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Abstract

Analysis techniques, such as control flow, data flow, and control dependence, are used for a variety
of software-engineering tasks, including structural and regression testing, dynamic execution profiling,
static and dynamic slicing, and program understanding. To be applicable to programs in languages such
as Java and C++, these analysis techniques must account for the effects of exception occurrences and
exception-handling constructs; failure to do so can cause the analysis techniques to compute incorrect
results and thus, limit the usefulness of the applications that use them. This paper discusses the effect of
exception-handling constructs on several analysis techniques. The paper presents techniques to construct
representations for programs with explicit exception occurrences — exceptions that are raised explicitly
through throw statements — and exception-handling constructs. The paper presents algorithms that
use these representations to perform the desired analyses. The paper also discusses several software-
engineering applications that use these analyses. Finally, the paper describes empirical results pertaining
to the occurrence of exception-handling constructs in Java programs, and their impact on some analysis
tasks.

Keywords: Exception handling, control-flow analysis, control-dependence analysis, data-flow analysis,
program slicing, structural testing.

1 Introduction

Many software-engineering tasks, such as test-coverage analysis, test-case generation, regression testing,
dynamic execution profiling, impact analysis, and static and dynamic slicing (e.g., [1, 2, 3, 4]), require infor-
mation about the control flow, control dependence, and data dependence among statements in a program.
Much research has addressed the problems of computing such analysis information for individual procedures
(intraprocedural)! [5] and for interacting procedures (interprocedural) [6]. Some of this research has addressed
the problems of performing analyses for programs with transfers of control, such as continue and goto state-
ments, that can affect the analyses at the intraprocedural level (e.g., [7]). Other research has addressed the
problems of performing analyses for programs with transfers of control, such as exit () statements, that can
affect the analyses at the interprocedural level [8]. To be applicable to programs written in languages, such
as Java [9] and C++,2 however, these analysis techniques should, to the extent possible, account for the

effects of exception-handling constructs.

! Analyses and representations that can be applied to individual procedures can also be applied to individual methods. Thus,
we sometimes use “procedure” to mean both procedure and method.

2See http://www.cygnus.com/misc/wup/ for ISO/ANSI C++ standard.



Table 1: Frequency of occurrence of exception-handling statements in Java programs.

[ Subject [ Number of | Number of | Methods with

[ Name [ Description | classes methods EH constructs
antlr Framework for compiler construction 175 1663 175 (10.5%)
debug Sun’s Java debugger 45 416 80 (19.2%)
jaba Architecture for analysis of Java bytecode 312 1615 200 (12.4%)
jar Sun’s Java archive tool 8 89 14 (15.7%)
jas Java bytecode assembler 118 408 59 (14.5%)
jasmine Java Assembler Interface 99 627 54 (8.6%)
java_cup LALR parser generator for Java 35 360 32 (8.9%)
javac Sun’s Java compiler 154 1395 175 (12.5%)
javadoc Sun’s HTML document generator 3 99 17 (17.2%)
javasim Discrete event process-based simulation package 29 216 37 (17.1%)
jb Parser and lexer generator 45 543 55 (10.1%)
jdk-api Sun’s JDK API 712 5038 582 (11.6%)
jedit Text editor 439 2048 173 (8.4%)
jfex Lexical-analyzer generator 54 417 31 (7.4%)
jlex Lexical-analyzer generator for Java 20 134 4 (3.0%)
Jjole Environment for load-time transformation of Java classes 83 834 90 (10.8%)
sablecc Framework for generating compilers and interpreters 342 2194 106 (4.8%)
swing-api | Sun’s Swing API 1588 12304 583 (4.7%)

[ Total [ 3951 | 30400 | 2467 (8.1%) |

Ezception-handling constructs provide a mechanism for raising exceptions, and a facility for designating
protected code by attaching exception handlers to blocks of code. Failure to account for the effects of
exception-handling constructs in performing analyses can result in incorrect analysis information, which in
turn can result in unreliable software tools. For example, a branch-coverage testing tool for C++ that fails
to recognize the flow of control among exception-handling constructs cannot adequately measure the branch
coverage of a test suite. As a further example, a slicing tool for Java that fails to recognize the flow of control
among exception-handling constructs cannot accurately compute control and data dependence; which may
result in incorrect slices.

The additional expense that is required to perform analyses that account for the effects of exception-
handling constructs may not be justified unless these constructs occur frequently in practice. To determine
the frequency with which Java programs use exception-handling constructs, we conducted a study in which
we examined a variety of Java programs. From each subject, we determined the percentage of methods that
contained either a throw or a try statement. The number of methods in the subjects ranged from 89 to
12304. Table 1 summarizes the results of the study.

The data in the table illustrates that, on average, 8.1% of the methods contain some form of exception-
handling construct. In a previous study [10], with a smaller suite of Java subjects, we had examined the
occurrence of exception-handling constructs in classes. In that study, we observed that 23.3% and 24.5% of
the classes contained try and throw statements, respectively. In another recent study, Ryder and colleagues
[11] also studied the frequency with which Java programs use exception-handling constructs, and found that
16% of the methods that they examined contained exception-handling constructs. Our subjects include only
four of the subjects that were used in their study, which explains the differences in the results. The results
of the two studies are similar for the four subjects — jas, jasmin, joie, and jflex — that were common
to both studies. These results support our belief that, in practice, the use of exception-handling constructs
in Java programs is significant enough that it should be considered during various analyses.

Recently, several researchers have considered the effects of exception-handling constructs on various types

of analyses. One approach constructs control-flow representation for exception-handling constructs, and uses



the representation to perform data-flow analyses [12]. Another approach considers the control flow caused
by exceptions while performing points-to and data-flow analyses [13, 14]. Other research has analyzed
the flow of exceptions, and built tools to facilitate understanding of the exceptional behavior of programs
[15, 16]. None of that research, however, considers the effects of exceptions on analysis techniques such as
control-dependence analysis and program slicing.

To facilitate such analyses for software-engineering tasks, we investigated the effects of exception-handling
constructs on various types of analyses, developed new techniques to perform these analyses in the presence
of exceptions, and developed representations for the analysis information on which other analyses and ap-
plications can be applied. In this paper, we present our results for two analysis techniques: control-flow
and control-dependence analysis. We also discuss briefly the use of our analysis information in two ap-
plications: program slicing and structural testing. We discuss the problems and solutions for Java-like
exception-handling constructs; constructs in other languages, such as C4++, can be analyzed similarly. In
the Java exception-handling paradigm, an exception can be raised explicitly through a throw statement,
or implicitly, through a call to a library routine or by the runtime environment. The techniques presented
in the paper apply only to explicitly raised exceptions. Our current work includes investigation of ways to
extend our techniques to include the analysis of implicitly raised exceptions. We also restrict our discus-
sion to problems, representations, and analyses for exception-handling constructs; techniques for handling
other features of object-oriented languages, such as polymorphism and object flow, are discussed elsewhere
[13, 17, 18].

In this paper, apart from the study of the frequency with which exception-handling constructs occur in
Java programs (Table 1), we also present the results of two other empirical studies. We performed these
studies using our program analysis system, Java Architecture for Bytecode Analysis (JABA), written in
Java, that analyzes Java bytecode files.3 The first empirical study evaluates the precision of the control-flow
representations that we construct for exception-handling constructs, and suggests that exhaustive type-
inference analysis may not be required for determining exception types for throw statements. The second
empirical study examines the effects of exception-handling constructs on control dependences. The results
from this study indicate that a control-dependence computation that ignores the effects of exception-handling
constructs can fail to identify a number of dependences in a program. These omitted dependences can have
significant impact on the accuracy of tools that require such dependences.

The next section gives an overview of exception-handling constructs and specifies those constructs that
our techniques handle. After introducing an example that is used through the rest of the paper, Section 3
discusses the effects of exception-handling constructs on several types of analyses. Next, Section 4 presents
our analysis techniques, the representations that are constructed by those techniques, and some empirical
studies pertaining to the techniques. Then, Section 5 briefly discusses the use of our representations for
program slicing and structural testing. Section 6 evaluates our analysis techniques in terms of their accuracy
and limitations, and discusses the tradeoffs involved in analyzing exception-handling constructs with various
degrees of accuracy. Section 7 discusses related work. Finally, Section 8 presents conclusions and potential

future work.

3JABA provides language-dependent analysis for Java programs (at the byte-code level) that is required for use in language-
independent tools that are part of the Aristotle Analysis System [19].



try {
// guarded section

Java exceptions

}
catch (ExceptionTypel t1) { ////////// \\\\\\\\\\

// handler for ExceptionTypel synchronous 5. asynchronous
} . / \
catch (ExceptionType2 t2) { checked unchecked
// handler for ExceptionType?2
yo 1. explicitly 2. implicitly 3. explicitly 4. implicitly
raised raised raised raised

catéh'(ﬁxception e) {
// handler for all exceptions

}
finally {
// cleanup code

}

Figure 1: The syntax of exception-handling constructs in Java (left), and Java Exception types (right).

2 Exception-Handling Constructs

This section provides an overview of exception-handling constructs in Java, our language model; details of
the Java language can be found in Reference [9]. Other languages, such a C++ and Ada, provide similar
exception-handling mechanisms.

In Java, an exception is an object: each exception is an instance of a class that is derived from the class
java.lang.Throwable. An exception can be raised at any point in the program through a throw statement.
The expression associated with the throw statement denotes the exception object. The expression can be
a variable (e.g., throw e), a method call (e.g., throw m()), or a new-instance expression (e.g., throw new
E()). A throw statement can appear anywhere in the program; it may or may not be enclosed in a try
statement.

A try statement provides the mechanism for designating guarded code, by associating exception handlers
with the code. A try statement consists of a try block and, optionally, a catch block and a finally block.
The legal instances of a try statement are try-catch, try-catch-finally, and try—finally. The code
on the left in Figure 1 shows a typical try statement. A try block contains statements whose execution
is monitored for exception occurrences. A catch block, which may be associated with each try block, is a
sequence of catch clauses that specify exception handlers. Each catch clause specifies the type of exception
it handles, and contains a block of code that is executed when an exception of that type is raised in the
associated try block. A catch clause also specifies a variable that is initialized with the handled exception,
and whose scope is limited to the block of code for that catch clause. A try statement can have a finally
block. The code in a £inally block is always executed, regardless of the way in which control transfers out
of the try block. Control may exit a try block by reaching the last statement in the try block, through an
exception that may or may not be handled in the associated catch block, or because of a break, continue,
or return statement.

Java follows the nonresumable model of exception handling: after an exception is handled, control does
not return to the point at which the exception was raised, but continues at the first statement following the

try statement that handled the exception. A Java exception can be propagated up on the call stack: if a



method raises but does not handle an exception, the exception is reraised in the context of the caller of that
method.

Exceptions in Java can be classified according to several criteria; the graph on the right in Figure 1
shows the classification criteria. These criteria reflect the semantics of raising an exception, and impose
requirements on the way in which an exception must be handled. For example, a Java exception can be
synchronous or asynchronous. A synchronous exception occurs at a particular program point and is caused
by an expression evaluation, a statement execution, or an explicit throw statement. An asynchronous ez-
ception, on the other hand, can occur at arbitrary, nondeterministic points in the program. A synchronous
exception can be checked or unchecked. For a checked exception, the compiler must find a handler or a
signature declaration for the method that raises the exception. For an unchecked exception, the compiler
does not attempt to find such an associated handler or a signature declaration. A synchronous exception
is explicitly raised if the exception is raised by a throw statement in the application being analyzed. A
synchronous exception is implicitly raised if the exception is raised through a call to a library routine or
by the runtime environment. The source of an implicitly raised exception, therefore, lies outside the ap-
plication being analyzed. For example, a call to the Java API method java.util.Stack.pop() can raise
a StackEmptyException; any expression that dereferences an object reference can cause the Java runtime
environment to raise a NullPointerException.

The techniques that we discuss in this paper do not apply to asynchronous exceptions; a safe approxi-
mation of program points that may raise such exceptions would include all statements in the program. The
techniques also do not apply to implicitly raised exceptions. The analysis of this type of exceptions is beyond

the scope of this paper; our current work includes investigating ways to extend our work to include them.

3 Effects of Exception-Handling Constructs on Analyses

Exception-handling constructs belong to a class of control structures that cause arbitrary interprocedu-
ral control flow, and affect program-analysis techniques in similar ways. Other examples of such control
structures include interprocedural jump statements, such as the setjmp()—longjmp() calls in C, and halt
statements, such as the exit () call in C. Such constructs affect the flow of control across procedures, and in
doing so, affect all analyses that are derived from control-flow analysis. The common effect of such control
structures is that, at a call site, control may not return from the called procedure. Instead, control may
return to a different point in the calling procedure, or control may not return to the calling procedure at all.
Through such an effect, the control structures influence program-analysis techniques, such as control-flow
analysis, data-flow analysis, and control-dependence analysis.

The emphasis of previous [20] and ongoing work is to characterize formally the control structures, to
provide not only a better understanding of the common effects of the control structures on analysis techniques,
but to facilitate the development of a uniform approach to performing accurate analyses in their presence.
Although recent research has addressed some of the issues for program analyses and program understanding
that are caused by exception-handling constructs [13, 14, 12, 16, 15], none of that work describes the problems
and the solutions for the general form of exception-handling constructs. Other research in the past [21, 7, 22]
has addressed the problem of computing slices in the presence of control structures that cause arbitrary

intraprocedural control flow, but those results do not apply to arbitrary control flow across procedures. We



public class VendingMachine {

private int totValue;
private int currValue;
private int currAttempts;
private Dispenser d;

public VendingMachine() {
1 totValue = 0;
2 currValue = 0;
3 currAttempts = 0;
4 d = new Dispenser();

}

public void insert( Coin coin ) {
int value = valueOf( coin );
6 1if ( value = 0 ) {
7 throw new IllegalCoinException();
}
currValue += value;
showMsg( "current value = "+currValue );

}

public void returnCoins() {
10 if ( currValue = 0 ) {
11 throw new ZeroValueException();

O o

}
12 showMsg( "Take your coins" );
13 currValue = 0;
14 currAttempts = 0;

}

public void vend( int selection ) {
15 if ( currValue = 0 ) {
16 throw new ZeroValueException();
}

try {
17 d.dispense( currValue, selection );
18 int bal = d.value( selection );

19 totValue += currValue — bal;

20 currValue = bal;

21 returnCoins();

}

22 catch( SelectionException s ) {

23 currAttempts++;

24 if ( currAttempts < MAX ATTEMPTS {
)

25 showMsg( "Enter selection again" );
}
else {

26 currAttempts = 0;

27 throw s;

}
}
28 catch( ZeroValueException z ) {
}
}
}

public class Dispenser {
public void dispense( int currVal, int sel ) {
29 Exception e = null;
30 if ( sel < MIN SELECTION || sel > MAX SELECTION ) {
31 showMsg( "selection "+sel+" is invalid" );
32 e = new IllegalSelectionException();
}

else {
33 if ( lavailable( sel ) ) {
34 showMsg( "selection "+sel+" is unavailable" );
35 } e = new SelectionNotAvailableException();

else {

36 int val = value( sel );
37 if ( currVal < val ) {
38 e = new IllegalAmountException( val—-currvVal );

}
}

}
39 if (e !=null ) {
40 throw e;

}
41 showMsg( "Take selection" );

}

}

public static void main() {
42 VendingMachine vm = new VendingMachine();
43 while ( true ) {

try {

try {
44 switch( action ) {
45 case INSERT: vm.insert( coin );
46 case VEND: vm.vend( selection );
47 case RETURN: vm.returnCoins();

}

}
48 catch( SelectionException s ) {
49 showMsg( "Transaction aborted" );
50 vm. returnCoins() ;

}
51 catch( IllegalCoinException i ) {
52 showMsg( "Illegal coin" );
53 vm.returnCoins() ;

}
54 catch( IllegalAmountException i ) {
55 int val = i.getValue();
56 showMsg( "Enter more coins"+val );

}
}
57 catch( ZeroValueException z ) {
58 showMsg( "Value is zero. Enter coins"
}

}
}

Figure 2: Java code for the vending-machine program: class VendingMachine (top), class Dispenser (bottom left),

and method main() (bottom right).

discuss related work in more detail in Section 7.

In this paper, we restrict the discussion of the problems and solutions for exception-handling constructs.
In the remainder of this section, we first describe a program that we use to illustrate the concepts presented in

the paper. We then discuss the effects of exception-handling constructs on three program-analysis techniques:



Exception Exception Condition

/ I1legalAmount User selects an item that costs more
than the value of the coins inserted
T1legalAmountException
(1I2) IllegalCoin User inserts an illegal coin
T1llegalCoinException ZeroValueException (ZV) ZeroValue User selects an item, or requests a
(IC) refund without inserting any coins
SelectionException (S) IllegalSelection | User enters a number that does not

correspond to a valid selection
SelectionNot— User selects an item that is temporarily
Available unavailable

IllegalSelectionException SelectlonNotAva_llableExceptlon
(IS)

Figure 3: Hierarchy of exception-related classes (and their abbreviated names) for the vending-machine program
(left), and conditions that cause various exceptions to be raised (right).

control-flow analysis, data-flow analysis, and control-dependence analysis.

3.1 The Vending-Machine Program

The vending-machine program, shown in Figure 2, simulates the actions of a vending machine.* The machine
lets a user insert coins, request a refund, or select an item using a numeric keypad. If the user selects a valid
item and enters coins of value sufficient to cover the cost of the item, the machine dispenses the selected
item. If the user makes an erroneous selection, the machine asks the user to reenter the selection. The user
may reenter the selection or request a refund of the coins. The machine tracks the number of erroneous
selections entered by a user; once the number of erroneous selections exceeds a predetermined value, the
machine aborts the transaction and returns the user’s coins. Figure 3 explains the various error conditions
that may arise during a transaction and presents a class hierarchy of exceptions that correspond to those
conditions.

Method main() (lines 42-58) presents the user with the three options, and based on the user’s ac-
tion, invokes one of three methods, defined in the class VendingMachine, to process the action. Method
insert() (lines 5-9) first ensures that the user has entered a valid coin, and then increments the current
value by the value of the coin; insert() raises an exception if the user enters an invalid coin. Method
returnCoins() (lines 10-14) refunds coins with a value equal to the current value, and resets the current
value; returnCoins() raises an exception if the current value is zero. Method vend () (lines 15-28) accepts
the user’s selection, and if the current value is not zero, invokes method dispense() defined in the Dispenser
class. Method dispense() (lines 29-41) performs several error checks to ensure that the selection is a valid
item (line 30), the selection is available for dispensing (line 33), and the current value covers the cost of the
selection (line 37). If any of these checks fails, the code raises an appropriate exception. If all checks pass,
dispense() simulates dispensing of the item by printing a message (line 41). On successful completion of
dispense(), vend() updates appropriate state variables (lines 18-20), and calls returnCoins() to return
the balance to the user (line 21). If dispense() raises an exception that signals an erroneous selection (lines
32, 35), vend () handles the exception (line 22) and increments currAttempts. When currittempts exceeds

the constant MAX_ATTEMPTS, vend () rethrows the caught exception (line 27), which causes main() to abort

4We adapted this example from one by Kung and colleagues that appeared in Reference [23].
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Figure 4: CFGs for methods of the vending-machine program constructed using an approach that does not consider

the effects of exception-handling constructs.

the transaction.

We omit the details of methods, such as value() and available() in the Dispenser class, that are
not relevant to our presentation; such methods raise no exceptions. For brevity, we also exclude the details
of the constructors of some of the classes, and the initializations of constants such as MAX_ATTEMPTS and

MIN_SELECTION.

3.2 Effect of Exceptions on Control-Flow Analysis

Control-flow analysis determines, for each program statement s, those statements in the program that could
follow s in some execution of the program. Many program-analysis techniques, such as data-flow and
control-dependence analyses, and software engineering tasks, such as structural and regression testing, use
control-flow information about a program. These techniques typically construct a control-flow representation

for the program. For these analyses to be useful, and for these applications to be effective in the presence



of exception-handling constructs, the control-flow representation should incorporate the exception-induced
control flow.

The vending-machine program of Figure 2 exemplifies the complexity that the presence of exception-
handling constructs can introduce in the control flow in a program. For example, in insert (), control does
not reach line 8 if the predicate in line 6 evaluates to true; instead, the exception raised in line 7 terminates
the execution of insert(), and transfers control to a caller of insert (). For further example, consider the
call to dispense() in line 17. Following the call, control may not return to the call site: if dispense() raises
an exception, control may return to line 22 or control may not return to vend () at all. Through such effects,
exception-handling constructs can influence control flow not only within a method, but across methods, and
can introduce complex control-flow paths in a program.

The control-flow relation that exists in a program can be represented in a control-flow graph (CFG) in
which nodes represent statements, and edges represent the flow of control between statements [24]. Figure
4 depicts the CFGs for the methods in the vending-machine program. Each node is labeled by the line
numbers of the source statements that it represents. Each CFG has an entry node, which is labeled by the
name of the corresponding method, and an exit node. Each call site is represented by a pair of nodes — a
call node and a return node.® For example, the call site in line 17 is represented by call node 17a and return
node 17b. The CFGs in Figure 4 do not represent exceptional control flow. Consequently nodes, such as 11
and 40, which represent throw statements, are connected to the exit nodes of their respective CFGs; nodes
that represent catch statements, such as nodes 22 and 51, have no in edges.

Recent work [12] describes an intraprocedural representation of Java exception-handling constructs. That
work, however, does not consider several issues related to control flow. For example, the work does not
consider the control flow caused by the presence of £inally blocks, and it does not model the propagation of
exceptions by methods. In Section 4.1, we analyze the control flow caused by exception-handling constructs,
and describe our approach for creating intraprocedural and interprocedural representations of programs that

contain those constructs.

3.3 Effect of Exceptions on Data-Flow Analysis

Data-flow analysis techniques compute data-flow facts, such as definition-use pairs, reaching definitions,
available expressions, and live variables, that hold at different program points. Data-flow information is
used in activities such as program slicing [25, 26, 27], data-flow testing [1, 2, 28], and compiler optimizations
[24]. A data-flow problem can be formulated as a set of equations that compute data-flow facts, and
those data-flow facts are computed and propagated iteratively throughout the program using a control-flow
representation. The solution of the data-flow problem is the fixed-point solution of the equations. In the
presence of exception-handling constructs, the data-flow facts must be propagated also along the exceptional
control-flow paths for the computed data-flow solutions to conservatively approximate the true data-flow
solutions.

To illustrate, consider the effect of exception-handling constructs on the computation of definition-use
pairs. A definition-use pair is a pair (d,u), where d is a statement that defines a variable v (references

and changes v), u is a statement that uses v (references but does not change v), and there is a path in the

5 Although separate call and return nodes are not required at a call site in the intraprocedural control-flow representation,
we add them to facilitate later construction of the interprocedural control-flow representation.



program from d to u along which v is not redefined. Exception-handling constructs may cause a definition-
use computation to miss definition-use pairs in two ways. First, a definition-use pair may not be detected
because the pair occurs along only an exceptional-control flow path that is not modeled by the control-
flow representation. For example, in the vending-machine program, there exists such a pair that includes
statement 42, where vm is defined, and statement 53, where vm is used. This definition-use pair is not
detected if the exceptional control flow from statement 7 to statement 51 is not modeled by the control-flow
representation. Second, exception-handling constructs introduce additional definition-use pairs in a program
through the exception object. The definition of exception object e in statement 38, and its subsequent use
as i in statement 55 in an example of such a definition-use pair.

A data-flow relation can be represented as a data-dependence graph in which nodes represent program
statements and edges represent the data dependence between statements. In such a graph, for definition-use
pairs, a data-dependence edge exists between nodes n; and ng if (n1, n2) is a definition-use pair.

Several researchers have recently addressed the problem of performing data-flow analyses in the presence
of exception-handling constructs. Some researchers [13, 14] do not explicitly create a control-flow representa-
tion for exceptions; instead, they modify the data-flow analyses to compute and traverse the intraprocedural
and interprocedural exceptional control-flow paths while performing the desired analyses. Other researchers
[12] represent some exceptional control flow explicitly, and modify the data-flow analyses to compute the
remaining exceptional control flow while performing the analyses. With the control-flow representation that
we define in Sections 4.1.1 and 4.1.2, existing algorithms for data-flow analyses require either no modifications
or trivial modifications to function in the presence of exception-handling constructs. The other approaches
work as well for performing the data-flow analyses; our representation provides an alternative approach to

performing the analyses.

3.4 Effect of Exceptions on Control-Dependence Analysis

Control-dependence analysis [29, 5] determines, for each program statement, the predicates that control the
execution of that statement. Informally, a statement s is control dependent on a predicate p if, in the CFG,
there are two edges out of the node for p such that following one of the edges always results in the node for
s to be reached, whereas following the other edge may cause that node not to be reached [5]. A statement in
procedure P that is control dependent on no predicates in P is control dependent on entry into P. Control-
dependence information is required for analyses; such as slicing, that are used for software-engineering tools,
such as debuggers, impact analyzers, and regression testers.

Traditional definitions of, and algorithms for computing, control dependence [29, 30, 5] function at the
intraprocedural level, and inaccurately model the correct control dependences when they are applied to
programs that contain exception-handling constructs. One factor that causes the traditional definitions
and algorithms to be inadequate is the presence of potentially non-returning call sites (PNRCs) [8]: call
sites to which control may not return from the called methods. Through their effects on interprocedural
control flow, exception-handling constructs cause PNRCs in a program, and necessitate the computation of
interprocedural control dependence. For example, in the vending-machine program, the call site in line 17
is a PNRC because, following the call, control may return to statement 22 rather than to statement 17, or
control may not return to vend() at all. This causes statements that follow the call site, such as statement

20, to be control dependent on conditional statements in the called methods. For example, statement 20 is
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Figure 5: Control-dependence graph for method vend ().

control dependent on statement 39 in dispense(). Traditional techniques, however, identify statement 20
as control dependent on entry into vend().

In the presence of exception-handling constructs, control dependences of certain statements — those
that appear in a catch block — might be computable only in the interprocedural context; such statements
have no intraprocedural control dependences. For example, the execution of statements 51-53, which belong
in main(), is controlled solely by decisions that are made in insert(). Therefore, to identify the control
dependences for such statements, interprocedural control dependences must be computed.

The control-dependence relation is represented as a graph. A control-dependence graph (CDG) [5] contains
a node for each predicate and statement in a procedure, and an edge from predicate p to statement s if s
is control dependent on p. A unique root node denotes the entry predicate, and represents the control
dependences of those statements that are reached when control enters the procedure. Figure 5 shows the
CDG for method vend() that is constructed from the CFG of vend() shown in Figure 4. The CDG in
the figure has disconnected components because the control dependences of the catch handlers in vend()
(and statements that are control dependent on entry into those handlers) can be computed only in the
interprocedural context; intraprocedurally, the control dependences of those statements is undefined. In the
figure, a unique node labeled “unknown” connects the nodes whose control dependences are undefined.

Past work that has attempted the computation of interprocedural control dependence [31] considers
only the effects of halt statements, and suffers from several drawbacks. Recent work [8] has addressed and
corrected those drawbacks, but considers only the effects of halt statements. In Section 4.2, we present an
approach that identifies PNRCs, and computes correct control dependences in the presence of exception-

handling constructs.

4 Analysis Techniques to Accommodate Exception-Handling Con-
structs

In this section, we describe techniques for control-flow and control-dependence analysis that account for
the effects of exception-handling constructs, and therefore, can be applied to programs that contain such
constructs.

To facilitate the ensuing discussion, we introduce some terminology and provide an informal definition of
each term. A program unit is a program block or a method. A program unit directly raises an exception if

it lexically encloses a throw statement. A program unit indirectly raises an exception if it lexically encloses

11



Method

—_

- try block raises no exception; no finally block
exception propagated 2 try block raises no exception; finally block specified
try statement from nested bl‘<°k 3 try block raises exception; catch block does not handle
13 14 15 exception; no finally block
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Figure 6: Intraprocedural control flow in Java exception-handling constructs.

a call site such that the called method propagates an exception.® A program unit propagates an exception if
it raises an exception, but does not handle that exception. A program unit directly propagates an exception
if it directly raises, but does not handle an exception; similarly, a program unit indirectly propagates an
exception if it indirectly raises, but does not handle an exception. A catch clause is a local handler if it
handles only those exceptions that are directly raised in the try block associated with that catch clause. A
catch clause is an interprocedural handler if it handles only those exceptions that are indirectly raised in the
try block associated with that catch clause. A catch clause is a global handler if it handles both directly

and indirectly raised exceptions.

4.1 Control-Flow Analysis

As we saw in Section 3.2, the presence of exception-handling constructs creates control-flow paths within
and across methods. To be useful, the intraprocedural and interprocedural control-flow representations must

contain these paths.

4.1.1 Intraprocedural analysis

When an exception is raised in a try block, control transfers to the catch clause that handles the raised
exception. This catch clause may be associated with the try block in which the exception is raised, or
may be associated with a lexically enclosing try block. The parameter of the matching catch clause is
bound to the thrown object, and the handler code is executed. Following the execution of the handler code,
normal execution resumes at the first statement that follows the try statement in which the exception was
handled. Before control exits a try statement, the £inally block of the try statement is executed, if it

exists, regardless of whether control exits the try statement with an unhandled exception.

6The distinction between direct and indirect exceptions is not the same as the distinction between explicit and implicit
exceptions. For example, an explicit exception can be raised directly or indirectly.
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The block-level control-flow graph, shown in Figure 6, summarizes the control flow into and out of a try
statement. The figure shows a try statement and its component blocks; the conditions triggering the control
flow between the blocks are numbered and listed next to the figure. As the figure illustrates, there are several
control-flow paths within a try statement. For example, the path (5, 8, 12) is taken if the try block raises
an exception, the catch block handles the exception but raises another exception, and the finally block
raises no exception. Paths starting at edges 13, 14, or 15 are taken if a nested try statement propagates an
exception. For example, path (13, 6, 11) is taken if a nested try statement propagates an exception that is
handled in the catch block, and then the £inally block raises another exception.

Figure 6 illustrates that a Java £inally block can execute in one of two contexts: a normal context or an
exceptional context. A finally block executes in a normal context when (1) control reaches the end of a try
block or a catch block, or (2) control leaves a try statement because of an unconditional transfer statement,
such as break, continue, or return. A finally block executes in an ezceptional context when control
leaves a try statement because of an unhandled exception; the unhandled exception may have been raised
directly or indirectly within the try statement. The context of execution of a finally block determines
where control flows from that £inally block: in a normal context, control flows to the statement that follows
the try statement, or control flows to the target of an unconditional transfer statement; in an exceptional
context, control flows to an enclosing finally block, an enclosing catch handler, or control exits the method
with an unhandled exception.

To represent exceptional-handling constructs, the CFG contains nodes that represent throw statements,
catch handlers, and £inally blocks, and edges that represent the normal and exceptional control flow caused
by those constructs. A throw node can have multiple successors in the CFG; these successors are determined
by the types of exceptions that can be raised at the corresponding throw statement. To determine the
potential exception types, we perform type inference and create one out edge from the throw node for each

type of exception.”

We label each edge with the type of exception that causes that edge to be traversed
during program execution. Figure 7 presents the CFGs for the methods of the vending-machine program
that are constructed using our approach. The throw statement in line 40 of the program can raise one of
three types of exceptions: SNA, IA, or IS. Therefore, the CFG node for that statement has three out edges —
one for each type of exception — that are labeled by the corresponding exception types. If a throw statement
raises only one type of exception, the CFG node for that statement is also labeled by the exception type.
For example, node 11 has a single out edge labeled “ZV” because the corresponding throw statement raises
an exception of type ZV.

To model propagation of exceptions out of a method, the CFG contains exceptional-exit nodes. An
ezxceptional-exit node is an exit point in the CFG that has a type T associated with it, and represents the
propagation of an exception of type T by the corresponding method. The CFG of a method has as many
exceptional-exit nodes as the distinct types of exceptions that are directly propagated by the method. In
Figure 7, the CFG for vend () has four exceptional-exit nodes because vend() directly propagates four types
of exceptions: S, IS, SNA, and ZV. The CFGs for insert() and returnCoins() have one exceptional-exit
node each because both these methods directly propagate a single exception type. Method vend () indirectly
propagates IA, through the call to dispense(); the exceptional-exit node for the indirectly propagated

exception is created in the interprocedural representation (Section 4.1.2).

"Section 4.1.3 provides further discussion of the type inferencing.
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Figure 7: CFGs for methods of the vending-machine program constructed using our approach.

In the CFG, the node for a local handler has in edges for exceptions that are caught by that handler.
A global handler also catches directly raised exceptions, and therefore, the node for such a handler also
has in edges in the CFG. An interprocedural handler, however, catches only indirectly raised exceptions —
exceptions that are raised in methods called from the method that contains the handler. Therefore, the node
for an interprocedural handler has no in edges in the CFG; such a handler has in edges in the interprocedural
representation. Because all handlers in the vending-machine program are interprocedural handlers, nodes in
the CFGs that correspond to those handlers have no in edges.

A finally block can execute in several different contexts such that following the execution of statements
in the block, control flows to different points in different contexts. There are two alternative approaches to
to model such control flow without introducing paths that represent illegal entry—exit sequences for finally
blocks. One approach creates a separate CFG for each £inally block, and inserts call nodes to the finally
blocks for both contexts of execution. The other approach avoids creating a separate CFG for each finally
block, and instead inlines a finally block once for each of its different contexts of execution. The second

approach becomes impractical if finally blocks appear frequently and are large.
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algorithm ConstructCFG
input AST : abstract-syntax tree for procedure P
output CFG : control-flow graph for procedure P

begin ConstructCFG

1.

2.
3.

4.
5.

/* Step 1 — construct incomplete CFG */

construct control-flow graph with no out edge from throw nodes

/* Step 2 — perform type inference” */
perform local flow-sensitive type analysis
perform global flow-insensitive type analysis
/* Step 3 — construct complete CFG */
create out edges from throw nodes

create exceptional-exit nodes for propagated exception types

end ConstructCFG

Figure 8: Overview of the CFG-construction algorithm.
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Figure 9: Interprocedural control flow in exception-handling constructs .

steps: First, the algorithm creates an incomplete CFG in which throw nodes have no out edges; next, the
algorithm performs type inferencing using the incomplete CFG to determine potential exception types for
throw statements;” finally, the algorithm completes the CFG by adding out edges from the throw nodes,

and creating the necessary exceptional-exit nodes and call nodes for finally blocks.

Java bytecodes. Our Java analysis tool constructs the CFGs using the bytecode-based implementation of

the algorithm.
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4.1.2 Interprocedural analysis

The propagation of exceptions on the call stack creates interprocedural exceptional control flow. Interpro-
cedural control flow is represented in an interprocedural control-flow graph. An interprocedural control-flow
graph (ICFG) for a program P consists of CFGs for each method or procedure in P; at each call site, the
call node is connected to the entry node of the called method by a call edge, and the exit node of the called
method is connected to the corresponding return node by a return edge.

Figure 9 presents an interprocedural block-level control-flow graph (similar to Figure 6) that shows the
called method B at the top, and its caller A below it. The call to B within A’s try block is shown by a call
edge. Following the execution of B, control can return to A in one of four ways; the edges corresponding
to these returns are labeled in the figure. If B propagates no exceptions, control returns normally to the
statement following the call site in A. If B propagates an exception, control does not return to the call site.
If the try block in A has an associated catch handler that handles the raised exception, control flows to that
handler. If there is no such catch handler associated with the try block but that block has a corresponding
finally block, control flows to the £inally block. If neither of the above is true, method A also propagates
the exception, and the search for a handler continues in the caller of A.

To represent the interprocedural exceptional control flow, the ICFG contains exceptional-return edges.
An ezceptional-return edge is an interprocedural edge that connects an exceptional-exit node of the called
method to a catch node, a call node that calls a £inally block, or an exceptional-exit node in the calling
method.

Figure 10 shows the ICFG for the vending-machine program. Each call node is connected to the entry
node of the CFG of the called method, and the exit node of that CFG is connected to the corresponding return
node. If a method propagates an exception that is caught in the caller of that method, the exceptional-exit
node for that exception type is connected to the appropriate node in the caller by an exceptional-return edge.
For example, insert() propagates IC that is caught in statement 51 of main() (the caller of insert()).
Therefore, the exceptional-exit node in the CFG for insert() is connected, by an exceptional-return edge,
to node 51 in the CFG for main(). A method may propagate an exception that is not handled in the
immediate caller of that method, but is handled in a method that lies further up in the call sequence. For
example, main() calls vend(), and vend() calls dispense(). dispense() propagates an exception of type
IA; vend (), however, does not handle the exception but (indirectly) propagates it up to main(). The chain
of exceptional-return edges in the ICFG reflect the exception propagation: the exceptional-exit node for type
IA in the CFG for dispense() is connected to the exceptional-exit node for the same type in the CFG for
vend (), which in turn is connected to the catch node 54 in the CFG for main().

The ICFG-construction algorithm [32] iteratively determines indirectly propagated exception types for
each method, and adds exceptional-exit nodes to the CFG of the method for those exception types. For
example, the ICFG-construction algorithm determines that vend() indirectly propagates IA (through the
call to dispense()), and adds an exceptional-exit for type IA to the CFG of vend(). Figure 11 provides
a high-level view of the algorithm. The algorithm initializes a worklist with the methods in the program
(line 1), and then repeatedly removes a method N from the worklist and processes all callers of N, until the
worklist becomes empty (lines 2-14). For each call site that calls N, the algorithm creates call and return

edges (line 5). The exceptions types that are propagated by N (indicated by the exceptional-exit nodes
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Figure 10: ICFG for the vending-machine program.

in the CFG of N) are indirectly raised in M. Therefore, for each such exception type, the algorithm adds
finally-call nodes and an exceptional-exit node to the CFG of M (line 7), if such nodes are required; for
example, if an exception type is propagated by N and is not caught by M, an exceptional-exit node for that
type is added to the CFG of M. For each exception type propagated by N, the algorithm also creates an
exceptional-return edge (line 8). If the algorithm adds an exceptional-exit node to the CFG of M, it adds
M to the worklist (line 10), to ensure that all callers of M are reprocessed.

Like other iterative data-flow algorithms, the ICFG-construction algorithm can be implemented efficiently
to process nodes in a reverse topological order of the program’s call multigraph.® Such an implementation
processes each nonrecursive method only once, and the recursive methods iteratively, as shown in Figure 11,

until a fixed point is reached.

8 A call multigraph for a program P contains a node N for each method n P, and an edge from node N; to node Nj for each
call site in the method corresponding to N; that calls the method corresponding to N;.
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algorithm ConstructICFG

input CFG : control-flow graph for each method in P
output ICFG : interprocedural control-flow graph for P
declare worklist : methods that are processed iteratively

begin ConstructICFG

1. initialize worklist with methods in P

2. while worklist is not empty

3. remove method N from worklist

4. foreach call site in method M that calls N

5 create call edge, return edge

6 foreach exceptional-exit node in the CFG of N

7 add finally-call nodes, exceptional-exit node to

the CFG of M, if required

8. create exceptional-return edge

9. if exceptional-exit node added to the CFG of M
10. add M to worklist

11. endif

12. endfor

13. endfor

14. endwhile
end ConstructICFG

Figure 11: Overview of the ICFG-construction algorithm.

4.1.3 Type inferencing for exception types

The CFG construction requires information about exception types that can be raised at throw statements.
Precise type information at a throw statement includes only those types that can be raised at that throw
statement in some execution of the program. The precision of the type inference determines the extent to
which infeasible paths® are introduced in the control-flow representations. An imprecise (but safe) approxi-
mation of exception types causes the addition of unnecessary edges emanating from throw nodes; programs
paths that contain such edges are infeasible.

Type-inference algorithms (e.g., [33, 34]) attempt to determine the types for each expression in a program
by solving type constraints or by propagating local type information throughout a program. Such techniques
have been applied traditionally to optimization of dynamically dispatched function calls. Recent work [13]
uses points-to analysis to infer types in programs that contain exception-handling constructs.

Type inference for exception types is required only for those throw statements whose exception types
cannot be determined by an inspection of the throw statement; the expressions of such throw statements
are variables or method calls. For example, a throw statement, such as the one in line 11 of the vending-
machine program, requires no type inference because its expression is a new-instance expression; the only
type of exception that can be raised at that statement is ZV. The throw statement in line 40, however, requires
type inference because it raises the exception object referenced by a variable, and different exception objects
are created and assigned to that variable along different paths to the throw statement.

Our empirical evidence, based on the subjects listed in Table 1, suggests that, in practice, the expressions
of an overwhelming majority of throw statements are new-instance expressions, and therefore, require no
type-inference analysis. Table 2 lists the types of throw-statement expressions that appear in our subjects.
As the data illustrates, out of the 2490 throw statements that appear in the subjects; only 59 have either a

variable or a method call as their expressions. Among these throw statements, a variable expression appears

9 A path is infeasible if there exists no input to the program that causes the path to be executed.

18



T 60 |:| method call
I variable

T 40 - new instance

Figure 12: Types of expressions of the throw statements.

Table 2: Types of throw statement expressions.

‘ throw [ throw statement expressions |
Subject statements | new instance | variable [ method call |
antlr 262 252 10 0
debug 61 56 5 0
jaba 220 219 1 0
jar 13 13 0 0
jas 215 215 0 0
jasmin 56 55 1 0
javacup 30 29 1 0
javac 129 127 2 0
javadoc 5 5 0 0
javasim 37 37 0 0
b 56 55 1 0
jdk-api 703 683 20 0
jedit 76 7 0 0
jHex 19 a9 0 0
jlex 3 3 0 0
Jjoie 81 7 2 0
sablecc 142 142 0 0
swing-apl 352 336 4 12
[Total [ 2490 | 2431 | a7 | 12 |

four times more frequently than a method-call expression. The remaining throw statements, which constitute
over 97% of the total throw statements, require no type-inference analysis. Figure 12 presents the data as
segmented bars.

Because our empirical evidence indicates that throw statements that require type inferencing occur rarely,
we believe that the use of an exhaustive type-inference algorithm may not be justified. To determine types
for throw statements whose expressions are not new-instance expressions, we consider four computationally
inexpensive approaches. The first approach is a conservative approximation that includes all subtypes of
the relevant exception type. For example, to determine the exception types for the throw statement in line
40 of the vending-machine program, the conservative-approximation approach identifies all subtypes of class
Exception as the potential exception types.

The second approach is a local flow-sensitive analysis!® [32]. The analysis performs a reverse data-flow

10 A flow-sensitive analysis considers the control flow among statements, whereas a flow-insensitive analysis ignores the control
flow.
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Table 3: Effectiveness of the local type-inference algorithm.

Type- Number of throw statements with Average
inference single 2-10 11-20 21-30 >30 number
approach type types types types types of types
Conservative 26 6 3 0 12 13.3
approx.

FS 28 6 3 0 10 11.5
analysis

FI 29 8 2 8 0 5.6
analysis

FS and FI 31 8 1 7 0 4.9
analysis

analysis starting at a throw statement that raises an exception object dereferenced through a variable, and
searches for statements that assign a type to that variable. If the analysis reaches statements that define the
types on all paths to the throw statement, it precisely identifies the exception types that (statically) reach the
throw statement. For example, this approach traverses backward on all paths from the throw statement in
line 40, and precisely determines the types IS, SNA, and IA for that throw statement. The analysis traverses
backwards only in the method that contains the throw statement. On reaching the method boundary (at
the method entry, a call node, or a catch node), the analysis uses the conservative approximation approach,
and includes in the solution all subtypes of the relevant exception type.

The third approach is a global flow-insensitive analysis that starts with the conservative approximation,
and refines that approximation by examining object-creation sites and return types of all library calls. The
refined approximation contains only those types that are either instantiated in the program, or returned by
a library routine. For example, to determine exception types for the throw statement in line 27, the global
analysis first approximates S, IS, and SNA as the potential exception types. The analysis then examines
object-creation sites and return types of library calls, and eliminates S from the type-inference solution.
This global flow-insensitive analysis can omit potential exception types from the type-inference solution
because a library routine can return an exception object by encapsulating it in a class, and the analysis
would fail to detect that exception type.

The final approach is a combination of the local flow-sensitive and the global flow-insensitive analyses.
This approach first performs the flow-sensitive analysis, and if that analysis results in a conservative ap-
proximation, the approach uses the flow-insensitive analysis to improve the precision of the type inference
information.

To evaluate these four approaches, we performed an empirical study. The goal of the study was to
compare the precision of the type-inference information computed using the approaches. Using each of the
four approaches, we determined the potential exception types for the 47 throw statements in the subjects that
mention a variable. Table 3 presents the data from the empirical study. For each type-inference approach,
the table lists the number of throw statements for which the number of inferred exception types fall in
various ranges.

The data in the table shows that the conservative approximation computed a single type for 26 throw
statements, but computed over 30 types for 12 throw statements. For two of those 12 throw statements,
the flow-sensitive analysis succeeded in reducing the number of exception types to one. However, the flow-
sensitive analysis did not cause a significant reduction in the inferred types compared to the conservative

approximation. The average number of exception types decreased marginally from 13.3, for the conservative

20



approximation, to 11.5, for the flow-sensitive analysis. The flow-insensitive analysis, however, caused a
significant reduction in the inferred types. With the flow-insensitive analysis, no throw statement had more
than 30 exception types. When the flow-insensitive analysis was used in isolation, the average number of
exception types was 5.6. This average was slightly higher than the average when the flow-insensitive analysis
was used in conjunction with the flow-sensitive analysis.

The results from the study indicate that, in practice, the flow-sensitive analysis may not offer much
benefit over the conservative approximation approach. The flow-insensitive analysis improves significantly the
precision of the type-inference solution, but as noted, the analysis may omit potential types from the solution.
The scarcity of the data points is a threat to the validity of these observations. Further experimentation is

required to establish the verity or the fallacy of the observations.

4.2 Control-Dependence Analysis

In Section 3.3, we saw that exception-handling constructs affect the control dependence relations by causing
potentially nonreturning call sites (PNRCs), and require the computation of interprocedural control depen-
dence. The interprocedural control-dependence computation proceeds in two phases [8]. Phase 1 identifies
PNRCs that are caused by throw statements and halt statements, and uses this information to compute
partial control dependences. Phase 2 uses partial control dependences to propagate control-dependence

information across methods to compute interprocedural control dependence.

4.2.1 Computation of partial control dependences

The first step of the algorithm that computes partial control dependences identifies call sites that are PNRCs.
To identify PNRCs, the algorithm computes, for each call site, the set of nodes to which control can return
following the call site. A call site, where control returns to only the associated return node, is definitely
returning, and has no effect on control dependences. A call site, where control can return to nodes other than
the corresponding return node, is a PNRC, and that call site affects the control dependences of statements
that follow the call site. For example, the set of nodes to which control can return following the call at node
17a includes nodes 17b, 22, and ex-exit (IA); that call site, therefore, is a PNRC.

The PNRC-identification algorithm identifies PNRCs caused by throw and halt statements. Figure 13
provides an overview of the algorithm. The algorithm first initializes, for each method, the exception types
that are directly propagated by that method (lines 1-3). If a method contains a halt statement, the algorithm
uses a placeholder type for the propagated type. The algorithm then iteratively processes those methods that
propagate at least one type, and builds the set of return sites for each call site, until a fixed point is reached
(lines 4-14). The algorithm removes a method N from the worklist (line 6), and processes all call sites that
call N (lines 7-10). For a call site in method M, using the information about types that are propagated
by N, the algorithm determines the nodes in the CFG of M to which control can return following that call
site (line 8). If N contains a halt statement, the algorithm adds a super-exit node (explained below) to the
set of return sites. The algorithm also augments the set exception types propagated by M by using the
types propagated by N (line 9); these types are indirectly propagated by M through the call to N. After
processing each call site in M that calls N, if the set of types propagated by M increases from a previous
iteration, the algorithm adds M to the worklist, so that all callers of M are reprocessed. The algorithm

continues in this manner until no more methods remain to be processed. When the algorithm terminates,
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algorithm ComputePHRC

input CG : call multigraph of program P
output returnSites : set of return sites for each call site
declare worklist : methods that are processed iteratively

types(M) : exception types propagated by method M
begin ComputePHNRC

1. foreach method P

2. initialize types(P) with types directly propagated by P
3. endfor

4. initialize worklist with methods that have nonempty types
5. while worklist is not empty

6. remove method N from worklist

7. foreach call site in method M that calls N

8. determine return sites for the call site

9. update types(M) with elements of types(N) that are

indirectly propagated by AM

10. endfor

11. if types(M) changes from a previous iteration
12. add M to worklist
13. endif

14. endwhile
end ComputePHNRC

Figure 13: Overview of the PNRC-identification algorithm.
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Figure 14: The ACFG for method vend() of the vending-machine program (left), and the CDG constructed from
the ACFG (right).

it has computed the set of return sites for each call site, and this information is used by the second step of
the partial control dependence computation.

The iterative part of the PNRC-identification algorithm is similar to the ICFG-construction algorithm.
In building the set of types propagated by a method, the algorithm computes the indirectly propagated ex-
ception types, which is the same information that is computed during the ICFG construction. Additionally,
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Table 4: Intraprocedural control dependences for vend() computed using the CFG, and partial control

dependences for the same method computed using the ACFG.

Control Control Control Control
dependent on dependent on dependent on dependent on
Node (in CFQG) (in ACFG) Node (in CFQG) (in ACFG)
15 entry entry 23 undefined (RP17b,22)
16 (15,T) (15,T) 24 undefined (RP17b,22)
17a (15,F) (15F) 25 (24,T) (24,T)
17b (15,F) (RP17b,17b) 26 (24,F) (24,F)

18, 19, 20 (15,F) (RP17b,17b) 27 (24,F) (24,F)
21a (15,F) (RP17b,17b) 28 undefined (RP21b,28)
21b (15,F) (RP21b,21b) exit | (15F)(24,T) | (RP17b,17b)(24,T)
22 undefined (RP17b,22)

the PNRC computation also propagates information about halt statements from called methods to calling
methods. The call-multigraph-based PNRC algorithm is flow-insensitive, and therefore, can suffer from im-
precision in the presence of statically unreachable code. A more precise, and therefore computationally more
expensive, version of the algorithm, that is based on the ICFG, identifies and removes statically unreachable
code before performing the PNRC analysis. In practice, however, we do not expect the imprecision caused
by statically unreachable code to be significant.

After computing the set of return sites for each call site, Phase 1 of the control-dependence computation
constructs an augmented control-flow graph that summarizes the effects of external control dependences on
statements in a method. An augmented control-flow graph (ACFQG) for a method M is a control-flow graph,
augmented with placeholder nodes that represent predicates in other methods on which statements in M are
control dependent. For each PNRC in M, the ACFG contains a unique conditional node, return predicate,
that acts as a placeholder for the predicates on which return from the called method is control dependent. A
return-predicate node has an edge (labeled with the target of the edge) to each node that appears in the set
of potential return sites that was computed for the corresponding PNRC. An ACFG also contains a unique
node, super exit, that represents all exits from M.

Figure 14 shows the ACFG for method vend(). The ACFG contains two return-predicate nodes, RP17b
and RP21b, because the call sites in statements 17 and 21 are PNRCs. Node RP17b has three out edges,
one to each node that appears in the set of return sites for call node 17a; the edge to the exceptional-exit
node is labeled by the type of that exceptional-exit node. Node RP21b, likewise, has an out edge to each
node that appears in the set of return sites for call node 21a.

Partial control dependences are the intraprocedural control dependences that are computed using the
ACFG. The graph on the right in Figure 14 shows the CDG that is constructed using the ACFG for method
vend(). The partial control dependences for nodes that are control dependent on predicates in called
methods contain a return-predicate node. For example, the partial control dependence of node 17b includes
return-predicate node RP17b because node 17b is control dependent on the predicate in statement 39 of
method dispense().

Table 4 lists the intraprocedural control dependences and the partial control dependences for the nodes
in the CFG for vend(). The comparison shows that the control dependences computed using the ACFG
differ from those computed using the CFG for nine nodes, whereas they are the same for the remaining six
nodes. Those six nodes — nodes 15, 16, 17a, 25, 26, and 27 — are not reachable from the PNRCs in vend(),
and therefore, are unaffected by the PNRCs. The conditions that control the execution of the corresponding
statements do not change because of the PNRCs.
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algorithm ComputeInterCD

input ICFG : interprocedural control-flow graph of program P
output interCD : interprocedural control dependences for P
declare worklist : nodes that are relevant for propagation

rlist(N) : nodes from which control dependences are
propagated to node N

CD(N) : control dependences of node N

pred(N) : N’s predecessor in the ACFG

begin ComputeInterCD

1. foreach node N in ICFG
2 if N’s partial CD includes an entry or a return predicate
3 initialize rlist(N)
4. if N is the source or sink of an interprocedural edge
5. add N to worklist
6 else add N to adjust list
7 endif
8. endif
9. endfor
10. while worklist is not empty
11. remove node N from worklist
12. case N is sink of interprocedural edge (with source M)
13. if M is CD on entry and N is not the entry node
14. CD(N) = CD(N)UCD(pred(N))
15. else
16. CD(N)=CD(N)uCD(M)
17. endif
18. if N’s CD changes from a previous iteration
19. foreach node R such that N € rlist(R) and R
is the source or sink of an interprocedural edge
20. add R to worklist
21. endfor
22. endif
23. case N is source of interprocedural edge (with sink M)
24. foreach node R € rlist(N)
25. CD(N) = CD(N)UCD(R)
26. endfor
27. if N’s CD changes from a previous iteration
28. add M to worklist
29. endif
30. endcase

31. endwhile
32. update CD of nodes in adjust list
end ComputeInterCD

Figure 15: Overview of the algorithm for computing interprocedural control dependences.

Partial control dependences have several useful applications: they can be used for computing slices [25],

for computing procedure-level control dependences, and for computing interprocedural control dependences

[8].
4.2.2 Propagation of interprocedural control dependences

The partial control dependences contain correct control dependences for all nodes that are control dependent
on non-placeholder nodes. However, the control dependences of nodes that are control dependent on entry
or placeholder (return-predicate) nodes must be adjusted. Phase 2 of the control-dependence computation
performs this adjustment by propagating control dependences across methods, and computes interprocedural
control dependences.

Figure 15 presents an overview of the algorithm that computes interprocedural control dependences from

partial control dependences. The algorithm propagates control dependences along interprocedural (call,
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return, and exceptional-return) edges in the ICFG, until a fixed point is reached. During the fixed-point
computation, the algorithm processes only nodes, such as call, entry, return, exit, and catch, that are either
sources or targets of interprocedural edges in the ICFG. The algorithm first identifies nodes that require
their control dependences to be adjusted (lines 1-9). For each such node N, the algorithm stores, in rlist,
the set of nodes from which control dependences are propagated to N (line 3). The algorithm places on
the worklist those nodes that require their control dependences to be adjusted and are sources or sinks of
interprocedural edges (line 5). For example, node 21a is a call node that is control dependent on a return
predicate in the ACFG (Figure 14). Therefore, the algorithm adds node 21a to the worklist, and adds node
17b to rlist(21a), so that control dependences are propagated to node 21a from node 17b. If a node is not
the source or sink of an interprocedural edge, the algorithm places the node on an adjust list, to be processed
after the fixed-point computation (line 6). For example, the algorithm adds nodes 18, 19, and 20 to the
adjust list; the algorithm also adds node 17b to the rlist for these nodes.

Next, the algorithm processes the nodes on the worklist, until the worklist becomes empty (lines 10-31).
If a node N is the sink of an interprocedural edge, with source M, the algorithm updates N’s control depen-
dences by adding to it the control dependences of M (line 16). For example, when the algorithm processes
node 17b, it propagates the control dependence (39, F) from the exit node of the CFG of dispense() to node
17b. If N’s control dependences change from a previous iteration, the algorithm adds to the worklist those
nodes whose control dependences may require to be updated (lines 18-22). For example, after updating the
control dependences of node 17b, the algorithm adds node 21b to the worklist.

While processing N, the algorithm ensures that control dependences are not propagated along illegal
call-return sequences (lines 13-14).

If a node N is the source of an interprocedural edge, with sink M, the algorithm updates N’s control
dependences by adding to it the control dependences of each node that appears in rlist(N) (lines 24-26). For
example, the algorithm updates the control dependences of node 21b by adding to it the control dependences
of node 17b. If the control dependences of N change from a previous iteration, the algorithm adds M to the
worklist because M’s control dependences now need to be updated (lines 27-29). Thus, after updating the
control dependences of node 21b, the algorithm adds the entry node of returnCoins() to the worklist.

The algorithm continues in this manner until the worklist becomes empty. Next, algorithm updates the
control dependences of the nodes that appear on the adjust list (line 32). The algorithm does this by adding

to the control dependences of each node N the control dependences of nodes that appear in rlist(N).

Table 5: Interprocedural control dependences for vend ().

Control Control
Node dependent on Node dependent on
15 entry 23 (40,SNA)(40,IS)
16 (15,T) 24 (40,SNA)(40,18)
17a (15,F) 25 (24,T)
17b (39,F) 26 (24,F)
18, 19, 20 (39,F) 27 (24,F)
2la (39,F) 28 (10,T)
21b (10,F) exit (39,F)(24,T)
22 (40,SNA)(40,18)

Table 5 lists the interprocedural control dependences for nodes in the CFG of method vend(). As the

table illustrates, the control dependences of nodes that are control dependent on placeholder nodes in the

25



A\)
6 & & S P o o pH e &£ P& e o &P
B R P P T S R T
1007

- Nodes with same
partial and

T 60 intraprocedural

control dependences

60 T

[l Nodes with different
-+ 40 partial and
intraprocedural
control dependences

40 T

> & @ S
. ? Q &
& R

Figure 16: Effects of exception-handling constructs on partial control dependences.

partial control dependences (Table 4) is adjusted by the computation of interprocedural control dependences.
For example, node 18 is control dependent on the placeholder node RP17b in the partial control dependences,

and on node 39 in the interprocedural control dependences.

4.2.3 Effect of exceptions on partial control dependences

To determine the extent to which the presence of exception-handling constructs affect control dependences,
we conducted a preliminary empirical study. The goal of the study was to examine how the presence
of exception-handling constructs in our subjects causes the partial control dependences to differ from the
intraprocedural control dependences. For each subject, we constructed the CFGs and the ACFGs for the
methods in that subject using JABA. To factor out the effects of halt statements on control dependences,

we replaced each halt statement!!

with a no-op. We then used the analysis tools from Aristotle Analysis
System to construct two CDGs for each method, one using the CFG for that method and the other using
the ACFG for that method. Finally, for each node in the CFG (excluding non-statement nodes such as entry
and exit), we determined whether that node had different control dependences in the two CDGs.

Figure 16 presents the results of the study. It shows, for each subject, the percentage of nodes that
have the same partial and intraprocedural control dependences, and those that have different partial and
intraprocedural control dependences. The number at the top of each bar represents the number of nodes in
the CFG of the corresponding subject. The figure illustrates that the control dependences of a significant
number of the nodes was affected. On average, the control dependences of over 41% of the nodes were
affected by the presence of exception-handling constructs. The percentage of affected nodes ranged from
5.0%, for jflex, to 57.2%, for swing-api.

These results are preliminary in that they do not indicate the actual differences in the control dependences;
further empirical studies are required to determine such differences. Further experimentation is also required
to study the effects of the differences in control dependences on other analysis techniques, such as slicing,

that use the control dependences.

!1The library call System.exit() is the halt statement in Java.
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5 Other Analyses and Applications

Control-flow and control-dependence analyses are useful for software-engineering and maintenance tasks,
such as slicing and structural testing. The representations and analyses described in the previous section

can be applied to perform slicing and testing of programs that contain exception-handling constructs.

5.1 Program Slicing

Program slicing is a technique for identifying transitive control and data dependences in a program. A
backward slice for a program P, computed with respect to a slicing criterion < s,V >, where s is a program
point and V' is a set of program variables referenced at s, includes statements in P that may influence the
values of the variables in V at s [27]. A slice can also be computed in the forward direction; a forward slice
includes those statements in P that are influenced by the values of the variables in V at s.

There are two alternative approaches to computing slices that either propagate solutions of data-flow
equations using a control-flow representation [27, 25] or perform graph reachability on dependence graphs
[26]. The slicing algorithms presented in References [27] and [26] make the limiting assumption that, at each
call site, control definitely returns from the called procedure, and therefore, consider only intraprocedural
control dependences while computing the slices. When applied to programs that contain control structures,
such as halt statements and exception-handling constructs, those techniques fail to include those statements
in the slices that are related to the slicing criterion through the effects of the control structures on control
dependence. Reference [25] extended the slicing algorithm of Reference [27] to use partial control dependences
during the computation of slices; that extension correctly accounts for the effects of halt statements, on
control dependence, while computing the slices. Using our control-flow representations, and with minor
modifications, that extension can be adapted to compute slices that also account for the effects of exception-
handling constructs. In recent work [20], we have also extended the alternative slicing technique — one that
uses dependence graphs to compute slices — to account for the effects of exception-handling constructs on

control dependence.

5.2 Structural Testing

Structural testing techniques [35] develop test cases to cover various structural elements of a program.
Control-flow-based structural testing criteria select test cases based on the flow of control in a program. For
example, branch testing [36] develops test cases by considering inputs that cause certain branches in the
program under test to be executed. Similarly, path testing [37, 38] develops test cases that execute certain
paths in the program. Data-flow-based structural testing criteria use the data-flow relationships to guide
the selection of test cases [39, 28, 40, 41]. For example the all-uses criterion [41] requires that each du-pair
in the program under test be covered by test cases.

Exception-handling constructs introduce new structural elements, such as exceptional control-flow paths,
that should be considered for coverage by structural testing techniques. Existing tools for developing struc-
tural tests for Java programs [42] provide simple coverage criteria, such as the coverage of throw statements
and catch handlers. Such criteria require the coverage of statements that raise exceptions and those that

catch exceptions, and are similar in nature to the traditional criteria that require the coverage of statements
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or branches. Previous work has shown that criteria, such as branch testing, have weak fault-detection capa-
bilities [43, 44]. We therefore expect the all-throw and all-catch criteria to also be weak in detecting faults.
The criteria do not require the testing of various exceptional control-flow paths; they do not consider the
different types of exceptions that can be raised at a statement, or the complex control and data interactions
both within and across modules that can result in the presence of exception-handling constructs. There are
simple types of faults, such as a missing handler, that may not be detected by these criteria. For example,
consider a faulty version of the vending-machine program that is missing the catch handler in line 54. That
handler catches exceptions of type IA that are raised by the throw statement in line 40. To detect this
fault, a test case must cause that throw statement to raise an exception of type IA. However, the all-throw
criterion simply requires that the throw statement be covered, and does not consider the types of exceptions.
Therefore, a test case might cover that statement but raise an exception of type other than IA; a test suite
developed in such a manner satisfies the all-throw criterion but fails to detect the fault.

In recent work [45], we have developed a class of exception testing criteria to adequately test the behavior
of exception-handling constructs. These criteria subsume!? the all-throw and all-catch criteria, and test
exception-handling constructs with varying degrees of thoroughness. For example, some of the criteria
examine activations and deactivations of exception objects, and require the coverage of various paths between
the activations and deactivations. It is possible that in practice exception handling may be used ways that
the coverage of throw statements and catch handler suffices for testing the programs. However, it is still
beneficial to have a hierarchy of testing criteria that offer the testers flexibility in the level of testing that
they perform. Furthermore, by exploring the different types of interactions caused by exception handling,
the criteria provide a better understanding of the types of interactions that are significant. Such insight is
valuable not only to provide automated support to generate appropriate test cases, but also to verify the
interactions informally through inspection. Our current work includes theoretical and empirical evaluations

of the exception testing criteria.

6 Safety, Precision, and Practical Utility of the Techniques

Program-analysis techniques often deal with intractable problems whose correct solutions either have a
prohibitive expense associated with their computation or are uncomputable. Faced with such impediments,
different approaches to performing the analyses compute solutions that are approximations to the true
solutions. Such approximations lend to an evaluation of the approaches in terms of the relative safety and
precision of the solutions computed by the approaches. A safe solution is one that omits no necessary element
from the solution whereas a precise solution is one that includes no spurious element in the solution. Although
increase in safety and precision increase the usefulness of a solution, in practice, the benefits of a safer and
more precise analysis must be weighed against the cost of performing the additional analysis. Both safety
and precision involve tradeoffs with the efficiency of the technique, and different approaches sacrifice either
depending on the level of precision and safety that is desired in the application of the solutions. For certain
applications, such as compiler optimizations, safety is required, to avoid invalid program transformations,
whereas, for other applications, such as reverse engineering, safety is desirable but not strictly necessary [46].

Our approach to the analysis of exception-handling constructs suffers both unsafety and imprecision. Our

12 A criterion subsumes another if any test case that satisfies the first criterion also satisfies the second criterion.
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approach is unsafe because it ignores the control flow caused by implicit exceptions. Implicit exceptions are
raised either in library routines or by the runtime environment. For the implicit exceptions that are raised
in library routines, we can create summarized CFGs for those library methods that propagate exceptions,
and add them to the ICFG. The summarized CFG for a library method would contain nodes for only the
entry, the exit, and the exceptional exits.

For the implicit exceptions that are raised by the runtime environment, however, representing each po-
tential control flow with explicit control-flow edges may cause the control-flow representation to become too
unwieldy to be useful. Moreover, considering the effects of such implicit exceptions on program-analysis
techniques may cause the techniques to generate solutions that are too large to be useful. For example, if a
statement s can raise runtime exceptions, a statement that follows s is control dependent on s because s de-
termines whether that statement executes. If statements that raise runtime exceptions occur very frequently,
their effects would cause the control-dependence relation to be too cumbersome to be useful. On the other
hand, ignoring such implicit exceptions, causes the control-dependence analysis to miss dependences, some
of which may be significant.

In future work, we will investigate how the analysis of implicit exceptions influences software-maintenance
tasks and practical utility of program-analysis tools. Depending on the particular application and the cost
of analysis, we may be willing to accept the unsafety, or we may be able to summarize implicit exceptions
and consider their effects on analysis techniques differently than the effects of explicit exceptions.

The four type-inference approaches that we described offer different levels of precision and safety in
the information that they generate. The most precise of the four approaches is the one that combines
flow-sensitive and flow-insensitive analyses, but that approach can still include unnecessary types in the
type-inference solution. The approaches that use the flow-insensitive analysis can omit potential exception
types from the type-inference solution, and therefore, are unsafe. The unsafety and imprecision of these
approaches causes missing paths and infeasible paths, respectively, in the control-flow representations. Such
effects on control-flow representations influence applications that use the representations. For example,
the presence of infeasible paths causes a structural testing criteria to generate test requirements that are
satisfied by no input to the program. Missing paths cause a structural testing criteria to fail to test certain

relationships in a program, and therefore, inadequately test the program.

7 Related Work

Choi and colleagues [12] describe an intraprocedural control-flow representation called the factored control-
flow graph (FCFG) to analyze efficiently programs written in languages, such as Java, that may have fre-
quently occurring exceptional control flow. The FCFG represents exceptional control flow caused by both
explicit and implicit exceptions. For explicit exceptions, the approach creates edges that are similar to the
edges created in our approach. For implicit exceptions, however, the approach does not create edges from each
potentially exception-throwing instruction (PEI) because such instructions occur very frequently. Instead,
the approach merges several such instructions in the same basic block, and creates factored control-flow edges
from the basic block to catch handlers to summarize the exceptional control flow for that basic block; the
approach creates one factored edge for each type of implicit exception that can be raised by the statements

in a basic block. The approach derives the target of the implicit exceptional exits from each PEI in a basic
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block on demand. Choi and colleagues also describe modifications to data-flow analysis techniques, such as
reaching-definition and live-variable analysis, that allow the techniques to work correctly on the FCFG. That
work differs from ours in several ways. First, the work does not model the propagation of exceptions across
methods. Although Choi and colleagues discuss alternative representations for interprocedural control flow,
their current tool does not construct interprocedural representations. Second, the work does not describe
the behavior of, and representations for, £inally blocks. Third, the work does not discuss issues relating
to inferring exception types, and how they affect precision of the FCFG and the analyses performed on the
FCFG. Finally, the scope of the work is limited to data-flow analysis, and it does not consider the effects of
exceptions on control dependence, slicing, and structural testing.

Chatterjee and Ryder [13] describe an approach to performing points-to analysis that incorporates ex-
ceptional control flow in languages, such a Java. Their approach derives the exceptional control flow during
the points-to analysis, and does not represent it explicitly in an interprocedural control-flow graph. Their
approach does not consider implicit exceptions. In subsequent work [14], Chatterjee and Ryder provide an al-
gorithm for computing du-pairs that arise because of exception variables, and along exceptional control-flow
paths. In this work, however, they ignore the control flow within £inally blocks. Chatterjee and Ryder do
not describe representations for exceptional control flow, and the scope of their work is limited to points-to
and data-flow analysis.

Schaefer and Bundy [16] analyze the flow of exceptions in Ada programs, and extract information that
describes how exceptions are propagated across modules. They define several relations that let them formally
specify the set of exceptions propagated by different blocks of code. The goal of their analysis is to identify
potential violations in the code of application-specific guidelines that govern the usage of exception handling.
Robillard and Murphy [15] have similar goals for Java programs. They describe a tool that extracts the
flow of exceptions in a Java program, and generates views of the exception structure. These views enable
a developer to reason about the flow of exceptions across modules, and identify program points where
exceptions are caught unintentionally, or where finer-grained exception handling may be possible. The tool
extracts potential implicit exceptions by examining module interface and documentation. The techniques
described by both Schafer and Bundy [16] and Robillard and Murphy [15] omit reporting several common
implicit exceptions because including them can generate too much information, which adversely affects the
usability of their tools. Their techniques are primarily intended for program understanding and detection
of inconsistencies in coding. They therefore, do not consider the effects of exceptions on various program-
analysis techniques and testing. Using our control-flow representations, we can generate information that is
similar to the information generated by their techniques.

Melski and Reps [47] present techniques for interprocedural path profiling, and briefly discuss how path
profiles for interprocedural exceptional control flow may be generated. Their work neither describes represen-
tations for exceptional control flow, nor analyzes the effects of exceptional control flow on program-analysis
techniques.

Other researchers have addressed the problem of computing accurate slices for programs that contain
arbitrary intraprocedural control flow [21, 7, 22]. Such control flow is caused by intraprocedural goto
statements and statements such as break and continue. Because statements, such as break and continue,
neither control other statements nor use data values, they are never included in a slice. References [21, 7, 22]

present solutions in which the statements are included in the slices, when necessary. The same problem
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can occur in the presence of exception-handling constructs: statements, such as throw and catch can be
excluded from slices. Our slicing technique for exception-handling constructs [20] ensures that throw and
catch statements are included in the slices, when necessary.

Ryder and colleagues [11] conducted a study of the usage patterns of exception-handling constructs in
Java programs. They studied a suite of thirty-one Java programs, which contained from two to 2096 methods.
They examined 10161 methods, and found that, on average, 16% of the methods contained either a throw
statement or a try statement. Our subjects contain four of the subjects that were included in their study.
For those four subjects, our results are consistent with theirs. Their study thus offers further evidence to

support our belief that exception-handling constructs are used frequently in Java programs.

8 Conclusions

We have discussed the effects of exception-handling constructs on analysis techniques such as control flow,
data flow, and control dependence. We have presented techniques to create intraprocedural and interproce-
dural representations for Java programs that contain exception-handling constructs. These representations
are useful for performing other analyses and constructing other representations. The representations show
explicitly the exception types that can be raised at throw statements, and exception types that are prop-
agated across methods. Therefore, the representations can provide a valuable aid in understanding the
behavior of exception-handling code. We have also presented algorithms for computing control dependences
in the presence of exception-handling constructs.

We have presented the results of three empirical studies that we performed using JABA, our analysis tool
for Java programs. In the first empirical study, we determined the frequency with which exception-handling
constructs occur in Java programs. The results from that study indicate that, in practice, exception-handling
constructs can occur frequently: 8.1% of the 30400 methods that we examined contained either a throw
statement or a try statement (Table 1).

In the second empirical study, we evaluated the need for, and approaches to performing, type inferencing
for determining exception types at throw statements. Based on the results from these studies, we made

several observations:

e Type inferencing to determine exception types at throw statements may not be required for a majority
of the throw statements. In over 97% of the throw statements in our subjects, the exception object is

instantiated at the throw statement (Table 2).

e A throw statement that does not instantiate the exception object is more likely to raise an exception
that is referenced by a variable than an exception that is returned by a method call. In our subjects,
four out of every five throw statements that do not mention a new-instance expression mention a
variable (Table 2).

e The conservative approximation for determining exception types worked well for over half of the throw
statements for which it was used, but generated very imprecise results for a quarter of the throw

statements (Table 3).

e In cases where a throw statement mentions a variable, the exception object is rarely instantiated in the
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method that contains the statement. Therefore, the local flow-sensitive type-inference analysis failed

to provide any significant improvement in the precision of the type-inference information (Table 3).

These observations provide insight into the usage patterns of exception-handling constructs in Java
programs. They can help guide the development of a practical approach to analyze exception-handling
constructs, and improve the techniques that we have developed.

In the third empirical study, we evaluated the effects of exceptions on control-dependence analysis. The
results of that study indicate that the control dependences of a significant number of statements are affected
by the presence of exception-handling constructs (Figure 16). Control dependences that are computed for
such statements by traditional techniques can omit necessary dependences and include unnecessary depen-
dences. Incorrect control dependences affect the computation of program slices. Further experimentation
with control-dependence computation and program slicing will reveal the extent to which the presence of
exception-handling constructs affect these techniques.

We have also discussed how our representations and analyses can be used for other applications such as
program slicing and structural testing. Finally, we have evaluated our approach for analyzing exception-
handling constructs in terms of the safety and the precision of the approach. Our approach ignores the
exceptional control flow caused by implicit exceptions. In future work, we will investigate the effects of
implicit exceptions on analysis techniques, and ways to perform the analysis of implicit exceptions. We
will evaluate empirically the efficiency of our techniques for constructing control-flow representations for
exception-handling constructs, and the trade-offs among the different type-inference approaches. We will
also conduct further empirical studies to evaluate the effects of exception-handling constructs on control-

dependence computation, program slicing, and structural testing.
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