cats, gibbons}, {hair-covered}) is not a concept. A concept (Xo,Yp) is a sub-
concept of concept (X1,Y1), denoted by (Xo,Ys) < (X1, Y1), if Xy C X; (or,
equivalently, Y1 C Yp). For instance, ({dolphins, whales}, {intelligent, marine})
is a subconcept of ({gibbons, dolphins, humans, whales}, {intelligent}). The
subconcept relation forms a complete partial order (the concept lattice) over
the set of concepts. The concept lattice for the mammal example is shown in
Figure 3. Each node in the lattice represents a concept. A key indicating the
extent and intent of each concept is shown in Table 2.

The fundamental theorem for concept lattices [23] relates subconcepts and
superconcepts as follows:

L&,y = (r (ﬂ Y) 0 Y) :
iel i€l iel

The significance of the theorem is that the least common superconcept of a
set of concepts can be computed by intersecting their intents, and by finding the
common objects of the resulting intersection. An example of the application of
the fundamental theorem is shown in Figure 4.

There are several algorithms for computing the concept lattice for a given
context [9, 21]. We describe a simple bottom-up algorithm here.

An important fact about concepts and contexts used in the algorithm is
that, given a set of objects X, the smallest concept with extent containing
X is (r(o(X)),0(X)). Thus, the bottom element of the concept lattice is
(1(0(0),0(0))—the concept consisting of all objects (often the empty set, as
in our example) that have all the attributes in the context relation.

The initial step of the algorithm is to compute the bottom element of the
concept lattice. The next step is to compute atomic concepts—smallest concepts
with extent containing each of the objects treated as a singleton set!. Compu-
tation of the atomic concepts for the mammal example is shown in Figure 5.

1 Atomic concepts should be distinguished from the atoms of a lattice—the nodes reachable




Figure 3: The concept lattice for the mammal example.

top ({cats, gibbons, dogs, dolphins, humans, whales}, §)

Cs ({gibbons, dolphins, humans, whales}, {intelligent})

Cq ({cats, gibbons, dogs}, {hair-covered})

c3 ({gibbons, humans}, {intelligent, thumbed})

o ({dolphins, whales}, {intelligent, marine})

1 ({gibbons}, {hair-covered, intelligent, thumbed })

co ({cats, dogs}, {hair-covered, four-legged} )

bot | (8, {four-legged, hair-covered, intelligent, marine, thumbed})

Table 2: The extent and intent of the concepts for the mammal example.



¢ Ues
({gibbons}, {hair, intell., thumbed })

(.

({dolphins, whales}, {intell., marine})
(r({intelligent } ), {intelligent})

({gibb., humans, dolph., whales}, {intell. })
Cs

Figure 4: An example use of the fundamental theorem of concept lattices: This
computation corresponds to the fact that ¢; U ¢a = ¢5 in the lattice shown in

Figure 3.

7(o({cats}))
7(o({dogs}))
7(o({dolphins}))
7(o({gibbons}))
7(o({humans}))

7(o({whales}))

7({four-legged, hair-covered})
{cats, dogs}

7({four-legged, hair-covered})
{cats, dogs}

7({intelligent, marine})
{dolphins, whales}
7({hair-covered, intelligent, thumbed})
{gibbons}

7({intelligent, thumbed})
{humans, gibbons}
7({intelligent, marine})
{dolphins, whales}

Figure 5: Computing atomic concepts in the mammal example.




The algorithm then closes the set of atomic concepts under join: Initially, a
worklist is formed containing all pairs of atomic concepts (¢', ¢) such that ¢ £ ¢’
and ¢’ £ c. While the worklist is not empty, remove an element of the worklist
(co,c1) and compute ¢” = coUcy. If ¢” is a concept that is yet to be discovered
then add all pairs of concepts (¢”, ¢) such that ¢ £ ¢ and ¢" £ ¢ to the worklist.
The process is repeated until the worklist is empty.

The iterative step of the concept-building algorithm is illustrated in Figure 6.

3 Using Concept Analysis to Identify Modules

The main idea of this paper is to apply concept analysis to the problem of
identifying potential modules in legacy code. An outline of the process is as
follows:

1. Build a context, where objects are functions defined in the input program
and attributes are properties of those functions. The attributes could be
any of several properties relating the functions to data structures. At-
tributes are discussed in more detail below.

2. Construct the concept lattice from the context, as described in Section 2.

3. Identify concept partitions—collections of concepts whose extents parti-
tion the set of objects. Each concept partition corresponds to a possible
modularization of the input program. Concept partitions are discussed in
Section 4.

3.1 Concept analysis and the stack and queue example

Consider the stack and queue example from the introduction. In this section,
we will demonstrate how concept analysis can be used to identify the module
partition indicated by the C+-+ code in Figure 2 on page 5.

First, we define a context as shown in Table 3. The next step is to build the
concept lattice from the context, as described in Section 2. The concept lattice
for the stack and queue example is shown in Figure 7. Table 4 shows the extent
and intent of the concepts corresponding to the nodes in the lattice.

One of the advantages of using concept analysis is that multiple possibilities
for modularization are offered. In addition, the relationships among concepts in
the concept lattice also offers insight into the structure within proposed modules.
For example, at the atomic level, initialization functions (concepts co and ¢;)
are distinct concepts from other functions (concepts c; and c3). The former
two concepts correspond to constructors and the latter two to sets of member
functions. Concept ¢4 corresponds to a stack module and c5 corresponds to
a queue module. The subconcept relationships ¢g C ¢4 and ¢z C ¢4 indicate

from the bottom element in one step. In Section 4, we define the notion of a well-formed
context—a context in which the atomic concepts correspond to the atoms of the concept
lattice.
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Worklist
Cq
Worklist
cog leo
Worklist
colUes
Worklist
Cs
Worklist
co Lics
Worklist
colley
Worklist
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Worklist
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Worklist
cqg llcs
Worklist

Figure 6:

({cats, dogs}, {hair-covered, four-legged})
({gibbons}, {hair-covered, intelligent, thumbed })
({dolphins, whales}, {intelligent, marine})
({gibbons, humans}, {intelligent, thumbed})

[(cos €1), (co, €2)s (o, €3), (c1, €2), (c2, €3)]

o U ¢; = ({cats, gibbons, dogs}, {hair-covered})
[(cos €2), (cos€3), (c15¢2), (€2, €3), (€2, €a), (€3, €4)]
T = ({cats, gibbons, dogs, dolphins, humans, whales}, §)
[(cos€3)s (e15¢2), (e2, ¢3), (2, €a), (c3, ¢4)]

T

[(c1,¢2), (2, ¢3), (c2, ¢4, (c3, 4)]

c1 U ca = ({gibbons, dolphins, humans, whales}, {intelligent})
(CRINCRANCRANCNI NN

Cs

[(c2, c4), (c3, €a), (o, c5), (C45 €5)]

T

[(03,64), (60a65)7 (04765)]

T

[(cos¢5), (ca, c5)]

T

[(€a,¢5)]

-

0

Bottom-up computation of concepts for the mammals example.
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initStack v v
initQ v N
isEmptyS v v
isEmpty(Q v v
push v v
eng v v
pop v v
deq v v

Table 3: The context for the stack and queue example.

(all objects, B)

top

cs ({initQ, isEmptyQ, enq, deq}, {uses queue fields})

4 ({initStack, isEmptyS, push, pop}, {uses stack fields})

c3 ({isEmptyQ, enq, deq}, {has queue argument, uses queue fields})
co ({isEmptyS, push, pop}, {has stack argument, uses stack fields})
¢1 ({initQ}, {returns queue})

co ({initStack}, {returns stack})

bot (0, all attributes)

Table 4: The extent and intent of the concepts for the stack/queue example.
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top

Figure 7: The concept lattice for the stack and queue example.
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int isEmptyQ(struct queue* q) {
return (q->front->sp == gq->front->base
&& g->back->sp == g->back->base); }

void enq(struct queue* g, int i) {
*(q->front->sp) = i;
q->front->sp++; }

Figure 8: “Tangled” isEmptyQ and enq functions.

that the stack concept consists of a constructor concept and a member-function
concept.

3.2 Adding complementary attributes

The stack and queue example, as considered thus far, has not demonstrated
the full power that concept analysis brings to the modularization problem. It
is relatively straightforward to separate the code shown in Figure 1 into two
modules, and techniques such as those described in [3, 24] will also create the
same grouping. We now show that concept analysis offers the possibility to go
beyond previously defined methods: It offers the ability to tease apart code that
is, in some sense, more “tangled”.

To illustrate what we mean by more tangled code, consider a slightly mod-
ified stack and queue example. Suppose the functions isEmptyQ and enq have
been written so that they modify the stack fields directly, as in Figure 8, rather
than calling isEmptyS and push. While this may be more efficient, it makes the
code more difficult to maintain—simple changes in the stack implementation
may require changes in the queue code. Furthermore, it complicates the process
of identifying separate modules. If we apply concept analysis using the same
set of attributes as we did above, attribute “uses stack fields” now applies to
isEmptyQ and enq. Table 5 shows the context relation for the tangled stack
and queue code with the original sets of objects and attributes. The resulting
concept lattice is shown in Figure 9. (The extent and intent of the concepts
corresponding to the nodes in the lattice are shown in Table 6.) Observe that
concept cs can still be identified with a queue module, but none of the con-
cepts coincide with a stack module. In particular, even though the extent of
co is {initStack} and the extent of c; is {isEmptyS, push, pop}, the concept
co LJ eo = ¢y is not the stack concept:

7(o({initStack, isEmptyS, push, pop})) =

{initStack, isEmptyS, isEmptyQ, push, enq, pop}

In other words, the extent of ¢y mixes the stack operations with some, but not
all, of the queue operations.

13
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initStack v vV
initQ v v
isEmptyS Vv v
isEmptyQ v v v
push Vi v
enq i v v
pop v v
deq v v

Table 5: The context for the “tangled” stack and queue example.

(all objects, 1)

top

cr ({initStack, isEmptyS, isEmptyQ, push, enq, pop}, {uses stack fields})

s ({initQ, isEmptyQ, enq, deq}, {uses queue fields})

c3 ({isEmptyQ, enq, deq}, {has queue argument, uses queue fields})

cs | ({isEmptyQ, enq}, {has queue argument, uses queue fields, uses stack fields})
Co ({isEmptysS, push, pop}, {has stack argument, uses stack fields})

c1 ({initQ}, {returns queue})

Co ({initStack}, {returns stack})

bot (0, all attributes)

Table 6: The extent and intent of the concepts for the tangled stack/queue

example.
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Figure 9: The concept lattice for the tangled stack and queue example.
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initStack Vv Vv N
initQ 7 v
isEmptyS N v v
isEmptyQ v v v
push v Vi v
eng v v v
pop v v v
deg v v

Table 7: The context for the “untangled” stack and queue example.

The problem is that the attributes in this context reflect only “positive”
information. A distinguishing characteristic of the stack operations is that they
depend on the fields of struct stack but not on the fields of struct queue.
To “untangle” these components, we need to augment the set of attributes with
“negative” information—in this case, we add a new attribute—the complement
of “uses queue fields” (i.e., “does not use queue fields”). The corresponding
context is shown in Table 7. The resulting concept lattice is shown in Figure 10.
(The extent and intent of the concepts corresponding to the nodes in the lattice
are shown in Table 8.) This concept lattice contains all of the concepts in
the concept lattice from Figure 9, as well as an additional concept, ¢4, which
corresponds to a stack module. This modularization identifies isEmptyQ and

enq as being part of a queue module that is separate from a stack module, even

though these two operations make direct use of stack fields.
This example raises some issues for the subsequent C-to-C++ code-transformation

phase. Although one might be able to devise transformations to remove these
dependences of queue operations on the private members of the stack class
(e.g., by introducing appropriate calls on member functions of the stack class),
a more straightforward C-to-C-++ transformation would simply use the C++

friend mechanism, as shown in Figure 11.

3.3 Other choices for attributes

A concept is a maximal collection of objects having common properties. A co-
hesive module is a collection of functions (perhaps along with a data structure)
having common properties. Therefore, when employing concept analysis to the
modularization problem, it is reasonable to have objects correspond to func-

16




Figure 10: The concept lattice for the untangled stack and queue example.

top (all objects, 0)

¢y ({initStack, isEmptyS, isEmptyQ, push, enq, pop}, {uses stack fields})
cs ({initQ, isEmptyQ, enq, deq}, {uses queue fields})

4 ({initStack, isEmptyS, push, pop}, {uses stack fields, not queue fields})
c3 ({isEmptyQ, eng, deq}, {has queue argument, uses queue fields})

Cq ({isEmptyQ, enq}, {has queue arg., uses queue fields, uses stack fields})
o ({isEmptyS, push, pop}, {has stack arg., uses stack fields, not queue fields})
1 ({initQ}, {returns queue})

o ({initStack}, {returns stack, does not use queue fields})

bot (9, all attributes)

Table 8 The extent and intent of the concepts for the untangled stack/queue
example.
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const int QUEUESIZE = 10
class queue;

class stack {
friend class queue;
_private:
int* base;
int#* sp;
int size;
public:
stack(int sz) { base = sp = new int[sz]; size = sz; }
int isEmpty() { return (sp == base); }
int pop() {
if (isEmpty()) return -1;
sp-—;
return (*sp); }
void push(int i) { *sp = i; sp++; } // no overflow check

}s

class queue {

private:
stack *front, ¥back;
public:
quene() {

front = new stack(QUEUESIZE); back = new stack(QUEUE.SIZE);
}
int isEmptyQQ) {
return (front->sp == front->base && back->sp == back->base); }
void enq(int i) {
*(front~>sp) = 1i;
front->sp++; }
int deq() {
if (isEmpty()) return -1;
if (back->isEmpty())
while(!front~>isEmpty()) back->push(front->pop());
return back->pop(); }

}s

Figure 11: Queue and stack classes in C++4 with friends.
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tions.2 However, we have more flexibility when it comes to attributes. There
are a wide variety of attributes we might choose in an effort to identify concepts
(modules) in a program. Our examples have used attributes that reflect the
way struct data types are used. But in some instances, it may be useful to
use attributes that capture other properties. Other possibilities for attributes
include the following:

e Variable-usage information: Related functions can sometimes be identified
by their use of common global variables. An attribute capturing this
information might be of the form “uses global variable x” [13, 18].

e Dataflow and slicing information can be useful in identifying modules.
Attributes capturing this information might be of the form “may use a
value that flows from statement s” or “is part of the slice with respect to
statement s”.

e Information obtained from type inferencing: Type inference can be used
to uncover distinctions between seemingly identical types (see [19, 17]).
For example, if f is a function declared to be of type int x int — bool,
type inference might discover that f’s most general type is of the form
a X B — bool. This reveals that the type of f’s first argument is distinct
from the type of its second argument (even though they had the same
declared type). Attributes might then be of the form “has argument of
type «” rather than simply “has argument of type int”. This would pre-
vent functions from being grouped together merely because of superficial
similarities in the declared types of their arguments.

o Disjunctions of attributes: The user may be aware of certain properties
of the input program, perhaps the similarity of two data structures. Dis-
junctive attributes allow the user to specify properties of the form “m or
mo”. For example, “uses fields of stack or uses fields of queue”.

Any or all of these attributes could be used together in one context. This high-
lights one of the advantages of the concept-analysis approach to modularization:
It represents not just a single algorithm for modularization; rather, it provides
a framework for obtaining a collection of different modularization algorithms.

4 Concept Partitions

Thus far, we have discussed how a concept lattice can be built from a program
in such a way that concepts represent potential modules. However, because of
overlaps between concepts, not every group of concepts represents a potential
modularization.

For the above examples involving stacks and queues, it is straightforward to
look at the small collection of concepts and find the desired modules by hand.

2Some legacy code is monolithic—multiple tasks are contained within one function. In such
cases, it may be preferable to have objects correspond to slices [22, 10] rather than functions.
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In practice, programs to be modularized will be much larger. Modularization is
unlikely to ever be a fully automated process, but it would be helpful to have a
tool that suggests a palatable number of potential modularizations from which
a software engineer might reasonably choose. Not all combinations of potential
modules work together. Some concepts overlap.vThat is, a function may appear
in multiple concepts, but it should only reside in one module.

Feasible modularizations are partitions: collections of modules that are dis-
joint, but include all the functions in the input code. To limit the number of
choices that a software engineer would be presented with, it is helpful to identify
such partitions.

Below, the notion of a concept partition is made more formal and an algo-
rithm to identify such partitions from a concept lattice is presented.

4.1 Concept Partitions

Given a context (0, A, R), a concept partition is a set of concepts whose extents
form a partition of ©. That is, P = {(Xo,Y0),...,(Xk~1,Yk-1)} is a concept
partition iff the extents of the concepts cover the object set (ie. JX; = O)
and are pairwise disjoint (X; N X; = 0 for i # j and X;,X; € P). In terms
of modularizing a program, a concept partition corresponds to a collection of
modules such that every function in the program is associated with exactly one
module.

As a simple example, consider the concept lattice shown in Figure 10 on
page 17. The concept partitions for that context are listed below:

Py | {co,c1,c2,c3}
Py {co, 2,5}
Py | {ei,cs,ca}
Py {cq,c5}
Py {top}

Pj is the atomic partition. P, and P; are combinations of atomic concepts and
larger concepts. P; consists of one stack module and one queue module. P is
the trivial partition: All functions are placed in one module.

By looking at concept partitions, the software engineer can eliminate non-
sensical possibilities. In the preceding example, ¢; does not appear in any
partition—if it did, then to what module (i.e., nonoverlapping concept) would
deq belong?

An atomic partition of a concept lattice is a concept partition consisting of
exactly the atomic concepts. (Recall that the atomic concepts are the concepts
with smallest extent containing each of the objects treated as a singleton set.
For instance, see the atomic concepts in the mammal example on page 8 in
Section 2.) A concept lattice need not have an atomic partition. For example,
the lattice in Figure 3 on page 7 does not have an atomic partition: The atomic
concepts are cg, ¢1, ¢z, and cs; however, ¢; and c3 overlap—the object “gibbons”
is in the extent of both concepts.
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When it exists, the atomic partition of a concept lattice is often a good
starting point for choosing a modularization of a program. In order to develop
tools to work with concept partitions, it is useful to be able to guarantee the
existence of atomic partitions. Contexts that result in atomic concepts that, in
turn, form a concept partition can be characterized precisely by the following
definition: a context (0,4, R) is well-formed if and only if, for every pair of
elements z,y € O, o({z}) C o({y}) implies o({z}) = o ({y}).

While not every context results in a concept lattice that has an atomic
partition, we can extend any context—by adding additional attributes—to make
it well-formed. Informally, a context extension is another context over the same
set of objects (but a possibly augmented set of attributes) whose concept lattice
offers as least as many ways of grouping the objects as did the lattice derivable
from the original context. More formally, a context (O, A, R') is an extension
of context (O, 4,R) if and only if AC A" and R C R'.

There are several ways in which a non-well-formed context can be extended
into a well-formed context. The important step in any such process is to iden-
tify the ‘offending’ pairs of objects = and y for which o({z}) C o({y}). This
inequity may be counterbalanced by the addition of an attribute such that, in
the resulting context, o({z}) € o{{y}). Two such ways to extend a context to
well-formed context are described below:

1. A context can be extended via the addition of unique identification at-
tributes: for each pair of objects, z,y such that o({z}) C o¢({y}), a new
attribute a; that uniquely identifies = is added to the extended attribute
set. z becomes the only object that has attribute a, in the extended
context relation (i.e., 7({a.}) = {z}).

As an example, consider the mammal context shown in Table 1 on page 3.
The context is not well-formed because the attributes of “human” are a
proper subset of the attributes of “gibbon”. To make a uniquely attributed
extension, we augment the attribute set to include the attribute appan-
The resulting context is shown in Table 9. The resulting concept lattice
shown in Figure 12. Table 10 shows the extent and intent corresponding
to the nodes in the lattice. Table 11 shows the partitions of the lattice.
Partition P, is the atomic partition.

2. A context can be extended to a well-formed context by augmenting a
context with negative information (similar to what is done in Section 3.2).
Given a context (0, A,R), a complement of an attribute a € A is an
attribute @ such that 7({@}) = {z € O|(z,a) ¢ R}. That is, @ is an
attribute of exactly the objects that do not have property a. For example,
the attribute “does not use queue fields” from the tangled stack and queue
example (page 16) is the complement of the attribute “uses queue fields”.
The complemented extension of a context (O, A,R) is a new context
(0, A", R') formed by the algorithm in Figure 14.

For example, we can form a different well-formed extension of the mammal
context shown in Table 1 (page 3) by creating the complemented extension.
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[ four-legged | hair-covered | intelligent | marine | thumbed | apymqn |
cats v N
dogs v v
dolphins v Vv
gibbons Vv v Vv
humans v Vv Vv
whales v v

Table 9: The uniquely-attributed extension of the mammal context shown in
Table 1 on page 3.

Figure 12: The concept lattice for the uniquely-attributed mammal example.
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To make the complemented extension, we augment the attribute set to
include the complementary attribute “not hair-covered”. The resulting
context is shown in Table 12. The resulting concept lattice shown in
Figure 13. Table 13 shows the extent and intent corresponding to the
nodes in the lattice. Table 14 shows the partitions of the lattice. Partition
P, is the atomic partition.

It should be clear that both forms of extension result in well-formed contexts.

Both uniquely-attributed extensions and complemented extensions result in
a concept lattice with at least as many (and frequently many more) nodes than
the lattice derived from the original context. We say that a concept lattice £’
derived from a C' = (0, A, R’} is an extension of a concept lattice £ derived
from a C = (0, A, R) if A C A, and for every concept c in £, there is a concept
¢ in £' with the same extent. More formally, if X' C O such that 7(o(X)) = X,
then 7'(¢'(X)) = X where 7' and ¢’ are the common-object and common-
attribute relations, respectively, for context C'.

Given a context C, both uniquely-attributed extensions and complemented
extensions of C result in concept lattices that are extensions of the lattice derived
from C. In both cases, attributes are added to the extended context to make
in easier to distinguish objects. For example, if o{z} C o{y} then there is at
least one attribute which is a property of y that is not a property of x. Whether
adding unique attributes or complementary attributes, negative information is
represented in a positive form in the extended context to help distinguish such
z and y.

4.2 Finding Partitions from A Concept Lattice

We say that concept lattice derived from a well-formed context is a well-formed
concept lattice. Given a well-formed concept lattice, we define the following
relations on its elements:

A concept d covers concept ¢ if ¢ < d and there is no concept e such that
c < e <d Ifdcovers ¢, we say “c is covered by d”. The set of covers of
concept ¢, denoted by covs(c), is the set of lattice elements d such that d covers
¢. The set of elements subordinate to d, denoted by subs(c), is the set of lattice
elements ¢ such that ¢ < d.

The algorithm builds up a collection of all the partitions of a concept lattice.
Let P be the collection of partitions that we are forming. Let W be a worklist
of partitions. We begin with the atomic partition, which is the covers of the
bottom element of the concept lattice. P and W are both initialized to the
singleton set containing the atomic partition.

The algorithm works by considering partitions from worklist W until W is
empty. For each partition removed from W, new partitions are formed (when
possible) by selecting a concept of the partition, choosing a cover of that concept,
adding it to the partition, and removing overlapping concepts. The algorithm
is given in Figure 15.
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top ({cats, gibbons, dogs, dolphins, humans, whales}, §)

Cs ({gibbons, dolphins, humans, whales}, {intelligent})

s ({cats, dogs, gibbons}, {hair-covered})

cs ({gibbons, humans}, {intelligent, thumbed})

o ({dolphins, whales}, {intelligent, marine})

Ce ({humans}, {intelligent, thumbed, ¢, man})

¢ ({gibbons}, {hair-covered, intelligent, thumbed})

Co ({cats, dogs}, {hair-covered, four-legged})

bot | (B, {four-legged, hair-covered, intelligent, marine, thumbed, @y man })

Table 10: The extent and intent of the concepts for the uniquely-attributed
mammal example.

Pl {00701)02766}
Py | {c2,c6,C4}
Py | {co,ca,c3}
P4 {60765}
Ps {top}

Table 11: Concept partitions corresponding to the concept lattice in Figure 12.
P, is the atomic partition.

| [ four-legged [ hair-covered [ intelligent | marine | thumbed | not hair-covered |

cats N Vv

dogs v v

dolphins N N N
gibbons Vv N N

humans vV Vv Vv
whales N N Vv

Table 12: The complemented extension of the mammal context shown in Table 1
on page 3.
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Figure 13: The concept lattice for the complemented mammal example.

top ({cats, gibbons, dogs, dolphins, humans, whales}, §)

cs ({gibbons, dolphins, humans, whales}, {intelligent })

s ({cats, dogs, gibbons}, {hair-covered})

cy ({dolphins, humans, whales}, {not hair-covered})

c3 ({gibbons, humans, {intelligent, thumbed})

co ({dolphins, whales}, {intelligent, marine, not hair-covered})

ce ({humans}, {intelligent, thumbed, not hair-covered})

¢ ({gibbons}, {hair-covered, intelligent, thumbed})

o ({cats, dogs}, {hair-covered, four-legged})

bot | (0, {four-legged, hair-covered, intelligent, marine, thumbed, not hair-covered})

Table 13: The extent and intent of the concepts for the complemented mammal
example.
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Py | {co,c1,02,C6}
Py | {cz,c6,C4}
P3 {00701)67}
Py (o, C2,C3}
Py {er,ca}
Py {top}

Table 14: Concept partitions corresponding to the concept lattice in Figure 13.
P, is the atomic partition.

(11 A+ A

21 R +«R

[38] while (0, A',R') is not well formed do

[4] let z,y € O be such that o({z}) C o({y})

[5] let a € A' be such that a € o({z}), a € o({y})
(6] A' + A'U{a}, where @ is a new attribute

{71 R! ¢ R'U{(z,8)|(z,a) € R"}
(8] endwhile

Figure 14: An algorithm to compute the complemented extension of a context.

As an example, consider the atomic partition of the concept lattice derived
from the uniquely-attributed mammal context (see Figure 12). The algorithm
begins with the atomic partition (consisting of concepts, co, ¢1, ¢z, and cg) as
the sole member of the worklist. The algorithm removes the atomic partition
from the worklist, as p in line [5] of Figure 15. Suppose that in the first iteration
of the for loop in line [6], ¢ refers to cp. The covering set of ¢ is the singleton
set consisting of c4, so ¢’ is assigned ¢, in line [7]. In line [8], p’ is assigned the
value of p minus the subordinate concepts of ¢4 (i.e., ¢1, ¢o, and bottom), so p'
is {ca,cs}. In line [9], the union of the extents of cz and cg is disjoint with the
extent of cq; thus, in line [10], the partition p"” = {c2,c6} U {c4} is formed. p"
is added to the set of partitions and to the worklist in line [12] and line [13].

In the worst case, the number of partitions can be exponential in the num-
ber of concepts. Furthermore, the techniques for making contexts well-formed,
discussed in Section 4.1, only exacerbate the problem: More precise means of
distinguishing sets of objects translates to more concepts. This is turns leads
to more possibilities for partitions.

If the number of concepts in a concept lattice is large, it may be impractical
to consider every possible partition of the concepts. In such a case, it is possi-
ble to adapt the algorithm to work interactively, with guidance from the user.
Before attempting to find a new partition, the algorithm would pause for the
user to specify seed sets of concepts, which would be used to force the algorithm
to find only coarser partitions than the seed sets (i.e., partitions that do not
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[1] A+ covs(l) // the atomic partition

[21 P+« {4}

[3] W« {4}

[4] while W #0 do

{5] remove some p from W
[6] for each c€p

[73 for each ¢ € covs(c)
[8] p' + p— subs(¢')
[9] if (Up)ncd' =0 // ifp' and ' are disjoint
[10] P+ pu{c}
[11] if p' ¢ P

{12] P+ PuU{p"}
[13] W« WU {p"}
[14] endif

[15] endif

{16] endfor

[17] endfor
[18] endwhile

Figure 15: An algorithm to find the partitions of a well-formed concept lattice.

subdivide the seed sets).
A proof of the correctness of the algorithm can be found in Appendix A.

5 Implementation and Results

We have implemented a prototype tool that employs concept analysis to discover
potential modularizations of C programs. Our implementation is actually a
collection of tools, working together as depicted in Figure 16. As the diagram
indicates, the tool consists of five components:

1. The AST builder (“FrontEndC”) takes a compilable, preprocessed C pro-
gram and generates an abstract syntax tree that is annotated with type
information.

2. The context builder takes as input a typed abstract syntax tree and gen-
erates formal contexts by traversing the tree. This component consists of
a collection of functions allowing for contexts to be constructed based on
a wide assortment of objects and attributes, including, but not limited to,
the following criteria:

e Objects are functions, attributes are types. (f,t) is in the context
relation if and only if an expression of type ¢ occurs in function f.
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AST builder - | context builder |- conceptanalyzer |-+ partitioner

N R

visualizer (GUI)

- J

Figure 16: A C concept-analysis tool: the different components of our imple-
mentation.

e Objects are functions, attributes are aggregate types (i.e., struct or
union types). (f,t) is in the context relation if and only if a field

selector (i.e., . or ->) is applied to an expression of type ¢ in f.
(This is the kind of context used to produce the data in Table 15 on
page 30.)

e Objects are functions, attributes are aggregate types. (f,t) is in the
context relation if and only if f has a parameter type or return type
that uses ¢. (This is the kind of context used to produce the data in
Table 16 on page 30.)

e Objects are functions, attributes are global variables. (f,v) is in the
context relation if and only if f uses v.

e Objects are labels of case statements. The attributes are functions.
(c, f) is in the context relation if and only if a statement of the form
“case ¢” occurs in function f. Labels are only counted as objects
when they are textual labels (i.e. enumerated values)—integer and
character constants are ignored, as is the default label.

The context builder also includes the ability to merge a collection of con-
texts into one context. This feature is quite useful for generating one
context from many input C files. The context merger assumes that the
attributes and objects across files are represented in a consistent fashion.
For example, if an attribute represented by the string "Stack" is present
in more than one context, it is assumed to refer to the same property
(whether it means “uses field of type Stack”, “returns type Stack, etc.)
in each context in which it appears.

3. The concept analyzer takes as input a formal context and builds the con-
cept lattice bottom up, as described in Section 2. The transitively reduced
graph representation of the lattice is then computed. The concept analyzer
also provides functions to compute common-attribute and common-object
sets.
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4. The partitioner takes as input a concept lattice and generates the set of all
partitions of that lattice, as described in Section 4. In order to construct
partitions, the concept lattice must be derived from a well-formed con-
text. The partitioner offers two ways to transform an arbitrary context
into a well-formed context: by adding unique attributes or by comput-
ing the complemented extension. Since the number of partitions can be
very large, the partitioner also provides the ability to compute partitions
incrementally.

5. The visualizer has two main functions: to display context and concept lat-
tice information in an interconnected fashion and to provide a graphical
user interface through which the user can manipulate the other compo-
nents of the C concept-analysis system.

The entire system is written in Standard ML except for the visualization
component, which is written in Standard ML in conjunction with the SmITK
interface to Tcl/Tk.

The simple examples mentioned thus far in this paper have been analyzed
using our implementation. We have also applied the prototype tool on the inte-
ger portion of the SPEC 95 benchmark suite, as well as several other programs
of comparable size.

As an example, consider the SPEC 95 benchmark go (“The Many Faces of
Go”). The program consists of roughly 28,000 lines of C code, 372 functions, and
8 user-defined aggregate types. The concept lattice for the fully complemented
context (i.e., the context including all the complements of the original attributes)
associated with these functions and data types consists of thirty-four concepts
and was constructed in less than thirty seconds of user time (using Standard ML
of New Jersey version 110 on a SPARCstation 20 with 256 MB of RAM running
Solaris 2.5.1). The partitioner identified 63 possible partitions of the lattice in
roughly the same amount of time.

Table 15 summarizes results from contexts where objects are functions, at-
tributes are aggregate types (struct or union), and (f,t) is in the context
relation if and only if a field selector (i.e., . or ->) is applied to an expression
of type t in f. The programs listed are a variety of programs that make sig-
nificant use of struct types, but do not necessarily take the struct types as
arguments to the functions. (For example, in go, the variables of struct types
are all global.) The programs include go, chull (computes the convex hull of
a set of points), bdd (manipulates and manages binary decision diagrams) and
some switching-configuration control code from Lucent Technologies.

Table 16 summarizes results from contexts where objects are functions, at-
tributes are aggregate types, and (f,t) is in the context relation if and only if
f has a parameter type or return type that uses £. In this case, a type ¢’ ‘uses’
type t, if one of the following cases holds:

o t' =1t

e t' is equivalent to ¢ via a sequence of typedef associations
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program KLOC objects attributes concepts

chull 1.0 26 3 9
bdd 2.5 51 13 20
go 28.0 372 16 34
Lucent code 160.0 45 44 95

Table 15: Results from applying concept analysis to various C programs. Ob-
jects are functions and attributes are of the form “uses the fields of struct
7.

program KLOC objects attributes concepts

L 7.6 299 3 7
mé&8ksim 19.9 24 14 14
perl 26.9 189 17 42
ijpeg 31.2 407 29 48
vortex 67.2 654 48 93
bash 73.6 266 32 50
gee 205.1 1,358 38 61

Table 16: Results from applying concept analysis to C programs from the SPEC
benchmark (and bash). Objects are functions and attributes are of the form
“uses struct t in parameter list or return type”.

o t' is a pointer to a type that ‘uses’ ¢.

The programs listed are those from the integer portion of the SPEC 95 bench-
mark that make moderate to heavy use of aggregate types by passing them into
and returning them from functions, as well as bash, a Unix shell, which also
makes heavy use of struct types. The data indicates. that from a quantitative
point of view, concept analysis is practical. In the worst case, the number of
concepts can be exponential in the number of objects; however, in the cases we
have studied, there are actually fewer concepts than objects.

The data shown in Table 15 and Table 16 is generated from contexts that
are not well-formed, so the partition algorithm cannot be applied to the concept
lattices. Instead, we use the two techniques for extending contexts to well-
formed contexts described in Section 4. Table 17 summarizes the results of
applying concept analysis to the well-formed extensions of the contexts used in
Table 16, where the extensions are produced by adding unique identification
attributes. Table 18 summarizes the results of applying concept analysis to the
complemented extensions of the contexts used in Table 16.

The data from the well-formed extensions indicate that it is more tractable
to form concept lattices (and to generate partitions from the lattices) from
well-formed contexts made by adding unique identification attributes than it is
from complemented extensions. The reason for this is that while the number of
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program KLOC objects attributes concepts partitions

i 7.6 299 299 303 6
m88ksim | 19.0 24 26 26 9
perl 26.9 189 172 197 5,760
Tipeg 312 407 303 322 5,713
vortes 67.2 654 575 620 7

bash 73.6 266 211 229 231
gee 205.1 | 1,358 1,288 1,311 ?

Table 17: Results from applying concept analysis to C programs from the SPEC
benchmark (and bask). Objects are functions and attributes are of the form
“uses struct t in parameter list or return type” plus unique identification
attributes. “?” indicates that the partitioning algorithm never terminated due
to exponential behavior.

program XLOC objects attributes concepts partitions

L 7.6 299 6 15 18
m88ksim 19.9 24 17 24 16
perl 26.9 189 32 13,826 ?
iipeg 31.2 407 50 ? ?
vortex 67.2 654 91 7 ?
bash 73.6 266 44 1,942 ?
gee 205.1 1,358 65 ? ?

Table 18: Results from applying concept analysis to C programs from the SPEC
benchmark (and bash). Objects are functions and attributes are of the form
“uses struct t in parameter list or return type” plus complemented extensions.
“? indicates that the concept-lattice generator or the partitioning algorithm
never terminated due to exponential behavior.
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attributes rises sharply by adding unique identification attributes, the density of
the context does not really change. On the other hand, complemented extensions
have a much smaller increase in the number of attributes, but a much sharper
rise in the density of the context. This is reflected in the increased number of
concepts in the generated lattices. In some cases (e.g. gcc, vortez, ijpeg), the
concept-lattice generation component did not complete even after running for
several days.

In the worst case, the number of partitions of a given concept lattice can be
exponential in the number of nodes (i.e., concepts) in the lattice. As the tables
indicate, in several instances exponential behavior is apparently exhibited.

We now describe a case study.

Case study: chull

Chull is a program taken from a computational-geometry library that computes
the convex hull of a set of vertices in the plane. The program consists of roughly
one thousand lines of C code. It has twenty-six functions and three user-defined
struct data types: tVertex, tEdge, and tFace, representing vertices, edges,
and faces, respectively. Thus, one might hope that three modules—one for each
struct type—would fall out naturally.

Initially, we formed the context consisting of the twenty-six functions as the
object set and three attributes (“uses fields of tVertex”, “uses fields of tEdge”,
and “uses fields of tFace”). The context is not well formed: For example, the at-
tribute set of the MakeEdge function is the singleton set consisting of “uses fields
of struct tEdge”, which is a proper subset of the attributes of the CleanEdges
function (“uses fields of struct tEdge” and “uses fields of struct tFace”). To
extend the context to a well-formed context, we added unique attributes, such
as GMakeEdge- Lhe resulting context consisted of the twenty-six functions as
objects and a total of twenty-four attributes (the original three attributes plus
twenty-one unique identification attributes). The resulting concept lattice had
thirty concepts and is shown in Figure 17. The partitioning algorithm discov-
ered eight partitions, of which one seemed particularly interesting: It consisted
of eleven concepts, ten of which had singleton extents (corresponding to indi-
vidual functions) and one concept that consisted of the sixteen functions that
use the fields of struct tVertex. A possible interpretation of this partition as
a modularization would be one vertex class (with sixteen member functions),
and the remaining functions standing on their own, some of them being friend
functions.

We also extended the original chull context to a well-formed context by
adding complementary attributes. The resulting context consisted of the twenty-
six functions as objects and a total of six attributes (the original three attributes
plus their complements: “does not use fields of struct tEdge”, etc.) The
resulting concept lattice had twenty-eight nodes and is shown in Figure 18. The
partitioning algorithm discovered 154 possible partitions of the concept lattice.

The atomic partition groups the functions into the eight concepts listed
in Table 19. Thus, this partition does not break the code directly into three
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Figure 17: A concept lattice for chull after unique identification attributes were
added.
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concept number user-defined struct types functions
1 none main, CleanUp, CheckEuler, PrintQOut
9 tVertex MakeVertex, ReadVertices, Collinear,
ConstructHull, PrintVertices
3 tEdge MakeEdge
4 tFace CleanFaces, MakeFace
5 tVertex, tEdge CleanVertices, PrintEdges
6 tVertex, tFace Volume6, Volumed, Convexity, PrintFaces
7 tEdge, tFace MakeCcw, CleanEdges, Consistency
8 tVertex, tEdge, tFace zii:;,s Tetrahedron, AddOne, MakeStructs,

Table 19: The atomic partition of the concept lattice for chull shown in Fig-

ure 18.

modules {e.g., one for each struct type). However, assuming that the goal is to
transform chull into an equivalent C++ program, the eight concepts do suggest
two possible modularizations: Concepts 2, 3, and 4 would correspond to three
classes, for vertex, edge, and face, respectively; concept 1 would correspond to
a “driver” module; and the functions in concepts 5 through 8 would form four
“friend” modules, where each of the functions would be declared to be a friend
of the appropriate classes. Alternatively, one could group concepts 2-8 into a
polyhedron class with nested vertex, edge, and face classes. Concept 1 would
still represent a “driver” module. This possibility corresponds to one of the

non-atomic partitions.

Another interesting partition is summarized in Table 20. It consists of four
concepts. The first concept identifies the four functions not associated with any
of the struct types. The second, third, and fourth concepts identify possible
face, edge, and vertex classes, respectively. This partition comes close to our
expectation (i.e., one module for each struct type); however, several functions
that, from their names, we might have expected to end up in the edge and face
modules ended up in the vertex module (e.g., Tetrahedron, Volume6, Volumed,
PrintEdges, and PrintFaces). These member functions would need to be

declared as friends of the other classes.

6 Related Work

Because modularization reflects a design decision that is inherently subjective, it
is unlikely that the modularization process can ever be fully automated. Given
that some user interaction will be required, the concept-analysis approach offers
certain advantages over other previously proposed techniques (e.g., [14, 5, 16,
15, 2]), namely, the ability to “stay within the system” (as opposed to applying
ad hoc methods) when the user judges that the modularization that the system
suggests is unsatisfactory. If the proposed modularization is on too fine a scale,
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concept number | user-defined struct types functions

1 [ none main, CleanUp, CheckEuler, PrintOut
4 | tFace CleanFaces, MakeFace
10 | tEdge MakeCcw, MakeEdge, CleanEdges, Consistency

MakeVertex, ReadVertices, Print,
Tetrahedron, ConstructHull, AddOne, Volume6,
26 | tVertex Volumed, MakeStructs, CleanVertices,
Collinear, Convexity, Checks, PrintVertices,
PrintEdges, PrintFaces

Table 20: A four-concept partition of the concept lattice for chull shown in
Figure 18.

the user can “move up” the partition lattice. (See Section 4.) If the proposed
modularization is too coarse, the user can add additional attributes to generate
more concepts. (See Section 3.) Furthermore, concept analysis really provides a
family of modularization algorithms: Rather than offering one fixed technique,
different attributes can be chosen for different situations.

The reader is referred to [2, pp. 27-32] for an extensive discussion of the
literature on the modularization problem. In the remainder of this section, we
discuss only the work that is most relevant to the approach we have taken.

Liu and Wilde [14] make use of a table that is very much like the object-
attribute relation of a context. However, whereas our work uses concept analysis
to analyze such tables, Liu and Wilde propose a less powerful analysis. They
also propose that the user intervene with ad hoc adjustments if the results of
modularization are unsatisfactory. As explained above, the concept-analysis ap-
proach can naturally generate a variety of possible decompositions (i.e., different
collections of concepts that partition the set of objects).

The concept-analysis approach is more general than that of Canfora et al. [3],
which identifies abstract data types by analyzing a graph that links functions to
their argument types and return types. The same information can be captured
using a context, where the objects are the functions, and the attributes are the
possible argument and return types (for example, the first four attributes in
the context shown in Table 3 on page 11). By adding attributes that indicate
whether fields of compound data types are used in a function, as is done in the
example used in Section 3, concept-analysis becomes a more powerful tool for
identifying potential modules than the technique described in [3].

The work described in [4] and [5] expands on the abstract-data-type iden-
tification technique described in [3]: Call and dominance information is used
to introduce a hierarchical nesting structure to modules. It may be possible to
combine the techniques from [4] and [5] with the concept-analysis approach of
this paper.

Canfora et al. discuss two types of links that cause undesirable clustering of
functions [2]. The first type, “coincidental links”, caused by routines that im-
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plement more than one function, can be overcome by program slicing {22, 10].
The second type, “spurious links”, is caused by functions that access supporting
data structures of more than one object type. In most of the approaches men-
tioned above, spurious links arise from a function that accesses several global
variables of different types. The work described in {14, 5, 15, 24, 2] will all
stumble on examples that exhibit spurious links. In our approach, an analogous
kind of spurious link arises due to functions that access internal fields of more
than one struct. An example is found in the tangled-code example discussed
in Section 3.2, where the enq function uses the fields of both struct stack and
struct queue. The additional discriminatory power of the concept-analysis
approach is due to the fact that it is able to exploit both positive and negative
information.

In contrast with the approach to identifying objects described in [1], our
technique is aimed at analyzing relationships among functions and types to
identify classes. In [1], the aim is to identify objects that link functions to
specific variables. A similar effect can be achieved via concept analysis by
introducing one attribute for each actual parameter.

There has been a certain amount of work involving the use of cluster anal-
ysis to identify potential modules (e.g., [11, 1, 12, 2]). This work (implicitly
or explicitly) involves the identification of potential modules by determining a
similarity measure among pairs of functions. We are currently investigating the
link between concept analysis and cluster analysis.

[6] offers background on lattice theory and an introduction to concept anal-
ysis. [23] formalizes the notions of concept analysis and provides a proof of the
fundamental theorem.

Concept analysis has been applied to many kinds of problems. Concept
analysis was first applied to software engineering in the NORA/RECS tool,
where it was used to identify conflicts in software-configuration information
[21].

Contemporaneously with our own work, Lindig and Snelting [13] and Sahraoui
et al. [18] independently explored the idea of applying concept analysis to the
modularization problem. In both of these studies, the context relations used
for concept analysis relate each function of the program to the global variables
accessed by the function.

The results reported by Lindig and Snelting on two case studies of small to
medium-sized Fortran and Cobol programs are not encouraging. In both cases,
the concept lattice that resulted did not identify any useful ways to decompose
the program into modules. However, we believe that the results achieved by
our approach to using concept analysis are more promising than those of Lindig
and Snelting and Sahraoui et al. This is due to several factors:

e The languages on which the techniques were applied—i.e., Fortran and
Cobol (in the case of Lindig and Snelting) versus C. The C-to-C++ con-
version problem is a variant of the modularization problem that has more
structure than Fortran-to-X and Cobol-to-X conversion/modularization
problems. In particular, the C program’s struct types serve as a natural
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starting point for the C++ program’s classes.

Lindig and Snelting and Sahraoui et al. use context relations that relate
each function of a program to the global variables accessed by the function.
In our work, context relations relate each function of a program to (i) the
fields of user-defined struct types that the function accesses, (ii) the
types of sub-expressions that occur within the function, and (iii) the com-
plements of (i) and (ii).

In our work, we employ negative information (e.g., “attributes of the form
£ does not use fields of struct t”). This allows the concepts identified to
be based not only on the similarities between functions, but also on their
differences.
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A Correctness of the Concept-Partition Algo-
rithm

We assume familiarity with the basic definitions for contexts, concepts, and
concept lattices given in Section 2, and concept partitions given in Section 4.
Recall that a concept is a pair of sets—a set of objects (the eztent) and a set of
attributes (the intent) (X,Y)—such that ¥ = ¢(X) and X = 7(¥). A concept
is uniquely identified by its extent. In the following, we abuse the language
slightly by referring to a concept as a set when really we mean to treat the
extent of the concept as a set, which it is. For example, “the union of two
concepts” refers to the concept identified by taking the smallest concept which
has an extent containing the union of the extents of the two concepts.
Recall the following definitions:

o Well-formed contexzt: A context (O, A, R) is well-formed if and only if, for
every pair of elements z,y € O, o({z}) C o({y}) implies o({z}) = o ({y}).
(See page 21.)

o Atomic partition: An atomic partition of a concept lattice is a concept
partition consisting of exactly the concepts with smallest extent containing
each of the objects treated as a singleton set (the atomic concepts). (See
page 20.)

We say that a set of concepts g blankets a concept c if the extent of cis a
subset of the union of the extents of g.

Lemma 1 The concept lattice derived from a well-formed contezt has an atomic
partition.

Proof:

For any context, the collection of atomic concepts is {(7(c({z})),oc({z}))|z €
0}

By extensivity, € 7(c({z})) and thus the union of the extents of atomic
concepts is equal to the set of all objects.
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If o({z}) = o({y}) then z,y are in the extent of the same atomic concept.
Suppose o({z}) # o({y})-

For any z € 7(o({z})), o ({z}) € o({z})-

By well-formedness, o({z}) = o({z}).

So, z & T(c({y}))-

Likewise, if z € 7(c({y})) then z € 7(c({z}))

Thus, either 7(o({z})) = 7(e({y})) or 7(c({z})) N7(s({y})) =0

The concept lattice derived from a well-formed context has an atomic
partition.

a

Lemma 2 If ¢ is a non-atomic concept in a concept lattice derived from a well-
formed context, then the set of atomic concepts that are subordinate to c in the
lattice form a partition of c.

Proof:

Let g be the set of atomic concepts that are subordinate to c. By the definition
of an atomic concept, the concepts in ¢ are pairwise disjoint.

Consider any z in the extent of ¢. The atomic concept containing z (i.e.,
7(0{z}) must be a member of ¢, so z is in the union of the extents of g.
So ¢ blankets c.

Concept set g is a partition of c.

O

Lemma 3 If ¢ is a non-atomic concept in a concept lattice derived from a well-
formed context, then there ezists a g C subs(c) and a ¢’ € ¢ that is covered by c
such that the set of extents of the elements of q partition the extent of c.

Proof:

Let ¢’ be any concept that is covered by ¢ (i.e., ¢ € covs(c')). Let ¢’ be the set
of atomic concepts that are subordinate to ¢'. By Lemma 2, ¢' partitions
c.

Let g be the set consisting of ¢’ and the atomic concepts that are subordinate
to ¢ except for those atomic concepts in ¢'. By definition, ¢ is disjoint.

Consider any z in the extent of ¢. The atomic concept containing z (i.e.,
7(o{z}) must either be in ¢ or its extent must be a subset of ¢/. Either
way, = is a member of the union of the extents of g. So ¢ blankets c.
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O

Definition 1 (Level order for a concept lattice) Given a concept lattice,
a level order for the lattice is a linear order induced by o breadth-first navi-
gation through the lattice starting at the bottom element, not including the top
element. The top element is defined to be greater than all the other elements of
the lattice.

Definition 2 (Partition order) Given any two partitions p,p' of a concept
lattice and a level order for the lattice <., suppose the concepts inp are Cag, -+ -, Cay.y
such that ca;_, <c ... <c Cay <c Ca, @nd the concepts of p' are cpy, ... ¢p,_4
such that cg,_, <c ... <c ¢cg, <c Cg,» We then can think of p as the “word”
CaoCay " ** Caj., and the word p' as the “word” cg,cp, -+ cp,_,. We define the
partition order on the set of partitions of the concept lattice to be the lezico-
graphic ordering of these “words.”

Lemma 4 In the partitioning algorithm (Figure 15, page 27), everyp € P is a
partition.

Proof: By induction on the number of iterations in the algorithm.

Base case: p = covs(l), so p is the atomic partition (i.e. the partition con-
sisting of all the atomic concepts). The partition algorithm assumes the
context to be well-formed and hence p is a partition by Lemma 1.

Induction hypothesis: For iterations less than 7, all p inserted into P at line
[12] are partitions.

Induction step: At iteration i, if p” is inserted into P at line [12], then
p'" = p —subs(c’) U {c'}. The union of the extents of p" is equal to O
because the union of the extents of p is equal to O and the union of
the extents of the concepts subordinate to ¢’ is a subset of the extent of
¢'. Line [9] ensures that the objects in the extent of ¢’ are disjoint from
p — subs{¢'}). Thus p" is also a partition.

O

Lemma 5 If p is any partition of a concept lattice derived from o well-formed
contest, then the partitioning algorithm (Figure 15, page 27) finds p.

Proof: By Lemma 1, there is at least one partition, namely the atomic parti-
tion. Suppose the claim is false. Fix a partition order for the partitions
of the lattice. Suppose p,. is the least such partition (according to the
partition order) that is not found by the algorithm. We now show that
this assumption leads to a contradiction.

The atomic partition is discovered by the algorithm, so p, must contain a
non-atomic concept; call it ¢,. By Lemma 3, there exists a ¢ C subs{c.)
and a ¢y € g that is covered by ¢, (i-e., ¢« € covs(cp)) in the concept lattice
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such that the set of extents of the elements of g partitions the extent of
¢e. Let po = p. — {e} U g. po is a partition because ¢, = |Jg and the
elements of g are pairwise disjoint. py <, p« because for all ¢ € ¢, ¢ <, c«.
By hypothesis, py is discovered by the algorithm. Because ¢, € covs(cg),
at some iteration of the while loop beginning at line[4] the p in line [5] is
Po; at some iteration of the for loop beginning at line [6], ¢ is ¢p; for some
iteration of the for loop beginning at line [7], ¢ is ¢,; and finally, at line
[12], p"" is p«. Therefore, partition p, is discovered by the algorithm, which
contradicts our assumption. That is, there is no such least partition, and
hence all partitions are discovered by the partitioning algorithm.

O

Theorem 6 Given a concept lattice derived from a well-formed context, the
partition algorithm (Figure 15, page 27) finds exactly all partitions of the lattice.

Proof: Immediate from Lemma 4 and Lemma 5.
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