
Techniques to Tackle State Explosion
in Global Predicate Detection

Sridhar Alagar and Subbarayan Venkatesan, Member, IEEE Computer Society

AbstractÐGlobal predicate detection, which is an important problem in testing and debugging distributed programs, is very hard due

to the combinatorial explosion of the global state space. This paper presents several techniques to tackle the state explosion problem

in detecting whether an arbitrary predicate � is true at some consistent global state of a distributed system. We present space efficient

on-line algorithms for detecting �. We then improve the performance of our algorithms, both in space and time, by increasing the

granularity of the execution step from an event to a sequence of events in each process.

Index TermsÐDistributed systems, global states, global predicates, lattice, space complexity, global intervals.

æ

1 INTRODUCTION

SOME safety properties of programs can be expressed in
terms of predicates. So, a technique to detect whether a

predicate becomes true in a given execution is important for
testing and debugging distributed programs. In this paper,
we consider the problem of detecting whether in a given
distributed execution there exists a global state at which a
given global predicate � is true. This problem was posed as,
Possibly(�) by Cooper and Marzullo [3].

Cooper and Marzullo [3] present a centralized algorithm
for detecting Possibly(�) for an arbitrary predicate �. In this
paper, we refer to this algorithm as CM algorithm. The worst
case space and time complexities of the CM algorithm are
exponential in the number of processes. Several researchers
have presented polynomial time algorithms for detecting a
global predicate by placing restrictions on the type of
predicates [1], [5], [9], [10], [18]. The CM algorithm is

important because 1) the existing polynomial time algorithms
are for restricted forms of predicates and 2) the polynomial
time algorithms are different for different class of predicates.
In contrast, the CM algorithm may be used to detect an
arbitrary predicate. It appears that detecting an arbitrary
global predicate involves exhaustive search. Alternatively,
symbolic techniques may be used to detect global predicates
instead of examining all reachable states [16].

A natural question to ask now is whether we can
alleviate the problem of global state explosion while
detecting Possibly(�) for an arbitrary predicate. In this

paper, we present several methods to tackle state explosion
while detecting Possibly(�). The summary of our results is
as follows:

. First we present, in Section 3, a space efficient online
algorithm for Possibly(�) that uses O�mn� space,

where m is the total number of events in the
computation and n is the number of processes in
the system. The space complexity of the algorithm is
further reduced to O�m� in Section 5.

. In Section 4, we further improve the performance of
the algorithms by increasing the granularity of an
execution step from an event to a sequence of events
(interval). Instead of testing every global state, we
test every global interval. When the values of the
variables related to the global predicates are not
changed ªfrequently,º the number of global intervals
can be substantially less than the number of global
states, thereby reducing the space and time require-
ments of our algorithms.

Note that there are no restrictions on �, it can be arbitrary.

2 PRELIMINARIES

A distributed system is a collection of n processes labeled
P1; . . . ; Pn. Processes are connected by point-to-point logical
channels. Processes and channels are asynchronous and
both are fault-free. Processes communicate by message
passing only.

A process is a collection of events, which form a total
order. An event in a process is an action that changes the
state of the process. An event may be a send event resulting
in sending of a message to other processes, a receive event
resulting in receipt of a message from another process, or an
internal event in which no sending or receiving of a message
is involved. We use Lamport's partial order happened before
[8], denoted by ! , to express the causality between two
events. Let E be the set of all events in a particular
execution. Then, �E;!� is a partially ordered set. An
execution of a distributed program can be represented by a
space-time diagram. The space-time diagram for a sample
execution is shown in Fig. 1a.

A consistent cutC is a finite subset ofE such that e 2 C and
e0 ! e implies e0 2 C. The frontier of a cutC is he1; . . . ; eni such
that for all i, 1) ei is in Pi and 2) for any e0i in Pi, if ei ! e0i then
e0i 62 C. In Fig. 1a, the frontier of the cut consisting of e1 in P1

and events e1 and e2 in P2 is he1; e2i.

704 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 8, AUGUST 2001

. The authors are with the Department of Computer Science, EC31,
University of Texas at Dallas, Richardson, TX 75083-0688.
E-mail: venky@utdallas.edu.

Manuscript received 6 Mar. 1997; revised 5 May 1998; accepted 1 Aug. 2000.
Recommended for acceptance by K. Marzullo.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 104109.

0098-5589/01/$10.00 ß 2001 IEEE

A global state of a distributed system is a collection of
local states of the processes [2]. For every consistent cut
there is a corresponding consistent global state (the state of
the system after the execution of all the events in the cut)
and vice versa. A global state is consistent if its
corresponding cut is consistent. A global state S is
represented as hk1; . . . ; kni such that, for process Pi, its
state after executing ki events is included in S. We say that
a global state includes an event e if e belongs to the cut
corresponding to the global state.

From now on, the term global state refers to consistent
global state.

The set of all global states of an execution forms a
lattice [12]. Two global states of a lattice are connected by
an edge, if the system can proceed from one to the other
by executing one event. The initial global state of the
lattice is the global state h0; . . . ; 0i. A path starting from
the initial global state in the lattice is a computation of the
system. The lattice for the sample execution of Fig. 1a is
shown in Fig. 1b. For simplicity, a global state hk1; k2i is
labeled by k1k2 in the lattice.

In a lattice, the level of a global state hk1; . . . ; kni in a
lattice is the sum k1 � k2 � . . .� kn. For a global state
S � hk1; . . . ; kni,

value�S�is the ordered n-tuple �k1; k2; . . . ; kn�:
For a set of global states SS,

value�SS� � fvalue�S� j S 2 SSg:
For any two global states S � hk1; . . . ; kni and S0 � hk01;
. . . ; k0ni, value�S� > value�S0� if there exists a j � 1 such that
kj > k0j and ki � k0i for each i 2 f1; :::; jÿ 1g. The predeces-
sor function pred for a global state S is defined below.

pred�S� �fS0 j system may change from global state

S0 to S by executing one eventg:
The successor function succ for a global state S is defined
below.

succ�S� �fS00 j system may change from global state S to

S00 by executing one eventg:
For a global state S, pred�S� and succ�S� can be

computed by using vector clocks [4], [12]. Every process
maintains a vector clock consisting of n components. Let
Vi be the vector clock of process Pi. Process Pi increments
the ith component of its vector clock, Vi�i�, whenever Pi
executes an event. When a process sends a message, it
timestamps the message with the current value of its
vector clock. When Pi receives a message with timestamp
T , Vi�j� � max�Vi�j�; T �j�� for all j. The timestamp of an
event e is denoted by TS�e�. For an event e in Pi, TS�e�
is the value of the updated vector clock Vi when e is
executed. Events e in Pi and e0 in Pj are consistent if
TS�e��j� � TS�e0��j� and TS�e0��i� � TS�e��i�. When two
events are consistent, they can belong to the frontier of a
consistent cut and the states after the two events are
concurrent.

The algorithm for Possibly(�) is executed by a monitor
process. Each process, after executing an event, sends the
timestamp of the event and the values of the local
variables related to � to the monitor. To see if � holds,
the monitor visits all the global states (either sequentially
or in parallel) and evaluates � using the values of the
variables stored in the visited global states. From now on,
the phrases ªvisiting a global stateº and ªtesting a global
stateº have the same meaning as the phrase ªtesting if �
holds in that global state.º

3 POLY-SPACE ALGORITHM FOR Possibly(�)

To detect Possibly(�), CM algorithm constructs the lattice of
the execution, level by level. The number of global states in
the lattice can be exponential in the number of processes.
The CM algorithm for Possibly(�) traverses the lattice in a
breadth first fashion. It generates all the global states in one
level, tests them, and then proceeds to the next level. The
depth of the lattice is the total number of events in the
execution. Thus, the average breadth of the lattice can be

ALAGAR AND VENKATESAN: TECHNIQUES TO TACKLE STATE EXPLOSION IN GLOBAL PREDICATE DETECTION 705

Fig. 1. (a) A sample execution. (b) The lattice for the sample execution.

exponential in the number of processes. Hence, the space
required to store all global states that are in one level in the
worst case can be exponential in n.

Our algorithm traverses the lattice in a depth first
fashion. To reduce the space complexity, the algorithm
does not explicitly store the global states that are already
visited. Also, we ensure that each global state is visited
exactly once. We perform some computations to decide
whether a global state has already been visited or not.

Main Idea. Assume that we are in global state S in the
lattice. Let S0 be a successor of S in the lattice. Now, we
have to decide whether S0 is to be visited from S. Global
state S0 has at most n predecessors in the lattice. All
predecessors of S0 can be ordered according to their values.
The key rule for testing a global state exactly once is to visit
the global state only from its predecessor that has the
maximum value among all of its predecessors.

A formal description of the algorithm for the depth first
traversal of a lattice appears in Fig. 2.

Algorithm DFT is a recursive algorithm and is invoked
with a global state S. Invoking the algorithm with a
global state S means that global state S is visited. For
each successor S0 of S, the predecessor of S0 with
maximum value is computed at line six. To find the
predecessor of S0 with maximum value, all the prede-
cessors of S0 are computed by decrementing each
component of S0 and checking whether the resulting
state is a global state. Now, if S is the predecessor of S0

with the maximum value, algorithm DFT(S0) is recur-
sively invoked. Thus, the algorithm traverses the lattice in
a depth first fashion. Algorithm DFT is initially invoked
with the initial global state h0; . . . ; 0i.

Example. We illustrate the working of the algorithm with
a sample lattice shown in Fig. 1b. The numbers in bold
show the order in which the lattice is traversed. The
algorithm is invoked with the initial global state h0; 0i as its
parameter. Initially, the value of i is 1. At line 4, S0 � h1; 0i.
Since h1; 0i is a global state and max�value�pred�h1; 0i��� is
h0; 0i, DFT(h1; 0i) is recursively invoked (i.e., h1; 0i is visited
from h0; 0i).

Now, assume that algorithm DFT(h0; 1i) is (recursively)
invoked at some intermediate step. At line 4 with i � 1,
S0 � h1; 1i. The set pred�h1; 1i� is fh1; 0i; h0; 1ig, and
max�value�pred�h1; 1i��� is h1; 0i and not h0; 1i (line 6). So,

DFT(h1; 1i) is not invoked from h0; 1i. When line 4 is

executed for the second time, S0 becomes h0; 2i. But h0; 2i is

not a global state and since there are no more successors of

h0; 1i, the current invocation of the algorithm returns.

Theorem 1. Assume that a component of the vector timestamp

occupies unit space. Then the space complexity of Algorithm

DFT is O�m n� where m is the total number of events in all of

the processes and n is the number of processes.

Proof Observe that the depth of the recursion for the

algorithm is at most m, the depth of the lattice. The size

of data stored at each level of recursion is O�n�. (The

number of components of the timestamp of an event is

n). Thus, the space complexity is O�nm�. tu

A drawback of algorithm DFT is that in an ever-growing

lattice the algorithm will not backtrack to check some of the

global states at the top of the lattice. Hence, algorithm DFT

cannot be used to traverse the lattice of a nonterminating

computation.
One way to counter the above mentioned problem is to

divide the nonterminating execution into several partial

(finite) executions and traverse each partial execution one

after another. The lattice for a partial execution has a final

global state (or a cut), and a depth first approach can be

used to traverse the lattice. After traversing this lattice,

consider the execution till another cut that happens at a

later time, and traverse the corresponding lattice.
Example. Consider the example in Fig. 3, in which a

sample execution and its corresponding lattice are shown.

Consider the partial execution EC1
, which ends at cut C1.

The lattice corresponding to EC1
is LC1

. Lattice LC1
begins at

global state h0; 0i and ends at global state h2; 2i. A depth

first traversal on lattice LC1
will terminate. Next, the partial

execution EC2
which ends at cut C2 is considered. Let LC2

be

the lattice of EC2
. The lattice LC2

ends at global state h4; 3i.
Again a depth first traversal on LC2

will terminate. While

we traverse the global states in lattice LC2
, it is important

not to revisit global states in lattice LC1
. Hence, the depth

first traversal of lattice LC2
should not begin from the initial

state of lattice LC2
(which is the initial state of LC1

also), it

should begin from the end of LC1
. After traversing lattice

LC2
, we can proceed to the next partial execution.

706 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 8, AUGUST 2001

Fig. 2. Algorithm for traversing a lattice in a depth first fashion.

Let C1; C2; C3; . . . be the cuts of a nonterminating

execution E such that C1 � C2 � C3 Let ECi be the

partial execution of the program till cut Ci, and let LCi
denote the lattice corresponding to ECi . Assume that lattice

LCi has been traversed and lattice LCi�1
has to be traversed

without revisiting global states that are in LCi . Let PLi,

which is LCi�1
ÿ LCi , be the part of the lattice LCi�1

that does

not include any global state in LCi . To traverse the partial

lattice PLi, we need to find the starting points of PLi from

which the depth first traversal should begin. The initial

global states of a partial lattice are the global states in the

partial lattice that do not have a predecessor global state in

PLi. Clearly, the initial global states of a partial lattice are

the starting points for traversing the partial lattice. (Note

that there can be more than one initial state for a partial

lattice. In Fig. 3b, the initial states of partial lattice PL1 are

h3; 1i and h1; 3i.) A straightforward approach to find the

initial states of PLi is to remember the ªend statesº of lattice

LCi . For example, the end states of LC1
in Fig. 3b is fh2; 0i,

h2; 1i, h2; 2i, h1; 2ig. This approach may require exponential

space in the worst case. To find these initial states without

using excessive storage, let us characterize them further.
For an event e, mincut�e� is the consistent cut C such that

e 2 C and for any consistent cut C0 if e 2 C0, then C � C0.
For any event e, minstate�e� is the global state whose

corresponding cut is mincut�e�. Clearly, minstate�e� is the

ªearliest global stateº that includes event e. Next, we show

that any state that includes event e is reachable from

minstate�e� in the lattice. For example, consider event e3 in

process P1 in Fig. 3. The global state h3; 3i, which includes

event e3 in P1, is reachable from minstate�e3�which is h3; 1i.
Lemma 2. Let S be a global state that includes event e and

S 6� minstate�e�. Then S is reachable from minstate�e� in

the lattice.

Proof. Let C be the cut corresponding to the given global
state S which includes event e. Let the cut corresponding
to minstate�e� be mincut�e�. By the definition of
mincut�e� and because S 6� minstate�e�, we have
mincut�e� � C, which implies that S is reachable from
minstate�e�. tu

Let IS be an initial state of PLi. Global state IS does not
have an immediate predecessor in PLi but it has an
immediate predecessor in LCi . So, IS is reachable from a
global state in LCi by executing one event. Let ej in process
Pj be such an event. Event ej is the first event of process Pj
that is in execution ECi�1

but not in ECi . Now, we show that
IS � minstate�ej�.
Lemma 3. Let IS be an initial state of the partial lattice PLi. Let
IS include event ej, which is the first event of process Pj that
is in execution ECi�1

but not in ECi . Then, initial global state
IS of the partial lattice PLi is minstate�ej�.

Proof. Assume to the contrary that IS is not minstate�ej�.
Since global state IS includes event ej, by Lemma 2,
global state IS is reachable from minstate�ej�. Observe
that minstate�ej� is a state in partial lattice PLi. (ej is an
event in execution ECi�1

and not in execution ECi .
Therefore, minstate�ej� is in LCi�1

and not LCi .) Also,
all the states on a path from minstate�ej� to the global
state IS are in PLi since they also include event ej.
Therefore, global state IS has a predecessor state in PLi.
Hence, global state IS cannot be an initial state of PLi, a
contradiction. tu

Lemma 3 leads to an efficient way to compute initial
states of the partial lattice PLi. In each process, consider
the first event in ECi�1

that is not in ECi The union of the
minstate of these events are the initial states of the partial
lattice PLi. This scheme is efficient because it considers

ALAGAR AND VENKATESAN: TECHNIQUES TO TACKLE STATE EXPLOSION IN GLOBAL PREDICATE DETECTION 707

Fig. 3. (a) A sample execution. (b) The lattice for the sample execution.

only n events; the straightforward approach considers all
the end states of the previous partial lattice. A formal
algorithm to compute the initial states of a partial lattice
is described in Fig. 4. Variable MIN_STATES contains the
earliest global state (minstate) of the first event of each
process in execution ECi�1

ÿ ECi . All the states in
MIN_STATES need not necessarily be the initial states
of PLi as some of them may have a predecessor state
which belongs to MIN_STATES. Thus, all the states in
MIN_STATES that do not have a predecessor state in set
MIN_STATES are the initial states of partial lattice PLi.
The maximum cardinality of MIN_STATES is n.

Once we compute the initial states of partial lattice PLi,
we can traverse the entire partial lattice by invoking
algorithm PARTIAL_DFT with each initial global state of
PLi. Algorithm PARTIAL_DFT, which is somewhat similar
to algorithm DFT in Fig. 2, is described in Fig. 5. Initially,
algorithm PARTIAL_DFT tests whether � is true at S. If � is
true at S, the algorithm returns true; otherwise, the
algorithm proceeds further. Line 6 of the algorithm ensures
that no global state beyond lattice LCi�1

is visited. In line 9,
only states in pred�S0� that are not in LCi are considered in
computing the predecessor of S0 with maximum value. This
is because S0 will not be visited from a global state in LCi as

S0 is in lattice LCi�1
. In the example shown in Fig. 3, global

state h2; 3i will not be visited from h2; 2i since global state
h2; 2i is in lattice LC1

. Global state h2; 3i will be visited from
global state h1; 3i.

Once we know how to detect Possibly(�) in a partial
lattice, we can handle an ever growing lattice (nonterminat-
ing computation) by partitioning the lattice into several
partial lattices. A formal algorithm to detect Possibly(�) in a
nonterminating computation is described in Fig. 6. We
assume that cuts C1; C2; . . . that define the partial execu-
tions E1; E2; . . . of nonterminating execution E are known.
(They can also be provided to the monitor, or the monitor
can be made to pick these cuts arbitrarily. A simple way to
make the monitor choose is to make the monitor consider x
events per process per partial lattice.) The initial states of
partial lattice PLi are computed by invoking algorithm
INITIAL_STATES. Then for each initial global state, algo-
rithm PARTIAL_DFT is invoked to test all the global states
in PLi. There is a trade-off in choosing the size of the partial
lattice. If the partial lattice is large, then it will take a long
time for the algorithm to backtrack and test the earlier
global states. However, if the partial lattice is small, the
algorithms INITIAL_STATES and PARTIAL_DFT will be
invoked often.

708 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 8, AUGUST 2001

Fig. 4. Algorithm for computing initial states of a partial lattice.

Fig. 5. Algorithm for detecting Possibly(�) in PLi.

3.1 Correctness and Analysis

Theorem 4. Possibly(�) is true if and only if algorithm
POSSIBLY in Fig. 6 returns true.

Proof ()). It is sufficient to prove that all global states of
the lattice are tested by the algorithm. The proof is by
induction on the level of the lattice. The algorithm first
tests the initial global state of the computation. Assume
that all the global states at level k are tested, for some
k � 0. Consider a global state S0 at level k� 1. Let global
state S0 be in lattice LCi�1

but not in lattice LCi for some i.
Global state S0 must have predecessors at level k. But
these predecessors may or may not be in lattice LCi .
There are two cases to consider. First, assume that all the
predecessors of S0 are in lattice LCi . In this case, S0 will be
an initial state of PLi and it will be tested when
algorithm PARTIAL_DFT is invoked with S0. Now,
consider the case in which some of the predecessors of
global state S0 are in lattice LCi�1

. Let S be the global state
with maximum value among the predecessors of S0 that
are in lattice LCi�1

. Steps 8 through 11 of algorithm
PARTIAL_DFT (in Fig. 5) ensures that global state S0 will
be tested whenever S is tested. By induction hypothesis
global state S will be tested since it is at level k. Hence, if
Possibly(�) is true, algorithm POSSIBLY returns true.

(() Algorithm POSSIBLY returns true only if � is
true at a global state. Hence, Possibly(�) is true. tu

Theorem 5. The space complexity of algorithm POSSIBLY is
O�mn� where m is the total number of events in the given
execution and n is the number of processes assuming m > n.

Proof. The space used by algorithm INITIAL_STATES is
O�n2� (to store the variables MIN_STATES and
INIT_STATES). Algorithm POSSIBLY uses O�mn�
space (from Theorem 1). Thus, the space complexity
of algorithm POSSIBLY is O�mn� assuming m > n. tu

From Theorem 5, it is clear that a depth first approach
offers significant savings in storage. Using the breadth first
approach, Possibly(�) can be detected early if � is true at a
global state at the top of the lattice. In a depth first
approach, there will be a time delay in detecting � at some
of the global states that occur early in the execution.

However, our algorithm does not proceed purely in a depth
first manner. It tests all the global states in a partial lattice
before testing any of the global states in the subsequent
partial lattice. In that sense, our algorithm also proceeds in a
breadth first fashion. By controlling the depth of a partial
lattice, our algorithm can be made to test early (but not as
early as CM algorithm) the global states that occur early in
the execution.

4 INCREASING THE GRANULARITY OF THE

EXECUTION STEP

The performance of algorithms for detecting arbitrary
global predicates can be improved by considering a
sequence of consecutive events instead of a single event.
The value of local variables related to � might not change
during every event. A consecutive sequence of states in a
process in which the values of the local variables related to
� remain unchanged can be considered together in
detecting �. An interval is a maximal sequence of events
such that the values of the local variables related to � are
the same after the occurrence of every event in the
sequence. A process begins a new interval if an event changes
the value of any local variables related to �.

Process Pi maintains an interval clock Vi consisting of n
components. Process Pi increments the ith component of Vi
whenever it begins a new interval. When a process sends a
message, it timestamps the message with the current value
of its interval clock. When Pi receives a message with
timestamp T , Vi�j� is set to max�Vi�j�; T �j�� for all j. The
timestamp of interval Ii is denoted by TS�Ii�. For an
interval Ii in Pi, TS�Ii� is the value of the updated interval
clock Vi when the first event of the interval Ii occurred.

We say that two intervals Ii and Ij of processes i and j,
respectively, are consistent if TS�Ii��j� � TS�Ij��j� and
TS�Ij��i� � TS�Ii��i�. A global interval is a collection of
intervals with one interval from every process. A global
interval GI � hI1; . . . ; Ini is consistent if Ii and Ij are
consistent for all i, j. The set of all global intervals forms
a lattice. A node in a lattice is a global interval, and there is
an edge between global intervals GIi to GIj if the
computation can proceed from one global interval to

ALAGAR AND VENKATESAN: TECHNIQUES TO TACKLE STATE EXPLOSION IN GLOBAL PREDICATE DETECTION 709

Fig. 6. Algorithm for detecting Possibly(�) in nonterminating computation.

another by executing a sequence of events (interval) in a
process.

A sample execution based on interval clocks and its

corresponding lattice (based on global intervals) are shown

in Fig. 7. (The sample execution is the same as in Fig. 1

except for the addition of intervals and interval clocks.) In

process P1, events e1 and e2 belong to one interval and

event e3 belongs to another interval. In process P2, event e1

belongs to one interval and events e2 and e3 belong to the

next interval. The timestamp of each interval is shown at the

beginning of each interval. The timestamp of the messages

are shown along the messages. The lattice of the sample

execution is based on the global intervals generated by the

sample execution. By comparing this lattice with the lattice

shown in Fig. 1, it is clear that interval clocks can reduce the

size of the lattice.

Predicate � is true at a global interval if � evaluates to

true using the value of the variables related to � at the

global interval. (Note that a variable has a unique value for

a given global interval.) We claim that it is sufficient if we

test all the global intervals instead of all the global states to

detect Possibly(�) for an arbitrary predicate.
Let I:first and I:last denote the first event and the last

event of the interval I, respectively.

Theorem 6. There exists a global interval at which � is true if
and only if there exists a consistent cut (global state) at which
� is true.

Proof ()). Let GI � hI1; . . . ; Ini be a global interval at
which � is true. From the definition of consistent global
interval, it is clear that Ii and Ij are consistent, for any i
and j. Consider any event e in Pi such that Ii:last! e.
Then, e 6! �Ij:first�, since Ii and Ij are consistent.
Therefore, e 62 mincut�Ij:first�. Thus, for any e in Pi

Ii:last! e) e 62 mincut�Ij:first�: �1�
Let �C � Sn

i�1 mincut�Ii:first��. C is the supremum of n
consistent cuts, hence, C is also a consistent cut [12]. Let
the frontier of C be he1; . . . ; eni. To prove that � is true at
C, it is sufficient if we show that ei is in Ii for all i. Now

for any i, either ei � Ii:first, or Ii:first! ei. If

ei � Ii:first, then ei is in Ii. Now, consider the case in

which Ii:first! ei. Since ei 2 C, there exists a j such

that ei 2 mincut�Ij:first�. From (1) (by taking contra-

positive) it is clear that Ii:last 6! ei. This implies that

ei ! Ii:last, or ei � Ii:last. Therefore, ei is in Ii. Hence, �

is true at the consistent cut C.
(() Let he1; . . . ; eni be the frontier of the cut at which

� is true. Let ei be in an interval Ii for all i. Consider any
i, j. Since ei and ej are consistent, for any e in Pj such that
ej ! e, e 6! ei. Observe that, Ii:first � ei, or Ii:first! ei
and ej � Ij:first, or ej ! Ii:first. Therefore, e 6! ei
(where e is an event such that Ij:first! e and e is in
Pj). Therefore, e 6! Ii:first. Hence, TS�Ii��j� � TS�Ij��j�.
Similarly, it can be shown that TS�Ij��i� � TS�Ii��i�.
Thus, hI1; . . . ; Ini is a consistent global interval and � is
true at this global interval. tu

Theorem 6 implies that it is sufficient to consider global

intervals instead of global states to detect Possibly(�).

When a process begins a new interval, it sends the

timestamp of the interval and the value of the local variable

related to � to the monitor process. Algorithm POSSIBLY

described in Fig. 2 can use global intervals to detect

Possibly(�). The successor and predecessor functions can be

computed using the timestamps of the intervals. In a

process, the number of intervals can be considerably less

than the number of events if every event does not change

the value of the local variable. Therefore, the total number

of global intervals can be substantially less than the total

number of global states, improving the performance of our

algorithms to detect Possibly(�) both in space and time.

The linear space algorithm presented in Section 5 cannot

use global intervals without increasing the space complex-

ity for the following reasons. The number of intervals that

directly depends on an interval can be n in the worst case

and, hence, the size of dep�e� can be n. Also, to find whether

a global interval is consistent we need an interval clock

(whose size is n integers).

710 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 8, AUGUST 2001

Fig. 7. A sample execution based on interval clocks and its corresponding lattice.

Our concept of interval clock is an extension of weak

vector clock used by Marzullo and Neiger [11]. A process Pi
increments its ith component (terminates an interval) either

when it executes an event that potentially changes �, or

when it executes a receive event through which it perceives

that another process has potentially changed � [11]. In our

technique, a process terminates an interval only when it

executes an event that changes a value of a variable related

to �. Hence, the number of global intervals in our case can

be considerably less than the number of global states

obtained by using weak vector clocks.

To compare interval clocks and weak vector clocks,

consider the example shown in Fig. 8. The local variable of

P1 is a, and its value is changed by five events. The local

variable of P2 is b, and its value is changed once. (Values a

and b are shown only when there is a change.) If we use

weak vector clocks, the number of global states that must be

tested is 26; whereas the number of global intervals is 9 if

we use interval clocks. The difference can be substantial if

the number of processes is large.

5 A LINEAR SPACE ALGORITHM

Until now, all the algorithms used vector clocks. We have

used vector clocks primarily to check if a given global state

is consistent. A close observation of our algorithms reveals

that we are not considering global states randomly. At any

point of time, from a consistent state, we execute the next

event e in each process and check whether the resulting

collection of states is a (consistent) global state. The current

state and the new global state differ by one event, say, e.

The new state is consistent if it includes all the events on

which event e depends. So, if we can check whether the

direct dependents of e are included in the current global

state, then vector clocks are not needed. Using this idea, we

eliminate the need for vector clocks and reduce the space

complexity further. The linear space algorithm is useful in

systems where vector clocks are unavailable. For every

event e, the linear space algorithm needs those events that

immediately ªhappened beforeº e. Let the set of events that

immediately happened before e be denoted by dep�e�. If e is

an internal event or send event, dep�e� contains only the

event that occurred immediately before e in the same

process. If e is a receive event, dep�e� contains two

eventsÐthe corresponding send event and the event that

occurred immediately before e in the same process. During

the computation, we append, to every message, the event

number1 of the corresponding send event and the process in

which the send event occurred. Thus, dep�e� can be easily

computed on the fly.
Event e 2 C is said to be maximal if e 6! e0 for every event

e0 2 C (C � E). Let maximal�S� denote the set of maximal

events in the cut corresponding to the global state S. The set

maximal�S� can have at most one event per process. We

order the events in maximal�S� according to the id of the

process in which they occur. Let max�maximal�S�� denote

the event in maximal�S� that occurred in the process with

the largest id among all the events in maximal�S�.
Lemma 7. Let S be a global state in execution E. Global state S0

is a predecessor of S in the lattice of E if and only if S is
reachable from S0 by executing an event e 2 maximal�S�.

Proof ()). Let C0 and C be the cuts corresponding to S0 and

S, respectively. Since S0 is a predecessor of S, global state

S is reachable from S0 by executing an event e. Assume

that e 62 maximal�S�. This implies that there exists an

event e0 2 C such that e! e0. Since C0 � C and C ÿ C0 =

feg, e0 2 C0. Now, e0 2 C0 and e 62 C0 implies that C0 is not

a consistent cut and S0 is not a global state, a

contradiction. ((): Follows from the definition of

predecessor. tu
The above lemma and the ordering of events in

maximal�S� suggest a way to test the global state S exactly

once. If we are in S0, we will test S only if we execute event e

at S0 to reach S where e � max�maximal�S��. For this, the

knowledge of maximal�S� is needed. Assuming that we

know maximal�S0�, the following lemma shows a way to

compute maximal�S�.
Lemma 8. Let global state S be reachable from global state S0 in

the lattice of E by executing event e. Then maximal�S� =
maximal�S0� ÿ dep�e� � feg.

Proof. First, we show by contradiction that for any event e0,

e0 2 maximal�S�) e0 2 maximal�S0� ÿ dep�e� � feg:
Assume that e0 2 maximal�S� but

e0 62 maximal�S0� ÿ dep�e� � feg:
Clearly, e0 6� e. Also, e0 6! e since e0 (2 maximal�S�) is a
maximal event in C and e 2 C. Thus, e0 62 dep�e�. There-
fore, e0 62 maximal�S0�. As e0 is an not a maximal event in

ALAGAR AND VENKATESAN: TECHNIQUES TO TACKLE STATE EXPLOSION IN GLOBAL PREDICATE DETECTION 711

Fig. 8. An example to compare interval clocks and weak vector clocks.

1. The event number of an event in a process is i if it is the ith event in the
process.

C0 there exists an event e00 in C0 such that e0 ! e00. Since
C0 � C and C ÿ C0 = feg, e00 2 C also. Therefore, e0 is not
a maximal event in C. Hence, e0 62 maximal�S�, a
contradiction.

Next, we show that

e0 2 maximal�S0� ÿ dep�e� � feg) e0 2 maximal�S�:
If e0 � e, the claim follows from Lemma 7. Now, assume
e0 6� e. Clearly, e0 62 dep�e�. Otherwise,

e0 2 maximal�S0� ÿ dep�e� � feg
is not true, since dep�e� is subtracted from maximal�S0�.
So, e0 2 maximal�S0�. Now we claim that e0 6! e. If e0 ! e,
then either e0 immediately happened before e or e0 !
e00 ! e where e00 2 dep�e�. But e0 62 dep�e�. Therefore, e0 !
e00 ! ewhere e00 2 dep�e�. Now dep�e� � C0, since dep�e� �
C and C � C0 [feg. dep�e� � C0 and e0 2 maximal�S0�
implies that e0 6! e00. So, e0 6! e. Therefore, there does not
exist any event e00 such that e00 2 C0 [feg � C and e0 ! e00.
Hence, e0 2 maximal�S�. tu
We use the above lemma to reduce the space complexity of

the algorithm to test a partial lattice. The algorithm, which is
recursive, is similar to the algorithm PARTIAL_DFT in Fig. 5.
The only difference is in the way the key rule to visit a global
state is implemented. A formal presentation of the algorithm
is shown in Fig. 9.GS and INC are global variables.GS is the
current global state under consideration (to be tested) and is
initialized to the initial global state, and INC has the set of
maximal events ofGS, and is initially empty. To test the entire
partial lattice, algorithm LINEAR_DFT has to be invoked jIj
times at the top level of recursion where I is the set of initial
global states of the partial lattice. For each global state S 2 I,
setGS toS and invoke algorithm LINEAR_DFT. At line 5, we

execute the next event, say e, in process i by incrementing the
ith component ofGS. At line 6, the algorithm checks whether
GS is in the current partial lattice and it is consistent. To check
that the new value of GS is a global state, it is sufficient to
check whether dep�e� is included in GS since the previous
value of GS is a global state. In line 8, the maximal events of
the current global state (GS) are computed (using Lemma 8).
Variable temp is used to store the events removed from INC,
so that, INC can be restored to its old value, if necessary. If the
maximal event of GS with maximum value is e, algorithm
LINEAR_DFT is recursively invoked to continue the depth
first search. If LINEAR_DFT() does not return true in line 10,
INC andGS are restored to their old values and the algorithm
continues with the next successor of GS.

5.1 Correctness and Analysis

Theorem 9. Possibly(�) is true in a partial lattice PLi if and
only if algorithm LINEAR_DFT in Fig. 9 returns true when
invoked with each initial global state of PLi.

Proof ()). We prove the contrapositive, i.e., if the
algorithm returns false, then Possibly(�) is false. To
prove this, it is sufficient if we prove that all global states
of the lattice are tested by the algorithm. The proof is by
induction on the level of the lattice. The algorithm is
initially invoked with GS set to the each of the initial
global state. So, all global states at level 0 are tested.
Assume that all the global states at level k are tested, for
some k � 0. Consider a global state S at level k� 1. Let
e � max�maximal�S�� and e be an event in Pt. From
Lemma 7, there exists a predecessor, say S0, from which
S can be reached by executing e. The global state S0 is at
level k, and by induction hypothesis algorithm
LINEAR_DFT is invoked with GS set to S0. Steps 5

712 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 8, AUGUST 2001

Fig. 9. Linear Space Algorithm LINEAR_DFT.

through 9 of the algorithm ensures S will also be tested.
(At line 5, S will be considered when j � t. Since S is a
global state, the algorithm will proceed to line 7. From
Lemma 8, it follows that the set INC will be equal to

maximal�S� after line 8. Since

e � max�maximal�S�� � max�INC�;
algorithm will be recursively invoked with GS set to S,
which implies that S will be tested.) Hence, if Possibly(�)
is true, algorithm LINEAR_DFT returns true. (()
Algorithm LINEAR_DFT returns true only if � is true

at a global state. Hence, Possibly(�) is true. tu

Theorem 10. The space complexity of Algorithm LINEAR_DFT
in Fig. 9 is O�m� where m is the total number of events in the

given partial lattice assuming m > n.

Proof. Observe that the algorithm does not use vector
clocks to check if a global state is consistent. We store
only dep�e�, which may contain at most two events, thus
using a constant space for every event e. The local

variable temp inside the algorithm LINEAR_DFT can
contain at most two events. So every time the function is
invoked, only a constant amount of additional storage is
used. Since the depth of recursion is equal to the total
number of events m, the space complexity of the

algorithm is O�m�. tu

Algorithm LINEAR_DFT can be used to test a particular
partial lattice. To test the entire lattice of a nonterminating
computation, an algorithm similar to the algorithm

POSSIBLY in Fig. 6 can be used.

6 CONCLUSION

6.1 Related Work

Our work was inspired by the works of Spezialetti and
Kearns, and Cooper and Marzullo. Spezialetti [13] and
Spezialetti and Kearns [14] introduced the concept of event

occurrence, which was strengthened as Possibly(�) by
Cooper and Marzullo [3]. Several other researchersÐAlagar
and Venkatesan [1], Garg and Waldecker [5], Manabe and
Imase [10], and Venkatesan and Dathan [18]Ðpresent
efficient algorithms for detecting Possibly(�) by restricting

�. Stoller and Schneider [15] combine the approach of Garg
and Waldecker [5] with any approach that constructs the
lattice and present a new algorithm. Their algorithm has the
best features of both approaches and improves on each
approach. Algorithms for detecting a class of predicates,

called atomic sequence of predicates, are presented by
Hurfin et al. [6]. These sequences are defined by a pair of
sequences of local predicates: Expected predicates and
forbidden predicates [6].

Jegou et al. [7] also present a linear space algorithm for

online detection of global predicates. The algorithm uses
concepts from ordered sets and is based on a particular
spanning tree of the ideal lattice called an ideal tree. Our
linear space algorithm is simpler and easier to understand
than their algorithm.

6.2 Future Directions

In this paper, we have presented several techniques to
tackle global state explosion problem in detecting �. It will
be interesting to explore whether the techniques presented
in this paper can be used to detect Definitely(�).
(Definitely(�) is true if, for each computation in the given
lattice, � is true at a global state of that computation.) We
also like to expand � to include temporal properties and see
whether techniques presented in this paper can be applied
for detecting Possibly(�). Also, our works have not been
implemented. Results of an actual implementation may
provide more insight into the global state explosion
problem and help in further alleviating the effects of this
problem.

Stoller et. al. [17] use partial order methods to reduce the
time and space complexities of detecting Possibly(�). If two
events e1 and e2 are concurrent, then, in many cases, it is not
necessary to consider both orderings, 1. e1 followed by e2

and 2. e2 followed by e1. If our DFS algorithm can be
modified to incorporate persistent sets [17], then further
reduction in time (and space) is possible.

ACKNOWLEDGMENTS

The authors would like to thank the three anonymous
referees for detailed comments that greatly improved the
presentation of this paper. A preliminary version of this
paper appears in the IEEE Proceeding of the International

Conference on Parallel and Distributed Systems, Tiawan,
December, 1994. This research was supported in part by
the Texas Advanced Technology Program under grant
no. 9741-052.

REFERENCES

[1] S. Alagar and S. Venkatesan, ªHierarchy in Testing Distributed
Programs,º Lecture Notes in Computer Science, vol. 749, pp. 101-116,
1993.

[2] K. Chandy and L. Lamport, ªDistributed Snapshots: Determining
Global States of Distributed Systems,º ACM Trans. Computer
Systems, vol. 3, no. 1, pp. 63-75, 1985.

[3] R. Cooper and K. Marzullo, ªConsistent Detection of Global
Predicates,º Sigplan Notices, pp. 167-174, 1991.

[4] J. Fidge, ªTimestamps in Message Passing Systems that Preserve
the Partial Ordering,º Proc. 11th Australian Computer Science Conf.,
pp. 55-66, 1988.

[5] V. Garg and B. Waldecker, ªDetection of Strong Unstable
Predicates in Distributed Programs,º IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 12, pp. 1323-1333, 1996.

[6] M. Hurfin, N. Plouzeau, and M. Raynal, ªDetecting Atomic
Sequences of Predicates in Distributed Computations,º Proc.
ACM/ONR Workshop Parallel and Distributed Debugging, pp. 32-42,
1993.

[7] R. Jegou, R. Medina, and L. Nourine, ªLinear Space Algorithm for
On-Line Detection of Global Predicates,º Proc. Int'l Workshop
Structures in Concurrency Theory, 1995.

[8] L. Lamport, ªTime, Clocks, and the Ordering of Events in a
Distributed System,º Comm. ACM, vol. 21, no. 7, pp. 558-565, 1978.

[9] H.F. Li and B. Dash, ªDetection of Safety Violations in Distributed
Systems,º Proc. 1992 Int'l Conf. Parallel and Distributed Systems,
pp. 275-282, 1992.

[10] Y. Manabe and M. Imase, ªGlobal Conditions in Debugging
Distributed Programs,º J. Parallel and Distributed Computing,
pp. 62-69, 1992.

[11] K. Marzullo and G. Neiger, ªDetection of Global State
Predicates,Distributed Algorithms,º Proc. Third Int'l Workshop,
pp. 254-272, 1991.

ALAGAR AND VENKATESAN: TECHNIQUES TO TACKLE STATE EXPLOSION IN GLOBAL PREDICATE DETECTION 713

[12] F. Mattern, ªVirtual Time and Global States of Distributed
Systems,º Parallel and Distributed Algorithms: Proc. Int'l Work-
shop Parallel and Distributed Algorithms, M. Cosnard et. al., eds.,
pp. 215-226, 1989.

[13] M. Spezialetti, ªA Generalized Approach to Monitoring
Distributed Computations for Event Occurrences,º PhD thesis,
Univ. of Pittsburgh, Penn. 1989.

[14] M. Spezialetti and P. Kearns, ªSimultaneous Regions: A
Framework for the Consistent Monitoring of Distributed
Computationsº IEEE Proc. Ninth Int'l Conf. Distributed
Computing Systems, pp. 61-68, 1989.

[15] S.D. Stoller and F.B. Schneider, ªFaster Possibility Detection by
Combining Two Approaches,º Proc. Ninth Int'l Workshop Dis-
tributed Algorithms, pp. 318-332, 1995.

[16] S.D. Stoller and Y.A. Liu, ªEfficient Symbolic Detection of Global
Properties in Distributed Systems,º Proc. 10th Int'l Conf. Computer-
Aided Verification (CAV '98), 1998.

[17] S.D. Stoller, L. Unnikrishnan, and Y.L. Liu, ªEfficient Detection of
Global Properties in Distributed Systems Using Partial-Order
Methods,º Technical Report 523, Computer Science Dept., Indiana
Univ., Oct. 1999,

[18] S. Venkatesan and B. Dathan, ªTesting and Debugging Distrib-
uted Programs Distributivelyº IEEE Trans. Software Eng., vol. 21,
no. 2, pp. 163-177, Feb. 1995.

Sridhar Alagar received the BSc degree in
physics in 1987 from Madurai Kamaraj Univer-
sity and the BE degree in computer science in
1990 from the Indian Institute of Science. He
obtained the PhD degree in computer science in
1995 from the University of Texas at Dallas.
From May 1990 to July 1991, he worked as a
software engineer at PSI Data Systems Ltd.,
Bangalore. He worked at Alcatel Network
Systems from September 1994 to August

1998, as a senior research scientist. Currently, he is working for ONI
Systems. His research interests include survivable optical networks,
fault-tolerant distributed systems, mobile computing, and testing
distributed systems.

Subbarayan Venkatesan received the BTech
degree in civil engineering and the MTech
degree in computer science from the Indian
Institute of Technology, Madras in 1981 and
1983, respectively. He completed the PhD
degree in computer science from the University
of Pittsburgh in December 1988. In January
1989, he joined the University of Texas at Dallas
where he is currently an associate professor of
computer science. His research interests are in
distributed systems, mobile and wireless net-

works, and testing and debugging distributed programs. He is a member
of the IEEE Computer Society.

. For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

714 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 8, AUGUST 2001

