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Formal Development and Verification of a
Distributed Railway Control System

Anne E. Haxthausen and Jan Peleska

AbstractÐIn this article, we introduce the concept for a distributed railway control system and present the specification and verification

of the main algorithm used for safe distributed control. Our design and verification approach is based on the RAISE method, starting

with highly abstract algebraic specifications which are transformed into directly implementable distributed control processes by

applying a series of refinement and verification steps. Concrete safety requirements are derived from an abstract version that can be

easily validated with respect to soundness and completeness. Complexity is further reduced by separating the system model into a

domain model and a controller model. The domain model describes the physical system in absence of control and the controller model

introduces the safety-related control mechanisms as a separate entity monitoring observables of the physical system to decide

whether it is safe for a train to move or for a point to be switched.

Index TermsÐSafety, railways, distributed control system, formal specification, verification, stepwise refinement, RAISE.

æ

1 INTRODUCTION

THE present modernization of European railway net-
works raises a large variety of issues related to the

design and verification of railway control systems. One of
these problems is the question, how to design control
systems for small local networks that can only operate
effectively if the costs for initial installation, operation, and
maintenance of the control system are low? Today's
centralized interlocking systemsÐat least those which are
available in GermanyÐare far too expensive for such small
(possibly private) networks. A promising approach is to
distribute the tasks of train control, train protection, and
interlocking over a network of cooperating components
using the standard communication facilities offered by
mobile telephone providers. On the other hand, a distrib-
uted control concept also introduces new safety issues that
could be disregarded, as long as centralized control was
applied. First, the new communication medium requires
security and reliability mechanisms that were unnecessary
for centralized systems transmitting control commands to
signals and points over wires. Second, the distribution of a
control algorithm over several components raises new
design and verification issues, since the concept of a global
state space as available in a centralized interlocking system
can no longer be implemented.

In this article, we will describe the concept of a

distributed railway control system consisting of switch boxes

(SB), each one locally controlling a point, and train control

computers (TCC) residing in the train engines and collecting

the local state information from switch boxes along the track
to derive the decision whether the train may enter the next
track segment. The system concept does not require signals
along the track, since the ªgo/no-goº decisions are
performed and indicated in the train control computers.
We give an overview of the formal specification and
verification of the main control algorithm executed by the
distributed cooperating control components. The system is
designed to operate on simple networks, which means in our
context that there are two distinguished destinations A and
B, such that at each track segment of the network there is a
uniquely defined direction to reach A and B, respectively.
Typically, this definition applies to networks which are not
highly frequented by trains and connect two main stations
with small intermediate stations (Fig. 1).

Our specification and verification approach is based on
the RAISE formal method and tool set [10], [11], and follows
the invent-and-verify paradigm. To address safety issues in a
systematic way the standard procedure (see [12]) separating
the equipment under controlÐthat is, the railway network
with its trainsÐfrom the control systemÐin our case, the set
of TCCs and SBsÐis applied. To this end, we first develop
abstract algebraic specifications for the domain model, i.e.,
the railway network and the trains to be controlled, and the
safety requirements stating that the system must not perform
a transition into a hazardous state where trains may collide
or derailing might occur. These requirements are expressed
as conditions about the observables of the domain model.
Using stepwise refinement and accompanying verification
steps, we introduce additional observables that may be
monitored by a controller giving the ªcan move/cannot
moveº conditions for each train and the ªcan be switched/
cannot be switchedº conditions for each point. The
completeness and consistency of these conditions is verified
by proving refinement relations to the higher-level specifi-
cations which already have been proved to be consistent
with the initial safety requirements. The first stage of the
invent-and-verify development ends when the observables
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of the last refinement needed to control the safety of
train movements and point switching are implementable
in the sense that they can be transformed into a concrete
state space that may be conveniently partitioned among a
set of distributed cooperating processes. The second
stage specif ies and verif ies the concreteÐi.e. ,
implementableÐdistributed controller model by introducing
communicating processes which represent train control
computers and switch boxes. The TCC processes collect
state information from the SB processes to make the ªcan
move/cannot moveº decisions. The SB processes store the
relevant state information to take the ªcan be switched/
cannot be switchedº decisions for their local points. The
resulting controller is a distributed program which is
under-specified with respect to application-dependent
control decisionsÐlike defining the order in which trains
may pass along a single-track sectionÐwhich can be made
without violating the safety requirements. Concrete con-
troller implementations will resolve this under-specification
by choosing a specific solution for application-dependent
control decisions.

The work presented here originated from a collaboration
of the authors with INSY GmbH Berlin, who developed the
distributed systems design described in the next section for
their railway control system RELIS 2000 designed for local
railway networks. In this collaboration, the authors focus on
the generalisation and verification of the control concepts
used in RELIS 2000. Furthermore, the second author is
cooperating with Siemens and Transnet (South African
Railways) in the field of verification, validation and test of
safety-critical systems.

In Section 2, we introduce the general concept for the
distributed railway control system discussed in this article.
Similar approaches of ªFunkbasierter Fahrbetrieb (FFB)ºÐ
that is, train control based on radio transmissionÐare

presently being investigated by German Railways [3]. Our
verification concept described in the following sections
applies to all of these approaches. Section 3 presents the
formal specification of the system's domain model. In
Section 4, an abstract version of the safety requirements is
introduced. The subsequent sections are concerned with the
development of the control system as a series of refinement
and verification steps. In the discussion (Section 7), we
sketch the more general issues of our concept for the
development, verification, validation and test of safety-
critical systems. In the Appendix, one of the safety proofs is
given.

2 ENGINEERING CONCEPT

In this section, we introduce the technical concept of the

distributed railway control system to be formally specified

and verified below. The technical concept is based on the

RELIS 2000 system of INSY GmbH with generalizations and

modifications performed by the authors.
Consider the system configuration depicted in Fig. 2. The

tasks of train control, train protection, and interlocking are

distributed on train control computers residing in each train

T1, T2 and switch boxes SB1, SB2, SB3, each one

controlling a single point, the boundary between two

segments (e.g., blocks) of a single track or a railway

crossing. The basic principle of the control algorithm is as

follows:

. Each switch box stores the local safety-related
information in its state space. For example, this
information contains the actual state of the traffic
lights guarding the railway crossing, i.e., the track
segments that are presently connected by the local
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point, or whether a train is approaching the switch
box. The switch boxes use sensors to detect
approaching trains and to decide whether a train
has left the critical area close to a point or a crossing.

. To pass a railway crossing or to enter a new track
segment, a train's TCC communicates with the
relevant switch boxes to make a request for blocking
a crossing, switching a point, or just reserving the
relevant track segments at the SB for the train to
pass. The decision which switch boxes address is
based on the location of the train which is
determined by means of the Global Positioning
System (GPS) or by using track components signal-
ing their location to the passing train.

. Depending on their local state, the switch boxes may
or may not comply with the request received from a
TCC. In any case, each SB returns its (possibly
updated) local state information to the requesting
TCC. After having collected the response from each
relevant SB, the TCC evaluates the SB states to
decide whether it is safe to approach the crossing or
to enter the next track segment.

. For train protection, each TCC blocks the train
engine if it is not allowed to leave a station and
triggers the emergency brake if the train approaches
a railway crossing or enters a new track segment
without permission from the associated switch
boxes. Furthermore, each TCC monitors the speed
of the train and gives warning messages or triggers
the emergency brakes if the actual speed exceeds the
maximum velocity admitted for the type of train at
its actual location in the network.

Observe that in principle, the concept sketched above
would admit completely automatic train control without
train engine drivers being present. However, in the possible
realisations presently discussed, this is not intended. The
train engine driver has the ultimate responsibility to decide
whether it is safe to leave a station, enter a new track
segment or pass a crossing.

In the subsequent sections, we will focus on the formal
specification and verification of the control algorithm
concerned with ªcan move/cannot moveº decisions for
trains and ªcan be switched/cannot be switchedº decisions
for points. To introduce the principles of this algorithm,
consider Fig. 3, which shows the local state spaces of two
switch boxes SB1, SB2 and trains T1, T2.

In state component CONNECTED, the switch box stores
which track segments are presently connected by the local
point. (If the SB just separates two blocks on a single track,
this information is static.) In the components DIR S1, DIR
S2,... the directions associated with each track segment are
stored: A segment can either be used only for trains going in
direction A! B, or for trains going in direction B! A or
in both directions (A$ B). Typically, this information is
fairly static and will only be changed if deviations from the
ordinary train schedule occur, for example when construc-
tions are going on or when a train arrives late. As explained
below, the segment direction will be evaluated to decide
whether a train may reserve a switch box. The LOCKED_BY
state component indicates whether a specific train has the
right to pass the switch box. If such a train is registered in
this component, it is impossible to switch the local point to
another direction until the train has passed. For the
detection of passing trains, a state component SENSOR is
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Fig. 3. Switch boxes, trains, and their state spaces.
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activated by a set of sensors attached to the track when a

train approaches the point. The component is returned to

state ªpassiveº as soon as the sensors indicate that the last

wagon of the train has passed the point. To decide whether

a train may get a reservation for a segment approaching the

switch box and whether a point may be locked for a train,

additional state components RES S1, RES S2,... are

maintained at each switch box for every track segment

whose segment direction is approaching the SB. The

ACTION component of the state space is used as a

ªtransaction flagº for commands which have to be executed

on several switch boxes in a synchronized manner: The

switch box will refuse new commands, as long as the

ACTION flag indicates such a transaction. Observe that this

flag is unnecessary for the standard reservation commands

described next.
The state space of each TCC contains the lists ROUTE-

SEGMENTS and ROUTE-SBs of track segments and switch

boxes along the train route. When leaving a segment and

passing a switch box, these entries are removed from the

head of each list. Again, segments are stored together with

their directions !; ;$ . State component DIR stores

which direction the train is heading. A train may only

move along segments whose direction is compatible with

DIR. In POS, the actual position is stored. In the abstraction

presented here, positions are specified by one or two

segments, the former indicating that the train is on the

segment without touching neighboring segments, the latter

indicating that the train is in the critical area of a point

(potentially) connecting the two segments. State component

RESERVATIONS stores the switch boxes and associated

segments which have been reserved by the train. LOCKS is

a list of switch boxes whose points have been switched in

the direction of the train route and are locked for the train.

Whenever a train is allowed to proceed into the next

segment, this information must be consistent with the

corresponding RES- and LOCKED_BY-components of the

switch boxes involved.
To determine, whether a train T1 may enter a new

segment S2 (Fig. 3), the train control computer and the

relevant switch boxes evaluate the state space described

above as follows:

. To guarantee safety for the train at its local position,
two conditions must be fulfilled:

1. The train direction must be consistent with the
direction associated with the local track seg-
ment. (Train T1 going in direction A! B cannot
have its position on segment S3, since the latter
has associated direction B! A.)

2. Each train must have a reservation for its local
track segment at the next switch box to be
approached by the train (S1 must be reserved
for train T1 at switch box SB1).

. To enter the next segment (S2 for train T1), three
safety conditions must be fulfilled:

1. The train direction must be consistent with the
direction of the segment to be entered. (S1 has
direction A$ B, so this is consistent with T1's
train direction A! B.)

2. The next SB must be locked for the train (SB1 is
locked by T1, so this condition is fulfilled for
T1). Note this can only be the case if the segment
ends at the SB have been switched in the
direction of the train route.

3. The train must have a reservation for the next
segment S2 at every switch box where S2 is an
approaching segment. (In Fig. 3, S2 approaches
both SB1 and SB2, so T1 must reserve S2 at
both switch boxes. In contrast to that, T2 only
needed to reserve S3 at SB1 before entering S3
from S4.)

. In order to fulfill these three conditions, the train
signals its wish to enter the next segment to the
associated switch boxes. Each switch box enters the
train's reservation for the next segment if this is not
already reserved for another train. If reservation is
possible and the SB is not locked by another train, it
will switch its point into the required direction if
necessary and lock the point for the requesting train.

. If the three conditions are fulfilled the train may
enter the next segment. As soon as the train has
passed the next SB, the SB will delete the lock and all
reservations made by the train. (In Fig. 3, SB1 will
unlock its point and delete all references to T1, as
soon as the train has passed the point and entered
S2. Note that T1 is still completely safe at its new
location, since each train wishing to enter S2 from
either S1 or S4 also needs a reservation of S2 at SB2,
and this is still blocked by T1.) The train will update
its own state space accordingly.

In the sections below, this informal system concept is

described and verified in a formal way. Observe that in this

article we deal with untimed control and safety mechan-

isms only. Time-dependent conditionsÐfor example, when

the last point in time (depending on speed and position) to

trigger the emergency brakes in order to prevent the train

from entering the next segmentÐare imported into the

specifications at a later stage as a ªtimed refinementº of the

untimed control mechanisms discussed here.

3 DOMAIN MODEL

In this section, we show (parts of) a domain model

capturing those physical objects and events of the uncon-

trolled railway system which are relevant for the develop-

ment of the railway control system. We divide the model

into a static part and a dynamic (state based) part. Other

authors have established similar railway domain models

[1], [5], [6].

3.1 Static Part of the Model
The static part of the model comprises definitions of data

types for physical objects. The objects we consider include

the trains, the points (switch boxes), and the railway

network.
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Trains. Each train has a unique identification belonging to

the following, not further specified type

type TrainId

Hence, our model is independent of the number of
trains.

Points. Each point has a unique identification belonging to

the following, not further specified type.

type PointId

Railway Network. A railway network consists of segments

connected according to the network topology.Each

segment has a unique identification belonging to the

following, not further specified type:

type Segment

In our model, the network topology is specified by a
predicate (are_neighbors) which defines which segment
ends are neighbors.

value

are_neighbours : SegmentEnd � SegmentEnd! Bool

where a segment end is a pair consisting of a segment

identification and one of two possible ends.

type

SegmentEnd = Segment � End, End ==
a_end j b_end

The are_neighbors predicate must satisfy a number of
axioms (not presented here) ensuring that the network is
directed.

Hence, our model is independent of the size and exact
layout of the network.

3.2 Dynamic Part of the Model

As trains move along the segments of the network and

points are switched, the state of the railway may change

over time. We use a discrete, event-based model to describe

state transitions.

The State Space. At this early phase of development, we do

not yet know, what the exact state space is, but only that

the state space should contain information about some

dynamic properties of objects which we will explain

below. Therefore, we just introduce a name for the type

of states without giving any datatype representation.

type State

and characterize this type implicitly by specifying state

observer functions of the form obs : State x ...!T which can

be used to capture information (of type T) about the state.

Dynamic Properties of Trains. Each train has a position and

a direction which may change over time.
We assume that the length of segments is chosen such

that any train has a position on one or two neighboring
segments1 or it has passed an end point of the network.

type

Position = =
single(seg_of : Segment) double(fst : Segment, snd
: Segment) | error

A position of the form single�s� indicates that the train is

residing on a single segment s. A position of the form

double�s1; s2�, where s1 and s2 are two neighboring

segments, indicates that the train is residing on one or

both segments in the critical area of the point potentially

connecting these segments. The error position is used to

model the case where a train has passed an end point of

the network.
Since the railway network is directed according to our

simple network assumption described in the introduction,
there are two possible train directions.

type Direction == dirAB | dirBA

We introduce the following to observe the mentioned

properties:

value /� state observers �/
position : State � TrainId ! Position,
direction : State � TrainId ! Direction

We only consider states satisfying the physical law that

the position pos and direction dir of any train must

conform in the sense that if the position is of the form

double�s1; s2� then the ªto-endº in direction dir of

segment s1 must be a neighbor to the ªfrom-endº in

direction dir of segment s2 (in other words: the train

must drive in the direction from s1 to s2). This is

expressed by the following axiom:

axiom [position_direction_consistent]
8 � : State, t : TrainId, s1, s2 : Segment :.

position(�, t) = double�s1; s2� )
are_neighbors(to_end(s1, direction(�, t)),
from_end(s2, direction(�, t)))

The ªto-endº in direction dir of segment s is defined as
follows:

value

to_end : Segment � Direction ! SegmentEnd
to_end(s, dir) � if dir = dirAB then (s, b_end) else

(s, a_end) end

The ªfrom-endº is the opposite end of the ªto-end.º

Dynamic Properties of Points. Points may be switched.
Hence, the connections between segment ends of the
railway network may change over time. We introduce
the following function to observe this:

value /� state observer �/
are_connected : State � SegmentEnd � SegmentEnd
!Bool

The are_connected observer must satisfy some axioms (not
presented here) ensuring that some physical laws are
satisfied, e.g., that only neighboring segments are
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connected and there is exactly one connection in each
point.

Events. We consider the following events:

. trains move from one position to their next
position, and

. points are switched.

It should be noted that in this uncontrolled model, events
may lead to unsafe states.

For each kind of event, we introduce a state
constructor which can be used to make the associated
state changes.

value /� state constructors �/
move : State � TrainId ! State,
switch : State � PointId � SegmentEnd ! State

Their behavior is defined by observer axioms. For
instance, the following axiom states that moving a train
does not change how segment ends are connected.

axiom /� observer axioms �/
[are_connected_move]
8 � : State, t : TrainId, se1, se2 : SegmentEnd �

are_connected(move(�, t), se1, se2) �
are_connected(�, se1, se2)

and the following axiom states that moving a train affects
the position of the train itself:

[position_move]
8 � : State, t1, t2 : TrainId �

position(move(�, t1), t2) �
if t2 = t1 then

next_position(�, position(�, t2),
direction(�, t2))

else position(�, t2) end

pre safe(�)

where safe is a function defined in next section, and
next_position is an auxiliary function defined below. The
term next_position(�, position(�, t2), direction(�, t2))
gives the next position of the train in its driving
direction.

value

next_position : State � Position � Direction !
Position

axiom

[next_position_of_double]
8 �: State, s1, s2 : Segment, dir : Direction .

next_position(�, double�s1; s2�, dir) �
single�s2�,

[next_position_of_single_at_end]
8 � : State, s1 : Segment, dir : Direction .

(8 s2 : Segment .
~ are_neighbors(to_end(s1; dir),
from_end(s2, dir))) )

(next_position(�, single�s1�; dir) � error),

[next_position_of_single_at_connection]

8 � : State, s1, s2 : Segment, dir : Direction .
are_connected�, to_end(s1, dir),
from_end(s2, dir)) ) (next_position(�,
single�s1�, dir) � double�s1; s2�),

[next_position_of_single_at_non_connection]
8 � : State, s1, s2 : Segment, dir : Direction .

are_neighbors(to_end(s1, dir), from_end(s2,
dir)) ^ (8 s : Segment .

~ are_connected(�, to_end�s1; dir�,
from_end(s; dir))) )

(next_position(�; single�s1�; dir)
� double(s1; s2))

The first axiom states that the next possible position of a

train having a position on two segments, s1 and s2, is its

front segment s2. The second, third, and fourth axiom

define the next possible position for trains in direction

dir having a position on a single segment s1. If the ªto-

endº in direction dir of segment s1 has no neighbors, the

train is at an end point of the railway network and will

have error (modeling derailing) as its next possible

position. If the ªto-endº in direction dir of segment s1 is

connected to the ªfrom-endº in direction dir of a

(neighbor) segment s2 then the train will have its next

possible position on s1 and s2. The same holds if the ªto-

endº in direction dir of segment s1 has no connections,

but has the ªfrom-endº in direction dir of a segment s2

as neighbor.
There are similar observer axioms for switch.

4 SAFETY REQUIREMENTS

Our goal is to develop a train control and interlocking
system, satisfying the following two safety requirements:

No collision. Two trains must not reside on the same
segment.

No derailing. Trains must not derail (by passing an end
point of the network or by entering a point from a
segment which is not connected with the next segment).

The notion of safety can be formalized by defining a
predicate which can be used to test whether a state is safe.

value

safe : State ! Bool

safe(�) is no_collision(�) ^ no_derailing(�),

no_collision : State ! Bool

no_collision(�) �
(8 t1; t2 : TrainId . t1 6� t2 )

segments(position(�; t1)) \ segments(position
(�; t2)) = {}),

no_derailing : State ! Bool

no_derailing(�) �
(8 t : TrainId .

position(�; t) 6� error ^ (8 s1; s2 : Segment .
position(�; t) = double�s1; s2� ) are_connected
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(�, to_end(s1, direction(�; t)), from_end
(s2, direction(�; t)))

)
)

Here, segments is an auxiliary function giving the segments
of a position.

Observe that the no-derailing safety requirement above

only covers wrong point positions as the cause for derailing,

but does not refer to derailing due to excessive speed of

trains. However, this cause for derailing can be handled by

a completely separate safety-mechanism. To avoid derailing

due to excessive speed, the maximum velocity is calculated

as a function of the train type, the number of wagons

attached to the train engine, and the actual train position. It

is continuously checked whether the actual speed does not

exceed the calculated maximum value, otherwise the train

control computer issues a warning and may even auto-

matically trigger the brakes. Obviously, this safety mechan-

ism can be designed and implemented completely

independent from the safety mechanisms preventing colli-

sions and derailing due to wrong point positions. Therefore,

we do not consider derailing due to excessive speed in the

following sections.
The reader may have noted that our top-level safety

requirements neither refer to shunts2 nor to flank protection3

of trains. In the discussion (Section 7), we will explain that
these should be regarded as lower-level safety requirements
which are needed to implement the no-collision and no-
derailing requirements above, because trains cannot stop
immediately.

5 DEVELOPMENT OF THE RAILWAY CONTROL

SYSTEM: FIRST STAGE

The purpose of the railway control system is to prevent
events from happening when they may lead to an unsafe
state. We develop an implementable controller model by
stepwise refinement4 following the invent-and-verify paradigm.5

The development is divided into two major stages of which
we describe the first in this section.

In the first major stage of development, we design a full
state space, keeping information not only about the
dynamic properties described in the domain model, but
also about new dynamic data (observables) like segment
reservations which may be monitored by the controller to
evaluate the ªcan move/cannot moveº and ªcan be

switched/cannot be switchedº conditions. New data, like
segment reservations, also gives rise to new state con-
structors modeling events like making a reservation.

Our strategy for fulfilling the safety requirements is to
invent,

1. a state invariant consistent �, and
2. for each constructor con (�...,) a guard (condition)

can_con(�; :::) which can be used by the controller to
decide whether it should allow events (correspond-
ing to application of that constructor) to happen,

such that the following strong safety requirements are
fulfilled:

1. States satisfying the state invariant must also be safe.
2. Any state transition made by a state constructor

must preserve the state invariant when the asso-
ciated guard is true.

3. If the guards for two possibly concurrent events are
both true in a state satisfying the state invariant, then
a state change made by one of the events must not
make the guard for the other event false.

These requirements ensure that if the initial state satisfies
the state invariant, and the railway control system only
allows events to happen when the corresponding guards
are true then the system will stay safe.

The first strong safety requirement can be formalized by
the following theory:

[consistent_is_safe]
8 � : State . consistent(�) ) safe(�)

The second strong safety requirement can be formalized by
a theory.

[can_con]
8 ... . consistent(�) ^ can_con(�, ... ) ) consistent
(con(�, ...))

for each constructor con. The third strong safety require-
ment can be formalized by a theory typically of the form:

[can_con1_con2]
8 ... .

consistent(�) ^ can_con1(�; x) ^ can_con2(�; y)
) can_con2(con1(�; x�; y)

for each pair of constructors, con1 and con2, belonging to
two possibly concurrent events.

The state space, state invariant, guards, etc., are found by
stepwise refinement and verification.

5.1 First Specification

The first specification is an abstract, algebraic specification
extending the domain model with the following
declarations:

value /� state invariant �/
consistent : State ! Bool

value /� guards for constructors �/
can_move : State � TrainId ! Bool,
can_switch : State � PointId � SegmentEnd ! Bool

As the State is not yet explicit, and the set of observers is not
complete, we cannot yet give complete explicit definitions
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2. A shunt is a track section reserved in front of a train in order to
prevent collisions in situations where the braking process does not succeed
to stop the train at the intended position (e.g. in front of a signal switched to
red).

3. Flank protection requires that points in the vicinity of a train t1 may
not be switched in such a way that another train t2 which failed to stop at
the required position on a neighboring track segment might enter the track
segment reserved for t1, thereby colliding with the ªflankº of t1.

4. That is, the model is developed in a number of steps, where each step
starts with a specification and produces a new specification which is more
detailed (as more design decisions have been taken).

5. That is, in each step, first the new specification is invented and then it
is verified that it refines (is a correct development of) the previous
specification.
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of the state invariant and guards. Instead, we specify

requirements to the guards by implications of the form.

axiom /�requirements to guard can_con �/
[can_con_implication1]
8 ... can_con(�; :::) ^ consistent(�) ) ...

and requirements to the state invariant by an implication of

the form.

axiom /� requirements to consistent �/
[consistent_implication1]
8 � : State � consistent(�) ) p1(�)

We use implications so that we can enrich the requirements

in later steps with additional constraints.
p1(�) is chosen to be safe(�), and the requirements to

can_move is,

axiom /� requirements to guard can_move �/
[can_move_implication1]
8 � : State, t : TrainId .

consistent(�) ^ can_move(�; t) )
case position(�; t) of

single�s1� !
let dir = direction(�; t) in

(9 s2 : Segment .
are_connected(�, to_end(s1; dir),
from_end(s2; dir)) ^ (8 t2 :
TrainId
. t 6� t2 )

s2 =2 segments(position(�; t2)) ^
((consistent(�) can_move(�; t2))
) s2 =2 segments(position
(move(�; t2�; t2)))

)
)

end,
double�s1; s2� ! true,
_ ! false

end

The above axiom states that if a train t is allowed to move

from a single segment s1 in a consistent state then there

must exist a next segment s2 in the driving direction of the

train which is properly connected to s1 (such that moving

the train does not lead to a derailing.) All other trains t2 are

neither allowed to reside on s2 nor allowed to move to s2

(such that collisions are avoided.) The axiom also states that

if a train has passed the end of the network then the state is

inconsistent and/or the train is not allowed to move.
The requirements to can_switch are similar.
Sketched in the Appendix is a proof that this

specification satisfies the following theory.

[safe_can_move]
8 � : State, t : TrainId .

consistent(�) ^ can_move(�; t) ) safe(move(�; t))

i . e . , t h e a x i o m s [ c a n _ m o v e _ i m p l i c a t i o n 1 ] a n d

[consistent_implication1] are consistent with the second

strong safety theory [can_move].

5.2 Second to Fourth Specification
Each of the next three specifications are algebraic and
obtained from the previous specification by adding
declarations of new observers, state constructors and
guards, observer axioms for new observers, and new
constructors and requirement axioms (in form of implica-
tions) for new guards. Furthermore, the requirements to the
state invariant is enriched in specification number i by
adding the axiom,

axiom /� requirements to consistent �/
[consistent_implicationi]
8 � : State . consistent(� ) �pi���)

(where pi��� is a predicate), and the requirements to some
of the previous guards can_con are refined by making the
predicate of the right-hand side of the [can_con_implication]
axioms stronger.

Below, we give a short survey of which concepts are
added in the second to fourth specification.

Second Specification. In the second specification, two new
concepts are introduced.

. segment registrations for trains, and

. segment directions.

This gives rise to two new observers and types for
segment registrations and directions,

value /� state observers �/
registered : State � Segment ! Register,
seg_dir : State � Segment ! SegDir

type

Register = = no | train(tr : TrainId),
SegDir = Direction | BothDir,
BothDir = = bothDir

and a number of observer axioms (not shown here). A
segment has a registration of the form train(t) if a train t
has registered for that segment, and no otherwise. A
segment direction is either one of the global directions
(dirAB or dirBA) or is bidirectional (bothDir).

The idea is, that a train must only be allowed to move
to a segment if it is registered on that segment and if its
direction is consistent with the direction of that segment.

Hence, the requirements to the guard can_move is
refined to,

axiom /� requirements to guard can_move �/
[can_move_implication2]
8 � : State, t : TrainId .

consistent(�) ^ can_move(�; t) )
case position(�; t) of

single�s1� !
let dir = direction(�; t) in

(9 s2 : Segment .
are_connected(�, to_end(s1; dir),
from_end(s2; dir)) ^
registered(�; s2) = train(t) ^
seg_dir(�; s2) 2 {dir; bothDir}

)
end,

double�s1; s2� ! true,
_ ! false

end
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and the state invariant must imply that any train is

registered on and has a direction which is consistent with

the segments of its position.

axiom /� additional requirements to consistent �/
[consistent_implication2]
8 � : State . consistent(�) )

(8 t : TrainId, s : Segment .
s 2 segments(position(�; t)) )

registered(�; s) = train(t) ^
seg_dir(�; s) 2 {direction(�; t), bothDir}

)

Third Specification. In the third specification, segment

reservations for trains at switch boxes is introduced, and

segment registrations is defined in terms of that.

Furthermore, a concept of locking of points is

introduced. The idea is that a train must lock a point in

order to pass it, and when a train has locked a point, the

point cannot be switched before the train has passed the

point.
This gives rise to new state observers for observing

which reservations and locks have been made,

value /� state observers �/
reserved : State � SwitchBoxId � Segment !
Register,
locked : State � PointId ! Register

and new state constructors with guards for making

reservations and locks, new observer axioms, axioms

about the new guards, refinement of the [can_move_im-

plication] and [can_switch_implication] axioms (using the

new concepts), and additional requirements to the state

invariant.
While the actions of making a reservation or lock are

events independent of the move event, the deletion of
reservations and locks are part of the move event: The
new observer axioms for the move constructor express
that when a train leaves a segment and passes a switch
box its reservations at this switch box will be removed,
and when it passes a point the lock of the point will be
removed.

Fourth Specification. In the fourth specification, a notion

of train routes is introduced and sensors at the switch

boxes sense when trains are passing.
This gives rise to new observers:

value /� state observers �/
segments_of_route : State � TrainId ! Segment*,
sbs_of_route : State � TrainId ! SwitchBoxId*,
sensor : State � SwitchBoxId ! Bool

The two first observers give the list of segments and
switch boxes along the route of a train. For a state to be
consistent, it is now also required that these two lists
constitute a route wrt. the given network and conform
with the direction and position of the train (the train
should be positioned at the start of the route and have a
direction towards the end of the route). New observer
axioms (not shown here), for the move constructor,
express that when a train leaves a segment or passes a

switch box, these are removed from the list of route
segments and switch box segments, respectively.

The third observer gives true for a switch box if and
only if a train is passing the switch box. The values
returned by this observer must, by physical law, conform
with (and are actually derivable from) the position
observer. This is expressed in an axiom not shown here.

5.3 Fifth Specification
Finally, in the fifth specification, we are able to define a
concrete state space consisting of a state space for each train
and a state space for each switch box,

type

State = {| � : State' . is_wff(�) |},
State' = (TrainId *

m TrainState) � (SwitchboxId *

m

SwitchboxState),
TrainState :: ...,
SwitchboxState ::

connected : SegmentEnd
locked_by : Register
sensor : Bool

res_map : Segment *

m Register
seg_dir_map : Segment *

m SegDir
in_action : Register

where TrainState and SwitchboxState are given explicit
formal representations (record types) for the local train
state and switch box state, respectively. These representa-
tions correspond to the informal descriptions in Fig. 3. We
only consider states (defined by a predicate is_wff) which
satisfy the axioms of physical laws (like ªonly neighboring
segments are connectedº) of the model.

With this explicit definition of State, it is now possible to
replace all axioms with explicit function definitions in terms
of functions defined for the two new types TrainState and
SwitchboxState. For instance, the observer function direction
can be defined as follows:

direction : State � TrainId ! Direction
direction(�� t; � s�; t) � direction(� t�t�)

where direction is an observer function defined for train
states (of type TrainState), and the state invariant can be
given a definition of the form:

consistent : State ! Bool

consistent(�) � p1(�) ^ ... ^ p5(�)

5.4 Verification

Implementation Relations. In each of the development
steps (from specification number i to specification
number i� 1, i � 1; :::; 4) above, we have used the RAISE
justification tools to prove that the new specification is a
refinement of the previous specification, i.e., the new
specification provides declarations of at least all the
types and functions provided by the previous specifica-
tion, and all the axioms of the previous specification are
consequences of the axioms of the new specification.

For instance, for the development step from the first to
the second specification, the refinement proof amounts
to prove that [can_move_implication1] is a consequence of
[can_move_implication2] and the other axioms in the
second specification. The proof of this can be found in
an electronic archive [7].
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Satisfaction of Safety Requirements. For each of the first

four specifications, we prove that it is consistent with the

strong safety requirements stated in the beginning of this

section, and finally for the fifth specification we prove

that it fully satisfies these requirements.
The [consistent_is_safe] theory is verified to hold

already for the first specification. Then, since refinements
preserve theories, we know that it also holds for the
second to fifth specification.

Verification of the [can_con] theories is done stepwise:
For specification number i we prove,

8 ... . consistent(�) ^ can_con(�; ... ) ) pi(con(�, ...))

For instance, for the first specification, one of the theories

we prove (see Appendix) is,

[safe_can_move]
8 � : State, t : TrainId .

consistent(�) ^ can_move(�; t) ) safe(move(�; t))

Then, since refinements preserve theories, the fifth

specification satisfies,

8 ... . consistent(�) ^ can_con(�, ... ) )
(p1(con(�, ...)) ^ ... ^ p5(con(�, ...)))

which is equivalent to the [can_con] theory, the definition

of consistent in the fifth specification.
Verification of the [can_con1_con2] theories is done

similarly.

6 DEVELOPMENT OF THE RAILWAY CONTROL

SYSTEM: SECOND STAGE

The fifth specification presented above introduced explicit

implementable states for trains and switch boxes. However,

at that stage no architectural requirements were present, so

that different centralized or distributed system designs may

be elaborated as correct implementations of this specifica-

tion. The second stage of our development introduces a

concrete architectural design and communication protocol

for a distributed railway controller consisting of concurrent

communicating processes,

value

controller : State �! in any out any Unit

controller(� t; � s) �
(k { TCC[t].main(� t�t�) | t : TrainId})
k
(k { SB[s].main(� s�s�) | s : SwitchboxId})

where TCC�t�:main��t�t�� is a process representing the train

control computer in train t, and SB�s�:main��s�s�� is a

process representing switch box s. These processes are

defined in terms of the guards, state constructors, and

observers defined in the first major stage, and follow the

protocol described in Section 2. The in any out any

construct, in the signature of the definition of the controller

process, is an access description stating that the process is

allowed to communicate on any channel, and the result

type Unit indicates that the process does not return any

value.
The transition from the last specification stage to the

distributed design stage is performed according to a

standardized procedure resulting in designs which are

consistent to the specification in a natural way (cf. Fig. 4).

. The global specification state is mapped in one-one
correspondence to the distributed components. For
global state (� t, � s), train tid and switch box bid,
� t(tid) is mapped to TrainState[tid] and � s(bid) is
mapped to SwitchboxState[bid].

. Application of each constructor con on a train state
and/or a switch box state is guarded by a channel
command and the corresponding can_con guard
defined in the fifth specification layer. Observe that
the train and switch box state spaces have been
designed in such a way that each guard evaluation
can be based on the local state space only. For
example, a train control computer will allow the
train to move if it is triggered by the do_move
channel and the can_move guard evaluates to true on
the local state space.

. For correct implementation of the fifth specification
layer, corresponding state components in trains and
switch boxes (for example, the reservation state and
the lock state described in Section 2) must be
consistent, whenever a guard using this state
information is evaluated. To ensure this, a commu-
nication protocol between trains and switch boxes is
designed to implement the reservation constructor
introduced in the specifications: Train tid sends a
reservation request on channel C[tid,bid].res to
switch box bid. The switch box evaluates a local
guard and responds by returning its possibly
updated state space to the train via channel
C[tid,bid].SBstate. This information is used by the
TCC to update its local information about reserva-
tions and locks.
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7 DISCUSSION

7.1 Lower-Level Safety Requirements Related to
Real-Time Behavior

From untimed safety requirements to real-time requirements...
The formal models used in the sections above do not
incorporate the notion of time. This is motivated by the fact
that the top-level safety requirements, described in Section 4,
were of an untimed nature or, more precisely speaking,
should hold unconditionally for all points in time.

We recommend that in these situations untimed
formalisms should be used, since the abstraction from time
considerably simplifies the specification and verification
process. However, further refinements of the abstract
models may require the introduction of time, so that other
specification languages and associated proof methods have
to be used. This is shown by the following example
referring to the can_move-predicate introduced in the
specifications above.

The control algorithms above guarantee safety if trains
do not enter their next segment as long as the can_move
predicate evaluates to false. In order to implement this
condition, trains must trigger a braking process before the
end of the segment they are driving on, so that they come to
a stop before entering the next segment. The last possible
point pbrake on the track segment to trigger the brakes
depends on the type of the train,6 its speed and its distance
from the end of the actual segment. This is a safety
condition which can only be expressed using timed (hybrid)
specification formalisms. However, if the calculation of
pbrake is available as a function of train type and speed, and
if the train's speed and position can be determined in a
reliable way, the associated control task is very simple; it
says, ªtrigger the braking process, whenever pbrake is reached and
the can_move condition to enter the next segment still evaluates
to false.º

In this example, the advantages of a separation of
concerns with respect to untimed and timed behavioral
aspects become apparent.

. The specifications presented in the preceding sec-
tions were complex because they dealt with multiple
trains, switch boxes and segments and the interac-
tions between these objects; being able to abstract
from timing aspects was advantageous in order to
keep the complexity manageable.

. The time-related safety conditions sketched in the
paragraph above deal with a single train and its
distance from the next switch box. The control
components enforcing these conditions do not have
to ªknowº anything about segments, directions,
point states, or about other trains. This facilitates
the development and verification of the time-related
control task in a considerable way.

...and back to untimed safety requirements. An additional
consideration related to the dependability of a safety
mechanism implementation can lead to additional lower-
level safety requirements: In practice, the implementation of
the automatic braking mechanism is not considered as

sufficiently dependable, and recent railway accidents in
Germany support this assumption. As a consequence, the
allocation of shunts and the enforcement of flank
protection, mentioned in Section 4, are introduced as
additional safety requirements which are ªorthogonalº to
the time-related control tasks sketched above. According
to our understanding, these safety requirements are really
implementation-dependent and should not occur on the
top-level, specified in Section 4, if the automatic position-
and speed-dependent braking mechanism could be
implemented in a sufficiently dependable way, the
requirements related to shunts and flank protection could
be dropped.

Observe that shunts and flank protection again represent
untimed safety requirements, so it cannot be said in general
that more abstract safety requirements were untimed, while
implementation-dependent ones would mostly be related to
timing aspects.
Top-level safety requirements may be inherently time-dependent.
It is not always the case that top-level safety requirements
can be defined without using a notion of time. For example,
according to German safety regulations, a railway crossing
is considered as unsafe if the road traffic has been blocked
by red traffic lights for more than a certain time limit. After
this time limit has been reached, it must be taken into
account that car drivers and pedestrians might no longer
observe the red lights and cross the tracks without
permission. Such a safety condition is inherently time-
related, it cannot be abstracted to conditions about
observable event occurrences. In such cases, timed specifi-
cation formalisms have to be used already at the most
abstract modeling stages.

7.2 Alternatives for the Engineering Concept

The control mechanisms introduced in this article refer to
segments and switch boxes which have static locations in
the railway network. In the context of high-speed trains,
other approaches are currently being considered [cf. 2]. The
no-collision safety requirements, introduced in Section 4,
can also be modeled using the concept of an envelope. This is
a dynamically determined neighborhood of the train
depending on its position and speed. Safety is enforced by
the requirement that the envelopes of different trains
should never overlap. This allows to drop the concept of
static segments allocated to trains, but is more complex to
implement in a dependable way. Therefore, the concepts
described in our article cannot be transferred to the concept
of envelopes in a direct way.

7.3 Future Work: Frameworks and Generic Theories
for Railway Control Systems

The distributed railway control system introduced in this
article is already generic with respect to network size and
number of trains. However, the train control computer
specifications TCC�t�:main��t�t��, sketched in Section 6, still
operate explicitly on the state information C�i; j�:SBstate
received from the switch boxes that are involved in the
actual reservation and locking requests. As a consequence,
TCC�t�:main��t�t�� would have to be completely re-
designed as soon as the structure of C�i; j�:SBstate would
change due to technical reasons or as soon as a new type of
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safety-critical objectÐfor example, a railway crossingÐhad

to be introduced in the network.
To reduce the development and verification costs for

such control systems, we advocate to investigate a more

generic design for the train control computer which

abstracts from the specific type of switch boxes guarding

the critical places in the railway network. This abstraction

introduces points of control (POC) which are locations in the

railway network that may only be passed by a train if it has

the proper permissions associated with each point. Each POC

is associated with a set of controllers, these are objects

managing all the information necessary to grant or reject a

permission request according to the present system state. If

a centralized control concept is implemented, we have just

one controllerÐthe centralized interlocking systemÐfor all

POCs in the network. In the distributed approach described

in this article, controllers are implemented as switch boxes

managing specific units in the railway network. Typically, a

concrete instance of a POC may be,

1. A point separating two track segments: Here, the
controllers consist of the switch boxes associated
with the point as described in the previous sections.
The permission condition is ªinstantiatedº by the
reservations and locks to be attained from the
associated switch boxes as elaborated in the pre-
vious sections.

2. The boundary between two blocks on the track,
without a separating point: Here a similar type of
switch boxes may be used for controllers, as in 1, and
the permission may be defined in a similar way, but
now it is not necessary to attain locks since there are
no points present,

3. A railway crossing guarded by traffic lights and
possibly barriers. This POC can be managed by a
single switch box of another type than the ones used
in 1 and 2. It switches traffic lights and opens or
closes barriers. The permission is granted if the
crossing is safe due to activated redlights and
lowered barriers.

On this abstract level, the train control computer

operates using the following generic control algorithm

involving generic operations and functions Request_±

permission, Collect_permission_data, pbrake, and can_move.

1. Request_permission for the next POC to be passed.
This operation uses a generic function mapping the
POC and the train position7 to the set of controllers
which have to be addressed to get a permission. It
sends a request telegram to each of these controllers.
Again, telegram transmission is a generic subopera-
tion, because the transmission media and protocols
to be used will depend on the type of controllers to
be addressed.

2. Collect_permission_data from the controllers deter-
mined in Step 1.

3. As soon as pbrake has been reached, evaluate
can_move using the collected permission data. On
the generic level, can_move traverses the list of
controllers determined in Step 1 and calls a
permission_is_granted function to evaluate the per-
mission data received from each controller in Step 2.
Can_move returns true if each call to permission_is_-
granted returns true.

4. If can_move evaluates to true, the train may move on,
otherwise the breaking process is triggered.

Interpreting this approach from the viewpoint of object-
orientation, we are constructing a framework in the sense of
[4] for distributed railway control systems. Frameworks are
generic collections of cooperating classes associated with a
reusable design structure. By means of instantiation,
subclassing and composition of class instances, frameworks
are customised for a specific application context. Our
framework includes generic classes for railway networks,
trains (represented by their control computers), and points
of control in the network. The collaboration between
instances of these classes is defined by the protocol sketched
above which requires that trains may only pass the next
POC as long as they have the associated permission.

An important advantage of frameworks which has not
been sufficiently considered in [4], consists in the fact that
frameworks may be associated with generic theories, that is,
collections of generic theorems which may be instantiated
together with the framework, resulting in concrete theorems
about correctness or safety properties of the concrete
system. The safety properties established in the previous
sections for the control algorithms introduced represent
theories which are generic with respect to the railway
network and the number of trains involved. The approach
sketched in the paragraphs above leads to even more
powerful theories which are also generic in the type of POC
and in the state spaces associated with the related switch
boxes. The main advantage of generic theories is given by
the fact that the associated theorems have been established
on abstract generic level and are therefore inherited by
every concrete instance of the framework. This increases the
efficiency of the verification process in a considerable way
(see [8] for a report on applications in the context of
software verification for space mission systems).

Further examples of this framework-oriented approach
for the development and verification of railway control
systems are given in [9]. Currently, we plan to elaborate a
collection of frameworks specialized for applications in the
context of railway control systems.

7.4 Conclusion

In this article, we have presented the engineering concept
and the design and verification of a control algorithm for a
distributed railway control system. Typically, the concept
would be applied for small local railway networks which
have been formally classified as simple networks in this
article. It should be emphasized, however, that other (and
more expensive!) approaches are required in the case of
large high-speed networks, where safety-related concepts
cannot be simply expressed by means of the isolated points
of control we have used in the present paper. We consider
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7. Recall that the set of switch boxes to be addressed in order to pass a
point depends on the direction the train is approaching this point. Other
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the following aspects of our work to be the main advantages

in comparison to other work that has been performed in the

field of design and verification of similar systems (see [2] as

an example of another practically relevant approach to

formal specification and verification in the railway domain).

. Our refinement approach, starting with highly
abstract algebraic specifications and ending with
concrete distributed programs, helps to separate
general aspects of train control mechanisms and
their safety from concrete application-specific design
decisions.

. Our verification concept is independent on the size
of the underlying network topology. In contrast to
that, experiments with model checking have led to
unmanageable explosions of the state space, as soon
as more complex networks were involved or a larger
number of trains had to be controlled.

. Within the restrictions of the simple network defini-
tion given above, the network topologies covered by
our algorithm are fairly general. There are no limits
regarding the size of the network, the number tracks
involved, or the places where points may occur. In
contrast to that, approaches using compositional
reasoning and structural induction over the under-
lying network topologies only seem to work for
unrealistically simplified networks.

. Starting with a most abstract version of safety
requirements, our approach allows to verify their
completeness and trace their ªimplementationº in
the more concrete refinements of the abstract control
algorithm in a straight-forward manner. For ap-
proaches defining only implementation-specific
safety requirements without reference to a more
abstract safety concept, it is nearly infeasible to check
safety requirements with respect to completeness.

We would like to emphasise that the control algorithm

presented here represents just a building block in a more

general approach for the development, verification, valida-

tion, and test (VVT) of safety-critical systems which is

investigated by the authors' research groups at DTU and

the University of Bremen. In this wider context, our

research work covers:

. A systems engineering approach for safety-critical
systems which is driven by hazard analysis, risk
analysis, and a design approach taking VVT issues
into consideration right from the beginning of the
development life cycle.

. Improvement of the development and VVT process
for safety-critical systems by utilization of design
patterns, frameworks, and associated generic
theories.

. Software-architectures for safety controllers.

. Automated real-time testing for embedded hard-
ware/software components.

. An integrated standardized concept for verification,
validation, and test of safety-critical embedded
controllers, applying combinations of VVT methods,
each one optimized for a specific step in the system
development life cycle.

APPENDIX

PROOFS

The verification of the proof obligations mentioned in
Section 5.4, has been done using the RAISE tools. Below, we
give a short introduction to RAISE verifications and sketch
a proof of a safety theory [safe_move] for the first specifica-
tion. For more details about RAISE verifications, see [11].

In RAISE, the verification of a proof obligation is done by
a series of steps in which proof rules are applied
transforming the goal (proof obligation) into new goals
the truth of which ensures the truth of the original goal.
There are two kinds of proof rules, equivalence rules, and
inference rules. Equivalence rules are used to replace
subterms of a goal by equivalent subterms. For instance,
the following equivalence rule:

[and_implies] eb ^ eb' ) eb'' � eb ) eb' ) eb''

states that any subterm of the form eb ^ eb' ) eb'' can be
replaced with a subterm of the form eb ) eb' ) eb'', and
vice versa. Inference rules are used to replace a goal with
other goals. For instance, the inference rule,

[imply_deduction_inf1]
�id�roÿeb ` roÿeb0
roÿeb) roÿeb0

when convergent(ro_eb) ^ pure(ro_eb)

states that a goal of the form roÿeb) roÿeb0 can be proved
by proving roÿeb0 in a context where the axiom �id�roÿeb is
assumed to be true, if roÿeb is convergent (i.e., terminates)
and pure (i.e., does not contain variables).

Below, we show the first steps of a verification of the
safety theory [safe_move] (given in Section 5.4) for the first
specification (given in Section 5.1). The verification is done
in the context of this first specification, which means that we
may use the axioms and definitions of that specification to
prove our goal.

b8 � : State, t : TrainId . consistent(�) ^ can_move
(�; t) ! safe(move(�; t))c

all_assumption_inf:

bconsistent(�) ^ can_move(�; t) ) safe(move(�; t))c
and_implies :

bconsistent(�) ) can_move(�; t) ) safe(move(�; t))c
imply_deduction_inf1 :
[consistent] consistent(�) `
bcan_move(�; t) ) safe(move(�; t))c

imply_deduction_inf1 :
[can_move] can_move(�; t) `
bsafe(move(�; t�)c

unfold_safe:

bno_collision(move(�; t)) ^ no_derailing(move(�; t))c
and_split_inf :
. bno_collision(move(�; t))c

/� proof of sub-goal �/ ...

. bno_derailing(move(�; t))c
/� proof of sub-goal �/ ...

In the proof, the goals are enclosed by brackets b and c,
and the names of the applied proof rules are written
between the goals. In the first step we assume that we have
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fixed, but arbitrary state � and train t. In the second step,

the above shown equivalence rule [and_implies] is applied to

the whole goal. In the third and fourth step, we apply the

inference rule [imply_deduction_inf1] obtaining a new goal

which must be proved in the context of the two assump-

tions named [consistent] and [can_move]. In the fifth step, we

unfold the application of the function safe using the

definition of safe (see Section 4). Then, in order to structure

the specification nicely, we use an inference rule to split our

goal into two smaller subgoals.
The first subgoal is (after a few manipulations) proved

by a case analysis with three cases:

bno_collision(move(�; t))c
unfold_no_collision, all_assumption_inf,
imply_deduction_inf1 :

[distinct] t1 6� t2 `
bsegments(position(move(�; t), t1)) inter segments
(position(move��; t), t2)) = {}c

cases

[case1] t 6� t1 ^ t 6� t2 `
bsegments(position(move(�; t), t1)) \
segments(position(move(�; t), t2)) = {}c
/� proof of case1 �/ ...

[case2] t � t1 `
bsegments(position(move(�; t), t1)) \
segments(position(move(�; t), t2)) = {}c
/� proof of case2 �/ ...

[case3] t � t2 `
bsegments(position(move(�; t), t1)) \
segments(position(move(�; t), t2)) = {}c
/� proof of case3 �/ ...

Here, we show the proof of the first case:

bsegments(position(move(�; t), t1)) \
segments(position(move(�; t), t2)) = {}c

position_move :

bsegments(if t1 � t then next_position(�, position(�; t1),
direction(�; t1))else position(�; t1) end)

\ segments(position(move(�; t), t2)) = {}c
since

bsafe(�)c
imply_modus_ponens_inf :
� bconsistent(�)c

consistent :

btruec
qed

� bconsistent(�) ) safe(�)c
consistent_implication1 :

btruec
qed

end

simplify :

bsegments(position(�; t1)) \ segments(position(move
(�; t), t2)) = {}c

position_move, simplify :

bsegments(position(�; t1)) \ segments(position(�; t2)) =
{}c

no_collision :

btruec
since

. b t1 6� t2 c
distinct :

btruec
qed

. bno_collision(�)c
imply_modus_ponens_inf :
. bsafe(�)c

/� proved as above �/ ...
. bsafe(�) ) no_collision(�)c

unfold_safe :

bno_collision(�) ^ no_derailing(�) )
no_collision(�)c

simplify :

btruec
qed

end

qed

In the first step, the [position_move] axiom (see Section

3.2) has been applied. Since this axiom has as precondition

safe���, we have to prove that as well on the side after the

keyword since. This is done using the [consistent] assump-

tion and the axiom [consistent_implication1] given in the first

specification (in Section 5.1). In the second step, a simplier

tool has used the [case1] assumption to simplify the if-

expression further. Then follows two steps similar to the

two first ones. And finally, the goal is reduced to true by

using the definition of the no_collision function and proving

two goals on the side. This completes the proof of first case

of the case analysis.
The proof (not shown here) of the second case is done by

a case analyse over the possible positions of the train t. The

proof of the third case is symmetric to that for the second

case.
The full proof can be found in an electronic archive [7].
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