IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 5, MAY 1991 467

Teamwork Support in a Knowledge-Based
Information Systems Environment

Udo Hahn, Matthias Jarke, Senior Member, IEEE, and Thomas Rose

Abstract—DAIDA is an experimental environment for the knowledge-
assisted development and maintenance of database-intensive information
systems from object-oriented requirements and specifications. Within the
DAIDA framework, the CoNeX project has developed an approach to
integrate different tasks encountered in software projects via a conceptual

deli strategy Emphasis is put on integrating the semantics of the
softwam de d with of group work, on social
strat to /!
responsibllmes for task fulﬁllment by way of contracting. The implemen-
tation of a CoNeX prototype is demonstrated with a sample session.

L4

Index Tenns—-Compuler-supponed cooperative work, group problem-
solving, information systems environments, knowledge-based software
engineering, multiagent conversations.

I. INTRODUCTION

THE emerging paradigm of computer-supported cooperative
work [17] seems to imply a shift of attention in the
area of computer support for software development teams.
First, software development by teams, although constrained
by technical requirements, is recognized as a social process
comprised by the (in)formal interactions of the members of a
team (group work) within an organizational setting. Second,
social processes (work procedures) in task-oriented groups
underlie particular conditions for negotiations, commitments,
and responsibilities that are essential for smoothly accom-
modating to dynamic changes of the project environment,
planning faults, etc.

From an engineering point of view, many tools are already
available to support software development processes [42].
These include traditional project management software as
well as tools for resource management (TAME [22]), contract
control (IStar [12]), or hypertext facilities for project docu-
mentation (DIF [14]). However, they tend to have a rather
centralized view of project planning and also lack of a sound
coverage of the knowledge of the software domain. Procedures

Manuscript received August 8, 1990; revised January 7, 1991. Recom-
mended by P.A. Ng. This work was supported in part by the Deutsche
Forschungsgememschaft under Grant Ja-445/1-2 and in part by the Com-
mission of the European Communities under Esprit Contract 892 (DAIDA).
This paper is a revised and expanded version of a contribution to the IFIP
8.4 Working Conference on Multiuser Interfaces and Applications, held in
Iraklion, Greece, September 24-26, 1990.

U. Hahn was with the University of Passau, P.O. Box 2540, 8390 Passau,
Germany. He is now with the University of Freiburg, Werthmannplatz 7800
Freiburg, Germany.

M. Jarke was with the University of Passau, P.O. Box 2540, 8390 Passau,
Germany. He is now with Lehrstuhl Informatlk V, RWTH Aachen, ‘Ahornstr.
55, 5100 Aachen, Germany.

T. Rose was with the University of Passau, P.O. Box 2540, 8390 Passau,
Germany. He is now with the Department of Computer Science, Uulversny
of Toronto, Toronto, ON M5S 1A4, Canada.

IEEE Log Number 9143151.

by argumentation, and on assigning

are documented or changes are displayed on a mostly syntactic
level while semantic issues (reasons for changes, constraint
violations, and conflicts) are beyond the scope of these devices
[31]. Often, they provide island solutions incapable of being
integrated above the low level of language facilities. Some
recent proposals to improve this situation are still at the design
stage (e.g., ISHYS [15]) or focus on support for the project
manager rather than for the whole project team (e.g., PIMS
[26] or DesignNet [27]).

Only relatively recently, theories and tools are appearing
that take a less centralized viewpoint of software projects
and aim at accounting for the human factor inherent in their
work procedures. Starting with [19], people began to explicitly
model software development as a collaborative activity, and
to see the software development environment as a forum of
communication. The role of participative project management,
creating win-win situations for all stakeholders, has been also
emphasized by recent work on “Theory-W” project manage-
ment [3], but this discussion covers management issues, not
tools.

Formal foundations for this approach consider notions from
speech act theory [38] and more ad hoc conversational models
as the basis of typed messaging or conferencing systems
[29]. Especially in the requirements phase, the usefulness
of such tools is now generally acknowledged [10], [34].
However, a pure conversation perspective has been criticized
as being too one-sided. Content aspects are neglected and the
communication protocol can take the same dictatorship-like
role accorded to traditional centralized project’ management
software. Also, the style of conversation to be supported (strict
coordination [44], [11] versus open argumentation [28],[9]) is
subject to much debate.)

Based on an analysis of the above approaches, we defined
four requirements:

1) Activities of members of a software development team
require support beyond basic multiuser facilities (nor-
mally used to partition teams with standard schemes
of concurrency control}—support of group interactions
must account for human collaboration techniques such as
negotiations, commitments, and responsibility contracts.

2) Interactions of groups require support beyond the formal
level of technical communication lines (e.g., e-mail,
electronic conferencing systems)—the social protocols
that underlie group communication have to be accounted
for in terms of human strategies and policies for argu-
ment exchange, contract assignment, decision making,
etc.

0098-5589/91/0500-0467$01.00 © 1991 IEEE

— T

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

468

3) Tools require content-oriented specification of knowl-
edge beyond language facilities—proper tool support
and properly controlled tool integration mechanisms
must consider domain knowledge of the underlying
software project, work procedures and languages used
for specification, design, and implementation.

4) Finally, all these single modeling efforts have to be
combined. The whole process of software development
is stratified at several layers (requirements analysis,
workpackage planning, programming, etc.), each one
covered by a specialized model. These submodels have
to be integrated within a composite formal model of
software project management to guarantee that transi-
tions between these submodels are also under formal

control. This is important for later replay, discussion, or ‘

refutation of reasons for actions on which any rational
account of human group work is based.

These requirements seem to be in accord with the de-
mands of [3] for separate consideration of people and prob-
lems, for the documentation of objective criteria, and for
the expression of interests rather than just positions or deci-
sions. The term IPSE (integrated project support environment),
although overused, clearly points out the perceived need
for integrating these different aspects. However, realizing
this idea has proven difficult [6]. Based on previous work
both in group decision support and in knowledge-based soft-
ware engineering, the CoNeX project at the University of
Passau has pursued the development of integrated models
and multiuser tools for software projects; CoNeX stands for
“Coordination and Negotiation support for eXperts in design
applications.”

A CoNeX prototype has been implemented as an extension
to the ConceptBase software information system [13] which
serves as the central knowedge manager for the DAIDA
information systems development environment [20]. This in-
tegration with an advanced software environment gave us the
opportunity for extensive experimentation. We have distributed
the prototype to a number of industrial and research sites
and have begun to use it for the organization of software
development within our own group and for the management
of programming classes in our university. Although these
experiences are by no means representative, they do seem to
indicate that the system has made it easier to integrate new
people into the team, and that it simplifies substantially the
integration of heterogeneously developed software through a
better understanding of design rationales.

In this paper, CoNeX is mostly presented from a user
perspective; a companion paper describes technical details
of configuration process management in the same system
context [36]. After a brief overview of the DAIDA envi-
ronment (Section II), a CoNeX sample session (Section III)
illustrates the diversity of group support requirements. Section
IV presents the conceptual models used in CoNeX to satisfy
these requirements. From these models and additional practical
demands, Section IV derives a general unplementatlon concept
and describes specific multiuser tools. Section V presents
applications and a comparison with other work, while Section
VI summarizes some conclusions.

[EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 5, MAY 1991

pecification [ConceptBase
Telos | Assistant Design
s ot Object
Aisaltcyr; Mapping | Krnowledge
Assistant [-=-=-""""""
[~ Desisn |
'5191 Design
Assistant
TDL 1 t-————— Process
System Design Mapping K ledg
Designer £ UV [
Assistant
Program Design
i Tool
DBPL Database ———— Knowled
Database Programs -
Programmer
Fig. 1. Architecture of the DAIDA environment.

II. Tue DAIDA ENVIRONMENT

In this section we give a brief overview of the DAIDA
environment in which the CoNeX subsystem is embedded and
introduce an example we are going to use throughout the paper.

A. DAIDA Overview

DAIDA is an experimental software environment for
database-intensive information systems (DAIDA = Development
Assistance for Interactive Database Applications). It was
developed over the past four years by a consortium of software
houses and research partners within the ESPRIT program of
the European Community.

In DAIDA, software is represented as a layered knowledge
base where the layers correspond to different interrelated views
of a system (Fig. 1) [20]:

* Various application perspectives are captured in a require-
ments model which represents the different system roles
as part of an evolving world model in the knowledge
representation language Telos
An overall systems perspective is represented as a concep-
tual design in the object-oriented specification language
TDL

« Subsystems are implemented in the Modula-based data-

base programming language DBPL.

These layers are related by knowledge-based mapping as-
sistants that help the developer to:

+ Embed system functions in a world model and integrate
the different system roles in a conceptual design, accord-
ing to functional and nonfunctional requirements (8]

+ Derive formally verified database programs from concep-
tual designs [5].

Obviously, such a multilayered and highly interrelated struc-
ture needs strong process support not only in the initial devel-
opment of software but also for maintenance with the reuse of
existing experiences. The DAIDA architecture therefore con-
tains a central knowledge-based manager, ConceptBase, which
is responsible for the coordination, control, and documentation
of work in the DAIDA environment.

The name ConceptBase is programmatic: our main goal
was to raise process management from a file or document
level to an application-oriented conceptual organization. This
orientation toward concepts enables the formal and technical
integration of several process management tasks:

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

HAHN et al.: TEAMWORK SUPPORT IN AN INFORMATION SYSTEMS ENVIRONMENT : 469

PRDJECT name : GraFlc

REGISFLAY) (UPDATE CUNFIGURATION

SCALE FACTOR : [0.75 0.5

MESSAGE AREA : no object at this locatio

e

Fig. 2. Three-level representation of example information system.

* Distribution of development process information over
heterogeneous object managers
* Scaling up from detail tasks such as documentation of re-
finement proofs to version and configuration management
and group coordination within the same formal framework
* Management of evolving environments and their process
models, as well as control, enacting, and documentation
of individual software processes.
In the CoNeX project we have focused on the group coordi-
nation aspects of these tasks, as well as on their integration
with the other aspects.

B. A DAIDA Development Example

Consider a group of programmers, designers, system ana-
lysts, and prospective users collaborating on the development
of an information system. The system under development
is a conventional personnel management system involving
projects and people, assigning people to tasks, etc. According
to the DAIDA architecture, it is described from three different
viewpoints which are related by development decisions (Fig.
2). The requirements analysis object EmpPerPro_Req is a
model of the personnel management domain into which the
system will be integrated after completion. These require-
ments are transformed into a corresponding conceptual design
EmpPerPro_Des which provides a system perspective and
is the result of a mapping decision InitialReqgMap. This
conceptual design forms the basis for a database program

implementation in terms of three different relations (EmpPer-
Pro_Imp). This implementation has been created through the
choice and subsequent execution of a decision documented as
InitialDesMap.

Two features should be pointed out here. First, requirements,
designs, and implementations are formal objects of a software
development knowledge base. Second, the transformations
from requirements to designs and from designs to implemen-
tations are formally controlled by mapping decisions covered
by a conceptual software development model [21].

To explore the semantics of design histories like the
one shown in Fig. 2, the DAIDA environment provides
additional models and tools. For instance, a zooming
operation (Fig. 3) shows semantic descriptions of the
objects in Fig. 2. The requirements model is .com-
posed of four entity classes (Person, Employee, Com-
pany, Project) and three transactions (hireEmployee,
hireEmployeeforProject, fireEmp). Person and Em-
ployee, and hireEmp and hireEfP are related by
specialization (isA) relationships (not shown). In the design
and implementation, these two isA hierarchies have been
treated differently. While designers have merged Person and
Employee into a single EmplPers data class of the design,
each -activity object of the requirements model (hireEmp
and hireE£P) has been mapped to an individual transaction
specification in TDL, and each of these specifications has been
implemented as a separate DBPL transaction procedure. This

——

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 5, MAY 1991

T name : Graflc

)
FACTOR : i} 8.75 8.5
GE'AREA : no object at this locatio

@i Lia 1 Reaply

_
ey]
E/b csh

Fig. 3. Zooming into the design history using conceptual descriptions and dependencies.

relationship is documented in Fig. 3 by showing dependency
links created by the design decisions in Fig. 2 (the vertical
arrows in Fig. 3). Such dependencies allow users to trace
details of the design history for reuse or correction though the
rationale behind the documented decisions remains unclear.

III. INTRODUCING TEAMWORK SUPPORT:
A SampLE SessioN witH CoNeX

The role of people in the development history shown in
Figs. 2 and 3 is so far unclear. In this section, we extend the
example by group aspects, working with the CoNeX prototype.
In the scenario, we shall take the role of an Analyst who has
been called into an ongoing project discussion in order to help
resolve a conflict among other project participants.

A. Project Auditing

Consider some later point in the evolution of the example
introduced in Figs. 2 and 3. Now the Analyst enters the scene.
Upon demand she gets a snapshot of the current state of
the project. Fig. 4 displays that the requirements model of
Fig. 2 still persists, but that the initial design has undergone
a kind of schema evolution. The new variant of the design

object EmplPers_Des results from a different requirements
mapping decision. This versioning decision collapses the isA
hierarchy of transactions (hireEfP isA hireEmp) and
considers only two significant transactions for the system,
hireEfP and fireEmp. This change in design may cause a
different implementation of transactions (EmplPers_Imp);
i.e., require additional efforts of the project team.

This refinement covers the vital aspect of variant and
version management on a conceptual level [35]. An explicit
representation of the transformation steps among versions on
the design and implementation level is provided in terms of
decisions made and computerized tools used for that step.
This kind of information enables the Analyst to perceive
the logical dependencies (here: of programming-in-the-large)
that underlie the changes. Still, the Analyst does not get
any impression (except on the basis of intuitive guesses) of
the reasons behind this development process.

B. Screem'ﬁg Task Debates (Project Documentation)

The Analyst now reviews the argumentation round that
documents the change in design (Fig. 5). It started with the
Designer applying (poseing) the InitialReqMapping

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

HAHN et al.: TEAMWORK SUPPORT IN AN INFORMATION SYSTEMS ENVIRONMENT 471

PROJECT name : GraFlc

CLOSE
REOISPLAY) (UPDATE CONFIGURATION

SCALE FACTOR : i} ©.75 0.5
MESSAGE AREA :

[

Fig. 4. Two alternative versions of the example information system.

to create the design object EmpPerPro_Des from initial re-
quirements EmpPerPro_Req. After seeing the result through
a DAIDA prototyping tool (not shown), the prospective User
had argued against it. The objection was based on the reason
that the consideration of two different transactions is too
complicated (oppose argument, issue: UserFriendly).
The User thus proposes the above alternative scheme where
both transactions are merged (pose argument for Revise-
dRegMap, issue: UserFriendly).

The Designer poses to collapse the isA hierarchy of
transactions in the initial design object into one compound
transaction, i.e., to map both activity objects of the require-
ments model (cf. Fig. 3) to the same transaction specification,
using inheritance (pose argument for the versioning de-
cision Collapse isA, issue: RevisionLogic). As a
consequence, a new implementation object in terms of Em—
plPers_Imp (when applying RevisedDesMapping to
EmplPers_Des) is required. Although the Designer is
satisfied on the conceptual level, he recognizes the potential
WorkOverhead that solution might imply (oppose argu-
ment for Collapse_isA, issue: WorkOverhead). This
indirect objection to the conceptual solution requires a decision
how to proceed. This is why the Analyst was called in.

Here, we have introduced one particular application of our
group work model. It deals with qualitative means of negoti-
ation in terms of argument exchange among multiple agents.
The argumentation history lays open the reasons which caused

system evolution in a coherent and discourse pragmatically
plausible way. In practice, only crucial arguments that have
actually influenced the design decision process would remain
documented for long. Moreover, the screening capability, so
far, is a passive device. A complementary component for
active participation in the discussion is described next.

C. Decision Tool Integration: Taking the Argumentation
and Decision Initiative

The Analyst doubts the feasibility statement of the
Designer. Her idea can be phrased like this: is there a rea-
sonable chance to meet the demands of the User and to reuse
existing code from EmpPerPro_Imp to minimize the efforts
of the new EmplPers_Implementation? To study this idea
the Analyst activates a ConfigurationTool (see Fig. 6).
It evaluates a query that analyzes the implementation depen-
dencies between the existing EmpPerPro_ Implementation
and the envisaged EmplPers_Implementation; inciden-
tally, the dependencies to be followed by the query
include those shown in Fig. 3. As in the case of
Collapse_isA, a MappingDesignRevision leads from
InitialDesMapping to a RevisedDesMapping within
reasonable bounds of effort for the system development
team. Given these data by the decision aid tool kit,
the Analyst argues in favor of the MapDesRevision,
agrees on the RevisedDesMapping, and therefore attacks
the Designer’s argument of unacceptable WorkOverhead

_ 1

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

472 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 5, MAY 1991

PROJECT namé : GraFlc

REDISPLAY] (UPOATE CONFIGURATION
SCALE FACTOR : Ji] ©.75 0.5

EnpPorPou_inp LnpIvees Lmp

Fig. 5. Reviewing the argumentation about design decisions.

when realizing Collapse_isA via RevisedRegMap.

This is a sketch of the integration of automatic decision
support techniques into the interactive design of a project work
plan. It also illustrates the effects they have on generating
rational evidences to push wicked, controversial argumentation
lines on plans toward actual decision making (required to real-
ize plans). We have also experimented with more sophisticated
tools such as optimization procedures, simulation programs,
etc. However, at least in our application settings to date, they
appeared to be too complicated to be practical.

In any case, the results generated by these decision devices
are conceptually embedded into the rational pursuit of a task
debate; i.e., they are not isolated from their immediate task
environment. Having settled what has to be done, the next
step requires the assignment of tasks to people (who does it)
in order to realize the design of the information system. This
usually consists of two steps: task decomposition planning for
a stable division of labor with limited need for coordination,
and contracting of these task components to developers. A
solution for the former problem is presented in [40]; below,
we assume that our example programming task is small enough
to be carried out by one person.

D. Task Contracting
Based on the foregoing VariantConversation, an

appropriate VariantContract must be settled to real-
ize EmplPers_Imp as an EmpPerPro_Variant. The
Analyst starts a contracting dialog Requesting the Pro-
grammer to realize EmpPerPro_Variant (s stands for
sender, r for receiver, and ¢ for contents). The
Programmer replies with a Counter (say, time budget
too low) followed by a Reply of the Analyst (granting
a sufficient time budget). The Programmer then Promises
to take over the job (signing a Promise protocol, see below)
and starts to work on EmpPerPro_Variant. After some
period of time the contract dialog is resumed. This time, the
Programmer issues a message to the Analyst that signals
ReportComplete for the task accepted in the Promise
stage of that dialog.

Note that the contract dialog (as well as the argumentation
dialog outlined in Section III-B and C) is connected to the
formal specifications of the task to bé done. Furthermore, as
with argumentation above, there is a strict formal protocol
which has to be followed when members of the project team
are engaged in argumentation or contract dialogs. Both kinds
of dialogs are multiagent interactions among several members
of the project team.

E. Decision Tool Integration: Contract Supervision
A final problem relates to the evaluation of the quality of

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

HAHN et al.: TEAMWORK SUPPORT IN AN INFORMATION SYSTEMS ENVIRONMENT 473

(o) e (@)

Object in Editor : q

PROJECT name : GraFlc

Individual ModifyQuery in indivlduﬂchn,ou-ry with

UPDATE_CONFIGURAT ION

SCALE FACTOR : §i] .75 8.5
MESSAGE AREA : no object at this locatio:

tnplerPra_tiey

EnprerPro_lnp Lap iPees_inp

end ModifyQuery

query
mq : § each x/DBPL_Object InstanceOf(x,ToBaModified,Alusys) §

var
R DBPL_ChjE:t.
rule

changeruls :

$forall object/DBPL_Object (exists attrid_1/ATTRIBUTE (ex|
ists dbplprog/DBPL_Program ((To(attrid_1,object) and From
(attrid_1,dbplprog))) and exists attrid 2/ATTRIBUTE(AttrV
alue(attrid_1,dependsonObject,attrid_2,Aluays) and exists
attrid_3/ATTRIBUTE (AttrvValue(attrid_2,newdesigned,attri
d_3,4luays)))))

==)> Instance0f(object,ToBaMod1ified, Always)$

Fig. 6. Application of a decision support tool to trace consequences and qualify arguments.

the product the Programmer has delivered to the Analyst.
Obviously, the resulting object must meet the initial require-
ments expressed on the design level (EmplPers_Des). This
leads to the last step of product assessment. Fig. 7 contains a
window which informs the Analyst of the physical location
of the file the Programmer has created in the course of
task completion. The Analyst might then use a standardized
test bed for program evaluation, to test whether the program
satisfies the requirements. In Fig. 8, the detailed dependency
browser of Fig. 3 is refreshed to show the resulting situation
after the integration of the new program. The content features
we have discussed in the previous subsections are clearly
visible in this picture: the collapsing of the isA hierarchy
of transactions in the new design version, the reuse of most
existing components at the design and program levels, and the
availability of the new transactions. Depending on the result
of this integration step, the deliverable is either Declare-
Completed or Rejected by adding another message to the
conversation structure in Fig. 7 (not shown).

Note that the decision to accept or reject the piece of
software is based on its semantic specification, as well as its
conformity with constraints of the contract protocol. Although
the deliverable might realize some specification perfectly, it
might be useless if it is not available in time. This idea
might lead to a formal notion of overall product integrity as
distinguished from currently prevailing local views of integrity
constraints and trigger mechnisms in software databases. In our

. prototype, it has also led to techniques for the integration of a

knowledge-based management system, a typed message sys-
tem, and commercial software development tools (see Section
IV-C, below).

F. Summary of Modeling Requirements

The various steps of the sample session were intended to
demonstrate requirements for group work in software projects,
and to illustrate the solutions CoNeX provides:

* a conceptual model of software development processes
that makes explicit logical dependencies between require-
ments, design, and implementation decisions;

* a conceptual model of group work that has been special-
ized to the needs and particularities of (software) project
work;

* a conceptual model of task-oriented debates with multiple
agents that makes explicit the reasons behind logical
dependencies related to requirements, designs, and im-
plementation decisions, their versions and configurations;

* a conceptual model of task contracting and contract
supervision that characterizes long lasting transactions in
the project team in terms of a semantic model of project
coordination.

As will be shown below, these submodels stand united in

a uniform theoretical framework and a coherent model of the
semantics of its application domain. Of course, the associated

_ 1

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

474 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 5, MAY 1991

 rosins Loty asitig Lrossrs | orion |

PROJECT name : GraFlc

SCALE FACTOR : [ij 0.75 8.5

MESSAGE AREA : 0K !

s EmplerPro_Yacia

Fig. 7. Status overview

As will be shown below, these submodels stand united in
a uniform theoretical framework and a coherent model of the
semantics of its application domain. Of course, the associated
group tools must be complemented by a software decision
support tool kit (illustrated above by a configuration checker
and a program test bed) that generates evidence for project
management decisions and actions.

IV. A CoNcepTuAL MODEL

Abstracting from our project management example, this
section sketches a formal model of (software) project manage-
ment. We focus on the overall picture; the full formalization
and technical analysis of individual components is found in
related papers [18],[21], [36], 40].

In order to offer comprehensive support, a conceptual model
has to represent several levels of abstraction within a cooper-
ation structure. Specifically, it has to allow:

* documentation of the actual objects, design decisions, and
communications exchanged. Most of our sample session
is at this level: objects such as EmplPers_Des, deci-
sions such as InitialRegMap or Collapse_IsA,
arguments such as oppose (issue: WorkOverhead) or
contract messages such as DeclareComplete. We give
one example of a documented message in Telos syntax
(cf. also Fig. 7):

Individual
DeclareComplete_ EmpPerProVariant

Username: Analyst

Object in Editor portCom

[$]Individua) ’ReportComplete: EmpPerPro_Variant’ in

Individua)Class,ReportComplete with
sender
8: Programmer
receiver
r: Analyst
concerns
c: EmpPerPro_Variant
comment
file¥ithContents: "Models/Project/MapToDbpl_Descr_2"
end ‘RepartComplete: EmpPerPro_Variant’

LY

of a contract conversation.

in DeclareComplete
with
sender

s : Analyst
receiver

r : Programmer
reference

d : ReportComplete_ EmpPerProVariant
concerns

¢ : EmpPerPro_Variant
end

* specification of object and agent classes, decision cate-

gories, and conversation protocols. These classes serve as
schemata for the instance level. They control operations
on instances through structural, predicative, and temporal
integrity constraints and deduction rules. The specification
level also precisely defines the interaction of group-related
and domain-related submodels. For instance, completion
of a contract as documented in the above example is
specified by a message class whose instances can only
reply to a corresponding ReportComplete message
on the same topic. A ReportComplete message is
a specialized DAIDAResponse; this, in turn, is a
specialization of a general DAIDAMessage class in
software teams working in the DAIDA environment:
IndividualClass DAIDAMessage in Message
with

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

HAHN ez al.: TEAMWORK SUPPORT IN AN INFORMATION SYSTEMS ENVIRONMENT 475

PROJECT name : GraFlc

SCALE FACTOR :] 0.75 8.5

LY
W hircDFENou_sibpd
1]
Fig. 8. Revised system structure after integration of new design and program versions.
IndividualClass DAIDAResponse isA DAIDAMessage
with sender
¢ SoftwareAgent
receiver
¢ SoftwareAgent
attribute
reference : DAIDAMessage
integrityConstraint
correctParticipants : $ THIS.sender = THIS.reference.receiver and
THIS.receiver = THIS.reference.sender §$
deductiveRule
correctTopic : § forall X/DAIDATask
AttrValue(THIS.reference, concerns, X) ==>
AttrValue(THIS, concerns, X) §
end
IndividualClass DeclareComplete isA * metalevel organization of the basic interrelationships be-
DAIDAResponse tween group structure models, conversation models, and’
with domain models. This defines what kinds of class-level
attribute specifications can be defined and how they interact. In
reference : ReportComplete CoNeX, it also forms the basis for the kinds of tools
end to be adopted, as well as graphical standards for the

_ 1

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

476 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 5, MAY 1991

interface presentation (e.g., rectangles for design objects,
gray ovals for design decisions, black ones for conversa-
tional objects, etc.). For example, the following metaclass
Message restricts DAIDATask above to be an instance
of DesignDecision:
IndividualClass Message in MetaClass
with
attribute
sender :
receiver : Agent;
concerns : DesignDecision
end

Agent;

To keep the discussion manageable, the rest of this section
mostly investigates the metalevel of cooperation support, and
only gives a few examples of specification-level informations.
We consider it crucial to observe that this metalevel hierarchy
approach leads to full extensibility and adaptability of the
protocols to- be followed. In previous work on the group
decision support system Co-oP [7], we have even fouad it
useful to give user groups the opportunity to dynamically
tailor protocols to their current needs. The CoNeX metalevel
approach represents a much more flexible solution to this
problem than the fixed menus of Co-oP.

Of course, a powerful knowledge representation language
is required to support the above features. We have been using
the language Telos [30] in the version implemented in the
ConceptBase knowledge-based management system [13]. Te-
los integrates a unique kind of structurally object-oriented data
model with predicative assertions and an interval-based time
calculus. It lends itself naturally to the kind of hypertext-like
intermixing of frame-based and network-oriented components
shown in the examples. Rather than elaborating the language
in detail, we shall hope for understandability of the examples
and otherwise refer the reader to the cited papers.

The remainder of this section is organized as follows. We
first describe separately the modeling of group work structures
and conversations and our domain metamodel for software
engineering. Then the integration of these metamodels is
presented.

A. A Group Model for Task Cooperation

From the group work viewpoint, software project manage-
ment is a particular case of general task-oriented multiagent
collaboration. We consider the following requirements essen-
tial for any such general model:

» Teams of experts are dynamically assembled depending
on the type of problem to be solved, and the actual
availability of individuals or material resources

* One individual may be associated with several teams at

the same time according to different issues, obligations,

levels of competence, etc.

Solutions to (sub)problems are worked out and delivered

in parallel

* Problem and task definitions, feasibility constraints, and
approvals underlie the rationale of the task to be solved;
nevertheless, they are all subject to social negotiations

* Definition and execution of tasks is plan-

* guided

* Facilities have to be devised for dealing with conflicting
and incomplete solutions coming from individual team
members.

Given these requirements, the group model is composed of
the following basic conceptual entities and relations which
are summarized in the semantic network of Telos metaclasses
shown in Fig. 9:

Agents (Organizational Perspective): Groups are constituted
by a number of Agents. From the viewpoint of problem
solving capability, an individual Agent or of a group is
characterized by a specific kind of competence (qualifi-
cation: AKBObject), the records of which are available
as an item in the Application Knowledge Base. In order to
solve problems an Agent is assigned a certain amount of
Resources (e.g., technical equipment, money, time).

Two basic types of Agents are distinguished for task-
oriented collaboration using the affiliation links: Hu-
manAgents and TechnicalAgents. Each one of them
may be considered on the level of individuals and on the
level of group aggregation. For example, single Persons
are dynamically forming a HumanGroup, or various Tools
(workstations, net servers, net software) can be configured
in terms of a compound TechnicalGroup (a computer
network). In addition, the modeling of Agents has to account
for relevant dependencies between both subclasses: a Tech-
nicalAgent can only be handled by a HumanAgent with
appropriate qualification (operated_by: HumanAgent);
conversely, the physical availability of a TechnicalA-
gent for a HumanAgent has to be represented adequately
(equipped_with: TechnicalAgent).

Resources, Actions, Plans, Commitments (Project Perspec-
tive): In order to execute a project task, various Resources
have to be supplied. Besides common economic criteria
(time, money, physical and technical resources) we also count
Agents among the resources to be managed.

Projects serve to execute a sequence of mutually reconciled
actions. The goal perspective according to which single actions
are ordered is achieved by creating plans. The group model
allows various layers of granularity to specify, to agree upon,
and realize plans by activities. On the technical level we con-
ceive plans to be represented by PlanTransitions whose
results are manifest in terms of PlanDeliverables. Plans
that are created and modified in the course of negotiations
we shall refer to as Conversation for possibilities. Our
focus has not been on the planning issue as such: e.g., plan
generation, plan hierarchies related to project scheduling, cf.
[37],[40]. Instead, we concentrate on various social policies
to agree upon plans (by contracting in terms of commitments),
to modify already settled plans in the light of new evidences
(by debating in terms of argument exchanges), and to monitor
the success of plan execution relative to the contracts finally
agreed upon.

Coupling Actions with plans as well as executing an
Action according to the logic of a particular plan is based
upon a social contract. The agents involved (manager,
contractor) agree upon the issue of negotiation in terms
of what has to be done, how it should be done, and when it
has to be done. Task-oriented negotiations of this kind are

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

HAHN ez al.: TEAMWORK SUPPORT IN AN INFORMATION SYSTEMS ENVIRONMENT 477

| I1SA

Conversation ||

required

PlanTs

Fig. 9. Group work model—organizational and project perspective.

subject to Conversation about actions (see Section III-D).
Specific applications of the group model (e.g., software project
management) require the domain knowledge to be plugged in
at the level of the application specific knowledge base (cf.
Section III-C for the software engineering scenario).

B. A Multiagent Conversation Model for
Task-Oriented Negotiations

The coordination of plans and actions realizing these plans
is based on communication among agents. Analogous t0 the
proposal by Winograd [44], we focus on two qualitative
techniques to control the interactions that task-oriented groups
often use to achieve or modify agreements:

* Conversation for action aims at the direction of people.
Messages are passed in order to assign plans to people, to
make binding commitments in order to achieve a project
goal, to implement a plan in terms of activities, and
guarantee proper termination and acknowledgment of the
task oriented activities.
Conversation for negotiation (sometimes also referred
to as conversation for possibilities) aims at negotiation
among people. In this communication mode opinions are
exchanged in terms of debates in order to coordinate
goals, and agree upon some plan or activity to be done
through argument exchange and final decision making.
In Fig. 10, Action_Conversation is a specialization
of a Conversation. It is characterized by the exchange
of messages and several participants (that property
is inherited from the Conversation object). Messages
themselves are composed of a sender and receiver com-
ponent stating the immediate Agents-involved in the com-
munication process, and a characterization of the issue dealt
with (concerns: AKBObject). Action_Conversations
being a special kind of Action have a particular specifi-
cation for admitted sequences of conversation steps (plan:
PlanTransition). This way, plans do not only cover the
literal aspects of realizing work plans by task-oriented activ-
ities, but also incorporate the speech act notion of discourses
for plan modification and task assignment as an integral part

Conversation
ISA

|Possibility_Convcrs |

N

contriButor | arguments

topic

d

L
AKBObject SoSs

Fig. 10. Multiagent conversation model.

of project activities. Such a conversation plan is composed of
several primitives of the basic Message type, some of which
appear in the sample session: Request, Counter, Reply,
Promise, ReportComplete (cf. Fig. 7).

As a second major conversation type, we have been consid-
ering loosely structured, argumentation-based debates (Pos-
sibility Conversations). In this case messages are
replaced by arguments, the issue is the topic of a Possi-
bility_Conversation, while participants of a debate
are inherited from the general Conversation object. Since
Possibility Conversation ISA Action we inherit
the concept of an argumentation plan consisting of a se-
quence of Argument primitives, each one characterized by
its contributor.

The specific argumentation model we have been developing
[18] is based upon Toulmin’s argumentation theory [43].
Examples of its primitives and their proper combination ac-
cording to a particular argumentation topic are illustrated in the
sample session (Section II). The introductory act of posing an
argument (ArgumentProper), the qualification of previous
arguments in terms of opposing them (Qualification),
and the final decision making primitive in terms of agreeing
upon a particular decision (cf. Figs. 5 and 6).

C. Software Process Data Model

The content-oriented part of our model introduces the soft-
ware engineering domain into the overall picture. According
to our experience in the DAIDA project and to the substantial
literature in the field, the following requirements should be
satisfied by such a model:

* recording of administrative aspects of software objects
(requirements analyses, designs, implementations, docu-
mentation, etc.) and design decisions, including source
management;
recording of semantic aspects of software objects and
design decisions, including the semantic dependencies
created by design decisions (classified as refinement de-
cisions, mapping decisions, versioning decisions, config-
uration decisions, etc.) for reuse in maintenance;

* integrity control and rule-based partial automation of
administrative and content-oriented actions;

* administrative, semantic, and technical integration of ex-
ternally developed design tools;

_ 1

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

478 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 5, MAY 1991

from

g s Design
| Object

qualification

to

implementation
object
semantic

decision
semantic

Executablef
Object

trigger

Fig. 11. Software process data model.

* extensibility in the definition of supported languages,

design methodologies, and tools.

There are also other requirements of less interest to this
paper. In [21] we have developed a software process data
model, the so-called Decision-Object-Tool or D.O.T. model,
that seems to address these requirements and was used for tool
integration, process control, and documentation throughout the
various DAIDA subtasks.

Fig. 11 gives the basic idea. Software development and
maintenance is viewed as a process of tool-aided decisions
that transform software objects into other software objects.
The derived objects are then said to be justified by the
underlying design decision; in turn, design decisions can have
nonfunctional input objects, called goals.

As in other systems [1], [15], design objects each come with
a reference to an uninterpreted information container which
can be worked on by certain tools. However, they also come
with a semantic description of the content of this container; it
was this semantic description we have used for zooming in the
examples in Figs. 3 and 8. Moreover, objects can be associated
with triggers that activate directly the tools that support some
decision applicable to the object.

The model gains much of its power by its combination with
the abstraction principles of classification and generalization
offered by Telos. An instance of the metamodel would define
a certain software environment with its languages (object
classes), methodologies (decision classes), and tools. The
execution of an actual software project, as in Section II, would
be modeled as an instantiation of this software environment
model.

A limitation of the decision-object-tool model in its above
form is that, like most similar models, it does.not cover
the group work aspects of software engineering, although the
concept of design decision provides a good handle. Simply
speaking, the integration is achieved by making design deci-
sions the topic of argumentations and contracts; in particular,
arguments can become goal objects of the decisions. Some
more details are given in the next subsection.

D. Model Integration

The various submodels for project management introduced
above have been designed for conceptual integration. Fig.
12 shows that the group model and the conversation models
intersect in the Agent, the Action, and the AKBObject
areas. ,

Obviously, multiple Agents converse, and the linking of
Conversations to Actions provides a general protocol

ha_affiliation

HumanAgent T

out
[ol PlanDeliverable

PlanTransition

AKBObject s =

justification

 justifi
I DesignObject I;:f DesignDecision Iw.l DesignTool I

from / to

Fig. 12. Model integration—group work in software projects.

scheme for Actions. However, the integration does not
provide any contents, i.e., what people converse about and
act upon. The AKBObject is entirely open with respect to a
particular interpretation of its domain. This changes when the
application domain is plugged in. Since we are dealing with the
software project management world the application dependent
component has to be interpreted this way; i.e., the D.O.T.
model becomes a major part of the AKBObject. Therefore
that component is the natural and only intersection area where
group processes and project management issues converge.

V. CoNeX: AN EXPERIMENTAL MULTIAGENT
ProOJECT SUPPORT ENVIRONMENT

The CoNeX prototype has been implemented as an ex-
tension of DAIDA’s knowledge-based software information
system ConceptBase {13] by group collaboration facilities.
Since ConceptBase supports the knowledge representation
language Telos we have used for formalizing the models
sketched in Section III, that model can be directly used as
the basic internal schema of a knowledge base for CoNeX.

This section is devoted to the technical and architectural
issues of CoNeX. It points out the concept followed in the
implementation of CoNeX and describes the implementation
of available tools.

A. Implementation Concept

Satisfactory support for collaborating agents in a multiagent
setting does not only require an internal model of collabora-
tion, but also an operational working environment. In addition
to the conceptual modeling aspects, multiagent environments
require at least facilities to exchange information among team
members in real-time and asynchronous debates; assemble
teams and configure communication channels dynamically
with respect to competence and tasks; support working envi-
ronments distributed on computer networks; allow the flexible

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

HAHN et al.: TEAMWORK SUPPORT IN AN INFORMATION SYSTEMS ENVIRONMENT 479

construction of working environments tailored to agent’s tasks;
and provide access to information resources for decision
support.

Based on this specification of operational requirements, we
propose five concepts:

1) declarative specification of partitions of the knowledge
base to be handled by a certain working environment;

2) an algorithm which propagates modifications from one
working environment to another with respect to the
assembled team;

3) a communication protocol which allows the network
transparent transfer of information;

4) a tool-kit designed to build hypertext-like usage envi-
ronments supporting interactive browsing and editing of
(views of) the knowledge base;

5) a user-defined formal mapping between graphical pre-
sentation and the knowledge base.

ConceptBase provides implementational facilities for 1) to
5) in a client-server architecture. The server provides the
central repository of information about the project. Each client
constitutes a view on this central repository and provides a
graphic-oriented working environment.

The first concept allows the specification of knowledge-

based views which are available inside a working environ--

ment. The second concept concerns view updates and update
propagation; modifications inside working environments are
interpreted as updates on views. Third, updates inside working
environments cause the notification of the server responsible
for propagating updates. Technically, notifications are exe-
cuted by a communication protocol which transfers the data
from the server to the working environments. .

The fourth and fifth concepts concern the graphical presen-
tation of data, derived and controlled by the view concept.
Each view presents a substructure of the knowledge base and
thus requires sophisticated browsing and editing facilities. For
this purpose we employed the standard usage environment of
ConceptBase, which offers a hypertext-like switching among
graphical and textual representations. In addition, the toolkit
for the interface has to support the specification of the map-
ping from knowledge-based objects to graphical icons and
admissible user interactions, and vice versa.

B. The CoNeX Tools

The client-server architecture of ConceptBase allows the
collaboration of human and technical agents via a local area
network. It allows the construction of dedicated and distributed
working places and the dynamic configuration of task groups
by communication channels. In our sample setting, we have
four agents participating in the conversation (Fig. 13).

Each agent can be provided with a working environment
tailored to her tasks. For instance, the analyst first contributed
to a conversation for negotiation, then she directed a program-
mer. Similarly, programmer and user require distinct working
environments, especially with respect to information resources
they intend to apply for decision support. In this manner,
the CoNeX prototype not only comprises a set of tools for

ConceptBase
Object Server

server #1

i Message Channe! with Interprocess Communication]

[| 1 |

ConceptBase
Working Place
cliont #1

Working Place
client #2

Working Place
client #3

Working Place
client #4

x X A A

User

Designer Analyst Programmer

Fig. 13. CoNeX client-server architecture for collaborating agents.

conversation support but also integrates domain-specific tools.
Tools dedicated to conversation support include:

* an Argument Editor to support conversations for negoti-

ation;

* a Contract Monitor to document conversations for ac-

tions;

* a Conference System to exchange informal messages.

The Argument Editor and Contract Monitor can be mul-
tiplexed in order to operate in real-time distributed software
development settings. Interactive updates inside one working
environment are propagated to other working environments
which share the same focus of attention. For instance, an
argument or activity posed by the analyst can be seen by
the Argument Editor of the other participants if such real-
time setting is desired. In addition to the synchronization of
formal conversations, CoNeX supports informal information
exchange by a Conference System. One major application
concerns change notifications.

The second major topic of the CoNeX prototype concerns
the application of information resources related to the develop-
ment process. These resources are represented by the software
process data model. Hypertext-like browsing and editing tools
combined with predicative filters enable agents to trace the
history of a software project, to discover alternative solutions
tried in earlier phases, to determine products available for pos-
sible reuse or to analyze dependencies among specifications,
designs, and implementations, and to introduce and propagate
changes [21].

More active tools concern conceptual version and con-
figuration management and multicriteria decision support. A
concept-based configuration process subenvironment [36] pro-
vides the specification of versions and compatible configura-
tions structured in terms of the application domain. It frees the
user from physical representations such as documents or files.
The document-based implementation of conceptual versioning
and configuration decisions is handled semiautomatically. In
some of these models, the predicative specification of con-
versation protocols is compiled into nondeterministic finite
automata or similar internal models which implement the
sequencing constraints more efficiently. Additionally, a multi-
criteria decision-support assistant helps individuals or groups
in evaluating the trade-offs among conflicting goals.

e

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

480 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 5, MAY 1991

VI. DiscussioN AND CONCLUSION

Starting from the application of project management models
originally developed for economic domains, software en-
gineers soon recognized the need for automated tool sup-
port in software development processes (for an overview, cf.
[6], [42]). These tools cover the specific aspects of software
production as distinguished, for example, from manufacturing.
They supply, for example, dedicated language tools (syntax-
sensitive editors, debugging facilities) or support formal group
structures (check-out/ check-in facilities) as, for example, in
SUN’s Network Software Environment NSE [1]. They do not
consider the social dimension of software group work. This
idea appeared in the IStar environment using a contractual
approach [12]. IStar allows formal task fulfillment relations
to be created among a contractor and a client, contracts to be
kept as formal objects in a contract database and work results
(program code) to be evaluated by semiautomatic devices. The
various roles people play in project management and their
relationships in terms of formal communication protocols were
investigated in MONSTR [19], that later became the XCP
protocol for general cooperative procedures [39]. Similar ideas
apply to the interaction of technical agents [34].

However, these approaches provide only syntactic mecha-
nisms to manage team work. The semantic deficit has then
led to the incorporation of conceptual modeling languages, of
which Telos is an advanced representative. Although being
more explicit about basic semantic relationships of software
project management, these approaches (cf., for example, [2],
[16], {27], [37]) tend to concentrate-on traditional notions of
project management (such as deliverables, milestones, etc.),
neglecting social factors such as conflict negotiation, work
plan revision, etc. [3]. A few of these aspects are introduced
in the decision recording model of [31] which, however, does
not model active components or tools.

The importance of social criteria for the communication
processes in project teams has been considered in Kedzierski
[25], who integrates formal speech act notions into the protocol
mechanisms of a project management support system. Our
contracting submodel is close in spirit to Coordinator-style
modeling of messages [44]. Like CHAOS [11], it additionally
incorporates technical aspects. Unlike CHAOS, it includes
group-specific social factors (contracting, argument exchange,
multiagent problem solving) in a comprehensive formal model
that is based on the semantics of its application domain.
This strict formal control does not imply that the style of
conversations needs to be dictatorship-like. Within the for-
malism, it is perfectly possible to devise very flexible kinds
of protocols (such as [24]) which are adaptable dynamically,
but still controlled and documented formally.

The exchange of arguments within an information system
has first been considered in SYNVIEW [28], and was also
adopted by ArgNoter [41]. These approaches are completely
informal (based on the display of arguments and simple
ranking procedures that use voting input) and thus do not allow
any formal control of the reasoning processes and the subject
matter on which arguments are exchanged. Formal deductive
control of argument exchange and the repercussions’ opinion

changes, on the currently held belief set of an arguing agent
as explored in a TMS environment by [4], [23], concentrate on
single-agent argumentation. The gIBIS protocol [9] allows a
limited formal control through a state transition network which
specifies legal patterns of argument exchange. However, the
semantics of the issues (application domain) is outside the
modeling scope of gIBIS. Actually, a corresponding extension
of the IBIS model is underway [32].

The emphasis of our work has been on the proper integration
of conceptual components in terms of a comprehensive model
of software projects. In particular, it contains:

« a semantic specification of knowledge about the software
engineering world;

» a group model for the interactions within a task-oriented
problem-solving team;

« a model of social activities that groups perform, empha-
sizing debates and contracts.

The power of our approach comes from the integration
of these submodels into a composite conceptual model of
group work specialized according to the needs of software
development processes. Having established this integrated
model, we have implemented a set of collaboration tools
which are formally related to, and controlled by, the model.
Technically, this meant the provision of:

» point-to-point as well as multiagent communication pro-
tocols;

* integrated conversation structuring and domain handling
as in the argument editor;

* interleaving of synchronous and asynchronous collabora-
tion modes.

The collaboration environment - needs further refinement
based on ongoing experiences with the prototype. Our ex-
periments are not limited to software project cooperation
as described here, but also include cooperative requirements
engineering, coauthoring systems for system documentation,
and support for certain kinds of business negotiations related
to the acquisition of complex products.

Another current interest concerns the recognition, manage-
ment, and resolution of conflicts that occur in task fulfillment.
From a conceptual point of view, an elaborate classification
scheme for conflicts and conflict resolution may improve the
optimistic coordination of system development. The classifi-
cation scheme relates to concept hierarchies of work tasks
and possible resolution procedures like primitive document
merging, regressive integration, locking, etc. From a technical
point of view, one requires a technical facility supporting
physical workspaces. We apply NSE as a technical means for
providing workspaces and controlling activities and control it
through a coupling with our conceptual model.

 ACKNOWLEDGMENT
The authors gratefully acknowledge the contributions of
R. Gallersdorfer, M. Gocek, A. Klemann, C. Maltzahn, and
H.W. Nissen to the prototype implementation of the approach
proposed here.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

HAHN ér al.: TEAMWORK SUPPORT IN AN INFORMATION SYSTEMS ENVIRONMENT

REFERENCES

[1] E.W. Adams, M. Honda, and T. C. Miller, “Object management in
a CASE environment,” in Proc. 11th Int. Conf. Software Engineer-
ing, Pittsburgh, PA, 1989, pp. 154-163.

[2] K.D. Bimson and L. Boehm Burris, “Conceptual model-based

reasoning for knowledge-based software project management” in

Proc. 21st Hawaii Int. Conf. System Sciences, Kona, HI, 1988, vol.

3, pp. 255-265.

B.W. Boehm and R. Ross, “Theory-W software project manage-

ment: Principles and examples,” IEEE Trans. Software Eng., vol

15, no. 7, pp. 902-916, 1989.

A. Borgida and T. Imielinski, “Decision making in committees: A

framework for dealing with inconsistency and non-monotonicity,”

in Proc. Workshop Non-Monotonic Reasoning, New Paltz, NY,

1984, pp. 21-32.

A. Borgida, J. Mylopoulos, J. Schmidt, and 1. Wetzel, “Support

for data-intensive applications: Conceptual design and software

development,” in Proc. 2nd Workshop Database Programming

Languages, Gleneden Beach, OR, 1989, pp. 258-280.

[6] A.W. Brown, “Integrated project support environments,” Inform.
Management, vol. 15, no. 2, pp. 125-134, 1988.

[7]1 X.T. Bui and M. Jarke, “Communications design for Co-oP—A
group decision support system,” ACM Trans. Office Inform. Syst.,
vol. 4, no. 2, pp. 81-103, 1986.

[8] L. Chung, P. Katalagarianos, M. Marakakis, M. Mertikas, J.
Mylopoulos, and Y. Vassiliou, “From information systems require-
ments to designs: A mapping framework,” Inform. Syst., to be
published.

[9] J. Conklin and M. L. Begeman, “A hypertext tool for exploratory
policy discussion,” ACM Trans. Office Inform. Syst., vol. 6, no. 4,
pp. 303-331, 1988.

[10] B. Curtis, “Models of iteration in software development,” in Proc.
3rd Int. Software Process Workshop, Breckenridge, CO, 1986, pp.
53-56.

[11] F. De Cindio, G. De Michelis, C. Simone, R. Vassallo, and A.
Zanaboni, “CHAOS as a coordination technology,” in Proc. CSCW
86, Austin, TX, 1986, pp. 325-342.

[12] M. Dowson, “Integrated project support with IStar,” IEEE Soft-
ware, vol. 4, no. 4, pp. 6-15, 1987.

[13] S. Eherer, M. Jarke, M. Jeusfeld, A. Miethsam, and T. Rose,
ConceptBase V2.1 User Manual, Univ. Passau, Germany, Rep.
MIP-8936, 1989.

[14] P.K. Garg and W. Scacchi, “A software hypertext environment
for configured software descriptions,” in Proc. Int. Workshop Soft-
ware Version and Configuration Control, J. Winkler, Ed., Grassau,
Germany, 1988.

[15] —, “ISHYS: Designing an intelligent software hypertext sys-
tem,” IEEE Expert, vol. 4, no .3, 1989,

[16] L.-M. Gilham, R. Jiillig, P. Ladkin, and W. Polak, Knowledge-
Based Software Project Management. Palo Alto, CA: Kestrel
Institute, 1986.

[17] L Greif, Ed., Computer-Supported Cooperative Work: A Book of
Readings. San Mateo, CA: Morgan Kaufmann, 1988.

[18] U. Hahn, “Dialogstrukturen in Gruppendiskussionen—Ein Modell
fiir argumentative Verhandlungen mehrerer Agenten,” in Proc. 13th
German Workshop Artificial Intelligence, Eringerfeld, Germany,
1989, pp. 409-420.

[19] A.W. Holt and P.M. Cashman, “Designing systems to support
cooperative activity: An example from software maintenance man-
agement,” in Proc. COMPSAC 81, Los Alamitos, CA, 1981, pp.
184-191.

[20} M. Jarke, Ed., Development Assistance for Interactive Database
Applications. Heidelberg, Germany: Springer-Verlag, to be pub-
lished.

[21] M. Jarke, M. Jeusfeld, and T. Rose, “A software process data model
for knowledge engineering in information systems,” Inform. Syst.,
vol. 15, no. 1, pp. 85-116, 1990. .

[22] D.R. Jeffrey and V.R. Basili, “Validating the TAME resource data
model,” in Proc. 10th Int. Conf. Software Engineering, Singapore,
1988, pp. 187-201.

[23] K. Kandt, “A tool to support competitive argumentation,” J.
Management Inform. Syst., vol. 3, nio. 4, pp. 54-64, 1987.

[24] B. Karbe and N. Ramsberger, “Support of cooperative work by
electronic circulation folders,” in Proc. Conf. Office Information
Systems, Cambridge, MA, 1990.

[25] B.IL Kedzierski, “Knowledge-based project management and com-
munication support in a system development environment,” in

B

—_—

[4

ot

5

—

{26]
[27]
[53]

[29]

[30)
31]
[32]
[33]
[34]
[35)

[36]

[37]

(38]
[39]

[40

—

[41]

[42]
[43]
[44]

481

Proc. 4th Jerusalem Conf. Information Technology, Jerusalem, Is-
rael, 1984, pp. 444-451.

A. Leclerc, J. Paris, and D. Ribot, “PIMS: An integrated envi-
ronment for supporting project managers,” Technique et Science

Informatiques, vol. 9, no. 2, pp. 113-120, 1990.

L.-C. Liu and E. Horowitz, “A formal model for software project
management,” IEEE Trans. Software Eng., vol. 15, no. 10, pp.
12801293, 1989.

D. Lowe, “Cooperative structuring of information: The represen-
tation of reasoning and debate,” Int. J. Man-Machine Studies, vol.
23, pp. 97-111, 1985.

T.W. Malone, K.R. Grant, K.-Y. Lai, R. Rao, and D. Rosenblitt,
“Semistructured messages are surprisingly useful for computer-
supported coordination,” ACM Trans. Office Inform. Syst., vol. 5,
no. 2, pp. 115-131, 1987.

J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis, “Telos:
Representing knowledge about information systems,” ACM Trans.

Inform. Syst., vol. 8, no. 4, 1990.

C. Potts and G. Bruns, “Recording the reasons for design deci-

sions,” in Proc. 10th Int. Conf. Software Engineering, Singapore,
1988, pp. 418-427.

B. Ramesh, “Knowledge-based support for systems development
and maintenance,” Ph.D. dissertation, Stern School, New York

Univ., New York, NY, 1991,

T. Rodden, P. Sawyer, and I. Sommerville, “Cooperation and

communication within an active IPSE,” Knowledge-Based Syst.,

vol. 1, no. 4, pp. 240-248, 1988,

W.N. Robinson, “Negotiation behavior during requirements spec-

ification,” in Proc. 12th Int. Conf. Software Engineering, Nice,

France, 1990, pp. 268-276.

T. Rose and M. Jarke, “A decision-based configuration process

model,” in Proc. 12th Int. Conf. Software Engineering, Nice,

France, 1990, pp. 316-325.

T. Rose, M. Jarke, M. Gocek, C. Maltzahn, and H. W. Nissen, “A

decision-based configuration process environment,” Software Eng.

J. (Special Issue on Software Environments and Factories), to be

published.

A. Sathi, T.E. Morton, and S.F. Roth, “Callisto: An intelligent

project management system,” Al Mag., vol. 7, no. 5, pp. 34-52,
986

LR ‘Searle, Speech Acts. London: Cambridge University Press,
1969,

S. Sluizer and P. M. Cashman, “XCP: An experimental tool for sp-
porting office procedures,” in Proc. IEEE Conf. Office Automation,
New Orleans, LA, 1984, pp. 73-80.

R. Srikanth and M. Jarke, “The design of knowledge-based systems
for managing ill-structured software projects,” Decision Support
Syst., vol. 5, no. 4, pp. 425447, 1989.

M. Stefik, G. Foster, D.G. Bobrow, K. Kahn, S. Lanning, and L.
Suchman, “Beyond the chalkboard—Computer support for collab-
oration and problem solving in meetings,” Commun. ACM, vol.
30, no. 1, pp. 3247, 1987.

R.H. Thayer, Ed., Tutorial Software Engineering Project Manage-
ment. Washington, DC: IEEE Computer Society Press, 1988.

S. Toulmin, The Uses of Argument. London: Cambridge Univer-
sity Press, 1958.

T. Winograd, “A language/ action perspective on the design of
cooperative work,” Human~Comput. Interaction, vol. 3, pp. 3-30,
1988.

Udo Hahn received the Master’s degree in
linguistics from the University of Mainz in 1980
and the Doctoral degree in information science
from the University of Constance in 1987.

After three years at the University of Passau,
he is currently affiliated with the University of
Freiburg, Germany, as an Associate Professor of
Computational Linguistics. His interests include
natural language processing, distributed artificial
intelligence, object-oriented parallel program-
ming, and knowledge-based information sys-
tems.

——

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply.

482 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 5, MAY 1991

Matthias Jarke (SM’91) received Diplomas in
computer science and business administration
and the Doctorate from the University of
Hamburg, Germany.

He holds a chair for Information Sys-
tems at the Rheinisch-Westflische Technische
Hochschule (RWTH) in Aachen, Germany. Prior
to joining RWTH, he served on the faculties
of New York University and the University
of Passau, Germany. In his research, he has
investigated the integration of database, artificial
intelligence, decision support, and software enginecring methods. From
1986 to 1990 he was Technical Manager of ESPRIT project DAIDA
in which a knowledge-based information systems environment was
developed. He is currently involved in several other ESPRIT and national
projects which further investigate issues such as logical foundations,
hypermedia interfaces, and teamwork support within the approach.

Professor Jarke serves on the Editorial Board of IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, Decision Support Systems, and Information
Systems, among others. He is a member of the Association for Computing
Machinery and the IEEE Computer Society.

Thomas Rose received the Diploma in computer
science from the University of Dortmund,
Germany, in 1985.

He is currently a Research Associate of
Computer Science at the University of Toronto,
Toronto, ON, Canada. After receiving his
Diploma he continued his work on knowledge-
based management systems and logic program-
ming in ESPRIT project EPSILON. From 1936
to 1990 he worked at the University of Passau
for ESPRIT project DAIDA on a prototype
environment for information systems development and maintenance.
His interests include conceptual modeling, version and configuration
management, and project support. Since 1990 he has been involved in
the IRIS project at the University of Toronto, which is concerned with
information systems reusability.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 07:55:02 UTC from IEEE Xplore. Restrictions apply

