
A Learning Agent that Assists the Browsing of

Software Libraries�

Chris Drummondy� Dan Ionescuy SM IEEE and Robert Holteyy

Abstract

Locating software items is di�cult� even for knowledgeable software designers� when

searching in large� complex and continuously growing libraries� This paper describes a

technique� we term active browsing� An active browser suggests to the designer items it

estimates to be close to the target of the search� The novel aspect of active browsing is

that it is entirely unobtrusive� it infers its similarity measure from the designer�s normal

browsing actions� without any special input� Experiments are presented in which the active

browsing system succeeds ��	 of the time in identifying the target before the designer has

found it� An additional experiment indicates that this approach does� indeed� speed
up

search�

� Introduction

Searching a software library for a particular item �source code or design documentation�

is a central activity in all stages of the software development life
cycle� In software reuse� for

example� the locating of relevant software artifacts has long been recognized as an essential

activity
�� ��� ���� At present� it is a slow knowledge
intensive process that is by no means

guaranteed to succeed� and almost all aspects of software development are hampered by

the cost and low success rate of this search� As libraries grow so does the problem�

A person�s search through a software library is mediated by what we call a �browsing

system� �in
��� it is called a software information system�� Typically� such systems provide

a variety of �browsing� operations� including various forms of content
based retrieval ��in

dexing�� and ways of navigating through the library� The browsing system user evaluates

alternatives� and chooses a browsing operation that is expected to bring the search closer

to the user�s implicit goal� The system plays the purely passive role of executing the chosen

operations and presenting their results�

Research aimed at improving the speed and reliability of searching software �or other

kinds of� libraries has considered a wide variety of techniques for improving browsing

systems� A survey of techniques speci�c to software reuse may be found in
��� and
����

Analogous techniques for information retrieval systems are summarized in
����

�

In the most common approach to improving browsing� the browsing system remains

purely passive� The speed and reliability of browsing are improved by increasing the e�ec

tiveness of the browsing operations� either by introducing new� more powerful operations or

by organizing the library so that the existing operations are more e�ective� For example�

��� ��� ��� ��� provide expressive query languages and �exible matching� and
��� uses

a rich knowledge
base and a powerful inference technique to answer its queries� In some

approaches� the user may customize the browsing system
��� ���� or enter into a dialogue

with the system in order to select better operators
��� In other approaches� the user may

re�ne the query� as in relevance feedback systems
��� ���� or query
reformulation systems

��� ��� ��� ��� ���� Imposing structure on the library
��� ��� can also improve browsing

speed and reliability�

Our approach to improving browsing systems is complementary to the preceding ones�

We aim to add an active component to the browsing system� so that in addition to passively

supporting user
directed search� the system actively assists or guides the user� An active

assistant is an addition to� not a replacement for� a browsing system� Browsing proceeds

as usual and may� in some circumstances� continue to completion without any interruption

by the assistant� The usefulness of the assistant is that� often� it will recognize the user�s

�intent� and provide guidance or advice that accelerates the search�

There are two main types of active assistants� �daemons� and �learning agents� � Both

types of assistant are background processes that watch the user�s actions and� in certain cir

cumstances� interrupt the user and o�er unsolicited advice� The di�erence is that daemons

are preprogrammed to recognize particular patterns of user behaviour� whereas learning

agents learn from the user�s actions when to interrupt and�or what advice to give�

Daemons are well understood and provide an extremely useful form of assistance for

many tasks� It is evident� however� that daemons can o�er only limited assistance in the

browsing task� because� by de�nition� the users that need assistance are the ones whose

actions sequences are not advancing them steadily and directly towards their goal �and

certainly not following any pattern that could be preprogrammed�� What is needed is a

learning agent� i�e�� a system that can infer a user�s browsing goal without relying on a

�xed library of action
patterns�

Research on learning agents is very recent and still highly exploratory� The browsing

�

task is particularly challenging for two reasons� ��� the information available to the learning

system is highly ambiguous and noisy� and ��� learning must take place in �real
time� �i�e�

it must succeed before the user�s search has �nished�� No previous learning agent research

has addressed either of these issues�

This paper presents and evaluates a learning agent to assist the browsing of software

libraries� The learning agent is completely unintrusive in the sense that it attempts to learn

what item the user is searching for simply by watching the user�s normal browsing actions�

The particular question addressed is� how often can a user�s search goal be inferred from

normal browsing actions� Our experimental results are encouraging� roughly ��	 of the

time the system succeeded in identifying the user�s search goal before the user reached the

goal� Further experimentation suggests that when the user utilizes the advice of the system

the average number of browsing actions needed to reach the search goal is reduced�

The rest of this paper is organized as follows� Section � discusses related research�

Section � describes browsing in general� and a particular form of learning agent� called active

browsing� These are illustrated with a concrete example� Section � describes strategies for

inferring the search goal� Section � gives the architecture of the learning agent� This

section highlights issues related to a speci�c implementation that is used to search libraries

of object oriented code� Section � presents the experimental methodology used to test the

feasibility of active browsing� Section � presents and discusses the experimental results� In

section � the limitations of this approach are discussed and section � presents some general

conclusions�

� Related Research

The work presented in this paper is most closely related to research on active assistants�

As mentioned above� an active assistant is a background process that monitors the user�s

actions and� in certain circumstances� interrupts the user and o�ers unsolicited advice� We

categorize active assistants based on the nature of their internal inference mechanism�

�Daemons� are preprogrammed to recognize particular patterns of user behaviour�

and� when a particular pattern of behaviour is detected� to issue the corresponding pre

�

programmed response� For example� the critics in Fischer�s design environment
��� are

daemons� each critic recognizes certain types of �aws in the user�s current design �e�g�

violations of design constraints� and draws these to the user�s attention �possibly also sug

gesting corrections�� A good review of critics is given in
���� Finin�s active help system

��� is similar� consisting of a collection of rules each of which de�nes a particular situation�

speci�ed by a �generalized� sequence of actions� and the advice to give should that situa

tion arise� Likewise� plan recognition systems are daemons because they simply match the

user�s action sequence against a given library of plans
��� ��� or �parse� the user�s actions

with a given set of plan schemas
���� Most �programming by demonstration� systems that

do inference employ daemons� For example�
�� �� ��� all use a preprogrammed notion of

�similar action� to detect repeated sequences of actions�

�Learning agents� do not have a preprogrammed set of situation�action rules� but

instead they learn from the user�s actions when to interrupt the user and�or what advice

to give� For example�
��� describes a �personalized information �ltering� agent� which

assists a user by suggesting USENET news articles that might be of interest� The user

directly states his actual interest in the articles and this feedback drives a form of arti�cial

evolution that improves the agent�s performance� The news �ltering agent in
��� serves

a similar purpose but uses di�erent techniques for learning� Unlike classical relevance

feedback systems� which �adapt� to the user�s immediate concerns� these systems learn a

user model over an extended period�

Learning agents have also been developed to assist a user in �lling in a form
�� ��� ����

As the user �lls in the various �elds of the form� the agent suggests how the remaining

�elds should be completed� If the agent�s predictions are correct� the number of keystrokes

needed to complete the form will have been reduced� thereby speeding up the process� Each

completed form is added to the set of �training examples� on which the learning agent�s

subsequent predictions will be based�

An important feature of all these learning agents� and of relevance feedback systems�

is that they receive immediate feedback from the user directly indicating the correctness

of their predictions� In the news reading and relevance feedback applications� the user

indicates immediately whether the articles retrieved are or are not relevant� In the form

�lling applications the correct entry for a �eld is immediately provided� This is crucial

�

to the operation of these systems because this feedback provides new� highly informative

training data that can be used to improve the agent�s subsequent predictions�

In the browsing task that our learning agent assists� the correctness of the agent�s

predictions cannot be determined until the search has ended� Only then does the user

know the library item that satis�es his requirements� If our learning agent�s purpose was

to learn in the long
term� feedback about its predictions after the search had ended would

be useful� But its purposes is to speedup the search� feedback after the search has ended

is of no use�

The information that is available to the learning agent during search is �noisy� and

only very indirectly related to the correctness of the agent�s predictions� It is noisy because

the user is searching somewhat blindly� To some degree� the user will pursue deadends

and circuitous routes� thus giving misleading feedback about which directions are �most

promising�� There are two reasons why the feedback is not directly related to the correct

ness of the agent�s predictions� The �rst is simply that the user might choose to completely

disregard the agent�s suggestions� This would happen� for example� if the user is in the

midst of pursuing his own search strategy� We expect the user to consult the learning

agent only occasionally� when the need for assistance is felt� A more subtle reason is that�

unlike the learning agents described above� a learning agent for browsing is not attempting

to predict or suggest the next action �or sequence of actions�� It is trying to predict the

�nal stopping point of the user�s search� and this is only remotely related to the user�s

judgement about which action is leading in the most promising direction�

� From Browsing To Active Browsing

The activities involved in normal browsing are shown on the left hand side of �gure ��

The user starts with a set of requirements and the purpose of the search is to �nd an item

that best satis�es them� Although the requirements could be as formal as a speci�cation in

our view they are typically a loose set of properties the target class should have� It is true

serendipity may result in the user discovering properties very di�erent from those of the

original requirements� but nonetheless useful to solve the broader problem� Although we

�

made a conceptual division between the requirements and the search goal� from the active

browser�s viewpoint the two are indistinguishable� Thus such a change in direction of the

search would be as if the user made a radical revision to the search goal� Such a situation

is discussed in the limitations section �sect ���

ANALOGUE OF
SEARCH GOAL

RELEVANCY
MEASURE

REQUIREMENTS

BROWSER ACTIONS

POTENTIALLY
INTERESTING
LIBRARY ITEMS

SEARCH GOAL

BROWSER DISPLAY

NORMAL
BROWSING

ACTIVE
COMPONENT

Figure �� A Model Of Active Browsing�

The user converts the requirements into a search goal which describes the expected

form of the target item in the library� During search� new information is acquired about

the content� organization� and descriptive language of the library� This may alter the user�s

expectations about the form of the target item� even though the original requirements have

not changed� Therefore� although the requirements should remain essentially constant� the

�

search goal is likely to change during search� Transforming the requirements into a search

goal represents the major source of uncertainty in browsing� Although the user may be

sure of the requirements� the exact form of the item that best meets them is not clear� For

instance even when the requirements characterize one speci�c item� known to be in the

library� the user is unlikely to be able to describe it accurately�

Search begins with the user selecting an initial item in the library as a starting point�

usually by indexing or directly selecting from a list of possible starting points� The user

compares this item to the search goal and selects one or more browsing actions to move

through the library to locate items that better match� Each action produces a set of

potentially interesting items� which are displayed to the user� The user compares the items

with the current search goal� perhaps revises the search goal� and then continues searching

by selecting an item from any of the available lists and taking further actions� This process

is repeated until the user is satis�ed that an item meets the requirements or none can be

found�

When the user is somewhat uncertain about the search goal and the usefulness of

individual actions� browsing is an appropriate form search� Uncertainty is reduced through

iterative search� with evaluation and re�nement of the goal at each step� The cognitive

attractiveness of browsing as a means for locating artifacts in a library has been observed

and analyzed by several authors� Studies
�� have shown that when given the choice�

browsing is preferred by many users over �analytic strategies which require formulation of

speci�c well structured queries�� This is further supported by in
��� which states �This

�human remembering� theory postulates that people naturally think about categories of

things not in terms of formal attributes but in terms of examples�� Overall� browsing is seen

as a more natural and e�ective process when the user is uncertain of the target description�

In summarizing the advantages of browsing�
��� cites
��� �Bates ������ points out the

advantage of browsing by showing how it takes advantage of two cognitive capabilities�

The �rst one is the greater ability to recognize what is wanted over being able to describe

it� ��� The second capability is being able to skim or perceive at a glance��

��� Active Browsing

�

As just described� a browsing system is a completely passive tool� The idea of active

browsing is to enhance the e�ectiveness of the browsing system by having the system

guide the user towards items that may be of interest� The user�s actions implicitly carry

information about the search goal because they have been deliberately chosen� to the best

of the user�s ability� to serve the user�s interests� The �rst step in the active browsing

process �the right hand side of �gure �� is to infer from these actions an analogue of the

user�s search goal� The analogue is built up over time from successive browsing actions and

represents what the system believes to be the search goal� The analogue is then converted

into a form that can be readily used to measure the relevance of an individual item to the

user� This relevancy measure returns a numerical value representing the degree to which

any particular library item matches the analogue� The measure is used to evaluate library

items and the result of the evaluation is used to in�uence the user�s search�

There are a wide variety of ways to use the evaluation of library items produced by

the active browsing system� Perhaps the least disruptive option is to use this evaluation to

allocate computational resources� such as the contents of a cache or the CPU time available

for precomputing information the user is expected to request� This use of the evaluation

improves the response time of the browsing system but does not reduce the amount of

searching done by the user� The general strategy for reducing the user�s search is to have

the system somehow draw the user�s attention to the items that are judged most relevant�

and to draw his attention away from items of very low relevance� The most direct� but

also most disruptive� way to do this is to alter the list returned in response to a query�

Classes that are judged highly relevant� but would not normally have been returned by the

query� could be added to the list or the ordering of classes in the list changed to re�ect

their relevance�

The simplest method� the one used in the current implementation� is to have a single�

preferably small� extra window �the Suggestion Box� in which library items are displayed

in order according to the active browsing system�s estimate of their relevance to the user�

Information in the Suggestion Box is displayed and used in an identical manner to the

information in ordinary browsing windows� This way of using the active browser�s output

is capable of exerting su�cient in�uence on the user to accelerate search and yet� at the

same time� is not so distracting or disruptive that it frustrates or impedes users who do

�

not desire assistance� The user is not required to look at the Suggestion Box at all� but

may easily consult it when the need arises�

��� An Example Of Active Browsing

The current implementation of active browsing is an enhancement of a commercial browser

for libraries of object
oriented software written in Objective
C� An item in this library is a

�class�� in the object
oriented sense� In this section� active browsing is illustrated on a com

bination of two commercially available sets of classes� the �ICpak��� Foundation Classes�

and the �ICpak��� User Interface Classes� produced by the Stepstone Corporation�

����� Human Interface

The human interface to the system is shown in �gure �� At the top is a series of windows�

which normally contain lists of classes� The user can select any class on any of these lists

and apply a browsing operator to the selected class� Whenever a class �or method� is

selected to be operated upon� it is highlighted in the display�

As in all object
oriented browsers� there is an operator that produces the list of the

selected class�s subclasses� and an operator that produces the list of its ancestors in the

object hierarchy �its parent� its parent�s parent� etc��� A third operator returns the list of

classes whose names are �similar� to the name of the selected class �the similarity measure

for class names is described below�� The class list that these operators produce is placed

in the rightmost window at the top of the interface�

The �nal operator that can be applied to a class produces a list of the names of the

methods the class implements� This method list is shown in the lower right portion of the

interface� This operation is called �expanding� a class� In �gure � two classes have been

expanded in this manner�

There are also operators that can be applied to methods� Individual methods in a

class can be expanded in several stages to give more and more information about the

method� This information is presented in the lower left portion of the interface� In this

window the user can select a set of methods� Several operators can be applied to the

set of currently selected methods� One operator returns a list of classes that implement

�

Figure �� Exploring Two Di�erent Classes

��

the marked methods� Another returns the list of classes that use the marked methods�

An important feature of these operators is that matching is a matter of degree� a class

can partially implement �or use� the set of selected methods� Partial matches occur� for

instance� when the class implements a method with a similar but not identical name� or if

a class implements a method that sends a message to a method with a similar or identical

name� The partial matching scheme is discussed in detail in section ���� The class list

resulting from one of these operators is sorted in order of match strength and displayed in

the rightmost window at the top of the interface�

The output of the active component of the browser� a �Suggestion Box�� shows the list

of classes that the active browser considers potentially interesting to the user� This would

normally be seen positioned to the left of the standard browser in the full display� The

format of the suggestion box is identical to the class windows and allows the application

of the same set of operators�

����� Locating an Item to Display Text

In the following speci�c example of active browsing� we suppose the user requires a means

of managing and displaying text� this is the �requirements� in �gure �� The user �rst

focuses on a class that manages text� On discovering that this does not have methods for

displaying the text� the user then surveys a large body of classes used for general display

purposes� The example demonstrates how information collected earlier in the search can be

used to break the deadlock produced by the latest query and thus help a user �nd relevant

classes faster�

The user knows there is a class called �String� in the library and expects this class

to implement methods for comparing� combining and displaying strings� This expectation

de�nes the user�s initial search goal� As we see this initial goal is not correct and will

change as search progresses� At the beginning of the search� the only class list available

to the user is a list of the names of all classes in the library� The user scrolls until the

class �String� is visible and then applies the operator that expands this class� producing

an alphabetically ordered list of the names of methods it implements� The user then

investigates two interesting methods in the class� The method �concatSTR�� is expanded

to show its argument types� The method �compareSTR�� is expanded further to examine

��

the instance variables and functions it uses� The results of these actions are shown in

�gure � in the bottom half of the lower left window�

Figure �� Inferences After Exploring Class �String�

The right window in �gure � shows the four inferences the active browsing system

has made from the sequence of actions so far� This window is used for debugging and

demonstration purposes and would not be seen by the user in normal operation� The

exact meaning of the �templates predicates� in this window is discussed in section �� but

it can be summarized brie�y as follows� The �rst line indicates that the class �String�

has already been visited and therefore ought not to be suggested to the user� Each of

the other three lines describes a property of a class that interests the user� the class�s

name should match or contain the word �string� and the class should implement methods

�compareSTR� and �concatSTR�� The number at the end of each line is the weight� or

importance� associated with the property described on that line� Note that the weight

associated with method �compareSTR� ������ is higher than the weight associated with

method �concatSTR� ������� This is because the user showed more interest in the former

by studying it in greater detail�

Suppose now that after scanning other method names the user realizes that the expec

tation that class �String� contains a method for displaying strings is incorrect� To �nd a

class satisfying all his requirements the user must search elsewhere� Knowing that there

is a general class called �Layer� for displaying many kinds of objects the user might at

this point adopt an alternative strategy� Rather than focusing on classes that are likely to

have methods to manage strings� the user focuses instead on those likely to have display

��

methods� The user�s search goal has changed somewhat� The expectation� now� is that the

class is will be similar to �Layer� but with methods speci�c to strings�

Returning to the original list of class names� the user selects Layer and expands it to

show its methods� This list is in the upper half of the lower right portion of �gure �� just

above the corresponding list for class String� The user sees that there is no method for

displaying strings and so decides to broaden the search� The user re�nes the search goal

to include two particular methods that a�ect how the �nal display of text will appear�

The �rst� �extent��� sets the boundary size of the display area� the second� �attachTo���

relates to attaching it to displays of other information� The user selects and expands these

methods then marks them� and requests a list of all classes that implement them� or similar

methods� This list� the potentially interesting classes of �gure �� is shown in the upper

right hand corner of �gure �� The score associated with each class indicates the degree to

which it implements both of the methods�

Figure �� Inferences After Exploring Classes �String� and �Layer�

The right window in �gure � shows all the inferences the active browser has made at

this point� The �rst four lines are the same as in �gure �� except that the weights of these

properties have been reduced to re�ect the fact that this information is older and therefore

less reliable than the more recent information� The bottom four lines represent inferences

made from the actions involving the �Layer� class and its methods� Note that the weights

associated with the two methods examined in class �Layer� ����� and ����� are higher

than those associated with the methods examined in class �String� ����� and ������ This

is because the user not only examined the �Layer� methods but also speci�cally directed

��

the browser to �nd other classes implementing the �Layer� methods� This gives the active

browsing system much greater con�dence that these methods are important elements of

the user�s search goal�

The classes shown in the list returned as a result of applying the operator �Imple

mented In Classes� �top right of �gure �� have identical scores� The methods selected� or

similar ones� are extensively used in Layer
type classes� so the user�s operation is a poor

discriminator�

The active browser discriminates better� To match maximally with the template shown

in �gure �� and thus be high in the suggestion box at the present moment� a class should

meet various criteria� It should have a name that matches with �String� and �Layer�� It

should match with methods �concatSTR�� and �compareSTR��� and� more importantly�

with the heavily weighted methods �extent�� and �attachTo��� It should be a class in which

the user has not previously shown a lot of interest�

Figure �� Suggestions

The suggestion box �Figure �� shows �StringLayer� as a clear favourite� a class used

speci�cally for the display of strings of text� �StdLayer� and �BaseLayer� are the two most

general layer classes that allow a string to be displayed as window�s title� �StringEdit� is

similar to �StringLayer� but in addition it allows editing of text� �LabelValue�� �Con

�rmer� and �Prompter� are speci�c types of �StringLayer�� Thus active browsing has

focused the search on layers with various ways of displaying strings�

In summary� the user �rst looked at the class �String�� hoping it would also include

��

ways of displaying itself as text in a window� Unfortunately it had no such methods� The

user then looked at the �layer� classes which were known to be used to display things�

There are many di�erent types of layer so the browsing operations selected just brought

up a long arbitrarily ordered list of classes� The active browsing system� by using the

information collected when the user looked at class �String�� was able to order that list in

a more e�ective fashion�

This example illustrates the extraction of a good approximation to the user�s search

goal automatically from the user�s actions� With this� the system is able to search the

library independently �i�e� without any input from the user� and identify the classes of

interest to the user� Each of the inferences made in the example is based on a general

inference strategy discussed in the following section�

� Strategies for Inferring the User�s Goal

The fundamental inference strategy is based on the assumption that the user will only

examine library items whose visible properties are akin to the properties of the current

search goal� Each time the user applies an operator to an item the system records the

properties of the item that are currently being displayed� For example� if the user decides

to expand a method knowing only its name� then the system infers that the name is related�

in some way� to the name of some method in the user�s search goal� If further information

about the method were also visible to the user� such as the types of its inputs and outputs�

then these properties would be also recorded� We do not expect that all inferences will

be accurate� The user will examine things that have no connection with the target item

and will fail to examine others that do� We expect� however� that when the user does �nd

something of interest it will be used as a search index� We encourage the user to express

this interest directly by making available useful browsing actions� as discussed in the next

section� The system is also less sensitive to �misleading� actions by exploiting �exible

matching �Sec ������ and by decreasing the importance of old information �Sec �����

We expect as search proceeds� those properties that are closely related to the search goal

will be continually re
asserted� whereas accidental properties of the items visited will not�

Therefore� by weighting properties according to the frequency of appearance a progressively

��

more accurate estimate of the search goal will emerge as search proceeds�

For this basic inference strategy to be successful� two conditions must be guaranteed�

�� the visible properties must indeed explain why the user examined an item� and

�� the user�s search goal must not change too quickly

These conditions and techniques for establishing them are discussed in the following

sections�

��� Ensuring That Actions have Unambiguous Explanations

There are two di�culties under this general heading� An action may be ambiguous� in the

sense that the system can formulate a great many equally plausible explanations for why

the action was taken� or an action may be inexplicable� in the sense that the system is

unable to formulate any plausible explanation for the action�

Ambiguous actions most frequently arise because the browsing system displays many

properties of an item all at once� If the user further investigates the item� the system

cannot immediately infer which of the item�s properties are of interest and which are not�

Actions can be made unambiguous by presenting information about an item in stages�

where at each stage the user must specify what additional information should be displayed�

The principal example of this in the present system is the expansion of methods to show

progressively more detail� The method name can be expanded to show its argument types�

expanded further to show the variables� methods etc� it uses and further still to show its

code�

It is important that any changes to the browser should not make normal browsing less

e�ective� Otherwise there will need to be a tradeo� between the bene�ts of goal inference

against the losses due to more complex browsing� Furthermore� new actions must be highly

useful in normal browsing so that they will be preferred by the user over the original� more

ambiguous actions� Compared to the original all
at
once presentation of information� our

sequential presentation of information about methods is undoubtedly an improvement for

normal browsing as well as being more informative for active browsing� The original action

loaded into a window the entire �le containing all the information about all the methods and

��

scrolled the window until the selected method was centered in it� Not only did this display

all the method�s code and documentation� it also displayed information about whatever

methods happened to be adjacent to the selected method in the �le� This action thus

produced a large amount of information� much of which was irrelevant or more detailed

than was needed for most browsing purposes� With this manner of displaying information

it was also impossible to view the information about several selected methods at once�

With the sequential presentation� the aim is to �rst present the information that is most

likely to be useful for understanding the method�s function and its interaction with other

items in the library� Further details are easily available by applying additional operators�

Inexplicable actions arise when the browsing system permits the user to freely �jump�

to an arbitrary item in the library� For example� in the present browsing system� the user

can expand any item by selecting it from the list of all class names in the library� Such

an action does not relate the selected one to any item previously selected� nor does it

provide any property about the selected item other than its name� Although names by

themselves do sometimes explain why an action was taken �the user investigated the class

named �String� because he expected it to be about strings�� most often the true reason

for �jumping� to a class are properties of the class other than its name that are known

or inferred by the user� To reduce the use of these inexplicable operations� the browsing

system must provide as an alternative an equally powerful suite of operations that are

individually explicable� unambiguous� and convenient to use� In this implementation the

repertoire of operators applicable to classes has been extended� One new operator returns

a list of classes with similar names� another returns classes with a similar set of methods�

Such operators encourage the user to move between classes in an explicable manner� which

facilitates the inference process�

��� Goal Tracking

The initial goal of the user�s search may be revised as a result of what the user sees

during the search� Thus an important consideration is how to keep the analogue and the

relevancy measure up to date� The most common and gradual change is likely to occur as

the user�s requirements are reevaluated in terms of the language and items in the library�

The information extracted from the user actions should get progressively more accurate

��

as the search progresses� The simplest way to exploit this fact is to decay with time the

con�dence in the terms of the analogue and relevancy measure� Thus newer information is

considered more reliable and important than older information� Ideally terms should never

completely disappear� even very old data might be relevant in breaking a deadlock based

on more current information� By decaying con�dences by a �xed percentage of its current

value this information is never lost�

� The Active Browser Implementation

This section discusses the speci�c implementation of an active browser that produced the

example given in the preceding section� Figure � shows the system architecture� It consists

of two main parts� The top section represents the standard browser� This allows the user

to display items related in speci�c ways to a selected item and thus navigate through the

library� The lower section is the active component of the browser� called the independent

search mechanism� Its input is the sequence of user browsing actions and its output is the

Suggestion Box� that is� a list of classes in descending order of their expected relevance to

the user�s search goal� Classes whose relevance score is below that of �Object�� the root of

the inheritance tree and therefore the most general class� are not included in the Suggestion

Box�

The independent search mechanism can be divided into two parts� an inference system

and a template matcher� The inference system infers an analogue of the user�s search goal

from the user�s browsing actions and from this analogue it infers a relevancy measure� in

the form of a template� The template matcher computes the degree of match between a

given template and an individual class in the library� The following sections describe the

inference system and template matcher in detail�

��� The Inference System

The inference system is a standard rule
based system with

� a forward chaining inference engine supporting conjunction� disjunction� negation and

Mycin
like con�dence factors
���

��

Convert To
Template

Working
Memory

Browser
Actions

Template
Predicates

Inference
Engine

New
Predicates

Template
Matcher

Templates

INDEPENDENT
SEARCH

MECHANISM

System
Analogue

Evaluation Scores

Classes
Ordered/
Filtered
List Of
Classes

Rule Base

Software
Library

BrowserUser
InterfaceUSER

Figure �� System Architecture�

��

� a working memory containing facts representing the user�s browsing actions and the

current analogue and template�

� a rule base containing rules and meta
rules� The rules represent the system�s knowl

edge of how to infer the user�s intent from his actions� The meta
rules control when

template matching and other tasks are executed�

Each time the user makes a browsing action� a description of the action is added as a

fact to working memory and the inference process initiated�

����� Working Memory

The facts in working memory represent the current browsing action and the current state

of the analogue and template inferred from previous actions� All facts are of the form

�Predicate Arg
�
����Arg

n
� Con�dence

The con�dence is a number between � and � re�ecting the degree to which the system

�believes� that the fact holds� Facts representing browsing actions always have perfect

con�dence ������ The con�dence of an inferred fact depends on which rule was used to

infer the fact �each rule has a hard coded con�dence factor� and the con�dence factors of

the facts that caused the rule to ��re�� The con�dence of an inferred fact also depends on

how frequently it was inferred� For example� if a fact having con�dence �Old Con�dence�

is inferred again� with con�dence �New Con�dence�� its con�dence is adjusted by the

following formula�

Con�dence 	 Old Con�dence
 ��� � Old Con�dence� � New Con�dence�

This has the intuitive e�ect that con�dence is increased proportionally to both the New

Con�dence and the current �doubt� re�ected in the existing fact ����
 Old Con�dence��

Browsing Actions are represented by facts of the form�

�Type
 Element
 Operator
 Prior Element
 Prior Operator� Con�dence

An action involves selecting a particular element from a list and applying an operator

to the element� Type is a generic description of the element e�g� a class or a method� The

��

list of elements from which the selection was made is the result of some previous browsing

action �not necessarily the most recent one�� This action is represented by Prior Element

and Prior Operator� By including these in the fact representing the current action� it is

possible for the system to reason about the entire chain of actions that directly led to the

current one� For example� the system could detect particular patterns in the user�s search�

even when these are interrupted by spurious exploratory actions�

A simple case occurs when the user opens a class and inspects a number of its methods�

The Prior Element is a class name� Type is method and each Element is the name of

an inspected method� In the example given earlier ��gure �� there are the actions

�Method �compareSTR� SelMet String DefMet� ����

�Method �concatSTR� SelMet String DefMet� ����

These are both expansions of methods in class �String�� This is indicated by the

prior element being �String� which was expanded using the �De�ned Methods� operator

�DefMet�� The �Select Method� operator was then used to show the input�output argu

ment types of the two methods� Based on these actions the system increases its con�dence

that the user is interested in classes with similar names to �String��

The analogue of the search goal is represented by a collection of facts each of which sum

marizes the user�s interest in some particular feature� such as the name� of a class or method

the user has examined� The predicates corresponding in the analogue are represented by

facts of the form

�interestedIn
 Type
 Element� Con�dence�

Finally� the terms of the relevancy measure are represented in working memory by the

collection of facts involving the predicate �Templ� �for �template��� These are usually of

the form�

�Templ
 Matching Procedure
 Element
 Scale Factor� Con�dence

The arguments in this fact specify� what features should be matched against those of

library items �Element�� how matching should be performed �Matching Procedure� and the

importance of this term relative to others in the template �Scale Factor��

A second form of template predicate has an extra argument� This de�nes the relation

ship between the original element and a second one� Thus� for instance� the fact that one

method uses another can be speci�ed� The relationship as well as the original element will

��

be used in the matching process� Matching the template to library items will be discussed

in greater detail in section ����

����� Rule Syntax and Meaning

The rules and meta
rules have the same general form�

IF �LogicalConnective Literal�����Literaln�

THEN �AND Literal�����Literalm�� Con�dence

LogicalConnective is either �AND� or �OR�� Each literal is a predicate and its argu

ments� possibly pre�xed by �NOT�� The con�dence factor is an number between � and �

indicating the strength with which the consequent may be concluded from the antecedents�

The con�dence factor is hard coded with the rule and represents the authors� belief in the

value of the rule�

A rule is ��red� by binding each of its antecedent literals to a fact in working memory�

Firing a rule causes the unnegated literals in its consequent to be added as a facts to

working memory� with a con�dence determined by the con�dences of the rule itself and the

facts bound to the rule�s antecedent literals� If the antecedent is a conjunction �disjunction�

then the minimum �maximum� con�dence value from the antecedent facts is selected� This

is multiplied by the rule�s con�dence and assigned to the consequent�

The system only uses positive certainties but literals do allow for the provision of

�NOT�� For the antecedent this condition is met if the fact does not exist in working

memory and is assigned a certainty of one� In the consequent a �NOT� causes the fact to

be removed independent of its certainty�

����� Rules Implementing the Inference Strategies

Figure � shows some of the rules that deal with methods and classes� On receipt of a

browser action� the analogue and template are updated� by adding new terms or revising

the con�dences in existing ones� These inferences are not part of the same rule to allow

di�erent con�dence factors to be used�

��

�� IF ��Class �name �op �pnode �pop��

THEN ��interestedIn Class �name�

�Templ excludeClass� �name ����� ���

�� IF ��Class �name �op �pnode �pop��

THEN ��Templ className� �name ��	�� ����

� IF ��Method �name �op �pnode �pop�

�NOT interestedIn Method �pnode��

THEN ��interestedIn Class �pnode�� ���	

�� IF ��Method �name �op �pnode �pop�

�NOT interestedIn Method �pnode��

THEN ��Templ className� �pnode ��	�� ����

	� IF ��Method �name �op �pnode �pop��

THEN ��interestedIn Method �name�� ���

�� IF ��Method �name �op �pnode �pop��

THEN ��Templ impMeths� �name ��	�� ���

� IF ��UserMethod �name SamMetNam �pnode �pop��

THEN ��tried impMeths� �name �pnode�

�Templ impMeths� �name ��	�� ���

Figure �� Some of the Rules Implementing the Goal
Inference Strategy

��

The �rst literal in the consequent of Rule � �Figure �� denotes that the user is �interested

in� the class to which the operator was applied� The second literal means that as the user

has already seen this class� there is little value in the system suggesting it� As the con�dence

is not one� whether or not it is actually shown to the user will depend on the matching

score for the rest of the template� The matching score is reduced by a factor inversely

related to the con�dence value� Thus if a class strongly matches the template and the user

had only visited it brie�y it will appear in the suggestion box�

The consequent of Rule � represents the con�dence a class�s name should be included

in the template for matching� Rule � increases the con�dence the user is �interested in�

the class each time one of the methods in that class are explored in greater detail� Rule �

has the same e�ect with the equivalent term in the template�

Rules ��� are similar to the class rules but for methods� They add terms to the analogue

to re�ect the user�s interest and to the template for matching� Rule � is �red when the

action is of a particular type indicated by the predicate �UserMethod�� Such an action

occurs when the user applies an operator that returns a list of classes that match on this

and possibly other methods� The con�dence that the template should include a term

containing the method name is greater than in the previous rule because the user has

shown very speci�c interest in classes implementing this method� Of course this may only

be a transient interest so the con�dence is not increased too strongly�

��� Template Construction and Matching

All template predicates are translated into terms which collectively form the template� Each

term consists of the element to be matched and the procedure for carrying out the match�

A weight is also associated with each term� formed from the product of the con�dence

value and the scale factor� The former� as described above� represents how strongly the

system believes that this is a desirable feature in any retrieved class� The latter� hard

coded in a rule� represents domain knowledge about the importance of this type of term

relative to other types in the template� For example the name of an instance variable may

be considered of lower importance than the name of a method as only the latter is visible

outside the object� In other words the library designers will have been more careful in

the choice of method names than those of instance variables and therefore the former are

��

better discriminants� Variability in scale factors has not� to date� been used extensively�

The template is matched to a class term by term� The results for all terms are summed

and then divided by the total weight� This results in a normalized total so that a perfect

match will have a score of one� The template matching process returns scores for all classes

in the library� The scores are used to produce the list in the Suggestion Box�

The following describes two parts of the matching process� �rstly how two individual

terms are compared to produce a numerical degree of match� secondly how the match score

is adjusted for �graphical distance��

����� Basic Matching

Each element has essentially two parts� a name and associated types� The names are

normally constructed from the concatenation of individual words� a standard practice in

most object oriented libraries� So each name can be broken down into an ordered list

of words� each of which can be individually used in matching� The types are the base

types of C� associated with� for example� methods� arguments and instance variables� This

information is limited� however� as Objective
C is not a strongly typed language and most

objects are of the generic type �id�� Still� it can be used as part of the matching process�

The matching score is computed by counting the number of common words of the

template term name and the equivalent name in a library item� For example� methods are

compared to methods and instance variables to instance variables� When matching names

of unequal numbers of subterms� the match can start from either the �rst or last word�

This allows two simple grammatical forms of matching based on noun and verb phrases�

A match on the noun or verb� itself� contributes the largest proportion to a term�s score�

With class and instance variable names� the match starts with the last word� a compound

name is assumed to be a noun preceded by adjectives� With method names it starts the

�rst word� a compound name is assumed to be a verb followed by adverbs�

The type information is also taken into account when appropriate� but its importance

is dependent on the element being matched� With instance variable� for example� more

emphasis is given to the type than for the arguments of method names�

��

����� Adjusting Score for Graphical Distance

There are cases where there is no match� or a weak match� in the class itself but a related

class has a feature that strongly matches� In this situation a simple form of graphical

matching is used�

For instance� due to the inheritance structure of the library the feature may not be

de�ned locally in a class but in one of its ancestors� The matching score of an ancestor�

measured as described in the previous subsection� is used but reduced by a small factor�

Another example occurs when one class uses the methods of another� Here the match

value is degraded with graphical distance� A distance of one is when the method� in the

class being evaluated� uses a matching method in another class� A distance of two is when

a method it uses� itself uses a matching method� To produce a score for each term� the

maximum match value is used and multiplied by the weight associated with the term� In

general� the matching algorithm returns a score inversely related to graphical distance�

This two
step matching process � basic matching of a class followed by an adjustment

based on the class�s neighbours� basic matching scores � is very similar to spreading ac

tivation
��� ���� In spreading activation� the library is represented by nodes connected

together by weighted links� Some of the nodes are the library items� themselves� others

might represent� for instance� common terms� When a given set of nodes are �activated��

this activation is passed through the links to the neighbouring nodes� but reduced according

to the weight on the link� A node�s activation is the sum of the activations it receives from

all its neighbours� If this sum exceeds a threshold� the node passes its activation to its

neighbours� thus the activation spreads through the library� Ideally� the spreading process

would continue until the activation levels of all nodes had stabilized� However� convergence

is not guaranteed� so in practice the process is simply stopped after a �xed� small number

of iterations� Upon stopping� the activation levels are interpreted as the relevance of the

individual library items�

The basic matching step is the exact equivalent of the initial activation of the term

nodes and the spreading of this activation to those nodes� neighbours� The adjustment

step is the counterpart of a few cycles of spreading the activation along the links in the

library� This �exible matching goes some way towards addressing the vocabulary problem�

��

In
��� the authors demonstrate the large amount of inconsistency that occurs when people

assign names to items� By basing our system around a browser which encourages the user

to express queries directly in the language of the library and by using a �exible matching

scheme to �nd items that have related but not identical indices we hope to reduce this

problem� At this time we use only the links that are already present in the library� To

include additional information� such as a thesaurus� it would only be necessary to convert

it to nodes and links� the same form as the library�

����� An Example Of Matching

TEMPLATE
CLASS

METHOD
show

CLASS
 SmallThing

METHOD
saveIt

CLASS
 BigThing

INST VAR
dataStore

METHOD
printIt

METHOD
saveIt

METHOD
emptyStore

CLASS
 OtherThing

INST VAR
dataStore

METHOD
printIt

Figure �� Matching Templates To Classes

The matching of a class to a template is illustrated in Figure �� On the left is an abstract

representation of a template� It contains terms for two class names �SmallThing� and

�BigThing�� and terms for three method names �emptyStore�� �printIt� and �saveIt��

It also contains a term relating method �printIt� and �saveIt� to the instance variable

��

�dataStore�� On the right is shown a class that would return a high matching score�

Firstly the class name �OtherThing� matches with both the template class names due to

the common subterm �Thing�� Secondly the method �saveIt� is implemented in the new

class and has the same relationship to an instance variable with the same name �dataStore��

Lastly although �printIt� is not implemented in the class� the method �show� uses a method

called �printIt� as part of its processing� In this case� the matching score is half what it

would have been had the class actually implmented this method�

� Design of Experiments to Evaluate the Active Browser

The experiments reported in this paper focus on the inference capabilities of the active

browsing system� The main question addressed is� how often is the user�s search goal

correctly inferred from his normal browsing actions� Some additional experimentation also

investigated the e�ect on search time when the suggestion box is used�

Two experiments are presented� The �rst is a large
scale experiment in which every

one of the ��� classes in the library is used as a search goal� As it was infeasible to conduct

so large an experiment with human subjects� an automated heuristic browsing agent was

developed and used� A similar experimental method is used in
��� to compare relevance

feedback systems� The advantage of using an automated browsing agent is the generally

accepted idea
��� that by using �arti�cial data� �which is what the heuristic browsing agent

provides�� one can run experiments that are larger
scale� much more carefully controlled�

and repeatable� than experiments using �real� data �human browsing agents� in this case��

To validate the results of this experiment� a second experiment using human subjects was

undertaken�

��� The Heuristic Browsing Agent

The heuristic browsing agent has not been designed to simulate the rich behavioural charac

teristics of a human searcher� Rather it encompasses some general heuristics that a human

might be expected to follow� In fact the search strategy it follows is very similar to that

demonstrated in the example discussed earlier in section ���� The agent consists of two

parts �Figure ��� a �fuzzy oracle� that represents the search goal� and a heuristic search

��

strategy that consults the oracle and selects browsing actions� The fuzzy oracle contains a

target class selected by the experimenter from amongst the classes in the library� The oracle

gives YES�NO answers to questions about whether a given library item matches the target

class in certain ways� The oracle is �fuzzy� because its answers are not always correct� for

each type of question� the experimenter can set the probability that the oracle will give an

incorrect response� This noisiness represents the browsing agent�s uncertainty in evaluating

the degree of match between a library item and the requirements� Each question re�ects

what a human user would see in the latest window of the browser� For instance� seeing a

new list of class names the user must asses whether or not the name� itself� is su�ciently

interesting to warrant opening the class for deeper inspection�

����� The Fuzzy Oracle

The fuzzy oracle contains information about a selected class and will give yes�no answers

to speci�c questions� It can be asked if a class name partially matches with the name of

the selected class� It can be asked if a method name wholly or partially matches with a

name of a method in the selected class� It can be asked if the group of matched methods

are more similar to those of the selected class than the last matched group� The answer to

each question is a�ected by a noise factor� The noise factor is a uniform random variable

whose mean and variance is selectable independently for each question� If the degree of

match� determined in response to any of these questions� exceeds the value of the random

variable� a yes is returned by the oracle� otherwise a no is returned�

The answers to these questions have some intuitive relationship to the knowledge of a

user� A positive response for the matching of a class name is biased towards names that

have common subterms and in a weaker sense to the children of classes that match� The

matching on method names is biased towards identical names and in a weaker sense to

names with common subterms and to inherited methods� The answers to these questions

could be construed as the semantic knowledge the user has about the meaning of the names

and in a weaker sense to knowledge about the library structure� The assessment that a

new class is better than a previous one could be related to the user�s general knowledge

about the items in the library and the role�s� they can play�

��

HEURISTIC
CONTROL

New
Class

Select
Method

Open
Class

Next
Class

YES

NO

N
O
I
S
E

Target
Class

FUZZY ORACLE
Is Class Name Similar ?

Do Methods Match Better ?

YES

Is Method Name Similar ?

YES

BROWSING AGENT

Figure �� The Heuristic Browsing Agent

��

����� The Heuristic Search Strategy

The heuristic search strategy is a combination of depth
�rst search and hill
climbing� The

agent iterates through the most recently generated list of class names from top to bottom�

For each name it asks the fuzzy oracle if the name is similar to that of the target class�

If the answer is no� the agent proceeds to the next class in the list� if there are no more

classes on the current list it backtracks to the previous list� In the example shown in the

bottom half of Figure �� the agent began on the list entitled �Classes� and asked the fuzzy

oracle if the �rst name on this list� �DatabaseIndex�� is similar to that of the target class�

The answer was no� so the agent proceeded to the next name on the list� �DatabaseList�

and asked the fuzzy oracle if this name is similar to that of the target class� This time the

fuzzy oracle answered yes�

When the fuzzy oracle says that a class�s name is similar to the target�s� the class

is selected and expanded� In the example this results� in �gure �� in the names of the

methods implemented by DatabaseList� being displayed on the lower right hand side of

the screen� The heuristic agent now picks method names from this list at random and asks

if each matches with the name of a method in the target class� Each method name for

which the oracle answers yes is marked� causing some information about it to be displayed

in the lower left window� This random examination process continues until a maximum

number of methods have been marked �a random number from three to �ve� or there

are no more methods in the class� In the example� three methods have been marked�

�defaultListItems��� �frontend�� and �defaultName���

The heuristic agent now asks if the set of marked methods is a better match to the

methods in the target class than the set of methods marked in the previous class� If the

answer is yes� as it is in the example� these methods are selected and highlighted in the

window on the lower left �Figure ��� The heuristic agent applies an operator that generates

a list of the classes that best match the selected methods� This list appears in the upper

right hand corner of the browser�s interface �Figure ��� The heuristic agent then continues

its search using this newly
generated list of classes� The search terminates when the agent

�nd the target class�

Two factors combine to cause the top classes in each new list to be more similar to

��

the target� on average� than those of previous lists� The �rst factor is the hill
climbing�

The second is the fact that the noise in the fuzzy oracle is reduced each time a new class

is opened� so that as search proceeds the heuristic agent gets progressively more accurate

answers to its questions� This is analogous to the re�nement of the user�s knowledge about

what is required� and thus the re�nement of the search goal� as more classes are explored�

	 Experimental Results

The main experiment measures how successful the active browsing system is in inferring

the target class from the agent�s actions� Two measures of �success� are used� the frequency

with which the active browsing system identi�es the target class prior to its being found by

the browsing agent� and a comparison of how the ranking of the target class by the agent

and by the system varies across the whole search� As described in section �� two versions

of this experiment were done� The �rst is a large
scale study using the automated heuristic

browsing agent� The second is a small
scale study using human subjects� The results of

these experiments are reported in sections ��� and ��� respectively� In neither version of

this experiment is the �Suggestion Box� used by �or even shown to� the browsing agent�

Section ��� describes an experiment that measures the e�ect on the agent�s search of using

the suggestion box� The number of steps required to �nd the target class is compared to

that required without the use of the suggestions�

In all experiments� each time the browsing agent �whether human or automated� creates

a new class list or backtracks to a previous list� a record is made of the rank of the target

class in the agent�s current list �henceforth called the agent�s ranking� and the rank� at

that moment� of the target class in the suggestion box produced by the active browsing

system �henceforth called the system�s ranking�� For example� the information shown in

�gure ��� is recorded for the target class �ProbableMethodsList��

The �rst row gives the rankings after the browsing agent has made its �rst step� i�e��

created its �rst new class list� The target class is ��th in this list� The target class is

ranked slightly higher ���th� by the active browsing system� As the agent proceeded in

its search its ranking of the target class actually got worse� dropping at step � to ��th

��

Target Class ProbableMethodsList

Step System�s Agent�s

Number Ranking Ranking Difference

� �� �� �

� �
 ��

 �

 ��

� � �� ��

	 � �� ��

�
 �� �	

 �� �	

� �
�
	

Figure ��� Record Of Ranking During Search

place� This is not a surprising e�ect� The agent may well evaluate a number of di�erent

variants on a theme� For instance� di�erent collections of methods might be investigated or

methods with similar but not identical names� Thus the search will� at least temporarily�

move in the �wrong� direction� Despite this fact� the history of the actions carries enough

information for the active browsing system to identify the characteristic features of the

target class� This is demonstrated by the fact that from the third step onwards� the target

class is in the system�s top ten�

In the experiment with the human subjects� the search for each target class continued

until it was found by the subject� In the experiments with the automated browsing agents�

the search was terminated when either �a� the browsing agent found the target class� or �b�

the target class was ranked in the top ten by the active browsing system for six consecutive

steps� Criterion �b� applies in the example above�

��� Results Using the Automated Heuristic Browsing Agent

The experiment consists of successively using each class in the library as the target class�

The library is the combination of two commercially available libraries plus the classes

developed as part of this implementation� It contains ��� classes in total� By varying the

��

noisiness of the oracle�s answers to questions posed by the heuristic agent the e�ect of a

human searcher�s uncertainty was investigated� The experimental results presented below

are for three di�erent noise levels�

Intuitively� a target class is a �win� �for the active browsing system� if the active

browsing system correctly infers it before it is found by the browsing agent� Likewise� a

target class is a �loss� if the browsing agent �nds the target class before the active browsing

system infers it� There are a variety of di�erent ways of de�ning a �win� and a �loss�� here

two criteria are considered�

Criterion �� A target class is a win for the active browsing system if it is ranked in the

top ten by the active browsing system for �ve consecutive steps OR if the system�s ranking

is higher �better� than the agent�s ranking when the agent �nds the target class� A target

class is a loss if the agent �nds the target class and� in that �nal step� the target class is

not in the system�s top ten� All other target classes are draws�

Criterion �� A target class is a win only if it is ranked in the top ten by active browsing

system for �ve consecutive steps� A target class is a loss if the agent �nds the target class

and� in that �nal step� the agent�s ranking is higher than the system�s ranking� All other

target classes are draws�

The second criterion is less generous towards the active browsing system� awarding it

fewer wins and more losses� There are other realistic de�nitions of �win� that are more

generous than criterion ���� for example� one could award a win if the active browsing

system inferred a class that was extremely similar to the target class� Table � shows wins

losses
draws for the two criteria and three representative values of the one noise parameter

that was varied� The number of wins� according to criterion ���� is much smaller� But with

this criterion a win is impossible for target classes that are found by the browsing agent

in fewer than �ve steps� There are �� such target classes� if these are disregarded� active

browsing succeeds on almost exactly the same percentage of classes with either criterion�

For example� with low noise� the �� wins according to criterion ��� is ��	 of all the searches

and the �� wins according to criterion ��� is ��	 of the searches with �ve or more steps�

The results in table � show that for low noise using criterion � the number of active

browser wins is very close to half the classes� This number is over ��	 more than the

number of losses �the clear wins for the agent�� As the noise increases the number of wins

��

Crtn� Low Noise Moderate Noise High Noise
No� Wins Losses Draws Wins Losses Draws Wins Losses Draws

� �� �� �� �� �� �� �� �� ��

� �� �� �� �� �� �� �� �� ��

Table �� Wins
Losses
Draws

declines� The lowest number of wins represents about a third of the total classes�

Two factors are critical in the assessment of wins� Firstly the number of times the

target class has to appear in the suggestion box before a win is recorded and secondly the

size of the suggestion box itself� To examine the sensitivity of the results in table � to

the choice of ��ve consecutive appearances in a box of size ten�� the number of wins were

recorded while varying the two factors� Details of this experiment can be found in
����

The results were found not to be highly sensitive to the suggestion box length� There is

a sensitivity� not surprisingly� for suggestion boxes containing only a very small number of

classes� However� this quickly levels out for sizes greater than eight� The value of ten used

in these experiments is therefore a representative one� There is a higher degree of sensitivity

to the number of appearances in the suggestion box required for a win to be assigned� This

is somewhat more pronounced for the the second criterion� where this the sole de�nition of

a win� As this number is reduced wins for the two criteria become progressively closer�

����� Step�by�Step Comparison of the Rankings

The measurement of wins
losses
draws directly indicates how often the target class is highly

ranked by the active browsing system at the termination of the search� but it gives no

indication of how the ranking evolved as the search progressed� If a browsing agent is to

bene�t from an active browsing system in practice� it must be true that throughout the

search the system�s ranking of the target class is consistently signi�cantly higher than the

agent�s own ranking of the target�

The di�erence between the agent�s ranking and the system�s ranking is plotted in Fig

ure �� for two di�erent values of the noise parameter� The results for low noise are plotted

with the solid line and the results for moderate noise are plotted with the dotted line�

Each step in the agent�s search for the target class corresponds to a di�erent point on the

��

AVG
DIFF
IN

RANK

0

+20

+40

-20
0 10 20 30

STEP NUMBER INTO SEARCH

40

LOW
NOISE

MODERATE
NOISE

Figure ��� Di�erence In Ranking During Search

��

X
axis� The Y
axis indicates the di�erence between the agent�s and the system�s ranking

on a given step� averaged over all the target classes� A positive Y
value indicates that the

target class is ranked higher by the active browsing system than by the agent�

Note that the search for some target classes involves fewer steps than the search for

others� For example� �� target classes have a search involving � or fewer steps� Thus� as one

moves right along the X
axis� the number of classes contributing to the Y
value decreases

rapidly� the data for large values of X are based on the small number of target classes that

require many steps to �nd�

The graph for low noise shows that the target class is consistently ranked much higher

by the active browsing system than by the browsing agent on all steps except the �rst

few� A similar pattern occurs for other noise values� but as the noise value increases the

di�erence diminishes and becomes more erratic� As the noise level is further increased the

rank di�erence gradually returns to being consistent and signi�cant� but with the browsing

agent having a better ranking than the active browsing system�

Instead of measuring the numerical di�erence in rankings� one could simply measure

the sign of the di�erence in rankings at each step
���� This indicates� for each step� how

frequently the target class is ranked higher by the active browsing system than by the

browsing system� A similar pattern emerges� For low to moderate noise levels� after the

�rst few steps of search� roughly ��	 of the target classes are ranked higher by the active

browsing system� Unlike the numerical rank di�erence� this measure declines quite slowly

as the noise level increases� for the high noise level� the system�s ranking is higher than the

agent�s on ��	 of the target classes�

��� Experiments with Human Subjects

This experiment is identical to the preceding one except that human subjects were used�

not an automated browsing agent� and only a small number ��� of library classes were used

as targets� The purpose of this experiment is to verify that the results obtained using an

automated agent carry over to human agents�

The experimental design was the same� The human subjects were required to �nd a

speci�c target class using the normal browser� The active browsing system was disabled

during search� The user�s actions were recorded and replayed later with the active browser

��

enabled�

In preparation for this experiment� some initial experimentation was done by the au

thors� and some modi�cations were made to the rule base and the values used for template

matching� Of these� the most noteworthy is the addition of rules associated with browsing

operators applied to a selected group of methods� This initial experimentation showed that

a good search strategy was to investigate classes that might be used by the target before

�homing in� on the target class itself� Rules were added that embodied the inference that

if a user showed interest in certain methods� classes that sent messages to these methods�

as well as those that actually implemented them� might be of interest to the user�

Five example classes were chosen as search targets� These classes are principally con

cerned with user
interfacing� Using classes which could be displayed on the screen and

manipulated by the user minimises any experimental bias in the speci�cation of the target

class� The only changes made were to remove names in titles and menus which where

strong pointers to the target class� Four of the �ve examples are shown in �gure ��� The

order with which each class was presented to the the user is as follows�

StdLayer� the �window� with just a title displayed

StdSysLayer� similar to StdLayer but with scrollbars�

Con�rmer� which asks yes�no style questions of the user�

SpecTLayer� which displays a text string and can be �attached� to other layers� This

target was not in the library used in the experiment with the automated browsing agent�

EchoBox� produces a �rubber rectangle� whose size is determined by the user moving

the mouse�

The experimental subjects were all graduate students� � from the Electric Engineering

Department� two from the Computer science Department� All had some experience with

Object
Oriented languages but none had more than a cursory knowledge of Objective
C�

Each subject was give some initial instruction on how to use the browser� The experiment

was automated such that each example was presented in turn to the subject� The search

was stopped when the particular target class was opened to explore its methods and a new

example presented�

Table � shows the lengths of the searches required by each subject �H��H�� on each

target� The most striking feature of this table is its diversity� Each target was found quickly

��

Figure ��� Four of the examples used in the experiments with human subjects

��

Target H� H� H� H� H� Automated Agent

StdLayer �� �� � �� � �

StdSysLayer � �� �� � � ��

Con�rmer �� � � � �� �

SpecTLayer � � n�a � �� n�a

EchoBox �� � n�a � � �

Table �� Lengths of searches for all Browsing Agents

�� steps or fewer� by at least one subject� but not by other subjects� For some targets the

range of variation is very high� There is no apparent correlation between the results for

di�erent subjects� Every subject was the fastest on some target and the slowest on some

target �except H� was never slowest and H� was never fastest�� This diversity and lack of

correlation con�rms our observations during the experiment that the subjects were using

very di�erent search techniques�

The results for the automated browsing agent are shown in the rightmost column�

they are indistinguishable from those of the human subjects except for the absence of any

extremely short search� Note� however� that on other targets the automated agent did have

extremely short searches� recall that ��	 ��� out of ���� of its searches were length four

or less� This percentage is same as for the human subjects �� of the �� searches are length

four or less��

Crtn� Result
No� Wins Losses Draws

� �� � �

� � � ��

Table �� Wins
Losses
Draws results for human subjects

Table � shows the number of wins� losses and according to the criteria de�ned in the

preceding section� Criterion ��� credits active browsing with wins in ��	 of the searches

�ve steps or longer� Criterion ��� credits active browsing with wins in �� ���	� of the

��

searches� However upon closer examination it became apparent that criterion ��� is being

overly generous� in our subjective opinion three of these wins should be considered losses

and one a draw� By this reckoning� active browsing wins on � of the �� searches ���	��

The results are very similar to the low noise results for the automated browsing agent�

where ��
��	 of the searches were wins for active browsing�

It is important to note that the clear wins for active browsing � as de�ned by criterion

��� � were evenly distributed across the users� the targets �except that Con�rmer was never

a clear win�� and the lengths of the searches� StdLayer was a win with subjects H� and H��

StdSysLayer was a win with H�� SpecTLayer was a win with H� and H�� and EchoBox was

a win with H�� The fact that active browsing succeeded equally for all the users indicates

that it is able to cope with a wide variety of search techniques�

��� Selecting from the Suggestion Box

One extension to the experiment� more akin to how the tool would be used in practice� is to

have the agent make selections from the suggestion box� Here� the agent makes a selection

from either the suggestion box or the previous class list with equal probability� every time

it backtracks� This follows the intuitive notion that the suggestions are most likely to be

used when a human user is unsure of how to proceed� At this juncture the user may well

look at the suggestion box or unexplored classes in earlier lists�

The results in table � are for the low and moderate noise values� For each value the

experiment is run twice� with and without the use of the suggestion box respectively� The

search is terminated when the agent �nds the target class� The number of steps required

to �nd each class in the library is compared� In this case only a single criterion is used�

A win is assigned to the active browser if it takes fewer steps when turned on� a loss if

it takes more and a draw if they are equal� The results show a signi�cant bene�t at the

lower noise values� some of which is lost at the higher values� The ratio of wins to losses is

comparable to that given by criterion � of the simple comparison experiments�

��� Discussion And Analysis Of Results

The results show that the active browsing system frequently ���	 of the time� infers the

target goal before it is found by the browsing agent� This success rate was consistently

��

Low Noise Moderate Noise

Wins Losses Draws Wins Losses Draws

�� �� ��� �� �� ��

Table �� Using the suggestion box

achieved across all the agents studied� �ve humans and the automated heuristic borwsing

agent� It was also shown that during search the active browsing system consistently ranks

the target class signi�cantly higher than the heuristic browsing agent� There are two

conditions under which active browsing did not outperform the heuristic browsing agent�

during the early steps of search� and when the browsing agent is highly uncertain about

the search goal �simulated in the experiments by a high noise level��

That active browsing does not outperform the agent in the early steps of search can be

explained by the fact that it has insu�cient information upon which to base its rankings�

The results clearly show that the performance of active browsing system is degraded

by increased noise levels more than the agent�s performance� This was unexpected� the

evidence
accumulating mechanism in the active browsing system ought to act as a noise

�lter� There are numerous factors that might have produced this e�ect� The most likely

explanation is that the agent�s behaviour consisted of a large number of uninformative

actions followed by a relatively small number of highly informative actions that led the

agent to the target� If the agent behaves in this way� the active browsing system will lag

behind the agent in moving towards the target because the �nal few informative actions

will not immediately outweigh the mass of previous uninformative actions� This kind of

�misleading� initial behaviour by the agent is promoted by the fact the oracle�s noise level

decreases as the agent�s search progresses� It is further promoted by the fact that in the

test library� as in most software libraries� there are some fairly large groups of highly similar

items� The agent may explore one of these groups for a long time before �realising� that

such classes do not truly meet the requirements� There are a number of possible answers

to this problem�

The �rst relates to the goal tracking issue discussed earlier in section ���� One possible

way to make the goal tracking more robust would be to have the system detect if the

user abandons an originally interesting path� For example� this might be inferred if the

��

user backtracks to the original start point and begins a search with items showing little

commonality with those visited previously� More generally� it could be detected by a change

in the ability of the analogue to reasonably predict the user�s selections� The previous

information collected would then be degraded in inverse proportion to the con�dence in

this inference� Techniques similar to this have been used in machine learning to cope with

�drifting� concepts
���� A second possible approach would be to add rules that make use

of various forms of statistics about library structure� If the user is in an area of the library

where all adjacent classes are very similar then the con�dence in certain inferences should

be weakened due to the high likelihood of particular selections�

Another possible solution would a�ect the inference process itself� The only basic

assumption is that the properties selected are likely to be similar to the desired ones� It is

not known if they are exactly the same� although when �rst selected this might be preferred�

Thus when properties are continually selected within these groups of highly similar classes�

although the con�dence that they contain a useful features is increased� the con�dence that

the exact property is useful should stay the same� Ideally the analogue should be able to

represent this distinction�

 Limitations

This section discusses limitations to the whole approach of active browsing and presents

various ideas as to how these might be overcome�

The system design was based on the assumption that the library consists principally

of one type of item and the target of the user�s search is a single item� In the particular

implementation discussed in this paper the target was a class� Of course a single item may

not satisfy the user�s requirements� but �nding all combinations of items that satisfy the

search goal would be too computationally expensive�

One solution depends on additional layers of granularity in the library� For instance�

the same entity could simultaneously be an individual library item and also a component in

a larger item� In this case� relevance would be evaluated of both the isolated entity� and the

collection that contains it� The score� for both types of item� would still form the basis for

ranking� perhaps with a bias in favour of the smaller ones� This situation arises in software

��

within the object
oriented paradigm� where each class is an individual item and may also

be a part of a �framework�� It should also be relevant for modules consisting of a set of

closely related procedures� If the library has many levels of granularity ranging say from

classes to complete programs� it would be necessary to infer not only what properties of

an items are important but also what level of item interests the user� One approach would

be to change the browser to have layers� or views� associated with each level of granularity�

Di�erent analogues could then be associated with the particular level or view� Results

derived from them would only be shown when that level or view is active�

An alternative is to allow the user to make the decision� presumably by �nding one

item that meets part of the requirements and then searching for others that meet the rest�

In this case the analogue may be considered to represent a single search goal� Multiple

relevancy measures must� however� be produced and activated at di�erent points of the

user�s search� In the standard browser there is an operator that allows the user to save

the information on a class to a separate window� One idea that was pursued brie�y was

to infer from the use of this operator that the user had met some the requirements� The

system would then split the template into two� the part that matched with the stored class

and the part that did not� The second part was used to scan the library for classes that

might be used in conjunction with the one stored to meet the requirements� Of course this

might not be the only reason the user stored information about a class� So an additional

safeguard was added� checking how well the second template matched items the user visited

from this point on� If it was poor� it was assumed the user was continuing with the original

search and the two templates were merged�

Even if the user�s target is a single item� the library might be heterogeneous and the

user could be looking for one of many types of item� Ambiguity arises as to the form of

the target item� One potential answer is to construct a number of analogues based on

the di�erent item types� These would represent hypotheses that the system has about the

search target� The active browser would then need to be establish which one was relevant�

The browser might have levels� or views determined by appropriate �lters� associated with

one speci�c type� Analogues could then be associated with the particular level or view�

Results derived from them would only be shown when that level or view is active�

Another problem occurs if the user sidetracks to look at items that are of interest but

��

not connected to the present task� The user may� while looking a particular class� chance

upon another class related to some previous interest� If some time is spent looking at this

and related classes� before returning to the original search� the inference process will become

dangerously skewed� It might be possible to detect this situation if the intermediate search

is orthogonal to the main one� This might become apparent when the match between the

relevancy measure and the classes the user is exploring deteriorates abruptly� Information

collected during this part of the search would be disregarded and information before the

sidetrack would be used� Further study is needed to see if this is practical� or would just

serve to weaken the inference process in other circumstances�

An important consideration that has not been addressed in this paper is the computa

tional complexity of the active browsing system� Our long
term aim is to have the active

browsing system transparent� by having it use only the computer time that is available

between user actions� At the present stage of development each time a new template term

is added� it is evaluated against every class in the library� The results of each match are

cached� This allows the more rapid reevaluation of previous terms when the associated

weight is changed� Each update� therefore� takes in order of the product of the number of

items in the library and the average number of terms in each class to be matched� With

the existing scheme and a library of ��� classes the system is able to operate in real time�

with a barely noticeable delay between user actions� on a Sparc ��

Certainly for a much larger library� the time available between actions is insu�cient for

our current active browsing system to operate without introducing appreciable delays� We

are currently investigating a variety of methods that reduce the time required for active

browsing without signi�cantly degrading its success rate� The general idea underlying these

techniques is to be highly selective about which classes are evaluated and which template

terms are �re
�evaluated�

� Conclusion

This paper has described a system for active browsing and experimentally demonstrated

that a browsing agent�s search goal can often be inferred from normal browsing actions�

The inferred goal provides a reliable way of estimating the �relevance� of a library item

��

to the agent�s actual search goal� Active browsing increases the e�ectiveness of browsing

without imposing any restrictions or �cost� on the user� The agent is able to make full use

of the facilities of the standard browser� and is not required to take special actions or learn

any new tools�

Future experiments should use a rich variety of realistic browsing agents� Further

work on agents using the systems� suggestions would permit measurement of the relative

e�ectiveness of di�erent ways of presenting the inferred goals to the browsing agent�

�� Acknowledgments

The work was supported in part by a Strategic grant and operating grants from the Natural

Sciences and Engineering Research Council of Canada� Our colleagues on the �Machine

Learning Applied to Software Reuse� project provided helpful comments at all stages of

this research�

References

�� J�A� Alty and M�J� Coombs� Expert Systems� Concepts And Examples� National Com

puting Centre Publications ������

�� M� J� Bates� Terminological Assistance For The Online Subject Searcher� Proceedings

Of The Second Conference On Computer Interfaces For Information Retrieval� ������

�� Ted J� Biggersta�� Charles Richter� Reusability Framework� Assessment And Direc�

tions� Software Reusability Vol � Ed T�J� Biggersta� A�J� Perlis� ACM Press pp ��

��������

�� Edwin Bos� Some Virtues and Limitations Of Action Inferring Interfaces� �th Annual

Symposium on User Interface Software and Technology ������

�� Guy A� Boy� Indexing Hypertext Documents In Context� Proceedings of �rd ACM

Conference on Hypertext ������

��

�� F�R� Campagnoni and Kate Ehrlich� Information Retrieval Using A Hypertext�based

Help System� SIGIR �� Proceedings of the ��th International Conference on Research

and Development in Information Retrieval ������

�� Robin Cohen� B� Spencer� Specifying and Updating Plan Libraries for Plan Recognition

Tasks� Proceedings of the Conference on Arti�cial Intelligence Applications �CAIA
���

���� pp ����� ������

�� Allen Cypher� EAGER� Programming Repetitive Tasks by Example� Proceedings of the

SIGCHI Conference ���� pp ����� ������

�� Lisa Dent� Jesus Boicario�John McDermott�Tom Mitchell and David Zabowski A Per�

sonal Learning Apprentice Proceedings of AAAI �� ������

��� P� Devanbu� R� Brachman� P� Selfridge� LaSSIE� A Knowledge�Based Software Infor�

mation System� Communications of the ACM vol� ����� ���� pp ����� ������

��� Chris Drummond� Automatic Goal Extraction from User Actions to Accelerate the

Browsing of Software Libraries� M�A�Sc� Thesis� University of Ottawa� December �����

��� T� W� Finin� Providing Help and Advice in Task Oriented Systems� Proceedings of

IJCAI
�� ���� pp ������� ������

��� Gerhard Fischer� Scott Henninger� David Redmiles� Cognitive Tools For Locating And

Comprehending Software Objects For Reuse� Proceedings of CHI
�� Human Factors

In Computing Systems ���� pp ������� ������

��� Gerhard Fischer� A� Girgensohn� End�User Modi�ability in Design Environments� Pro

ceedings of CHI
�� � Empowering People�� ���� pp ������� ������

��� Gerhard Fischer� A� C� Lemke� T� Mastaglio� A� I� Morch� Using Critics to Empower

users� Proceedings of CHI
�� � Empowering People�� ���� pp ������� ������

��� Gerhard Fischer and Helga Nieper
Lemke� HELGON� Extending The Retrieval By Re�

formulation Paradigm� Proceedings of CHI
�� Human Factors In Computing Systems

pp ������� ������

��

��� William B� Frakes� P� Gandel� Representing Reusable Software� Information and Soft

ware Technology vol� ������ ���� pp ����� ������

��� W� B� Frakes� B� A� Nejmeh� Software Reuse Through Information Retrieval� Pro

ceedings of the ��th Annual Hawaii International Conference on system Sciences pp

�������� ������

��� P� Freeman� Reusable Software Engineering� Concepts And Research Directions� Pro

ceedings Of the Workshop on Reusability In Programming ������

��� G�W� Furnas� T�K� Landauer� L�M� Gomez and S�T� Dumais� The Vocabulary Problem

In Human�System Communication� Communications of The ACM� Nov ���� Vol ��

No �� pp ������� ������

��� B� A� Goodman� Diane J� Litman� Plan Recognition for Intelligent Interfaces� Proceed

ings of the Sixth Conference on Arti�cial Intelligence Applications �CAIA
��� ���� pp

������� ������

��� David Hanies� W� Bruce Croft� Relevance Feedback and Inference Networks� Proceed

ings of the ��th International ACM SIGIR Conference on Research and Development

in Information Retrieval ���� pp ���� ������

��� Donna Harman� Relevance Feedback Revisited� SIGIR �� Proceedings of the ��th In

ternational Conference on Research and Development in Information Retrieval ������

��� Richard Helm and Yoelle S� Maarek� Integrating Information Retrieval And Domain

Speci�c Approaches For Browsing And Retrieval In Object�Oriented Class Libraries�

Proceedings of OOPSLA
��� Object
Oriented Programming Systems� Languages� and

Applications pp ����� ������

��� Scott Henninger� CodeFinder� A Tool For Locating Software Objects For Reuse� Au

tomating Software Design� Interactive Design Workshop Notes �th National Confer

ence on Arti�cial Intelligence AAAI��� pp ����� ������

��

��� L�A� Hermens� J�C� Schlimmer� A Machine�Learning Apprentice for the Completion

of Repetitive Forms� Proceedings of the Ninth Conference on Arti�cial Intelligence for

Applications �CAIA
��� ���� pp ������� ������

��� Kristina Hook� J� Karlgren� A� Woern� Inferring Complex Plans� Intelligent User

Interfaces
�� ���� pp ������� ������

��� Andrew Jennings� Hideyuki Higuchi� A User Model Neural Network for a Personal

News Service� User Modeling and User
Adapted Interaction vol� � ���� pp ���� ������

��� Craig Kaplan� J� Fenwick� J� Chen� Adaptive Hypertext Navigation Based on User

Goals and Context� User Modeling and User
Adapted Interaction vol� � ���� pp ����

��� ������

��� Dennis Kibler and Pat Langley� Machine Learning As An Experimental Science� Pro

ceedings Of the Third Working Session On Learning ������

��� Charles W� Krueger� Software Reuse� ACM Computing Surveys vol� ����� ���� pp

������� ������

��� Yoelle S� Maarek� Daniel M� Berry and Gail E� Kaiser� An Information Retrieval

Approach For Automatically Constructing Software Libraries� IEEE Transactions On

Software Engineering Vol� �� No� � Aug� ���� pp ������� ������

��� Pattie Maes and Robyn Kozierok Learning Interface agents Proceedings of AAAI

������

��� P� F� Patel
Schneider� R� J� Brachman� H� J� Levesque� ARGON� Knowledge Represen�

tation meets Information Retrieval� Proceedings of the First Conference on Arti�cial

Intelligence Applications ���� pp ������� ������

��� Ruben Prieto
Diaz� Implementing Faceted Classi�cation For Software Reuse� Commu

nications of the ACM Vol �� ���� pp ����� ������

��� Beerud Sheth and Pattie Maes Evolving Agents For Personalized Information Filtering

Proceeding of the �th Conference on Arti�cial Intelligence For Applications ������

��

��� Barry G� Silverman and T�M� Mazher� Expert Critics in Engineering Design� Lessons

Learned and Research Needs� AI Magazine� vol� ��� no� �� pp ����� ������

��� R� H� Thompson and W� B� Croft� Support for Browsing In An Intelligent Text Re�

trieval System� Int� J� Man
Machine Studies Vol� �� pp ������� ������

��� G� Widmer� M� Kubat� E�ective Learning in Dynamic Environments by Explicit Con�

text Tracking� Proceedings of the European Conference on Machine Learning �ECML

���� Pavel Brazdil �editor�� ���� pp ������� ������

��� M� D� Williams� What Makes RABBIT Run � International Journal of Man
Machine

Studies vol �� ���� pp ������� ������

��� Ian H� Witten� Dan Mo� TELS� Learning Text Editing Tasks from Examples� Watch

What I Do� edited by Allen Cypher� MIT Press ���� pp ������� ������

��� Murray Wood and Ian Sommerville� An Information Retrieval System For Software

Components� I�E�E� Software Engineering Journal ������

��

�� List of Footnotes

Manuscript received

� This work was supported in part by the Natural Science and Engineering Research

Council of Canada under Grant No� A�����

y The authors are with Department of Electrical Engineering� University of Ottawa�

Ottawa� Ontario� Canada K�N �N��

�� List of Figures

Fig��� The next state function of the example� �p� ��

Fig��� The graph of process x� �p� ���

Fig��� The reachability computation of the example� �p� ���

Fig��� The reachability graph of the example� �p� ���

Fig��� Synchronization of two events� �p����

Fig��� Reachability computation results of the disk model� �p� ���

Fig��� Composition of the disk and process models� �p� ���

Fig��� List of warnings and suggestions given by the monitor� �p� ���

Fig��� The state transitions of the controller� �p� ���

Fig���� Graph of the composite system of the example� �p� ���

Fig���� The simulation results of the composite system� �p� ���

Fig���� The reachability graph of the composite system� �p� ���

Fig���� The architecture of the DES simulator� �p� ���

��

