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ABSTRACT

Trie hashing is an access methods to primary key ordered dynamic files. The key address is
computed through a trie. Key search needs usually one disk access since the trie may be in core
and needs two accesses for very large files, when the trie has to be on the disk. We present a
new variant of the method that allows to set up an arbitrary load factor for ordered insertions. In
particular, one may create compact files, loaded up to 100 %. We show that the capabilities of
tric hashing make the method preferable to a B-tree by most of criteria that motivated the latter
method supremacy over the database world.

1. INTRODUCTION

Trie hashing (TH) is an access method to dynamic and ordered files of records identified
by a key. The records are stored in buckets. The access function of the method is a dynamic
trie whose size is proportional to the file size. The trie results from splits of buckets that
overflow. It is usually compact enough to fit a main memory, especially for medium size files,
typical on workstations. Key search takes then at most one disk access. For larger files, the
tric may be stored on the disk as a dynamic multilevel hierarchy of subtries, called Multilevel
Trie Hashing (MLTH). Each subtrie occupies one page whose size is usually a few Kbytes.
Because of the high branching factor, two levels usually suffice for a Gbyte file, leading to two



accesses per any key search, provided that the root page is in main memory. These properties
make the method among the most efficient and usually faster than B-trees /BAY72/, /BAY77/.
Properties of the method are discussed in /TOR83/, /GON84/, /KRI84/, /[DAT86/, /LITS1, 84,
85, 87/and /OTO87/.

Under random insertions, the bucket load factor of TH and MLTH file is about 70 %. The
method also supports ordered (sorted) insertions. The load factor depends on the bucket size,
key distribution and the parameter of the splitting algorithm, called split key position. If the
split key is near the middle key of the bucket, the usual position to generate even splits for
random insertions, then the load factor is between 50 and 70 % for the ascending order of
incoming keys and between 40 - 55 % for the descending order. In comparison, it is 50 % for a
B-tree.

If one knows in advance that insertions are ordered, as for the initial loading, then the split
key may be intentionally shifted above the middle key for ascending insertions, or below it for
the descending ones to increase the load factor. Simulations showed that TH could than provide
in general the load factor between 70 -80 %. They also showed that the exact value is hard to
predict. A B-tree performs better with respect to this aspect. The bucket load factor is the linear
function of the split key position and one easily sets up a given load /ROS81/. The load factor
may further attain 100 %, provided the split key is the highest key in the bucket for ascending
insertions and the lowest for the the descending ones. Such a compact B-tree /ROS81/ is not
useful for dynamic applications with random updates, as even a few random insertions may
decrease the load near 50 %. However, it is useful for files that are dynamically created, but
remains afterwards static or are thrown away at the end of a transaction. Modern database
applications need such files, for the processing of selections and joins, back-up copies,
versions, file transfer between distributed sites,...

Below, we present a refinement called Trie Hashing with Controlled Load (THCL). It is
designed to control the load factor of TH file as tightly as of a B-tree file. It allows to fix the
bucket load for ordered insertions to any predefined value that may reach 100 %. Furthermore,
THCL guarantees no less than 50 % load for deletions. It allows also to use redistributions of
keys between existing buckets before a new one is appended. The load factor of THCL file
may then increase also for unexpected ordered insertions ie when the split key was not shifted.
The corresponding value is that of a B-tree file with the same redistributions ie even up to 100
%. They also increse it for random insertions, again to the same values as in a B-tree ie up to
87 %.

The main conceptual change in THCL with respect to the basic TH is that there is no nil
nodes and that several trie leaves may point to the same bucket. The modification is simple to
implement and does not change key search performance. It may require additional accesses -
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during a page split, but the increase is marginal. The trie size may become moderately larger,
especially for high load, but in practice does not change TH access performance and remains
usually much smaller than the B-tree that would be required for the same file. The refinement
makes TH more ubiquitous and especially more suitable than a B-tree for most applications. It
also brings out interesting properties of tries.

Below, Section 2 recalls the principles of TH. Section 3 discusses the file behavior.
Section 4 introduces THCL. Section 5 compares the method to B-trees. Section 6 concludes
the discussion.

PR F TRIE HAS
2.1, File structure

For TH, afile is a set of records identified by primary keys belonging to some key
space of all possible keys. Keys consist of digits of a finite and ordered alphabet, where the
smallest digit, called space, is denoted '_' and the largest digit is denoted ":'". Inside a
record, only the key is relevant to the address computation. Records are stored in buckets
numbered 0,1,2,...,N that are units of transfer between the file and buffers in main memory.
The bucket number is called its address. Each bucket may contain up to a fixed number of
records called bucket capacity and denoted by b; b=2.

Fig 1 shows a TH file of 31 most used English words /KNU73/. The file is addressed
through the trie at the fig 1.c, created dynamically by splits of overflowing buckets in the way
shown later on. A trie is classically presented as an M-ary tree whose nodes correspond to
digits /FRE60/, /KNU73/. This structure is inefficient for dynamic files (/KINU73/ pp. 481-
485). In TH, the M-ary structure is embedded into a particular binary data structure, called
below TH-trie or simply trie whenever no confusion is possible. TH-tries are introduced in
/LIT81/ and axiomatically defined in /TOR83/. TH-trie has an odd number of nodes and each
node (usually noted n ) is either a leaf or an internal node with either O or 2 sons. An internal
node contains a pair of values called digit value and digit number, usually noted below
(d, i). The trie is empry when it has no internal nodes. If the trie is not empty, theni = 0 for
the root. A leaf either contains an address A that points to bucket A or the value nil indicating
that no bucket corresponds to the leaf. Accordingly, the leaf is called leaf or node A or nil
leaf (node).

To any node n in TH-trie corresponds a string called a logical path to n. It is noted below
Cp and is defined recursively as follows :

Let (¢); be (I +1) - digit prefix of a string ¢ (an empty string for / <0).
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-If n is the root, then Cp ="'

- Otherwise, let p =(d, i) be the parent of n.If n is the right child then Cp = Cp else
Cp=(Cp)i - 1d.

Fig 1.c shows the logical paths in the example trie. In particular, we say that node n’ is a
logical child of node (4, i), if (i) n’is a descendant of (d, i) such that Cp’ ends up withd asi-
th digit, and (ii) n" is a leaf or of the form (d’, i+1). Thus (_, 1) is the logical child of (i, 0) and
(e, 1) is the logical child of (h, 0), while (i, 0) is not the logical child of (o, 0). In turn, (d, i) is
the logical parent of n". Note that the logical path through the left edge of the the logical child, if
any, is of the form ..dd".. . '

The logical péths define the M-ary structure embedded into TH-trie. This structure is
characteristic to tries, except that in TH leaves are pointers to buckets and not the keys
themselves (see Fig 31, p. 484 in /KNU73)). It is called the logical structure and Fig 2 shows
it for the example trie. The internal nodes are digits and leaves are bucket addresses. All d's
with the same { in TH-trie constitute level i in the logical structure. Each node (d, 0)
corresponds to a (unique) digit d at the level 0, ordered from left to right according to the
digit value order ; for instance (i, 0) corresponds to digit 'i' at level 0. The edges link logical
parents and children.

The basic memory representation of TH-trie is a linked list called standard representation
/LIT81/. Fig 1.d and 1.e show the standard representation of the example trie. Each
element of the list is called a cell that consists of four fields. Fields DV (digit value) and DN
(digit number) store the value of an internal node of the trie. The pointer LP represents the left
leaf or the edge to the left child and the pointer RP represents the right leaf or edge. A
positive pointer value A represents the leaf A. A negative value -A, represents an edge and
points to cell A representing the child node and its leaves or edges. Cell 0 represents the trie
root if the root is not leaf 0. The empty trie, corresponding either to the empty file or bucket 0
after the first insertion, is represented as cell 0 with DV ="', DN=0and LP="nil'or LP =
0. Otherwise, there is exactly one cell per internal node. The number of cells is also equal to
that of the leaves minus one.

2.2. Key search

The keys are mapped to the corresponding addresses through the logical paths. The rules are
as follows :

(i) - all keys are mapped to the root,

(ii) - let n be a node and S,; the set of keys mapped to n. Let p = (d, i) be some parent
with [ and r its left and right children. Then, S; contains all keys ¢ in Sp for which (¢); <
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C1, and Sy all other keys of Sp.

(iii) - For any key, its address is the pointer reached through the application of rules (i) and
of (ii).

In the example trie, all keys are thus mapped to node (o, 0). Then, only the keys with
(€)0 < 'o' are mapped to node (i, 0), all others are mapped to (t, 0). From Sj, 0), the keys
with (¢)0 < i’ are mapped to (_, 1), others are mapped to leaf 2. From S(_ 1), the keys with
(c)1 £'i_' go to (a, 0), others are mapped to leaf 3, etc. Logical paths partition thus the key
space. This partition preserves the order and thus TH supports range queries. See /LIT88/ for
the range query processing discussion.

One way to find a key is to determine the successive nodes on which the key is mapped,
until a leaf is found. This is done, particularly efficiently, by the following algorithm (see
/LIT88/ for another algorithm). The algorithm returns also the value of the logical path to the
leaf, used by the splitting algorithm presented later on.

(AD_TH_kev search. Let ¢ be the searched key, r the root, n the visited node ; n = (d,
i) for internal nodes. Let L(n) and R(n) be two operators providing the left and the right child
of n. Let C be a string variable ; C="" initially. Let ¢ denote digit j of ¢ = c0c1...c}...Ck.

n<r;j=0
While n is an internal node do :
ifj=i then
if¢j <d then
setn <=L(n);C <= (0);.1d ;
ifcj=dthenset j <=j+1elsen<=R(n) ;
else
ifj<i thensetn <=L(n);C <= (C);-1d
else n <= R(n)
endwhile
return n, C

The search for 'he’ for instance, compares at first cg = 'h' to digits in nodes with i = 0,
and to only to such digits. Thus the comparison of 'h' to '_'is skipped. When (h, 0) is
reached, the comparison switches to 'e' and to nodes with { = 1. TH key search differs thus
from the usual key search in a binary search tree, where the key is compared to each node
value. Algorithm Al compares in contrast only a single digit and to selected nodes. It applies
the idea in hashing "to chop off some aspects of the key and to use this partial information as
a basis for searching” (/KNU73/, vol 3, p. 507). Deeper discussion of this aspect of TH may
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be found in /LIT88/ and /LIT8S/.
Buck littin

The file and the trie expand the file through the splits of the overflowing buckets. The
algorithm is as follows.

(A2) TH bucket splitting. Let A be the overflowing bucket and C its logical path. Let
N be the last current bucket address in the file. Let B be the ordered sequence of b+1 keys to
split, including the new key and let ¢” be the last key in B. Let ¢’ denote a key in B called the
split key. usually near the middle of B .

1. [Find the split string] Cut from the split key the shortest prefix (c"); called the split
string, that is smaller than the (¢”);.

2. [Split the bucket] Set N <=N + 1. Append bucket N. Move to N all keys ¢ in B
where (c)i > (c);.

3. [Expand the trie] :

3.1 [Cut the digits of the split string that are already in the logical path, if there is some] If
i> 0, then cut from (c¢’); the largest (c’);such that (¢’);= (C);.

3.2 [Usual case : only one digit is new which is ¢’; . Expand the trie by the internal node
representing c¢’jand byleaf N]JIf i=0Qor!/ = i-1,thendo:

- Replace leaf A with node (¢’;,i ).

- Attach leaf A again, as the left child of (¢’;,i ) and attach leaf N as the right child of
(c’i, i).

3.3 [Rare case : several digits that are digits ¢’7;1..c’; remain in the split string. Expand the
trie by internal nodes representing these digits, by leaf N and by some nil nodes]. Otherwise,
replace leaf A with the the following subtrie :

- (¢’|+1, [+1) is the root,

- the left child of each (cj,j) ;j =1+1,.,i-1; is (¢’j+1,j+1) ; the right child is a nil
node.

- the left and right children of (¢cj, i) are leaves A and N.

Return.

The split strings define a new logical path to A that is smaller than the old one. Usually both
paths coincide for all digits, but the last one ie ¢’;, whose value decreases for the new path.

The keys moving to bucket N are these whose i-th digit prefix exceeds the new path. This set
contains usually about half of keys in B which are all greater than those staying in bucket A.
That is why, TH file is ordered and supports range queries.
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The example file at Fig 1 has buckets with the capacity b = 4. The split key position m is
m= INT(@® /2 + 1) = 3. The initial file consisted of bucket 0 and of leaf 0. The insertions
that generated splits are underlined. Fig. 2-5in /LIT81/ shows the first three splits. Fig. 3 here
shows the split triggered by insertion of key 'hat' to bucket 7 of file at Fig. 1. The key 'have'
is the split key, as it became 3rd key within B . The split string, underlined, is 'ha'. Since 'h'
is already in the logical path 'he' to bucket 7, the only new internal node for the trie is (a, 1).

Nil nodes avoid the allocation of empty buckets when a split appends several internal nodes
to the trie. A nil leaf is replaced with an actual address N+1 at the first insertion choosing it.
The corresponding bucket is then appended and the key inserted. An example of nil leaf will be
discussed in Section 3.2, see also /LIT81/. The creation of nil nodes in Step 3 was isolated as a
separate step for didactic purpose, in practice Steps 3.1 and 3.2 may obviously be combined
into a more efficient specification.

The keys ¢ that move to bucket N are all those whose (¢); > (¢’ );i. Not only the split
key c’stays in bucket A, but may be some but not all keys above it in B . This would be the
case of key 'have' at Fig. 3, if one chose m = 2, ie 'hat' as the split key. TH splits have thus a
random tendency to load bucket A more than it would be the case of a B-tree with the same
position of the split key. If the split key is the middle one, TH splits tend to be on average
asymmetric. This asymmetry has no practical effect on bucket load for random insertion, but
reveals beneficial to sorted insertions (/LIT85/ and Section 3.2 below). It makes TH splits
partly random [LIT85/ in the sense that bucket A surely keeps each ¢ < ¢’, but the decision is
random for some keys above ¢’ . Splits of other methods for dynamic hashing are fully
random, as all keys may stay or move. In contrast, B-tree split is deterministic, as any ¢ above
¢’ moves to the new bucket, while all others remain. Thus TH principles position the method
somewhere between tree based methods and usual dynamic hashing methods /ENBSs;.

4 Bucket mergin

Buckets and leaves A and A’ are siblings if they have the same parent node ie share a cell
like O and 9 for instance. Siblings that after some deletions contain together at most b keys may
be merged in the way inverse to splitting, freeing then bucket A’and shrinking the trie.
Deletions may also render empty a bucket A that has no sibling, like bucket 6 in Fig 1. Leaf
A is then made nil and the bucket freed.

The shrinking of the trie may correspond to the physical shrinking of the table of cells,
through the move of the last cell to the empty one. Another approach is to only mark deleted
leaves through a special value. This is preferable for the efficiency of the concurrency control,
/VID87/.



2.5, Trie splitting

When the trie becomes too large for the main memory, it may be split, leading to the
multilevel trie /LIT88/. The splits create then a hierarchy of pages containing subtries, as it is
shown at Fig. 4. Pages split when they overflow. They constitute levels of the same depth
with respect to the root page. All leave nodes are in pages of the lowest level, called file level.
While this schema called multilevel trie hashing (MLTH) looks like an organization of the trie
into a B-tree, splitting algorithm differ because of structural constraints of the trie. Details are
in /LIT88/, guidelines that follow suffice here.

Each page split consists of two phases. The 1st phase is called choice of split node. The 2nd
phase is called trie splitting. The split node, let it be r’, is a node respecting the following
conditions :

(i) - the number of internal nodes that precede r’ in inorder in the subtrie to split, let it be
T, is the closest to that of nodes following r’.

(ii) - r’ has no logical parentin T.

The split node may nevertheless have a parentin T or a logical parent in the subtrie of upper
level. The root of T always respects (ii). It becomes thus the split node if there is no better
choice. '

The trie splitting phase moves r’ to the upper level (parent) page and creates a new page (if
T is in the root page, then a new root page is created). The corresponding cell is appended to
these already in the page. The left pointer of the cell is set to point to T page and the right
pointer is set to point to the new page. The pointer of the parent cell, if any, that pointed to T
page, is set to point to * inside the parent page. T is then split into two subtries. Details of the
splitting algorithm are in /LIT88/. One subtrie has all nodes preceding 7* in inorderin T It
remains in theT page, unless it was the root page in which case it also moves to a new page.
The other subtrie has the nodes that follow 7* in T. This trie always move to a new page.

The split preserves the inorder to allow range queries. Fig 4 shows the splitting of the
example trie from Fig 1, assuming that page capacity b" is b’ = 9 cells. The split occured
when key 'from' in the sequence at Fig 1a created a collision. The node (h, 0) was chosen as
the split node. The node (e, 1) would respect the condition (i) above equally well, but fails to
respect the condition (ii), as it has the logical parent (h, 0) in the trie. The reason for that
condition is that the logical parent of the split node would become as all other nodes a physical
descendant of r* in the new trie, while it is impossible in a TH-trie. The splitting phase created
in page 1 the subtrie from all nodes preceeding (h, 0) in inorder at Fig 1 and in page 2 the
subtrie with all nodes following it. Page 0 became the root page with only one cell, whose
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pointers are set up to point to the subtries.
Tri lancin

The trie, or subtrie in a page, are usually not best balanced, especially if key distribution is
skewed or insertions are ordered. For instance, the example trie is unbalanced to the left, as the
left subtrie of (o, 0) is larger. If the trie is well balanced, the time for in-memory search
through the trie is about O(log2 N). The search through an unbalanced trie is usually
longer. This time remains nevertheless in practice of order of miliseconds and is thus only a
fraction of the disk access time.

An unbalanced trie can usually be balanced. For instance, the example trie may be
transformed to this at Fig 4, abstraction made of the paging.The balancing shortens only the
node search time. Disk access performance, load factor and trie size are unaffected. Three
techniques are known for the trie balancing. They are particular to tries, as balancing have to
preserve the logical ancestorship. The first method performs the overall balancing of the trie or
of subtrie in a page, using an intermediate canonical form /TOR83/. The second approach also
balances the whole (sub)trie, but through the recursive application of the principles of trie
splitting in /LIT88/. It makes r’ the root of the new trie with left and right subtrie having
therefore sizes closer to each other, then the procedure applies to each subtrie etc. Finally, one
may balance the trie incrementally during each split, like an AVL tree. The balancing algorithm
is nevertheless particular to preserve the trie correctness /OTO88/.

3, FILE BEHAVIOR
3.1 Random insertions

Behavior and performance analysis of TH can be found in /LIT85/, /LIT88/ and [ZEGS88/. It
mainly concerns the load factor @ =x/ (b (N +1)), where x is the number of keys in the
file. The value of & is studied for buckets and, for MLTH, also for pages containing the trie
nodes. It is determined under random, ascending and descending insertions and is denoted
below respectively &r, @y and a4. The split key is near the middle of the bucket, e.g. m =
0.5b . It appears that for both, buckets and pages, ar stays on the average close to 70%,
though page ar is usually 2 - 3 % lower, as trie splits are less even than bucket splits. Bucket
ar may be slightly higher for some m values under 0.5b, depending on b, as these value
make the split more equal in the presence of split asymmetry. All together, the load factor of
TH under random insertions is thus about that of a B-tree. Both methods use thus under
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random insertions about the same space for records.

The percentage of nil leaves is negligible, under 0.5 % for random insertions. In practice,
the trie grows at the rate of one cell per split and there are N cells in the list. This is also the
number of branching nodes in the B-tree for the same insertions (one such node contains one
key plus one pointer). The practical size of TH cell is six bytes : two bytes per LP and RP and
one byte per DV and DN. The trie requires therefore usually much less space than the
corresponding B-tree for its branching nodes whose size is in general several times larger than
the cell size. In particular, 6 Kbyte buffer for the trie suffices to address about 1000 bucket
file, while 64 Kbyte buffer suffices for 11 000 bucket file. Since typical values of b are
between 10 and 200, the corresponding TH files may contain about 104 - 106 records. In
particular, if the bucket is the MS-Dos hard disk allocation unit (cluster) that is 4 Kbytes,
then 30 Kbyte buffer suffices for the file covering the 20 Mbyte disk of IBM-AT.

The tries of the discussed size fit easily into a typical main memory. Any successful key
search requires then only one disk access. An unsuccessful one costs at most one access, as
there is no need for access if the leaf is nil. If the file is larger and MLTH is used, then two
accesses per search should suffice in practice, as two levels for the trie should be enough. If p
is page size, then for instance p = 10 Kbytes suffices for a bi-level file of almost 16 million
records, assuming a modest b =20 /LIT88/. Then, p = 64 Kbytes leads to a more than
six hundred million record file. In particular, if page and bucket sizes are equal to the MS-DOS
4 Kbytes, then the file may span over 1G byte. This usually suffices even for optical disks.

rdered insertion

Ordered insertions may be expected or unexpected. In the latter case, the m value is the same
as for random insertions ie m = 0.5b usually. The analysis in /LIT85/ and LIT88/ shows that
the bucket load aj is then within 60 - 73%, depending on b. This is substantially better than the
well known ag =50 % of a B-tree for the same case and allows in practice to load the file
through the usual insertion algorithm. On the other hand, the corresponding aq is 40 = 55 %.
This may be under the corresponding ad = 50 % of a B-tree. The value of a{ increases over
50 % if m is lowered to about m = 0.4, at the expense of aa that may decrease under 50
%. For some m however, both aa and ad may be over 50 %. The reason for this nice
property that seems uniqu/e to TH is that the split asymmetry for the same m and keys is on
the average larger for ascending insertions than for descending ones. The value of ar is almost
unaffected when m decreases to m = 0.4b. The percentage of nil leaves increases to 1-

3%.
The page load factor aj is usually about 52 %. However, for some combinations of bucket
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and page sizes it may even reach 72 % or may drop to 40 %. This comes from the shape of the
tries resulting from the split that improves az when the left subtrie is usually larger and vice
versa. The factor ag varies less, being usually about 45 %, within the interval 40 -53 %. See
/LIT88/ and /ZEGS88/ for details.

When the ordered insertions are expected, one may choose m value that increases the bucket
load with respect to that implied by m tuned for random insertions /LIT85/. The m value
should then increase for ascending insertions. The reason is that (i) the split loads then better
the overflowing bucket, leaving it even 100 % full, if one sets m = b and (i) further
insertions do not address this bucket anymore. Being ascending, they go indeed only to the
nodes that follows the overflowing one in inorder. For opposite reasons, m value should be
lowered for the descending order.

The performance analysis shows for these cases the following values :

(1) - the value of aa remains between 60 - 80 %, depending on file parameters and key
distribution, even if one sets m = b, . This is worse than for a B-tree that provides then aj up
to 100 %. ‘

(ii) - the value of ad is about 60 - 80 %, even if one sets m = 1, ie only the first key in the
overflowing bucket remains in it after the split. Again, a B-tree may provide ad up to 100 %.

This behavior of TH results from subtle influence of nil nodes for (i) and of the partial
randomness for (ii). Fig 5 shows the behavior for the ascending insertions, assuming m = b.
The insertion of key 'oszh' triggers the split of bucket 0. The split leaves the bucket full, but
creates nil nodes, as Step 3.1 of Algorithm 2 leaves several digits in the split string (they are
underlined and in fact are the whole split key). Further insertions go to bucket 1. However,
when key ‘'ota’ is inserted, it goes to the nil node under (s, 1) and bucket 2 is allocated.
Bucket 1 is not yet full and no other insertion will come into. As keys come in ascending order
only, all of them now have to address leaf 2 at least. This process usually repeats for several
buckets and a3 =100 % cannot attained.

Fig 6 shows the file behavior for expected descending insertions. To attain 100 % load of
the buckets, it is in contrast necessary here to leave ohly one key in bucket, ie to setm = 1.
However, it does not suffice because of the split randomness and two keys : 'orba’ and 'orbf’
remain. Bucket 1 is not fully loaded and no further keys will go into. The process usually
repeats, as for the next split key 'mama’, and the file cannot attain 100 % load neither.

When the ordered insertions are expected, one may also choose another split node to
increase the page load. The position of the split node should then be shifted towards the last
node of T for ascending insertions and towards the first one for the descending case. It is
shown in /ZEG88/ that the page load increases then to 70 -87 %, depending on page and
bucket sizes. This refinement has however only a marginal importance in practice, as the trie
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size is only a small fraction of the file size.

The basic algorithm allows to freed a bucket either when it is empty or it may be merged
with its successor or predecessor, provided that the corresponding leaves are siblings. From ten
successor - predecessor "couples” in the example graph, four may thus merge. Others have to
wait until the trie shrinks. For instance, bucket 10 and bucket 7 may merge only after the
merges of nodes 4 with 10 and of nodes 7 with 8.

In contrast, there is no similar constraint in a B-tree. As any couple of successive nodes are
siblings, they may always merge (except for the prefix B-tree /BAY77/). B-tree may therefore
guarantee at least 50 % load of the file also under deletions, while not TH.

The condition for merge in TH file may be relaxed, providing more frequent merges. The
technique is to rotate the trie, making the successive leaves siblings. The rotation may be
performed classically, involving thus basically a change to a few internal pointers under the
closest common ancestor. To be valid for a trie, it must however not violate the logical
ancestorship. A logical parent of a node must thus not become its physical descendant in the
new tree which then would not be a trie anymore. This condition leads to cases where two
successive buckets still cannot merge. In the example trie, using rotations one doubles the
number of mergeable couples to eight, but two couples which are bucket 9 and 4 and bucket 2
and 3 still cannot be merged.

Therefore, even this refinement does not allow TH to attain a B-tree performance. The
difference to load factor not known, since bucket merging in TH file was not studied in detail.
As for a B-tree, it was considered as a secondary peformance. Applications usually either
delete records only logically and rarely to a point where the file shrinks heavily.

4, LOAD CONTROL

The afore mentioned performances of TH are sufficient for applications when ordered
insertions are seldom compared to the random ones. However, more and more applications
heavily use ordered insertions for which it is useful to have more control over the load factor.
For instance, one may wish to get 50 % load no matter whether the incoming key order is
ascending or descending and what is b value or key distribution. Also, one may need to create a
file dynamically from sorted insertions, leaving it then for read access only, (if it is for instance
a back-up, or a log file or a version), or dropping it with the transaction end, in case of query
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processing or of file transfer. If the file can then be loaded to 90 - 100 %, not only the disk
space is saved, but also the efficiency of range queries improves. On the other hand, one may
wish to be sure of the 50 % load even for extensive deletions.

To achieve these goals, the basic TH needs to be refined. One solution termed Trie Hashing
with Controlled Load (THCL) is proposed below. THCL provides more control over bucket
splitting, making it deterministic if required. It also eliminates nil nodes, avoiding the problem
of underloaded buckets. Furthermore, THCL allows to merge successive buckets. Finally, it
also allows to apply to TH the concept of the redistribution, well known for B-trees. The
benefits are similar ie the load factor increases also for random and unexpected ordered

insertions.

4.1, Elimination of nil nodes

Nil nodes avoid empty buckets, delaying the allocation until corresponding keys present for
storage. As it appeared, the created buckets may however remain only partly loaded. For a
higher load, it is better to avoid the creation of these buckets at all. One solution is to use
instead of nil value the address of an existing bucket. The main rule below, is that this address
is N for all nil leaves that Algorithm 2 would create in Step 3.3. It is thus the same address for
all right leaves it creates, instead of only for the bottom right one. Fig 7 illustrates this rule. All
right leaves now carries the same address 1. All new ascending insertions, in particular the
key 'ota’ from Fig 5, now goes to bucket 1, instead of creating bucket 2 and, all together, up to
four new possibly underloaded buckets. Bucket 1 may now be filled up, no matter what are the
incoming keys. When it overflows, because of key 'ovm' at the figure, it is split and bucket 2
is initiated.

Main algorithmic consequence is now that keys sharing a bucket may be mapped to different

leaves. This affects Algorithm A2 in Step 3 as follows.

3. [Expand the trie] :

3.0 Identify the leaf to which the split key is mapped (for instance, use Algorithm A1l and
retain the position of the last cell). -Compute the logical path C to this leaf that will be still
called leaf A .

3.1 [Cut the digits of the split string that are already in the logical path, if there is some]. Cut
from (c’); the largest (¢’);such that (¢");=(C);. Let k be the remaining number of
digits.

3.2 [Case of the single new digit which is ¢’; . Expand the trie by the internal node
representing ¢’;and by leaf N]. If k= 1, thendo:

- Replace leaf A with node (cj,i ).
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- Attach leaf A again, as the left child of (¢;,i ) and attach leaf N as the right child of
(c’i, 1).

3.3 [Case of several new digits. Expand the trie by internal nodes representing these digits,
and by leaves pointing to N ]. If k > 1, then replace leaf A with the the following subtrie :

- (¢'I+1, I+1) is the root,

- the left child of each (c¢j,j) ;j =1+1,.,i-1; is(c/j+1, j+1) ; the right child is N.

- the left and right children of (¢j, i) areleavesA and N.

3.4 [New case : all digits of the split string are already inC ]. If k=0, then setto N the

pointer in the successor of leaf A (that also pointed to A ).

3.5 If some leaves that follow the leaves pointing now to N still point to A , then set these
pointers toN .

Step 3.0 is defined informally only, since there are several ways to implement it. One needs
it, since the split key may now be mapped to a different leaf than the key that triggered the
overflow. At Fig 7, the key 'ovm' is mapped to the leaf under (s, 1), while if 'oszr' with its
usual middle position was the split key, then it would be mapped to the right son of (a, 3).

Step 3.1 is the same, but may finish with an empty split string even if the split string had a
single digit ie the value of i was i = 0. It will be the case of 'ota’ if the new key was for
instance 'vm'. Step 3.2 is basically the same, except that the test uses k value, as i =0 is no
more a sufficient condition. Idem for Step 3.3, except that it puts N value instead of nils. Step
3.4 deals with empty split strings. It does not enlarge the trie, only updates the successor of
leaf A . It acts in the manner similar to that leading to an allocation of an actual bucket to a nil
node.

Finally, Step 3.4 keeps consistency with Step 2, that moved to bucket N any key above
the cut key in bucket A.. If the new key was for instance 'vm', it would thus also move to
bucket 2 through step 2. Without Step 3.4, the trie would however continue to map it to
bucket 1, as 'vm' is mapped to the right son of (o, 0).

When MLTH is applied, Step 3.4 implies that one may need to access next page, if the last
node in the current page carries A. The refinement also slightly modifies the algorithmic of
range queries. Next leaf may now carry the address of the bucket already in main memory,
lowering thus slightly the access cost of corresponding queries.

li r
We will call cut key the last key that a split leaves in the overflowing bucket. Cut key will
be noted ¢’”. Through Step 1, Algorithm A2 leads to ¢’<c¢” <c¢” which implies that ¢

may fall anywhere within [m, b], as the position of ¢” is b + 1. Therefore, TH split may lead
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to A deterministic split in contrast occurs when any split key is also the cut key.

One way to decrease the split randomness in TH, is to slightly modify Step 1. Instead of
using only c¢”, one may allow the choice of a given key ¢ above ¢’ and until ¢”, called
below bounding key. Closer is the position of ¢ to that ¢’, less the split is random. If the
bounding key is next to the split key, then the split is deterministic.

Fig 8 shows the application of split control to expected descending insertions. If the
bounding key position is is m + 1 and the split key position is the usual one ie m = 3, then
exactly two keys move at each split to the new bucket and the bucket load of a4 = 50 % is

guaranteed. At the figure, the bounding key is 'osca'. If m is set to m = 1, then exactly four
keys move to next bucket and the load reaches ad = 100 %. If insertions were ascending,
then the choice of the position m + 1 for the bounding key with m about b /2 would also lead
to the 50 % load.

4.3. Bucket merging

The principle of making successive leaves pointing to the same bucket, may be applied to
deletions. Successive buckets that cannot be merged by the basic TH may then merge. It
suffices to make all the corresponding leaves pointing to the same bucket. One may then in
particular also guarantee 50 % load, as for a B-tree.

Bucket merging may be accompanied by trie node merging. Unlike in the basic method,
both processes may now however be decoupled. The basic strategy for node merge is to
remove the the siblings pointing to the same bucket and their parent. Using valid rotations, one
may further also merge successive leaves that are not siblings. The trade-off between all the
choices is a larger trie versus simplified and faster algorithmic. What are precisely the
corresponding figures is an open research problem. It is clear however, that it may be
frequently better not to merge the nodes at all. The gains in memory space are in this case
rather unimportant with respect to the main file, while deletions often alternate with insertions.
Also, leaving nodes where they are, simplifies the concurrency control and makes it more

efficient /VID87/.
4.4, Redistribytion
This term designates the capability of a B-tree to redistribute keys between existing
buckets, instead of systematically allo¢ating a new bucket for each split. The discussed

refinements allow to apply the concept also to TH files. Early analysis of the idea of
redistributing keys in TH file to improve the load factor is already in /DEL84/. The buckets to
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be used may be the predecessor or the successor in inorder of the overflowing one, let it be O.
If the redistribution uses the successor, let it be S, then one should at first set the position of
the split key high enough to move no more keys than there is available space in bucket S (this
is hard to control in the basic TH or cannot be done at all, because of split randomness). Then,
one simply applies Algorithm A2, using bucket § instead of new bucket N . If the
redistribution uses the predecessor, let it be P, then the split key should be the lowest one in
bucket O (m’=1). The bounding key should be lowered to position m” such that if bucket O
has room for p keys, then m” <p + 1. The keys under the bounding one move then to
bucket P and the pointers in the leaf or leaves O to which they were mapped are setto P .

The redistribution may increase the size of the trie or may leave it unchanged. Perhaps
surprisingly, it may even allow to shrink it. It happens when Step 3.1 ends up with the
empty string. One of the parents of a leaf setto S or P by the redistribution algorithm may
then become pointing to S or P through both edges. One may leave this node as is or may
replace it and its leaves by asingle leaf S orleaf P respectively.

Fig 9 illustrates such situation. The redistribution is set to load the buckets as high as
possible, so it moves to bucket 2 only the highest key mapped to the overflowing bucket 1. -
The key 'oszr' is therefore chosen as the split key at the figure, as it becomes the highest in the
bucket, once the new key 'ost' properly enters the sequence to split. As the result of the
operation, node (t, 1) pointé to bucket 2 through its both leaves. It may stay as is if it is
unconvenient to move cells or may be suppressed.

4 Fil vi

If the splits are deterministic and without nil nodes, then the load factor for ordered
insertions has a guaranteed value. In particular, as for a B-tree, one may attain & =100 % for
the expected case. Also, one may provide & d = & a = 50 % for the unexpected case for any b
and the same lower bound under deletions. The load factor for random insertions remains in
practice unaffected ie ar =70 %.

Performance for unexpected and random cases improve further if redistributions are used.
The results reported for a B-tree in /KNU73/ for instance apply indeed also to THCL files.
Obviously, aa and ad may approach 100 % for unexpected insertions. Then, ar may reach
almost 87 %. This is however in practice only a peak result. The 70 % value of ar is an
average of an oscillation, as in fact buckets under insertions have tendency to fill up almost
simultaneously to a high value and then to split, also almost simultaneously, especially for
larger b.. This phenomenon lowers the load almost to 50 % and all together makes the usage
of redistributions not as efficient as it could seem. That is why this refinement is uncommon
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in B-trees in practice.

The characteristic that has to be affected by the load control is the size M of the trie. As it
appears hard to find out analytically how it depends on various parameters, the file behavior
was studied through simulations. They consisted of ordered insertions of 5 000 keys,
randomly drawed and then sorted (same number as for the reported experiments with B-trees). |
Fig 10 shows the results for the ascending insertions. The file behavior appears as follows.

- The parameter d is defined as d = b - m , where m is the position of the split key. The
most compact file ie with & = 100 % is thus achieved for d = O (the load factor value is
denoted a% at the figure). This choice enlarges the trie with respect to the basic case of
ascending insertions in the presence of nil nodes with m = (b+1) / 2 . The reason is that
adjacent keys usually share more digits than more distant ones and a longer split string is
generally needed. The increase is by 20 -30 %. For the typical b = 20 for instance, the
absolute values are respectively 414 and 420 nodes.

- One may therefore expect, that to lower m ie to increase d, even slightly, may be greatly
beneficial to M value, while affecting a only a little. Curves confirm this expectation.
Substantial savings, over 30 % of peak M value (for d = 0) may be achieved, while a
remains over 90 % anyhow. The resulting trie is then even sizably smaller than that generated
by TH. Globally, THCL provides then about 20 - 30 % higher load factor for about 20 %
smaller trie ! For b = 20 for instance, the best size is 344 nodes instead of 414.

- An even more surprising fact is that there is always a minimum of M while split key
position m moves down towards the middle key. The minimum apparently corresponds to the
balance between two phenomena accompanying the lowering of the split key position :

(i) - split strings shorten and thus M grows less. While the decrease is rapid for small
ds, the length of a split string becomes however rapidly close to a minimum.

(ii) - a split moves more keys to the new bucket. The frequency of splits increases and
soM grows faster. Unlike (i), this phenomena is however almost proportional to d and its
negative influence on M size always prevails for larger d’s.

- also surprisingly, if the split key is the middle one, then for any b, M is over 20 %
smaller for the basic TH and its &, is slightly higher (2 - 4 %). The explanation is that THCL
split in general removes about half of keys from the last bucket supporting the last insertion
and add a new node to the trie. The expansion through the allocation of an actual buckets to a
nil node in the basic TH is in contrast smoother. It does not remove any key from this bucket
and does not add any new node. Apparently, such buckets remain then also generally loaded
better to the point that slightly less new buckets is finally created.

This characteristic justifies the use of the basic TH instead of THCL if the load control is
not needed. Alternatively, one may refine Algorithm 2, to seek more for splits without a new
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node through Step 3.4. For this purpose, one should scan for the candidate split key above the
basic position b /2, whenever more than one leave point to the overflowing bucket.

Fig 11 shows the behavior for descending insertions. The meaning of 4 is there
d=m""-m -1 where m is set tom = 1, ie the split key is the bottom one in the bucket and
m"’ 1is the position of the bounding key. The increase of d corresponds to a higher position
of the bounding key. There is no more a minimum of M, thought important savings to M size
with respect to this for d = 0 (around 30 %) correspond to small d’s only. Afterwards, the
curve is almost flat; as well as that of a4 that remains over 90 % or close to. It is thus
relatively costly with respect to M to approach the 100 % load, because of much longer split
strings, while all others positions of the bounding key are still very efficient. The most

"

practical m’’ appears to be that providing anyhow an excellent load over 95 %,
corresponding to d value where M curve becomes flat. The size of the trie is then again

smaller than for the basic TH, but the difference is also smaller, under 10 %.

The ratio M /N, denoted s, is the average number of cells created by a split ie the growth
rate. It appears that s value for the minimal M value for ascending insertions is s = 1.25 +
1.6, for b = 10 andb = 50 respectively. For the descending insertions and the values of a
pointed at Fig 11 by arrows, the values of s are s = 1.2 + 1.5 . Assuming the cell size of 6
bytes, it means that the trie grows at the rate of 7.2 + 9 bytes per split on the average. A B-tree
grows by the size of the key plus the pointer size. This is typically 20 to 50 bytes ie requires
several times more space for the branching nodes to the same file. For the full load of @ =
100 %, the s values grow to s = 1.6 + 2.13 for the trie. The trie growth rate increases thus
about 1.5 times to 10 + 13 bytes per split. This still makes the trie usually much smaller than
the B-tree.

IS -TR

The "ubiquitous" supremacy of B-trees or, more specifically, of their most used
implementation that is a B+-tree, comes from the universality of this method with respect to all
the currently important requirements /COM79/. The legion of variants or of competitors that-
cannot be referenced all here, are much less used or stayed research proposals. While they
usually outperform a B-tree in some aspects, they also introduce drawbacks which make a B-
tree still in general preferable. This is in particular the case of prefix B-trees, where the gain
with respect to the index size requires branching nodes of variable length, a basically
sequential search in the page, deletions that may lead to a page overflow,... /[LOM79/,
/BAYT7/, /COM19)).

Most of the methods propose indeed variations of the same paradigm of m-ary trees of
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keys built through deterministic half to half splitting using key value. It is then at least tough
to optimize some performance factors, without deteriorating others. TH starts from a different
paradigm that is a binary tree and a digit at the time partly random splitting. This paradigm
provides an inherently higher fan-out. The work on TH and now THCL, shows that this
property in general allows the method to outperform a B-tree or to perform about equally
well. If a precise comparison for a requirement is not known, at least one knows that TH
fulfils it fairly well. The method is also more ubiquitous in the sense that a single setting of
parameters may suffice for broader usage conditions. All these features make TH an attractive
alternative to a B-tree as a general purpose method. We now sum up the reasons for this
claim.

- Behavior under random insertions. Most applications work with random, though not
necessarily uniform, insertions. TH and a B-tree provide then the same load factor. Because
of its usually much higher fan out, TH typically needs however less disk accesses for a key
search or not more. Alternatively, for the same fan out, it requires a smaller page size than the
B-tree, including the prefix B-tree. Furthermore, it usually requires less accesses per insertion
or split. It may require more accesses for some splits, but this case is unlikely in practice.
Finally, it supports deletions and allows the file to shrink. Shrinking is usually faster than in a
B-tree, as there is only one or two levels of pages to deal with and there no shift of half of the
keys in the page on the average.

- Behavior_under expected ordered insertions. The user of a B-tree may shift the split key
to create a file with even 100 % load. TH user may do the same. In addition, he may use a
unique split key setting for both random and ordered insertion, if the 70 % load suffices. This
is the case of a file once loaded and then supporting only random insertions, which is the most
frequent one.

- Behavior under unexpected ordered insertions. B-tree file load decreases then to 50 %, as
the split key is the middle one, unless a redistribution is used (which is seldom). This position
of the split key is the prevalent choice. TH allows to obtain the same load, still providing better
access performance. However, if the descending case is unlikely or unimportant, TH may
provide the load 10 - 20 % higher than a B-tree, almost at the level of random insertions,
without a redistribution. The load for descending insertions remains fair, as it is over 40 %.
For smaller b, it may even be also higher than 50 %. Higher load factor and higher fan out
again lead to better access performance.

- Fast search within a page. B-tree allows easily the binary search, at least when keys are of
fixed size. This is also the usual case in TH, but the search is usually faster, as branching
compares single digits, instead of chunks of keys. As with any method related to ideas in
hashing, one may however probably find the "worst case" insertions creating an almost linear
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trie with O(V ) worst search time. As usually for hash files, this is nevertheless highly
unlikely in practice. Also, it would not create any catastrophic effect in usual conditions, the
time for search in the page being a fraction of disk access time.

- Simplicity of implementation. Both methods are rather simple to implement, though there
is no precise criterion for simplicity comparison. TH is particularly easy to implement if one
level tries suffice for the application files which should be the common case. Trie splitting
algorithms have more subtleties than those rather straightforward of a B-tree. They remain
nevertheless fast, compact and easy to program. The implementation used for simulations in
Turbo Pascal needed about 50 Kb for the load module.

6. CONCLUSTON

Trie hashing with refinements introduced above allows tighter control of memory
occupancy. The main benefit is the possibility to create compact files, loaded up even to
100 % and to guarantee the 50 % load under any conditions. The high load improves
also the efficiency of range queries and may improve that of the key search, especially if
the more compact trie may entirely fit to the main memory. The compact files are suitable
for applications where insertions are ordered. It may be a historical file, a back-up or a
log file, a transfered file, or a temporary file for a query evaluation etc. The price to pay
is 25 - 30 % larger trie, especially if the load should approach 100 %. All together the
capabilities of trie hashing, make it appearing more universal and generally more
efficient than a B-tree.

Trie hashing looks promising also with respect to other requirements upon an access
method such as concurrency. In /VID87/ an algorithm is proposed for the concurrent
access the basic TH with one level trie. It is shown that TH may allow for higher degree
of concurrency than a B-tree, especially when no cell is physically deleted. One needs
then tolock only the leaf A and the variable N, which makes the algorithm in addition
very simple. In a B-tree one needs instead to lock at least one whole page and known
algorithms are far more complex /SAG85/. This constraint of a B-tree probably cannot be
overcome, as a part of the sequence of the keys in the page have to be shifted upward to
make the room for the new one. In TH in contrast, the new cell is appended to the end of
the table of cells, so there is no need to block any access to another cell. This results
should now be refined for MLTH and for the new variant.

By the same token, /TORB83/shows an efficient algorithm for the reconstruction of
the TH trie that was accidentally destroyed. The algorithm uses the logical paths,
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~ assumed stored on the disk, for instance in the headers of the buckets. The reconstructed
trie may be in addition better balanced than the original one. One conjectures in /TOR83/
that the new trie is the optimal one. This analysis should also be extended now to MLTH
and to the new refinements.

Furthermore, the current trend towards large main memories, more and more often
allows to create large main memory files. Database processing become then much more
efficient, especially for workstations. Again, TH appears attractive, especially because
of lower overall space needed for the trie and faster digit at a time search than in a B-tree
/KRIB4/. Research issues related to algorithms for trie balancing, less important in the
case of disk files, become then naturally of major concern.

The TH-trie was first defined rather indirectly, as the structure built by the splitting
algorithm specified in /LIT81/. Further work triggered an effort towards a formal
definition of the structure, independent of the algorithm, and towards formal studies of
structural properties of the tries /TOR83/, /LIT88/. Important notions appeared from
these investigations, like these of the logical structure or of equivalent tries. They allowed
to improve the original algorithms for search and splitting and led to the discovery of
these for trie paging and balancing,

Such studies should now concern THLC, especially the idea of several leaves
pointing to the same bucket. This property may also be seen as providing the structure of
a laEtice /DELB84/, which is a type of structures rather unexplored in comparison to trees.
Some aspects of the THLC algorithmic are also only globally defined, as there are
several design choices to implement them. It was pointed out in the corresponding
sections and should now be precised and the trade-offs compared. There are also several
interesting open problems with respect to the basic TH which applies to THCL, as well.
Some are listed in /TOR83/, others are related to the correctness and optimality of
algorithms for trie balancing.

Performance characteristics of THLC are basically known through simulations. On
one hand, one should now test THCL's behavior especially with respect to the trie size
M, for a large set of real data, (the 20 000 word UNIX dictionnary for instance). This
was done for the basic TH and confirmed the theoretical figures /ZEG88/. One the other
hand, one should study them also through analytical methods. These in /JAC88/ and
/REG87/, giving the mean and the variance of the size of the trie using Mellin transform,
seem particularly promising. The results are nevertheless only for binary digits. They
should be thus extended to Q-ary alphabets ; Q > 2 and to THCL. This is clearly a
difficult goal.

Furthermore, one should design variants of the method optimizing a particular
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performance. The ideas of "overflow", of digital B-trees /[LOMR&1/, of uneven splitting
etc. that worked fine for a B-tree, should reveal equally useful. Finally, one should
extend TH to the multikey case, for instance on the basis of the ideas in /OTO87/ and
/OUKS83/ and of some of general ones in /SAM84/. As tries remain compact in presence
of uneven distributions, one may expect them to offer an alternative to the grid files
/NIE84/ without the phenomenon of exponential growth of the directory.
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