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AbstractÐThis paper describes a modular approach for the construction of fault-tolerant agreement protocols. The approach is based

on a generic consensus service. Fault-tolerant agreement protocols are built using a client-server interaction, where the clients are the

processes that must solve the agreement problem and the servers implement the consensus service. This service is accessed through

a generic consensus filter, customized for each specific agreement problem. We illustrate our approach on the construction of various

fault-tolerant agreement protocols, such as nonblocking atomic commitment, group membership, view synchronous communication,

and total order multicast. Through a systematic reduction to consensus, we provide a simple way to solve agreement problems. In

addition to its modularity, our approach enables efficient implementations of agreement protocols and precise characterization of the

assumptions underlying their liveness and safety properties.

Index TermsÐAsynchronous distributed systems, consensus, fault-tolerant agreement protocols, failure detectors, modularity, atomic

commitment, group membership, view synchrony, total order multicast.
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1 INTRODUCTION

AGREEMENT protocols such as atomic commitment,
group membership, and total order broadcast or

multicast are at the heart of many distributed applica-
tions, including transactional and time critical applica-
tions. Based on some recent theoretical results on solving
agreement problems in distributed systems [10], [9], [15],
[31], we present in this paper a unified framework to
develop fault-tolerant agreement protocols in a modular,
correct, and efficient way.

In our framework, we suggest the use of a generic
consensus service to build fault-tolerant agreement protocols.
The consensus service is implemented by a set of consensus
server processes and the number of these processes depends
on the desired resilience of the service. We introduce the
generic notion of consensus filter to customize the consensus
service for specific agreement protocols. Building a fault-
tolerant agreement protocol boils down to a client-server
interaction where 1) the clients are the processes that have
to solve the agreement problem and 2) the servers
implement the consensus service, accessed through the
consensus filter. The client-server interaction differs, how-
ever, from the usual client-server interaction scheme: Here,
we have an nc-ns interaction (nc clients, ns servers), with
nc > 1, ns > 1, rather than the usual 1-1 or 1-ns interaction.

We show how various agreement protocols are built
simply by adapting the consensus filter. The modularity of
our infrastructure enables us to derive correctness proper-
ties of agreement protocols from the properties of the
consensus service and leads to effective optimizations that
trade resilience with efficiency. Behind our approach, we
argue that consensus is not only a fundamental paradigm in

theoretical distributed computing [23], [33], but also a
useful building block for practical distributed systems.

The paper is structured as follows: Section 2 recalls some
background on the development of distributed services and
distributed agreement protocols. Section 3 presents our
system model and recalls some results about the consensus
problem. Section 4 gives an overview of our generic
consensus service. Section 5 details how nonblocking
atomic commitment protocols can be constructed using
our consensus service. Section 6 illustrates the use of the
consensus service in building protocols for group member-
ship, while Section 7 extends the example of group
membership to view synchronous communication.
Section 8 considers atomic broadcast and atomic multicast
protocols. Section 9 presents a cost analysis and discusses
efficiency issues. Section 10 points out some possible uses
and generalizations of our framework.

2 BACKGROUND

General services used to build distributed applications or to

implement higher level distributed services have become

common in distributed systems. Examples are numerous:

file servers, time servers, name servers, authentication

servers, etc. However, there have been very few proposals

of services specifically dedicated to the construction of

fault-tolerant agreement protocols such as atomic commit-

ment, total order broadcast, etc. Usually, these protocols are

considered separately and do not rely on a common

infrastructure.
A notable exception is the group membership service [28],

which was used to implement various total order broad-
cast protocols [8], [12], [13], [1]. However, the group
membership problem (solved by the membership service)
is just one example of an agreement problem that arises in
distributed systems. In fact, all agreement problems
(atomic commitment, total order broadcast, group mem-
bership) are related to the abstract consensus problem [10],
[36] and, thus, are subject, in asynchronous systems, to
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the Fischer-Lynch-Paterson impossibility result [14], [9],
[11].1 By defining a unified consensus-based framework
for solving various agreement problems, we provide a
systematic way to reuse the results of Chandra and Toueg
on failure detectors and consensus in proving the
correctness of agreement protocols.

Our work can be viewed as continuation of the work
of Schneider [33], who suggested the use of consensus as
a central paradigm for reliable distributed programming.
We go a step further by describing a generic and
systematic way to transform various agreement problems
into consensus. Our transformation generalizes the solu-
tions for problems like group membership and view
synchronous communication presented in [25], [24] and
leads to highlight their common characteristics with
problems usually considered separately like nonblocking
atomic commitment.

3 SYSTEM ARCHITECTURE AND MODEL

Our system architecture is depicted in Fig. 1. We describe
below the process model and the communication layer, then
we recall the failure detection abstraction (layer 1) and the
definition of the consensus problem. The generic consensus
layer (layer 2) is described in Section 4. Examples of using
the generic consensus service to solve various agreement
problems (layer 3) are given in Sections 5, 6, 7, and 8.

3.1 Processes

We consider a distributed system composed of processes
denoted by p1; p2; . . . ; pi; . . . . The processes are completely
connected through a set of channels. Every process can
send a message, receive a message, and perform a local
computation (e.g., modify its state or consult its local
failure detector module). We do not make any assumption
on process relative speeds, but we assume a crash-stop
failure model: A process fails by crashing and, after it
does so, the process never executes any action. We do not
consider for instance Byzantine failures, i.e., we assume
that processes do not behave maliciously.2 A correct
process is a process that does not crash and a process that
crashes is said to be faulty.

3.2 Communication Primitives

We consider an asynchronous communication model, i.e.,
we do not assume any bound on the time it takes for a
message to be transmitted from the sender to a destination
process. We assume, however, that the channels are quasi±
reliable [2], which ensures the following property:

. A message sent by a process pi to a process pj is
eventually received by pj if pi and pj are both correct.

Quasi-reliable channels can be implemented over fair
lossy channels [5] by retransmitting messages. They do not
exclude the possibility of temporary link failures (tempor-
ary partitions). A quasi-reliable channel is weaker than a
reliable channel [5] which ensures that a message m sent by
pi to pj is eventually received by pj if pj is correct, i.e., the
latter definition does not require pi to be correct. This means
that reliable channels do not lose messages, whereas quasi-
reliable reliable channels may lose messages and, hence,
more adequately model real communication links.

For the modularity of our construction, we introduce the
following communication primitives, which can be built
using quasi-reliable channels.

. Rmulticast�m� to Dst�m�: reliable multicast of m to
the set of processes Dst�m�. This primitive ensures
that, if the sender is correct, or if one correct process
pj in Dst�m� receives m, then every correct process
in Dst�m� eventually receives m.

. multisend�m� to Dst�m�: equivalent to for every
pj 2 Dst�m�, send�m� to pj.

The primitive multisend is introduced as a convenient
notation, whereas Rmulticast provides a stronger semantics.
To understand the difference, consider 1) Rmulticast�m� to
Dst�m� and 2) multisend�m� to Dst�m�, both performed by
some process pi. If pi crashes, then multisend�m� to Dst�m�
can lead to partial reception of m: Some correct process pj in
Dst�m� might receive m and some other correct process pk
in Dst�m� might never receive m. Such a situation does not
occur with Rmulticast. A multisend is implemented simply
by sending multiple messages, whereas an Rmulticast
requires message retransmission by a destination process
(see [10] for more details on implementation of reliable
multicast).

3.3 Failure Detectors

Failure detectors have been formally introduced in [10], [9]
for solving the consensus problem. A failure detector can be
viewed as a distributed oracle. Each process pi has access to
a local failure detector module Di. This module maintains a
list of processes that it currently suspects to have crashed.

In this paper, as we consider consensus as a black box,3

we do not recall the formal characterization of failure
detectors for solving consensus (see [10]). In our scheme,
failure detectors are also used outside of the consensus box.
The properties they are required to satisfy depend,
however, on the agreement problem we are trying to solve.
Whenever we make use of failure detectors in the paper
(outside of the consensus box), we will specify the proper-
ties that are needed.
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1. We recall the definition of the consensus problem later in the paper.
The Fischer-Lynch-Paterson impossibility result states that there is no
deterministic algorithm that solves consensus in an asynchronous system
when one process can crash [14].

Fig. 1. The architecture model.

2. In Section 10, we will discuss the generalization of our framework to
other fault models. 3. We come back to this in Section 9.



3.4 Consensus

The consensus problem is defined over a set of processes.

Every process pi in this set starts with an initial value vi and

the processes have to decide on a common value v.

Consensus is defined by the following three properties [10]:

Uniform Agreement. No two processes decide differently.

Termination. Every correct process eventually decides.

Uniform Validity. If a process decides v, then v is the initial

value of some process.

The definition considered above specifies the uniform

version of the consensus problem. It requires agreement

and validity properties to be satisfied even by faulty

processes. We do not discuss here specific algorithms that

solve consensus: We just assume the existence of such

algorithms. The reader interested in learning more about

solving consensus in an asynchronous system model

augmented with failure detectors can consult [10], [31].

4 THE CONSENSUS FRAMEWORK

In this section, we give an abstract view of our consensus

service-based framework. Our description is abstract in the

sense that we do not consider here any specific agreement

problem. Examples of solving agreement problems in our

framework are given in Sections 5, 6, 7, and 8.

4.1 The Roles: Overview

Our framework distinguishes the following process roles:

. The ªinitiatorº of an agreement problem.

. The processes that have to solve an agreement
problem. These processes play the role of ªclientsº
of the consensus service.

. The processes that solve consensus. These processes
are the ªserverº processes. We assume that at least
one of these server processes is correct.

The different roles can overlap: An initiator process can also

be a client process and the role of the server processes can

be played by all or by a subset of the client processes. In

practice, this would be the typical scenario (we will come

back to this in Section 9). We will also see that, depending

on the agreement problem, the initiator can be either a client

process or distinct from the client processes. However, for

simplicity of presentation, we will mainly consider the case

where the initiator, the client processes, and the server

processes are distinct. We will denote the server processes

by s1; s2; . . . ; sm. The number m of these processes depends
on the desired resilience of the service.

The interaction between the initiator, the clients, and the
consensus servers is based on the Rmulticast and the
multisend communication primitives defined in the previous
section. A basic interaction has three phases (Fig. 2):

1. An initiator process starts by multicasting a message
to the set of client processes, using the Rmulticast
primitive (Arrow 1).

2. Clients invoke the consensus service using a multi-
send primitive (Arrow 2).

3. The consensus service sends a decision back to the
clients using a multisend primitive (Arrow 3).

We will see throughout the paper that many agreement
problems can be solved through the above three phase
interaction. In most of the cases (Sections 5, 6, and 7), there
is a 1-1 correspondence between one instance of an
agreement problem and one instance of consensus. We will
also briefly mention in Section 8 the case of a n-1
correspondence, where several instances of an agreement
problem (total order broadcast) correspond to one single
instance of consensus.

4.2 The Roles: Description

The initiator. The invocation of the consensus service is
started by an initiator process which reliably multicasts
(Rmulticast primitive) the message �cid; data; clients� to the
set clients (Arrow 1 in Fig. 2; and Fig. 3). The parameter cid
(consensus id) uniquely identifies the interaction with the
consensus service, data contains some problem specific
information, and the parameter clients is the set of
processes that have to solve an agreement problem.

The clients. Upon reception of the message
�cid; data; clients� multicast by the initiator, every process
pi 2 clients computes data0i (which contains problem
specific information), multisends the message
�cid; data0i; clients� to the consensus service, and waits
for the decision of the consensus service (Fig. 4).

The servers. The interaction between the clients pro-
cesses and the consensus service is illustrated from the
point of view of a server process in Figs. 5 and 6. The
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Fig. 2. Interaction from a client's point of view.

Fig. 3. Initiator's algorithm.



genericity of the consensus service is obtained thanks to the
notion of ªconsensus filter,º depicted in Fig. 6 as a shaded
ring (arrows to and from s2 and s3 have not been drawn to
keep the figure simple). The consensus filter allows one to
tailor the consensus service to specific agreement problems.
The filter transforms the messages received by a server
process sj into a consensus initial value vj for sj.

The consensus filter. A consensus filter, attached to
every server process sj, is defined by two parameters: 1) a
predicate CallInitV alue and 2) a function InitV alue (Fig. 5).
The predicate CallInitV alue defines the condition under
which the function InitV alue can be called and the
consensus protocol started. It is a stable predicate, i.e., if
CallInitV alue is true at a time t, it is true for any time t0 > t.
As soon as the predicate CallInitV alue returns true (line 1,
Fig. 5), the function InitV alue is called (line 2, Fig. 5).
InitV alue returns the initial value for the consensus. In
Fig. 5 (line 3), the consensus protocol is represented as a
function consensus�cid; vj�. The consensus decision, once
known, is multisent to the set clients (line 4, Fig. 5).

We say that a consensus filter is live at a correct server
process sj if the predicate CallInitV alue eventually be-
comes true and the function InitV alue eventually returns
some value at sj.

4.3 Correctness

Here, we present two properties that are ensured by our
generic framework and from which we derive the correctness
proofs of agreement protocols (see Sections 5, 6, 7, and 8).

CS-Agreement. No two client processes receive two
different decision messages �cid; decision�.

CS-Termination. If the consensus filter is live, then the
decision message �cid; decision� is eventually received by
every client.

The CS-Agreement (Consensus Service Agreement)
property directly follows from consensus (Section 3.4).
Given a live consensus filter, the CS-Termination (Con-
sensus Service Termination) property follows from the
termination property of consensus (Section 3.4), the
assumption that at least one server is correct, and the
assumption of quasi-reliable channels.

5 NONBLOCKING ATOMIC COMMITMENT

Throughout this section, we show how a modular
nonblocking atomic commitment protocol can be built
using our consensus service together with an adequate
filter. We first recall the problem, then we show how it can
be solved in our consensus framework. In Section 9, we will
compare the performance of our protocol with that of the
well-known nonblocking atomic protocols proposed by
Skeen, namely the Three Phase Commit protocol [34].

5.1 Background

A transaction originates at a process called the transaction
manager, which issues read and write operations to data
manager processes [6]. At the end of the transaction, the data
managers must solve an Atomic Commitment problem in
order to decide on the commit or abort outcome of the
transaction. We consider here the ªNonblockingº Atomic
Commitment problem (NB-AC for short), where correct data
managers eventually decide despite failures [34]. The
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Fig. 4. Algorithm of a client pi.

Fig. 5. Algorithm of a server sj.

Fig. 6. Invocation-reply from the point of view of server s1.



outcome of the transaction depends on votes from the data
managers. A data manager votes yes to indicate that it is
able to make the temporary writes permanent and votes no
otherwise. If the outcome of the NB-AC protocol is commit,
then all the temporary writes are made permanent; if the
outcome is abort, then all temporary writes are ignored. The
NB-AC problem is defined by the following properties:

NB-AC-Agreement. No two data managers ever decide
differently.

NB-AC-Termination. Every correct data manager even-
tually decides.

NB-AC-Validity. The decision must be abort if one data
manager votes no and the decision must be commit if all
data managers vote yes and no data manager crashes.

5.2 NB-AC Based on a Consensus Service

In the following, we show how an NB-AC protocol is
derived from our consensus service framework (Section 4):
The data managers are the clients of the consensus service.
As proven in [15], NB-AC, unlike consensus, cannot be
solved with unreliable failure detectors. Our NB-AC
solution assumes a perfect failure detector that satisfies
strong completeness (a crashed process is eventually sus-
pected by every correct process) and strong accuracy (no
process is suspected unless it has crashed) [10]. We assume
a perfect failure detector among all the processes in the
system, i.e., clients (data managers) and consensus servers.4

We first focus on the NB-AC-Agreement and NB-AC-
Termination properties. Then, we describe a consensus
filter adapted to the NB-AC-Validity property.

5.2.1 NB-AC: Agreement and Termination

The transaction manager is the initiator of an interaction
with the consensus service. Arrow 1 in Fig. 2 represents the
message (tid, vote-request, data-managers) sent by the transac-
tion manager to the data managers at the commitment of
the transaction: The transaction identifier tid is the
consensus id, the generic data field is instantiated as vote-
request, and data-managers is the set of data managers
accessed by the transaction. The data0i value (Fig. 4) is the
yes/no vote of the data manager pi and the decision awaited
from the consensus service is either commit or abort.

NB-AC-Agreement follows directly from the CS-Agree-
ment property of the consensus service (Section 4.3) and,
if we assume that the consensus filter is live (see below),
NB-AC-Termination follows from the CS-Termination
property of the consensus service (Section 4.3).

5.2.2 NB-AC: Validity

NB-AC consensus filter. The consensus filter, given below,
tailors the consensus service to the NB-AC-Validity
property. The NB-AC-CallInitValue predicate is defined in
such a way that the votes from all nonsuspected clients

(data managers) are received by the servers. In other words,
NB-AC-CallInitValue at a server sj returns true as soon as,
for every client process pi, either 1) the message
�cid; votei; clients� from pi has been received by sj or 2) pi
is suspected by sj.

The function NB-AC-InitValue at a server sj returns
commit if and only if a yes vote has been received by sj from
every process in clients. Otherwise, if any process in clients
has been suspected, or has voted no, then the function NB-
AC-InitValue returns abort (note that the commit/abort
values returned by the function NB-AC-InitValue are here
initial values for the consensus service and not yet the
decision of the consensus).

The consensus filter for a NB-AC protocol is thus
specified as follows at every server process sj:

Predicate NB-AC-CallInitValue(cid) :
if [ for every process pi 2 clients:

sj has received �cid; votei; clients� from pi
or sj suspects pi ]

then return true else returnfalse.

Function NB-AC-InitValue(dataReceivedj) :
if [ for every process pi 2 clients:
�cid; votei; clients� 2 dataReceivedj
and votei � yes ]

then return commit else return abort.5

We show now that the NB-AC consensus filter is live
(property needed to prove the NB-AC-Termination) and
ensures the NB-AC-Validity property.

Liveness of the NB-AC consensus filter. If the initiator is
correct or some correct process pi 2 clients has received the
message (cid, vote-request, clients) sent by the initiator, then,
by the properties of the reliable multicast, every correct
client receives the message (cid, vote-request, clients) and
multisends the message �cid; votei; clients� to the members
of the consensus service. For every client pi, there are two
cases to consider: 1) pi is correct or 2) pi crashes. In case 1,
pi's message �cid; votei; clients� is eventually received by all
correct servers. In case 2, pi is eventually suspected by all
correct servers (ensured by the strong completeness prop-
erty of our failure detector). In both cases, at every server
process, the predicate CallInitValue eventually returns true
and the function NB-AC-InitValue eventually returns some
value: The consensus filter of NB-AC is thus live.

NB-AC-Validity is satisfied. The NB-AC-Validity prop-
erty states that 1) the decision must be commit if all data
managers vote yes and no data manager crashes and 2) the
decision must be abort if any data manager votes no.
Consider 1): If no client crashes, because of the assumption
of a perfect failure detector, no client is ever suspected (by
any process). In this case, CallInitValue waits for the vote of
every process in clients. If all the votes are yes, then
InitValue ensures that every server starts consensus with the
initial value commit. By the validity property of consensus
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4. Obviously, if we consider a solution where the data managers also
play the role of the consensus servers, a perfect failure detector would only
be needed among the data managers. Furthermore, with a weaker
assumption about the failure detector, one can still use the very same
solution to solve a weaker problem, called Weak NB-AC [15], where the data
managers are allowed to decide abort in case of a failure suspicion (even if
this suspicion is false).

5. Notice that, depending on the failure suspicions, one server sj might
start the consensus with the initial value commit, while another server sk
starts the consensus with the initial value abort. In this case, the two possible
outcomes of the consensus service, i.e., commit and abort, both satisfy the
specification given in Section 5.1.



(Section 3.4), the decision can only be commit. Now consider

2): If one data manager votes no or one data manager

crashes (i.e., is suspected), then CallInitValue ensures that

every correct server starts consensus with the initial value

abort. By the validity property of consensus, the decision can

only be abort.

5.3 Variations on the Consensus Filter

The definition of atomic commitment we have considered

so far (Section 5.1) is the classical definition usually given in

the literature. According to this definition, the commit

decision requires a yes vote from all the data managers

involved in the transaction (NB-AC-Validity property). This

requirement is too strong in specific situations where the

data managers maintain replicated data. In this case, one

might require a weaker NB-AC-Validity property where

commit can be decided when, for every logical datai that is

replicated, a majority of data managers for datai vote yes.6

We show in the following how to solve this variation of

the NB-AC problem, defined by the classical NB-AC-

Agreement and NB-AC-Termination properties and the

modified NB-AC-Validity property. We consider first the

case of one single replicated data and then the case of

multiple replicated data. We obtain adequate protocols

simply by modifying the consensus filter. This conveys the

flexibility gained by our modular approach.

5.3.1 Atomic Commitment on One Replicated Data

Consider a transaction on one single replicated data and

denote by clients the set of data managers that handle these

replicas. Assume that a majority of data managers is correct.

A simple modification of the consensus filter given in

Section 5.2 allows us to adapt the generic framework to this

specific atomic commitment problem. Consider a server sj
and let r stands for ªreplicationº and o for ªoneº data:

Predicate ro-NB-AC-CallInitValue(cid) :
if [ for a majority of processes pi 2 clients:

sj has received �cid; votei; clients� from pi ]
then return true else return false.

Function ro-NB-AC-InitValue(dataReceivedj) :
if [ for every �cid; votei; clients�
2 dataReceivedj, votei � yes ]

then return commit else return abort.

The predicate ro-NB-AC-CallInitValue returns true as soon

as a majority of votes have been received. The function

ro-NB-AC-InitValue returns commit only if all these votes

are yes.

5.3.2 Atomic Commitment on Multiple Replicated Data

Consider now a transaction on multiple replicated data. The

previous filter can easily be extended to handle this case.

Let us denote, by clientsi, the set of data managers that

handle the replicas of datai and, by clients, the union of the

sets clientsi. The consensus filter follows immediately (r
stands for ªreplication,º m for ªmultipleº data):

Predicate rm-NB-AC-CallInitValue(cid) :
if [ for every set clientsi:

for a majority of processes pi 2 clientsi:
sj has received �cid; votei; clients� from pi]

then return true else return false.

Function rm-NB-AC-InitValue(dataReceivedj) :
if [ for every set clientsi:

for a majority of processes pi 2 clientsi:
�cid; votei; clients� 2 dataReceivedj

and votei � yes ]
then return commit else return abort.

The predicate rm-NB-AC-CallInitValue returns true as soon
as a majority of votes have been received from every set of
data managers clientsi. The function rm-NB-AC-InitValue
returns commit only if there is a majority of yes votes from
every set of data managers clientsi.

6 GROUP MEMBERSHIP

The generic construction of agreement protocols based on a
consensus service has been illustrated in the previous
section on the nonblocking atomic commitment problem. In
this section, we illustrate our approach on the group
membership problem.

6.1 Background

Roughly speaking, the group membership problem for a
group of processes consists of agreeing on the set of
operational processes within the group. A process calls this
information its view of the group. As processes may join or
leave a group, a process view of the group membership
may change over time. When a process changes its view, we
say that it installs a new view. We consider here the so-
called primary partition membership [8] where, for any given
group, a unique totally ordered sequence of views is
defined (i.e., we do not consider the case where concurrent
views may coexist [4]). For simplicity of presentation and to
convey the modularity of our approach, we first consider a
group membership problem where processes can only be
excluded from a view. We call it the GM-L problem (L
stands for leave) and we show how this problem can be
solved using our consensus-based transformation. Then, we
define what we call the (full) GM problem by extending the
specification to handle process joins and we show how this
problem is solved using a simple variation of the GM-L
consensus filter.

It is important to notice that our objective here is not
to discuss the differences between various specifications
of the group membership problem. The specifications we
consider are aimed at illustrating our modular approach,
i.e., the transformation of a specification to a consensus
problem. In particular, the specifications we consider are
rather strong and the solutions we suggest require the
use of a perfect failure detector [10]. Later in this section,
we will discuss the impact of weakening the problem
specifications (to cope with unreliable failure detection)
on our consensus transformations.
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6. This is just one example of a possible alternative NB-AC-Validity
property. Our goal here is to show how validity conditions translate into a
consensus filter. Notice, however, that our majority condition requires, for
every logical datai, a majority of correct data manager replicas.



The specification below is patterned after [11]. We

consider a given group g, an integer i � 0, and we assume

that all processes in vi�g� have installed the view vi�g�
(initially, v0�g� � g). We then define the problem for the

processes in vi�g� to install a new view vi�1�g� through the

following properties:

GM-L-Termination. If a process pk 2 vi�g� wishes to leave

vi�g� or crashes, then every correct process in vi�g�
eventually installs vi�1�g�.

GM-L-Agreement. If a process pk 2 vi�g� installs vi�1�g� and

a process pk0 2 vi�g� installs v0i�1�g�, then vi�1�g� � v0i�1�g�.
GM-L-Validity. If a process installs vi�1�g�, then it can

be said that vi�1�g� � vi�g� and, for every process

pk 2 vi�g� n vi�1�g�, either pk has crashed or pk has wished

to leave vi�g�.
6.2 Solving the GM-L Problem Based on a

Consensus Service

We show below how the GM-L problem can be solved

using the consensus service under the assumption of a

perfect failure detector [10] (among the client processes).
The consensus service is used as follows to enable

processes in view vi�g� to install a new view vi�1�g�:
The initiator. If a process pk suspects some process in

vi�g� or if pk wishes to leave vi�g�, then pk reliably multicasts

the message (cid; view-change; vi�g�� to the set of clients

vi�g�. Process pk is the initiator of the consensus interaction.

The consensus id ªcidº is the pair �gid; i� 1�, where gid is

g's group id and i is the current view number of process pk.
The clients. Upon reception of the message sent by the

initiator,7 a client process pk ªmultisendsº to the consensus

servers either 1) the message �cid; pk-no; vi�g�� if pk wishes to

leave vi�g� or 2) the message �cid; pk-yes; vi�g�� otherwise.

The decision computed by the consensus service is the new

view vi�1�g�.
GM-L-Agreement and GM-L-Termination follow from the

consensus service (CS-Agreement and CS-Termination

properties) and from the liveness of the GM-L consensus

filter (see below). The GM-L-Validity follows from the

consensus service (CS-Validity), the assumption of a perfect

failure detector, and the GM-L consensus filter below.
The consensus filter. The GM-L consensus filter at

server sj is defined as follows:

Predicate GM-L-CallInitValue(cid) :
if received �cid; -; clients� from one process in clients

and for every process pi 2 clients:
[ received �cid; -; clients� from pi or sj suspects pi ]

then return true else return false.

Function GM-L-InitValue(dataReceivedj) :
returnfpk j �cid; pk-yes,clients) 2 dataReceivedjg.

We show in the following that the GM-L consensus filter is

live and, given the assumption of a perfect failure detector,

it ensures the GM-L-Validity property.

Liveness of the GM-L consensus filter. We assume at

least one correct process pk in vi�g� (otherwise, the GM-L-

Termination property is trivially ensured). Let pk be a

process that wishes to leave view vi�g�. Case 1: If pk is

correct, then pk initiates an interaction with the consensus

service and all correct members of vi�g� send messages

�cid; -; vi�g�� to the consensus servers. Case 2: If pk crashes,

then, by the strong completeness property of the failure

detector, pk is eventually suspected by all correct processes

of vi�g� and at least one correct process in vi�g� initiates an

interaction with the consensus service. In both Cases 1 and

2, every correct consensus server receives at least one

message �cid; -; vi�g��. Moreover, as the failure detector

satisfies strong completeness, the GM-L-CallInitValue pre-

dicate eventually returns true, i.e., the filter is live.
GM-L-Validity property is satisfied. We first prove that

a process in vi�g� that does not crash and does not want to

leave is in vi�1�g�. Let pk 2 vi�g�. Consider that pk does not

crash and does not wish to leave the view vi�g�. We show

that, in this case, pk is in the new view vi�1�g�. If pk does not

crash, then, by the strong accuracy property of the failure

detector, no process suspects pk. Hence, at every correct

server process, GM-L-CallInit waits for the message

�cid; -; clients� from pk. If pk does not wish to leave vi�g�,
then pk sends the message �cid; pk-yes; clients). By the GM-

L-InitValue function, every consensus server that starts

consensus has an initial value that includes pk. By the

validity property of consensus, the new view vi�1�g�
includes pk.

We now prove that vi�1�g� � vi�g�. Because no processes

are added, it is sufficient to prove that vi�1�g� 6� vi�g�. There

can be more than one initiator for a view change. Let pk be

the first one. Process pk sends the (cid; view-change; vi�g��
message only 1) if it wishes to leave or 2) if it suspects some

process pk0 . In Case 1, it is easy to show that no server that

starts consensus has an imitial value that includes pk. So, the

new view vi�1�g� does not include pk. In Case 2, because of

the perfect detector, no server that starts consensus has an

initial value that includes pk0 . So, the new view vi�1�g� does

not include pk.

6.3 Variations on the Consensus Filter

In the following, we show how to handle, first, process joins

and, second, unreliable failure detection, using our con-

sensus-based transformation. In each case, we discuss the

impact of the new problem specification on the consensus

filter.

6.3.1 Group Membership with Process Joins

As pointed out above, the GM-L problem is only concerned
with process removals and does not include process joins.
We define a ªfullº GM problem that handles process joins
by extending the GM-L-Termination and GM-L-Validity
properties as follows (the GM-L-Agreement property
remains unchanged):

GM-Termination. If a process pk 2 vi�g� either 1) wishes to
leave vi�g�, 2) crashes, or 3) wishes to add some process
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px (px =2 vi�g�), then every correct process in vi�g�
eventually installs vi�1�g�.8

GM-Agreement. If a process pk 2 vi�g� installs vi�1�g� and a
process pk0 2 vi�g� installs v0i�1�g�, then vi�1�g� � v0i�1�g�.

GM-Validity. If a process installs vi�1�g� then the following
can be noted: 1) vi�1�g� 6� vi�g�, 2) for every process pk 2
vi�g� n vi�1�g�, either pk has crashed or pk wishes to leave
vi�g�, and 3) for every process pk 2 vi�1�g� n vi�g�, there is
at least one process in vi�g� that has wished to add
process pk.

The GM-L consensus-based solution can easily be
adapted to the full GM problem. The initiator pk multicasts
the same message �cid; view-change; vi�g�� as above if 1) it
suspects some process in vi�g�, 2) it wishes to leave vi�g�, or
3) it wishes to add some process px. A client process pk,
upon reception of the message sent by the initiator,
multisends the message �cid; pk-yes; addSetk; vi�g�� or
�cid; pk-no; addSetk; vi�g��, where addSetk is the set of
processes that pk wishes to add (addSetk \ vi�g� � ;). The
CallInitValue predicate remains the same as in the previous
section. The InitValue function is the following:

Function GM-InitV alue�dataReceivedj) :
return fp j ��cid; pkyes; addSetk; clients�

2 dataReceivedj� and �p � pk or p 2 addSetk�g.
The proofs that the filter is live and that the GM-Validity
property is satisfied are very similar to the proofs in
Section 6.2.

6.3.2 Group Membership with Weak Validity

Given the GM-Validity (resp. GM-L-Validity) property, a
process can be excluded only if it wishes to leave the view
or if it crashes. Combined with the GM-Termination (resp.
GM-L Termination) property, this requires perfect failure
detection (both strong completeness and strong accuracy).
We may also consider weaker specifications of the group
membership problem where the accuracy property of the
failure detectors is not necessary (for the consensus filter).
In this specification, a process could be excluded if it is
suspected (even without having actually crashed). To
prevent the case where too many processes are excluded
(because the failure detector makes too many mistakes), we
may consider a validity property that requires a majority of
processes in view vi�1�g�, namely:

GM-WeakValidity. If a process installs vi�1�g�, then 1)
vi�1�g� 6� vi�g�, 2) vi�1�g� contains a majority of processes
from vi�g�, 3) for every process pk 2 vi�g� n vi�1�g�, either
pk is suspected9 or pk wishes to leave vi�g�, and 4) for
every process pk 2 vi�1�g� n vi�g�, there is at least one
process that has wished to add pk.

The GM filter can be easily adapted to such a property
and proven live under the assumptions that a majority of
processes in view vi�g� are correct and the failure detector
satisfies strong completeness (every process that crashes is
eventually suspected by every correct process).10 Note that
GM-WeakValidity does not ensure the presence of a
majority of correct processes in vi�1�g�.

7 VIEW SYNCHRONY

Now, we illustrate the generic construction of agreement
protocols on an extension of group membership known as
view synchrony or, more accurately, view synchronous

communication.

7.1 Background

View synchronous communication (in the context of the
primary partition model) has been introduced by the Isis

system [7], [8] and later formalized in [32]. It augments a
group membership protocol with an additional group
broadcast primitive that orders messages with respect to
the installation of views. We use here the term view

synchronous broadcast and we denote the view synchronous
broadcast primitive in this context by VScast.

For simplicity of presentation, we restrict ourselves to the
case where processes can only be excluded from a view:

Process joins can be handled as in Section 6.3. Furthermore,
we consider a strong version of the problem where a
process can only be excluded from a view if it wishes to
leave the view or it crashes. Our solution to the problem
relies on a perfect failure detector. Similarly to group
membership, one could design alternative solutions (with
weaker failure detection mechanisms) that exclude pro-
cesses in the case of false failure suspicions (see Section 6.3).

Let vi�g� be the current view of process pk in g and let pk
VScast message m to processes in vi�g�. We denote by
V Sdeliver the corresponding delivery of m. Roughly speak-
ing, the VScast primitive ensures that 1) either no new view
is installed, and all the members of vi�g� eventually
VSdeliver m or 2) a new view vi�1�g� � vi�g� is installed
and if any process in vi�1�g� has VSdelivered m before
installing vi�1�g�, then all the processes that install vi�1�g�
VSdeliver m before installing vi�1�g�. View synchronous

multicast is adequate, for example, in the context of the
primary-backup replication technique, to multicast the
update message from the primary to the backups [20].

We specify here the view synchronous communication
problem as an extension of the group membership problem
(GM-L) defined in Section 6.1. Let vi�g� be the current view
of pk 2 vi�g� and let pk VScast message m:

VS-Termination. GM-L-Termination plus the following
property: a correct process in vi�g� eventually either 1)
VSdelivers m or 2) installs view vi�1�g�.

VS-Agreement. Identical to GM-L-Agreement.
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8. One could consider a different specification where every correct
process in vi�1�g� (rather than in vi�g�) eventually installs vi�1�g�. This
would require a small change in the interaction between the clients (vi�g�)
and the consensus service: The decision of the consensus would need to be
sent to vi�1�g�, rather than to the clients vi�g� only.

9. Suspected either by a client or by a server process. Notice that, in the
case where the server role is played by a subset of the client processes (see
Section 4.1), the distinction between ªsuspectedº by a server and
ªsuspectedº by a client disappears. Considering only this special case is
nicer from the specification point of view, but not from the framework point
of view (loss of generality).

10. When assuming no accuracy property for the failure detector, we
have to bring a small modification to the algorithm of the clients: The
condition vi�g� 6� vi�1�g� of the GM-WeakValidity property can only be
ensured by having each client process install a new view iff it is different
from the current one.



VS-Validity. GM-L-Validity plus the following property: If
there exists one process pk 2 vi�g� \ vi�1�g� that has
VSdelivered m before installing vi�1�g�, then every
process in vi�g� \ vi�1�g� has VSdelivered m before
installing vi�1�g�.

The VS-Termination property requires that every correct
process either VSdelivers m or installs view vi�1�g�.
However, VS-Validity (more precisely, GM-L-Validity)
specifies that view vi�1�g� can only be installed if a process
pk 2 vi�g� crashes or wishes to leave the group. So, if no
process in vi�g� crashes or wishes to leave the group, all
processes in vi�g� eventually VSdeliver m. If a new view
vi�1�g� is installed, the VS-Validity property specifies
atomicity with respect to the VSdelivery of m and ordering
of the VSdelivery of m before the installation of the new
view vi�1�g�.
7.2 VScast Based on a Consensus Service

Let vi�g� be the current view of process pk 2 vi�g� and let pk
VScast message m. If no process crashes and no process
wishes to leave the group, then VScast can be implemented
without interaction with the consensus service. This is done
by having pk send m to all the processes in vi�g�.

Upon reception of m, message m is VSdelivered. Then, pk
sends an acknowledgment to all processes in vi�g�. As soon
as pk0 has received the acknowledgment for m from all
processes in vi�g�, the predicate stablek0 �m� holds. The
predicate is used when a process crashes or wishes to leave
the group. In this case, the interaction with the consensus
service ensures the VScast semantics as follows:

The initiator. If 1) a process pk suspects some process
in vi�g� or 2) pk wishes to leave vi�g�, then pk reliably
multicasts the message �cid; view-change; vi�g�� to the set
of clients vi�g�. The consensus id ªcidº is the pair
�gid; i� 1�, where gid is g's group id and i the current
view number of process pk.

The clients. Upon reception of the message sent by the
initiator, every client process pk multisends either 1) the
message �cid; pk-no; vi�g�� to the consensus service if
pk wishes to leave vi�g� or 2) the message �cid;
�unstablek; pk-yes�; vi�g��, where unstablek denotes the set
of messages m such that stablek�m� does not hold. The
decision computed by the consensus service is a pair
�unstable; v�, where unstable is a set of messages and v is
the new view vi�1�g�.

Upon reception of the decision �unstable; v�, every client
process pk first VSdelivers the messages in unstable that it
has not yet VSdelivered and then installs the new view v.
While waiting for a consensus decision, every client process
pk discards all new messages that are received.

The VS-Agreement property follows from the CS-Agree-
ment property of the consensus service. Consider the VS-
Termination property. If no process pk 2 vi�g� crashes or
wishes to leave vi�g�, then, by the reliable channel
assumption, every process in vi�g� eventually VSdelivers
m and the VS-Termination holds. Otherwise, the VS-
Termination property follows from the liveness of the VS
consensus filter (see below).

The consensus filter. The VS consensus filter defines
initial values for the consensus problem. The initial value

for server sj is a pair �unstablej; vj�, where unstablej is a set
of unstable messages and vj a set of processes. The decision
computed by the consensus service is a pair �unstable; v�,
where unstable is the set of unstable messages to be VS-
delivered before installing the new view v (i.e., vi�1�g�). The
VS consensus filter is defined as follows:

Predicate VS-CallInitValue(cid) : Identical to the predicate
GM-L-CallInitValue

Function VS-InitValue(dataReceivedj) :
vj  fpk j �cid; �unstablek; pk-yes�; clients�

2 dataReceivedjg;
unstabj  fm j �cid; �unstablek; yes�; clients� has been

received and m 2 unstablekg;
return �unstabj; vj�

The proof of liveness of the VS consensus filter is similar
to the proof of liveness of the GM-L consensus filter
(Section 6.2).

The VS-Validity property consists of two subproperties:
the GM-L-Validity property plus the additional message-

view ordering property. The correctness proof of the GM-
L-Validity property was discussed in Section 6.2. The
additional property is satisfied for the following reason:
Consider process pk 2 vi�g�, pk 2 vi�1�g�, and assume that
pk has VSdelivered some message m before installing
vi�1�g�. As pk 2 vi�1�g�, process pk has multisent message
�cid; �unstablek; pk-yes�; clients� to the consensus service.
Since pk does not VSdeliver any message while waiting
for the consensus decision, then if pk has VSdelivered m

before receiving �unstable; vi�1�g�� and installing vi�1�g�,
either 1) stablek holds or 2) m 2 unstable. In Case 1, every
process in vi�g� has received and VSdelivered m before
installing vi�1�g�. In Case 2, by the CS-Agreement
property, every process that installs vi�1�g� first VSdeli-
vers m. So, the additional message-view ordering property
holds.

8 TOTAL ORDER MULTICAST/BROADCAST

8.1 Total Order Multicast vs. Total Order Broadcast

The difference between total order multicast and broadcast
has to do with message destination sets. Let Dst�m� denote
the destination set of message m and let m1 and m2 be any
two messages. With total order broadcast, if p 2 Dst�m1�
and p 2 Dst�m2�, then Dst�m1� � Dst�m2�. In other words,
total order broadcast forbids overlapping destinations. This
restriction does not apply to total order multicast which
allows issuing messages to overlapping destinations (we
discuss these differences in detail in [19]).

Most total order algorithms that were proposed in the
literature are total order broadcast algorithms and many of
them rely on a membership service or a view synchronous
communication primitive (e.g., [8], [1], [12]). These algo-
rithms operate in two modes: 1) a normal mode which lasts
as long as no process is suspected to have crashed and 2) a
special mode in which a termination protocol ensures the
ordering property while installing a new membership. The
special mode is based on protocols that have been discussed
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in the previous section (membership and view synchronous
communication).

We restrict our discussion below to algorithms that do
not require a membership service, i.e., to algorithms that
operate in one single mode. Total order algorithms differ
slightly from the agreement problems discussed in the
previous sections for the following reason: Agreeing on an
order requires agreeing on a value first and then inferring
an order from that value.

In the total order broadcast algorithm of [10], agreement
is achieved on a set of messages (which is a case where
multiple agreement problems are solved by one instance of
consensus). This algorithm can be straightforwardly ex-
pressed in our generic communication scheme with an
empty consensus filter.11 In the following, we illustrate our
generic solution on a total order multicast algorithm.

8.2 Total Order Multicast

8.2.1 Background

The algorithm we describe here is an extension of a
nonfault-tolerant total order multicast algorithm proposed
by Skeen [35]. Basically, we show how to make that protocol
fault-tolerant by using our consensus service.

We denote by TO-multicast(m, Dst(m)) the primitive by
which a process multicasts message m according to total
order multicast semantics and TO-deliver(m) the correspond-
ing delivery event. The basic idea of Skeen's algorithm
consists of having the processes agree on a sequence
number sn�m� for every message m and TO-deliver the
messages in the order of their sequence numbers. The
sequence number is based on strictly increasing timestamps
provided by the receiving processes. More precisely, when
TO-multicast(m, Dst(m)) is executed by pi, process pi sends
the message m to all processes in Dst�m� and collects the
timestamps attached to m by these processes. Process pi
then defines sn�m� as the maximum of these timestamps
and sends back sn�m� toDst�m�. Skeen's algorithm does not
tolerate the failure of a single process. Indeed, to compute a
sequence number sn�m�, the sender of a message m waits
for timestamps from all destination processes.

Given the execution of TO-mutlicast(m, Dst(m)), we
consider here the problem of agreeing on the sequence
number sn�m� in spite of process crashes. In other words,
we consider a single instance of the multicast and we focus
on the problem of agreeing on a sequence number for m
(sn�m��, based on the timestamps attached to m by the
processes in Dst�m�. We call it the SN problem. Inferring
the order from the sn�m� value is not discussed here. It can
be found in [29], which improves on the idea originally
presented in [18]. Given a message m and the primitive TO-
multicast(m,Dst(m)), the SN problem is defined by the
following properties:

SN-Termination. If a correct process TO-multicasts m,
then every correct process in Dst�m� eventually
decides sn�m�.

SN-Agreement. No two processes in Dst�m� decide on two
different sequence numbers for m.

SN-Validity. The sequence number sn�m� is computed as
the maximum of the timestamps provided by all correct
processes in Dst�m�.

8.2.2 Computing sn�m� Using a Consensus Service

Consider TO-multicast(m, Dst(m)) executed by some
process pi and let id�m� denote the id of message m. The
consensus service is used as follows to compute sn�m�:
The initiator. Process pi reliably multicasts �cid;m;
clients�cid�� to the set clients�cid�; cid is id�m� and the
set clients�cid� is Dst�m�.

The clients. Upon reception of �cid;m; clients�cid��, a client
pi defines data0i as the timestamp tsi of the receive event,
according to Lamport's clock, and multisends
�ci; tsi; clients�cid�� to the consensus servers.

The SN consensus filter. The filter of server sj is defined as
follows:

Predicate SN-CallInitValue:
if for every process pi 2 clients :

[ received �cid;ÿ; clients� from pi or sj
suspects pi ]

then return true else return false.

Function SN-InitValue(dataReceivedj) :
sn�m�  maxftsi�m� j �cid; tsi�m�; clients�cid��

2 dataReceivedjg
return sn�m�

It is easy to show that the filter ensures the SN-Termination,
SN-Agreement, and SN-Validity properties defined above.
Basically, the SN-CallInitValue predicate returns true as
soon as the message �cid; tsi�m�; clients�cid�� has been
received from all nonsuspected processes in Dst�m�. The
function SN-InitValue returns the maximum of the time-
stamps tsi�m� received. More details on this protocol are
given in [29]. It is worthwhile to point out here that the
protocol is correct under the assumption of a perfect failure
detector [10]. Given this assumption and the definition of
the consensus filter, we ensure that sn�m� is always
computed as the maximum of the timestamps from all
correct processes in Dst�m�. We show in [19] that, in order
to tolerate even a single crash failure, any genuine total order
multicast protocol requires a perfect failure detector. Over-
coming that requirement in specific models is discussed in
[18] and in [19].

9 COST EVALUATION

We describe below the overall cost of a general interaction
with the consensus service in terms of the number of
messages and communication steps. This cost is the same
for all agreement protocols presented in the previous
sections. We will use this cost to compare the efficiency of
agreement protocols built following our modular approach
with the efficiency of specialized agreement protocols. As
we will show, the generality of the consensus service
approach does not imply a loss of efficiency. On the
contrary, our modular architecture enables interesting
optimizations.
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Up to now, we have considered consensus as a black box.
In the following and to discuss efficiency issues, we
consider consensus implementations. We distinguish two
approaches: a centralized one where the consensus decision
is taken through one coordinator and a decentralized one
where there is no coordinator. For both approaches, we first
point out some optimizations and then we present im-
plementation costs in terms of messages and communica-
tion steps.

We reasonably assume that runs with no failure and no
failure suspicion are the most frequent ones and imple-
mentations should be optimized for these runs. We call a
ªgood runº a run in which no failure occurs and no failure
suspicion is generated.

9.1 Centralized Algorithm

We consider the (centralized) consensus algorithm pre-
sented by Chandra and Toueg [10], noted here
�S-consensus. This algorithm requires a majority of correct
processes and a failure detector of class �S.

In the original description of the �S-consensus protocol,
every process pj starts with an initial value vj. In fact, it is
sufficient for one correct process to start with an initial
value. In other words, when invoking the consensus service,
it is sufficient that one correct member of the consensus
service has an initial value. We thus assume an implemen-
tation of the multisend primitive such that, in runs with no
failures, client processes need not send their messages to all
consensus servers: It is sufficient that they send their
messages to one server, e.g., to s1. The client processes
should send their messages to the other servers only upon
suspecting s1 (we assume a failure detector with strong
completeness). This ensures that at least one correct
consensus server gets an initial value. In the following, we
consider our protocol with this optimization.

We also assume an optimized implementation of reliable
multicast (used by the initiator to send its message to the
clients). If the initiator process pi executing ªRmulticast(m)º
to the clients is correct, no client needs to relay m. A client
process relays m only when it suspects pi. This optimized
implementation costs only one communication step and
O�n� messages in good runs.

Let nc be the number of clients, and ns the number of
servers. Fig. 7 illustrates the five communication steps and
3nc � 2ns ÿ 3 messages needed before the clients receive the
decision of the consensus (i.e., the solution of the agreement
problem):

Step 1, the reliable multicast from the initiator to the set of
clients, costs nc ÿ 1 messages.

Step 2, the multisend from the clients to one of the servers
(say s1), costs nc messages.

Steps 3 and 4 correspond to messages sent within the
�S-consensus protocol. In good runs, s1 knows the
decision at the end of Step 4. Steps 3 and 4 each cost
ns ÿ 1 messages (see Fig. 7).

Step 5, the multisend initiated by the server s1 to the clients,
costs nc messages.

9.2 Decentralized Scheme

This implementation takes advantage of the validity
property of consensus: If each member of the consensus
service starts the consensus with the same initial value v
(8si; sj, we have vi � vj � v), then the decision is v. We
exploit this property through the following interaction
scheme (see Fig. 8):

Step 1, as before, is the (optimized) reliable multicast from
the initiator to the set of clients and it costs nc ÿ 1
messages.

In Step 2, the clients multisend their messages to all the
server processes and every member of the consensus
service gets an initial value. This costs nc � ns messages.

In Step 3, the consensus servers simply send their initial
value to the clients. This costs ns � nc messages. A
client receiving the same initial value v from every
member of the consensus service knows that v is the
decision. If this is not the case, the �S-consensus is used
as a termination protocol. This case is not depicted in
Fig. 8 (we give a detailed description in [17] for the
case of atomic commitment).

Despite the fact that, whenever ns � 2, the number of
messages is higher in Fig. 8 than in Fig. 7, reducing the
number of communication steps from five to three reduces
the latency. Moreover, with a network that provides
broadcast capabilities, the decentralized scheme can be far
more efficient than the centralized one because the cost of
sending a message to n processes is the same as the cost of
sending a message to one process.

9.3 Comparison with Three Phase Commit

We compare below the performance of a Nonblocking
Commit Protocol built following our approach with those of
Skeen's well-known Three Phase Commit protocols (3PC)
[34]. Alternative nonblocking atomic commitment protocol
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are the clients; s1, s2, s3 implement the consensus service.



that we know of (e.g., [22]) increase the resilience of 3PC
(tolerating network partitions), but, compared with our
protocol, do not lead to better performance in good runs.12

Assume that the consensus service is implemented by
the clients themselves and consider only runs where no
process crashes or is suspected to have crashed. The
communication scheme of our NB-AC protocol using the
centralized implementation above is similar to the commu-
nication scheme of the 3PC protocol [34]. Furthermore, if we
consider the decentralized implementation, the commu-
nication scheme of our NB-AC protocol is similar to the
communication scheme of the D3PC protocol (Decentra-
lized 3PC of Skeen) [34].

However, based on a consensus service, our solution is
more modular and, in both cases (centralized or decen-
tralized), allows us to trade the number of messages
exchanged against resilience. If we denote the number of
clients and the number of servers by nc and ns, respectively,
then if ns decreases, the resilience of the consensus server
decreases, but the number of messages also decreases. In
the case nc > ns, our centralized solution requires fewer
messages than 3PC and our decentralized solution requires
fewer messages than D3PC. For instance, our centralized
solution requires 3nc � 2ns ÿ 3 messages, whereas the 3PC
requires 5nc ÿ 5 messages. In practice, ns � 3 achieves a
sensible resilience. In this case, 3nc � 2ns ÿ 3 < 5nc ÿ 3 is
true already for nc � 4 (a transaction on three objects, i.e.,
one transaction manager and three data managers, leads to
nc � 4). In [17], we present experimental results confirming
that an optimized consensus-based NB-AC protocol is more
efficient that a 3PC protocol.

10 CONCLUDING REMARKS

This paper advocates the idea that consensus is a central
abstraction for building fault-tolerant agreement protocols
in a modular way: The paper presents a unified framework
from which one can derive, simply by customizing a generic
consensus filter, protocols that are usually considered and
implemented separately. The same framework allows us to
express protocols for atomic commitment, group member-
ship, view synchrony, and total order multicast.

Our framework can be viewed as a first step toward
building practical systems that provide support for various
paradigms, mixing, for instance, transactions and view
synchronous communication. In this context, consensus
would not only be a useful theoretical concept [33], [36], but
also a useful service for the clean development of reliable
distributed systems. Apart from the agreement problems
considered in the paper, one could of course consider other
agreement problems like election [30] or terminating
reliable broadcast [10].

Our framework was designed in the context of asyn-
chronous distributed systems with process crash failures
and failure detectors. That is, the framework needs ªno
assumptionº on process communication delays and process
relative speeds. One could apply the same framework in
systems with stronger assumptions (e.g., a synchronous

model) or different failure models. This might require

modification of the implementations of our framework

basic building blocks, i.e., communication primitives, fail-

ure detectors, and consensus. For instance, if a crash-

recovery semantics is assumed, one could use the consensus

protocol of [27], [21], [26], [3]. However, the generic

interaction and the consensus filter would remain the same.

An interesting question in this context is to what extent the

assumptions on the underlying system model impacts the

performance.
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