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Abstract—This paper describes a formal framework developed using the Prototype Verification System (PVS) to model and verify
distributed simulation kernels based on the Time Warp paradigm. The intent is to provide a common formal base from which domain
specific simulators can be modeled, verified, and developed. PVS constructs are developed to represent basic Time Warp constructs.
Correctness conditions for Time Warp simulation are identified describing causal ordering of event processing and correct rollback
processing. The PVS theorem prover and type-check condition system are then used to verify all correctness conditions. In addition,
the paper discusses the framework’s reusability and extensibility properties in support of specification and verification of Time Warp

extensions and optimizations.
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1 INTRODUCTION

THE time warp mechanism is an emerging technique for
synchronizing parallel discrete event simulators [12],
[15]. In a time warp synchronized simulator, the simulation
objects (executing in parallel) exchange time-stamped event
messages and execute optimistically—without strict enfor-
cement of the causal order between simulation events.
Thus, the protocol permits out-of-order event processing to
occur. Whenever such processing does occur, the simulator
is forced to rollback and reprocess the events in their correct
causal order.

Due to their parallel nature and weak synchronization
semantics, time warp simulators are difficult to design and
implement. Transient errors or race conditions are difficult
to replicate using traditional debugging techniques. Fre-
quently, monitoring code inserted to pinpoint errors causes
these errors to disappear. The shear number of simulation
events processed by a parallel simulator cause even low
probability errors to present themselves. The authors have
been working with time warp simulation for over five years
and this experience has repeatedly demonstrated these
problems and motivated a desire to pursue alternate design
approaches.
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A potential solution to these problems is provided by
formal specification and verification. The application of this
software engineering methodology helps eliminate ambi-
guities in the system description during the specification
process and supports mechanized verification of critical
properties. Although the manpower costs of applying
formal methods can be quite high, the anticipated resource
savings during debugging, the wide use of the modeled
simulation kernel, and the reusability of the framework
justify this expense.

The objective of this research effort is the development of
a formal, extensible framework that facilitates verification
and exploration of the time warp simulation protocol. This
encompasses three tasks: 1) formal specification of the basic
time warp protocol, 2) formal verification of the time warp
specification, and 3) generation of a reusable specification
framework for use in time warp simulator research and
development. The formal specification goal is achieved by
developing and specification of a basic time warp simula-
tion algorithm in the PVS specification language. The
verification goal is achieved by identifying correctness
conditions and using PVS to prove those correctness
conditions. Finally, the reusability goal is achieved by
judicious use of the PVS type-checking condition system to
automatically generate verification conditions and by
avoiding details of any specific simulation system in the
specification.

Similar endeavors with mathematical proofs of parallel
discrete event simulation (PDES) algorithms have been
carried out by other researchers. Mathematical studies have
been conducted by Ghosh [13] who presents a proof of
correctness for the YADDES asynchronous distributed
algorithm. Lin [19] presents an algorithm for determining
the global progress of a parallel simulation with a FIFO
communication property and the proof of correctness for
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this algorithm. In his PhD thesis, Bauer [3] presents a proof
of correctness for a novel distributed snapshot determina-
tion algorithm which he proposes. Kannikeswaran et al.
have also formally specified and verified another distrib-
uted snapshot determination algorithm [16]. These efforts
primarily focused on specific aspects of a parallel and
distributed simulation system. Leivent and Watro [18] were
the first to suggest a mathematical foundation for a time
warp-based system. They developed a simple formal model
of the the time warp approach to distributed computation
and proven several important properties of the model. In
addition, they used their model to devise some extensions
to the time warp algorithm that provides improved
termination behavior. Gopalakrishnan and Fujimoto [14]
use formal methods to prove correctness properties of a
hardware chip to support rollback processing for Time
Warp simulation. Their work does not develop a complete
specification of Time Warp, but focuses on verifying the
functional behaviors of a particular hardware design.

The formal specification framework presented here is
similar to the mathematical framework suggested by
Leivent and Watro [18] in that it also models a complete
time warp system. The distinction between Leivent and
Watro and this work is the use of a software specification
language rather than a purely mathematical model. Since
the PVS specification is closer to the actual implementa-
tion than a mathematical model, it assists the software
engineer in the process of mapping desired properties
onto implemented subsystems and reduces the semantic
gap between the specification and implementation.
Further, the PVS verification system enables the software
engineer to mechanically verify specific properties and, in
many cases, automatically reverify properties following
design modifications.

The paper continues with a brief introduction to PVS
[23], [25] in Section 2. (Readers familiar with PVS may skip
this section.) Section 3 then details the basic time warp
protocol as modeled here. The mapping of the individual
building blocks of the time warp protocol onto their formal
representation is presented in Section 4. The verification
process is then described in Section 5. The conclusions,
presented in Section 6, reevaluate the formal representation
of the time warp paradigm and the applicability of the
formal framework to other research and development
avenues.

2 FORMAL SPECIFICATION AND VERIFICATION
IN PVS

PVS provides a specification language, a powerful theorem
prover, supportive tools, and basic definitions in libraries
and the prelude file. PVS is specifically constructed to detect
errors in the early stages of system design. Specifically, PVS
has three features that allow it to detect such errors [7], [31]:

o The PVS specification language is based on a typed
higher-order logic. PVS provides a rich set of types
and the ability to define subtypes and dependent
types.

e PVS supports specification using a form of conserva-
tive extension that ensures consistency of specifica-
tions. Specifically, if a consistent theory is extended

in a conservative manner, the resulting theory is also
consistent.

e The PVS theorem prover provides a powerful,
extensible system for verifying obligations. The
strength of the theorem prover comes from the set
of inference and decision procedures native to the
proof environment. Proofs result in scripts that can
be edited, attached to additional formulas, and
rerun.

To aid in understanding subsequent specifications, the
structure of an example PVS specification is illustrated in
Table 1. A specification is formed by combining theories
describing various components and properties. Each theory
is partitioned into assumptions, definitions, axioms, and
theorems. Table 1 shows an example of the two basic
specification styles, property-based and conservative exten-
sion. Property-based specification represents the most
general style. A declaration of the signature is presented
in the definitions section followed by separate axioms
defining function and constraints. In Table 1, push, pop,
and top are operations defined using the property-based
style. Although property-based specification is maximally
flexible, it is difficult in most situations to assure that
resulting specification is consistent. In contrast, empty?
and nonempty? are defined using conservative extension
to avoid introducing inconsistencies.

2.1 Conservative Extension

Extension, the process of adding definitions to an existing
theory, is a common mechanism for writing specifications.
A set of base definitions including types and primitive
operations is extended to define new types and operations.
In a monotonic logic like PVS, every consequence of the
original theory is a consequence of the new theory. Because
none of the original definitions are removed, any conse-
quence of the original theory is still derivable. New
consequences result from the added definitions, thus
extending the theory to define a new system.

One theory is a conservative extension of another if the
extension adds axioms that only define properties over new
operations. Specifically, new axioms define properties of
new operations and do not define new properties of
existing operations. By adding properties for new opera-
tions only, potentially inconsistent properties of existing
operations cannot be added. Thus, if a consistent theory is
extended in a conservative manner, the resulting theory is
guaranteed to be consistent. Because it is difficult to check
ad hoc extensions for consistency, conservative extension is
used exclusively in the time warp specification.

PVS provides a definition style for operations that
guarantees a conservative extension [26]. This PVS short-
hand defines a signature for the new function and adds a
single axiom which equates the new signature with a PVS
expression. As an example, the specification of an incre-
ment function, empty? (s:S) :bool = (s=empty), fol-
lows the conservative extension style. The signature part
defines empty? as a predicate from stack to Boolean, while
the definition asserts that empty? (x) is equal to s=empty.
If all theory extensions introduce a new function and a
single defining axiom to an already consistent theory, then
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TABLE 1
Example Specification

Stack[S,T:TYPE+]: THEORY

BEGIN

%% Assumptions
ASSUMING
%% Properties assumed on parameters
ENDASSUMING

%% Declarations
empty: S
nonempty?(s:S) :bool = (s/=empty)
empty7?(s:S) :bool = (s=empty)
push: [T,S -> (nonempty?)]
pop: [(nonempty?) -> S]
top: [(nonempty?) -> TI]

%% Axioms

%% Theorems
empty?_empty: THEOREM empty?(empty)

END Stack

push_nonempty: AXIOM (forall (s:(nonempty?)): push(top(s),pop(s))=s)
push_empty: AXIOM (forall (s:S,t:T): push(t,s)/=empty)

the resulting specifications are consistent. This eliminates
the difficult task of determining consistency of theories.

Additionally, PVS uses, conservative extension function
definition to define rewrite rules that enable powerful
automated verification. Thus, using conservative extension
not only guarantees consistency, but simplifies the proof
process by supporting automated rewriting.

2.2 Predicate Subtypes and TTCs

Of particular importance to this work is the use of PVS
predicate subtypes and automatic generation of type-check
conditions (TCCs). Predicate subtypes provide a mechan-
ism for defining new types using comprehension. Given
any predicate, s?, with domain, D, the predicate subtype
(s?) is defined as {d: D | s?(d)}. The function signature
f(d:(s?)):(s?) defines a function whose input and
output must satisfy the s? predicate. Using predicate
subtypes in this way defines s? as an invariant property
over f.

Using predicate subtypes, it is possible to use the PVS
type checking system to automatically generate and verify
obligations. Two type check conditions must be satisfied by
any application of £ (d): 1) the operation must produce a
value satisfying s? and 2) each instantiation of the
parameter d must satisfy s?. The former obligation is
checked once for the definition while the latter must be
checked each time the operation is used. When used in this
manner, s? becomes an invariant over f. Using this
specification approach is advantageous because PVS will
attempt to prove the invariant property automatically as a
part of the normal type checking process. If the type
checking system cannot determine whether an operation is
type correct, it automatically generates a type check

condition (TCC) that must be proven interactively by the
user.

As an illustrative example, consider the expression if x
then f (y) else f(z) endif;. One type check condition is
generated for each applicationof £: 1) x implies s? (y) and
2) forall not (x) implies s? (z). Each TCC checks that
the actual parameter of f is an element of the predicate
subtype defining the domain of £. Note that each TCC places
the test in the context of the respective application of f.
Specifically, £ (y) occurs when x is true, while £ (z) occurs
when x is false. For more details on the PVS type checking
system, please refer to the PVS documentation [24].

2.3 Notation and Terminology

References to axioms, type definitions, and theorems in the
description are printed using the Typewriter font style.
Identifiers printed with the Sans Serif font style represent
theories comprising the specification. All operators and
axioms defined in this specification are introduced using
conservative extension, thus readers will not see the
traditional AXIOM identifier in this specification. Conserva-
tive extension definitions can be identified by their general
structure equating a signature with an expression. The term
CONJECTURE is used exclusively in this specification to
identify theorems. Note that all such theorems are used to
discharge TCCs generated during verification. Predicates
defining properties of objects are given names ending in
“?” as is traditional in PVS.

Other PVS specific notations used extensively in the time
warp specification include LAMBDA, every, and WITH. The
LAMBDA notation allows the definition of unnamed func-
tions as is traditional in many languages. The every
operation provides a shorthand notation for universal
quantification over predicate subtypes. Specifically,
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Fig. 1. Simulation trace in a virtual coordinate system.

every (p) (a) : bool = FORALL (x: (a)) : p(x), where a
is a predicate used to define a subtype of its domain and p
is a predicate used to test each element of the subtype.
Finally, WITH is an override operation used to modify
records and tuples. The notation R WITH f:=v produces a
copy of the record R with value v in field £.

3 THE TiIME WARP PROTOCOL

This section serves as an introduction to the problem domain
of parallel discrete-event simulation (PDES), specifically the
parallel optimistic time warp paradigm. Common terminol-
ogy, as used by the PDES community, and principles of the
algorithm are introduced to assist in the comprehension of the
formal specification and verification approach. The clarity
and structure of the description is an actual result of the
formal specification presented in Section 4.

Discrete-event simulation (DES) is a method of simulation
where changes to a system are modeled as an ordered
sequence of actions. In DES, the model to be simulated is
decomposed into a set of physical processes.' Physical
processes interact with each other by exchanging messages
and the arrival of messages determines the order of actions to
be performed. Parallel discrete event simulation (PDES) is
concerned with maintaining the same ordered execution in a
distributed environment, i.e., the sequence of correct execu-
tion steps taken by a parallel simulation must be the same as
that of a sequential simulation. One mechanism for achieving
the required ordered execution (or synchronization) on a
distributed platform is time warp [15].

Execution order is defined using the notion of a
simulation clock that advances in simulation time. Simula-
tion time is a one dimensional, temporal coordinate system
used to measure computational progress and to define
synchronization. Simulation time can have infinitely many
positive values. Depending on the model to be simulated,
simulation time may be defined using several attributes;
simulation time can be discrete or continuous, may or may
not be totally ordered, and may or may not be related to real
time. Any one or a combination of these time attributes can

1. By “physical” processes, we mean the processes that model the
components of the real world entity (where physical implies the real world).

be abstractly defined as virtual time. We define virtual time
as a unit of measure as opposed to Jefferson’s definition,
where he introduces Virtual Time as a paradigm [15].

In PDES, the model to be simulated is usually composed
of several physical processes (PP) that are executing
concurrently on a uni/multiprocessor system. Processes
are uniquely identified by their process identifier. The set of
all process identifiers constitute a one dimensional spatial
coordinate called the virtual space of the system. Given a
virtual time (¢) and a virtual space coordinate (pp), a virtual
coordinate system (¢,pp) can now be defined. Any specific
action or a set of actions can be identified to have occurred
at a specific virtual coordinate during the course of the
simulation. The sequence of actions that constitute a
simulation can be mapped to specific points in the virtual
coordinate system. If the model to be simulated is
deterministic in nature, then repeated simulations will
always map to the same set of points in the virtual
coordinate system. Fig. 1 illustrates a trace of the simulation
in the virtual coordinate system. Actions are depicted as
vertices in the graph. The directed edges in the graph
represent the temporal relationship between the actions.

Temporal relationships (edges) between actions are
defined by messages in a simulation model. Two virtual
coordinates are associated with every message. The first
virtual coordinate is used to identify the sender and the
virtual send time of the message. The second virtual
coordinate identifies the receiver and the virtual receive
time of the message. Two fundamental rules, known as
Lamport’s Clock Conditions [17], are enforced on any two
adjacent virtual coordinates:

e Rule 1. The virtual send time of each message must
be less than its virtual receive time.

e Rule 2. The virtual time of each event at a process
must be less than the virtual time of the next event at
that process.

A single vertex in the graph represents a set of actions on a
specific physical process at a specific instance in virtual
time. This set of actions determines the behavior of a
physical process. In general, the set of actions that
determines the process’s behavior is represented as an
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Fig. 2. Structure of a simulation object.

ordinary deterministic computation. It involves zero or
more of the following operations:

l. receive any number of messages stamped with
receiver pp and virtual receive time ¢, and read their
contents,

2. read its current virtual time instance,

update its state variables, and

4. send any number of messages, all of which will
automatically be stamped with sender pp and virtual
send time ¢.

hd

In addition, simulation paradigms often include additional
information along with the message. The combination of
this additional information and the message is often
referred to as an event. This definition of event differs from
Jefferson’s original definition [15]. In the case of time warp,
an event contains a sign field in addition to the virtual time
coordinates and the message body (message content).

The physical process description is mapped into the
simulation paradigm with the help of additional support
structures. The physical process and the additional struc-
tures are collectively known as a simulation object or as a
logical process. Fig. 2 illustrates the simulation object and
identifies the additional structures (three queues) required
by the time warp paradigm. Incoming events are stored in
the input queue and outgoing events are stored in the output
queue. The state of the physical process, along with the
current virtual time instance of the process, are stored in the
state queue. This instance of virtual time associated with the
process’s state is called the local virtual time (LVT) of the
simulation object.

The time warp protocol is required to correctly handle
event arrival, event processing, state saving, and event
departure, thereby enforcing the correct sequence of
actions. As each simulation object in the set simulates
asynchronously, it is possible for the object to receive an
event from the past (some simulation objects will be
processing faster than others and, hence, will have LVTs
greater than others) violating the causality constraints of the
events in the simulation. Such events are called straggler
events. On receipt of a straggler event, the simulation object
must rollback to an earlier state, undoing some work that
has been done. Rollback involves two steps: 1) restoring the
state to a time preceding the timestamp of the straggler and
2) canceling any output events that were erroneously sent
(by sending antimessages, copies of the original erroneously
sent event but with their sign inverted). Erroneous events
are removed from the input queues of recipient simulation

JANUARY 2002

objects by comparing them with the incoming antimessages.
This process is called event annihilation. After rollback, the
events are reexecuted in the proper causal order.

For rollback recovery to take place correctly, state needs
to be restored. In the original time warp algorithm, state is
saved after every event execution. While this entails a
significant overhead in terms of memory consumed, it is
necessary to protect against erroneous optimistic computa-
tion. Each simulation object must periodically save its local
state such that, in the event of a causality error, a rollback to
a correct state is possible. Time warp objects with large
states require considerable memory space as well as CPU
cycles for state saving. In general, states are saved after
every event execution. However, the check-pointing cost
can be reduced by saving the state infrequently. In the
simple case, a time warp simulator checkpoints every x
events; this scheme is called periodic or infrequent state
saving [8], [29].

Having described the steps involved in the execution of
an asynchronous set of distributed processes, it is estab-
lished that there is no global control among these processes.
However, to determine simulation progress or detect
termination of the simulation, a global consensus must be
achieved. For this reason, Global Virtual time (GVT) is
defined. GVT is a property of an instantaneous global
snapshot of the system at real time r and is defined as
follows:

Definition 1. GVT at real time r is the minimum of 1) all virtual
times in all virtual clocks at time r and 2) of the virtual send
times of all messages that have been sent but have not yet been
processed at time r.

Given this definition of GVT, it can be inferred that GVT
must never decrease. GVT serves as a floor for the virtual
times that any process can ever rollback to. In fact, if every
event completes normally, if messages are delivered
reliably, if the scheduler does not indefinitely postpone
the execution of the farthest-behind processes, and if there
is sufficient memory, then GVT must eventually increase [16].
Instantaneous values of GVT are impossible to compute in a
distributed system. Hence, several methods to accurately
estimate GVT have been proposed in the literature [4], [5],
[20], [22]. Estimates of GVT are used for termination
detection, memory management by reclaiming (or fossil
collecting) old states and events, error handling, and
committing input/output operations.

4 FORMAL SPECIFICATION OF THE TIME-WARP
PRroTOCOL

Having introduced the time warp paradigm, this section
details the mapping of the basic time warp algorithm to a
formal specification in the Prototype Verification System
(PVS) [23], [25]. The specification of time warp is hierarchi-
cally organized. Fig. 3 illustrates the organization of the
theories provided in the specification. An edge points to the
theory that includes the originating theory. Fig. 3 presents
an additional theory called Sequential (in a dashed box).
This theory is independent from the top-level specification
of the time warp simulator and represents the specification
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Fig. 3. Hierarchy of theories.

of a sequential simulation kernel. It is only included here to
show how the provided axioms are reused to specify a
sequential simulation paradigm.

Conformance to software engineering aspects, such as
reusability and extensionality, are the main issues respon-
sible for the current specification structure. Lists and List
Compare provide the major time warp list functionalities
and are parameterized theories. Theory Lists is parameter-
ized exclusively on the list element type while List Compare
requires a mapping function from a list element to a real
value used in the ordering relation. The parameterized
theories enable the specification to be used as state and
event lists in the time warp structure (Fig. 2) and as message
buffers in the simple communication layer. Re-usability of
the specification is also the reason for the existence of the
Basic Simulation theory. This theory provides axioms
common to the specification of time warp and the
sequential simulation protocol.

We abstract the discrete-event simulation paradigm
from the application by using parameterized theories and
by using the importing statement of PVS. Time warp
structures that require information from the application
are specified in the Basic Structures theory. This para-
meterized theory is used by the Application theory which
provides Time, StateVariables, MsgBody, and Pro-
cessId. Importing the Application theory will therefore
provide the complete specification of events and state to

the time warp/sequential simulation environment. Thus,
the use of hierarchical specification results in an exact
interface specification between the simulation model and
the simulation kernel. In fact, a similar approach is used
in the design of an object-oriented time warp simulation
kernel [28].

In addition, Fig. 3 presents the number of axioms and
theorems defined in each theory as well as their totals.
Every declaration (type, operation and axiom) is counted as
an axiom. This includes operations defined using conserva-
tive extension. The number of axioms are illustrated in the
figure to give the reader an idea of the size of the
specification and the expressive power of the axioms. A
major goal during specification is to keep the number of
axioms low and as flexible as possible. This enhances their
reusability and helps to keep the number of supporting
theorems low.

4.1 Axioms and Type Definitions
The first theory to be introduced is the Application theory
that contains application related type information. As no
specific discrete event model is intended as an application,
generic types are introduced to represent various time warp
quantities (see Table 2).

The Application theory maps the type Time (virtual time
coordinate) onto real numbers. Using real numbers as the
virtual time scale ensures that the specification is valid for a

TABLE 2
Application Theory—Some Basic Types

Time : TYPE+ = real

ProcessId : TYPE+ = nat
StateVariables : TYPE+
stateVariables : StateVariables

MsgBody : TYPE+
msgBody : MsgBody
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TABLE 3
Basic Structures Theory

State : TYPE+
= [# 1VT : Time,
stateVars StateVariables #]
anState: State
Sign : TYPE = { POSITIVE, NEGATIVE }
Event : TYPE+
= [# recvTime : Time,
sendTime : Time,
destination : ProcessId,
source : ProcessId,
sign : Sign,
body : MsgBody #]
anEvent: Event

wide variety of actual real-world models that typically
require different virtual times [1], [2], [10], [30]. A simpler
mapping was chosen for the virtual space coordinate,
ProcessId. As process identification requires only a large
enough set of discrete and unique values, ProcessId is
mapped onto the set of natural numbers. New types are
introduced for physical process state (Statevariables)
and message content (MsgBody). Both of these types are
nonempty as it can be safely stated that any discrete event
model has at least one state and some messages.

Given the definition of virtual coordinates, process state,
and message content, the time warp types State and Event
are defined in the Basic Structures theory (see Table 3). The
physical process state StatevVariables, along with the
process’ local virtual time constitute the simulation object’s
state (State). The definition of an event requires making the
distinction between actual messages and antimessages. The
enumeration type Sign introduces exactly two possible
“signs” for this purpose. A positive sign represents an event
that has been optimistically sent while a negative sign
represents an antimessage sent to destroy its positive
counterpart during rollback. In addition to sign (sign) and
message content (body), an event contains the virtual time
coordinates of the sender (source, sendTime) and the
receiver (destination, recvTime).

As stated earlier, adherence to Lamport’s clock conditions
is required for a correct discrete event simulation. Lamport’s
first rule is represented in Table 4 as ValidEvent?. This
predicate is true when the recvTime of an event is greater
than its sendTime. The physical process behavior is defined
over a nonempty list of valid events and a state variable. A
nonempty list is required because event driven execution
mandates thatatleast one eventis present for the process tobe
scheduled for execution. This event also enables the process
to access its new current virtual time (LVT) and process id.
There can be any number of events for a process at a specific
virtual time. Process behavior is modeled by two separate
types: 1) Process represents state changes and 2) Proces-
sOutput specifies output events generated. Any physical
process model can be represented by these two types.

Lamport’s second clock condition and the virtual coordinates
associated with the generated output events is incorporated
in the predicate ValidProcess?. Generated output events
are guaranteed to possess send coordinates equal to the
process’s current virtual coordinates (process id, LVT). In
addition, as processes can send events to themselves
(intraprocess communication), Lamport’s second clock con-
dition mandates that the recvTime of generated output
events be greater than the process’s current LVT. The process
behavior and subtype definitions are also defined in the
Application theory (Table 4).

Having defined the three major components of the time
warp paradigm (process, process state, and event), the
Simulation Object theory (Table 5) provides the specification
of abasic simulation object (depicted in Fig. 2). A snapshotofa
simulation object is represented by the type SimObjState.
Atany given virtual time, a simulation object can be identified
by the state of the input queue (inputList), the output
queue (outputList), the state queue (stateList), the
process behavior (process, processOutput), the current
state (currentProcessState), and the process id (id).
Since the simulation object is envisioned to operate in a
distributed environment, a local communication buffer
(ether) was introduced into the simulation object’s
specification.

Two basic properties are known about the state history in
the SimObjState and the current-Process-State: 1)
at any virtual time, a simulation object has stored at least
one state in its stateList and 2) as physical processes
advance in virtual time, newly generated states (i.e., the
currentProcessState) must contain a virtual time
greater than or equal to the LVT of the latest state in the
history. The first property is an axiom as at least one
“initial” state is present in the stateList at the start of the
simulation. The second property must hold as state saving
occurs only after the execution of a process. The two
properties are incorporated into the type predicate
AtLeastAState? that has to be satisfied by the time
warp algorithm.
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TABLE 4
Application Theory

Process : TYPE+ =

-> StateVariables ]

ProcessOutput : TYPE+ =

ValidProcess?(process:ProcessOutput)

(FORALL (state:StateVariables,
inputs: (cons?[(ValidEvent?)]),
outputEvent: (ValidEvent?) ):

ValidEvent?(event:Event): bool = recvTime(event) > sendTime(event)

[ (cons?[(ValidEvent?)]), StateVariables

[ (cons?[(ValidEvent?)]), StateVariables
-> list[(ValidEvent?)] ]

: boolean =

member (outputEvent, process{(inputs, state))
=> ((FORALL (inputEvent:(ValidEvent?)):
member (inputEvent, inputs)
=> recvTime (outputEvent) > recvTime(inputEvent)

)
AND sendTime (outputEvent) = recvTime(car (inputs))
AND source(outputEvent) = destination(car(inputs))
)
)
TABLE 5
Simulation Object Theory
InputList : TYPE = list[(ValidEvent?)]
OutputList : TYPE = list[(ValidEvent?)]
StateList : TYPE = list[Statel
SimObjState : TYPE
= [# dinputList Inputlist,
outputlist Outputlist,
statelList : Statelist,
process : Process,
currentProcessState : State,
processOutput: (ValidProcess?),
id : ProcessId,
ether : list[(ValidEvent?)]
#]
AtLeastAState?(state:SimObjState) : bool =
cons?[State] (statelist (state))
AND
1VT(currentProcessState(state)) >= 1VT(maximum(stateList(state)))

The functionality of the time warp queues is specified by
the List Compare and Lists theories. Section 3 discusses the
importance of the time warp queue structures. However,
the term queue is a misnomer as these queues do not exhibit
traditional queue properties (such as FIFO or LIFO). As a
result, this specification uses the more generic term, “list”
instead of queue. The time warp list specification requires a
set of definitions extending the list definition provided by
PVS. These definitions are provided in the List Compare

and the Lists theories. Table 6 only illustrates the interface
definitions of these additional definitions as their complete
definition is lengthy and is not required for this discussion.

Before the individual definitions can be explained, it is
important to note that no restrictions are placed on the
elements of a list. In particular, elements can occur more
than once in a list. This is an important property of a time
warp list. Definitions such as number, sublist, and
permutation are required because of this repeated
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TABLE 6
List Compare Theory and Lists Theory

number(element: T, list:1ist[T])
sublist(listl : 1list[T], list2: 1list[T])
permutation(listl : list[T], 1list2 :
removeEqual (element: T, list:1list[T])
remove(list: list[T], list2: 1list[T])

getNext(element:T, list:1ist[T])
getPrevious(element:T, list:list[T])
smallest(list: (cons?[T])) : RECURSIVE T
maximum(list: (cons?[T])) : RECURSIVE T
expungeAfter(element:T, list:1ist[T])

expungeBefore(element:T, list:1list[T])
getAllAt(element:T, list:1list[T])
putAll(listl:1list[T], list2:1list[T])

: RECURSIVE nat

: bool

list[T])
: RECURSIVE 1list[T]
: RECURSIVE list[T]

: RECURSIVE T
: RECURSIVE T

: RECURSIVE list[T]
: RECURSIVE list[T]

: RECURSIVE list[T]

: list[T]

: bool

TABLE 7
Simulation Object Theory

signInsertProp : CONJECTURE

(
FORALL (event: (ValidEvent?),
list: list[(ValidEvent?)]):

OR
signInsert(event, list) =
OR

signInsert(event, list) =

signInsert(eventl: (ValidEvent?), list:1list[(ValidEvent?)])
signInsertList(newEvents: list[(ValidEvent?)], list: list[(ValidEvent?)])

signInsert(event, list) = putAll(list,cons(event,null))
removeEqual( event WITH [ sign :

removeEqual( event WITH [ sign :

NEGATIVE 1, 1list)

POSITIVE 1, 1list)

occurrence property. The predicate member (defined in the
PVS prelude) is true or false depending on the availability
of an element in a list. The number function has a similar
interface to member. But, it’s range is the set of natural
numbers which represents the number of occurrences of a
given element. With the help of number, it is now possible
to define a sublist and the permutation relation. The
sublist predicate is satisfied if every member of the first
list is present in the second list at least once. If the sublist
operation is reflexive over the given list, the predicate
permutation is true and the lists are permutations of each
other. Two operations define the removal of elements.
removeEqual specifies the action of removing a single
element from a list, whereas remove defines the action of
removing a list from another list. In both cases, if an
element is not found in the list, the original list is left
unchanged. The last of the general list properties used in
the time warp specification is the merger of two lists. This
functionality is specified by the putAll operation defini-
tion. This definition renames the append operation
provided by the PVS prelude.

The seven remaining list operations require the ordering
relation defined on list elements. smallest and maximum

are simple observers for the smallest and the largest
element of a nonempty list respectively. A similar function-
ality is provided by getNext and getPrevious. Given an
element, these operations define order relationships be-
tween the given element and a specific element in the list
using their respective time stamps. If an element larger than
the given element is in the list, the getNext operation
guarantees that the next larger element in the list will be
returned. If no larger element exists, the given element is
returned. The operations expungeBefore and expunge-
After are provided to remove elements prior to a
particular time (for fossil collection) or everything later
(for rollback). All elements indistinguishable by the order-
ing relation (e.g., events with the same receive time) in a list
can be accessed using the getA11At operator.

The input list of a physical process has an additional
property, namely, that of sign dependent insertion. As this
property is only true for the input list of events, the
specification is part of the Simulation Object theory (see
Table 7). signInsert is defined on a single element and
then for a list of events to be inserted (signInsertList).
signInsert does not always increase the number of
elements in the list. When a positive message meets a
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TABLE 8
Simulation Object Theory

currentState with [

cons( anState with [

stateVars

]’
statelList (currentState)
),
currentProcessState :=
anState with [

stateVars

1,

ether

execute(currentState: (StateAndNewInput?)): (AtLeastAState?) =

stateVars(currentProcessState(currentState))

outputList := putAll( outputList(currentState),
processOutput (currentState) (
currentInputEvents (currentState),
)
)’
statelList :=

1VT := newlVT(currentState),

:= process (currentState) (
currentInputEvents (currentState),
stateVars(currentProcessState(currentState))

1VT := newlVT(currentState),

:= process(currentState) (
currentInputEvents (currentState),
stateVars(currentProcessState(currentState))

:= putAll( ether(currentState),
processOutput (currentState) (
currentInputEvents (currentState),
stateVars(currentProcessState(currentState))

negative message, they cancel each other (i.e., annihilate
each other) and, hence, it is possible that the number of
elements in the list may actually decrease. This property is
stated by the signInsertProp conjecture. The conjecture
does not state that individual cases are mutually exclusive
nor that these are the only possibilities.

The axioms and type definitions described thus far specify
all the basic building blocks and the structure of a simulation
object. The following discussion deals with the functionality
of a simulation object. execute and insertEventsCheck
are two operations provided by the Simulation Object theory
(see Table 8) that define the actual behavior of a simulation
object.

Event driven execution, represented by the execute
operation, requires pending events. This requirement, is
represented in the parameter definition of currentstate
using the type predicate StateAndNewInput?. In addi-
tion, StateAndNewInput? requires that the AtLeast-
AState? predicate be satisfied. The signature of execute
requires that, at the end of the simulation execution cycle,

the AtLeastAState? predicate stays satisfied. The
execute operation specifies how the simulation object’s
state changes. Only the fields that change during the
execution cycle are stated inside the definition’s “with”
clause. This implies that the execution of a simulation object
modifies only the fields of outputList, stateList,
currentProcessState, and ether. Events gmuﬂawd
during the execution of the simulation model are inserted
into the fields of outputList and ether. This models the
storage of the events (for rollback processing) in the
outputList and the process of sending the newly
generated messages (by inserting events into the local
communication buffer ether). The currentProcess-
State field contains the newly generated state consisting of
updated process variables and the new virtual time of the
process. As a frequent state saving strategy is specified,
every execution cycle terminates with the storage of the
current state in the stateList.

Two rewrite rules are used to specify the execute
operation. Access to events scheduled for execution is
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TABLE 9
Simulation Object Theory

(cons?[(ValidEvent?)]) =
inputList(currentState)
)

newlVT(currentState: (StateAndNewInput?))

)

currentInputEvents (currentState: (StateAndNewInput?))

getAllAt ( getNext( dummyRecv(1lVT(currentProcessState(currentState))),
inputList (currentState)),

: Time =
recvTime (getNext ( dummyRecv(1VT(currentProcessState(currentState))),
inputList(currentState)

specified by the currentInputEvents rule and newlVT
specifies how to determine the new local virtual time of the
process. Table 9 illustrates both of these rules. DummyRecv
(used in the both currentInputEvents and newlVT
rules) specifies an arbitrary event that has a virtual receive
time provided in the argument. The generation of an
arbitrary event is required as the general time warp list
operations work on elements only.

In the case of time warp simulation, defining the
procedure for inserting incoming events into the simulation
object’s input list is critical. The specification of event
insertion is provided by the definition of insert
EventsCheck and is illustrated in Table 10. If there are
no events to be inserted, then a null operation is said to take
place and the simulation object’s state does not change. This
behavior is stated for the sake of completeness. Depending
on the time of the smallest incoming event, there are two
cases of event insertion: 1) in the future or 2) at the current
time or in the past of the current process. In the case that the
smallest event is received in the future, it follows that all
events are received in the future. As a result, all elements
are inserted into the input list of the simulation object.
However, event insertion does not necessarily lead to a
longer list. As this insertion is sign dependent, annihilation
of opposite signs may occur leading to a smaller list of
events. In the second case, the smallest event has a time
stamp less than or equal to the current time of the
simulation object. This causes a causality error and a
rollback is initiated. Rollback changes input, state, and
output lists as well as the ether of the simulation object
state. Even though there are two cases to be handled, the
specification identifies the behavior of the insertion to be the
same. In both cases, signInsertList is called.

In the case of the state list, two separate actions must occur
to establish the simulation object’s state before the erroneous
computation started. First, the last correct state has to be
determined. This is specified in stateBefore. Then, all
incorrectly generated states have to be removed. This is
specified by the expungeAfter operation. outputlist
and ether are modified in a similar fashion. Copies of the
erroneously sent messages are retrieved from the output list
(by the getWrongMessages operation). Messages with a

send time greater than or equal to the receive time of the
straggler message are candidate antimessages. During roll-
back, these messages are removed from the outputlistand the
output list is restored to the state preceding the time the
erroneous messages were sent.

The rollback recovery mechanism in time warp imposes an
important precondition. In the insertEventsCheck oper-
ation’s signature, the input parameter stateEvents must
be of the predicate subtype defined by 1egalInsert?. The
legalInsert? subtype ensures that there exists at least one
state earlier to the time of the smallest incoming event. An
informal argument for this precondition is that rollback has to
restore the state preceding the start of the erroneous
computations. As all the state histories are kept in the state
list, a state earlier than the straggler message must be
available. The verification of the time warp system provided
in Section 5 shows that this precondition holds atany timeina
time warp simulation. This ensures that the time warp
protocol is able to continue until the end of simulation.
However, as the simulation model consists of several
simulation objects, a model of the distributed system must
first be specified.

4.1.1 Distributed System

As this specification primarily targets the attributes and
properties of time warp, we have specified a simple
model of a distributed environment. However, the
framework has been designed to support a more realistic
communication model. For specifying and verifying
communication-based optimizations, a more complex
model is necessary. In this view of the distributed world,
we define a snapshot (see Table 11) of the distributed
system as a tuple containing the global communication
network buffer (commManager) and the state of every
process in the simulation (processes). Processes are
specified as a list of simulation objects as described in the
previous section. Each simulation object must have at
least one state from which execution can continue as
specified by the restricted type AtLeastAState?.
Simulation objects listed in processes use commMa-
nager to exchange events in a lossless, zero delay manner.
Simulation objects read events addressed to them from the
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TABLE 10
Simulation Object Theory

legalInsert?( stateEvents: StateEventTuple ): boolean =
cons?(events(stateEvents))

=>

(

1VT (smallest(statelList(state(stateEvents))))
<
recvTime(smallest(events(stateEvents)))

insertEventsCheck(stateEvents : (legallnsert?))
(AtLeastAState?) =
IF cons?(events(stateEvents)) THEN
IF 1VT(currentProcessState(state(stateEvents)))
>=
recvTime(smallest(events(stateEvents)))
THEN
state(stateEvents) with [
inputlist := signlInsertList(events(stateEvents),
inputList(state(stateEvents))),
statelist := expungeAfter(
stateBefore(smallest (events(stateEvents)),
state(stateEvents)),
statelList(state(stateEvents))),
currentProcessState :=
maximum(expungeAfter (
stateBefore(smallest(events(stateEvents)),
state(stateEvents)),
statelist(state(stateEvents)))),
outputList := remove(
getWrongMessages(
recvTime(smallest (events (stateEvents))),
outputList(state(stateEvents))),
outputList(state(stateEvents))

),
ether = putAll( ether(state(stateEvents)),
getAntimessages (
getWrongMessages(
recvTime(smallest (events(stateEvents))),
outputList(state(stateEvents))
)
)
]
ELSE
state(stateEvents) with [
inputList := signInsertList(events(stateEvents),
inputList(state(stateEvents)))
]
ENDIF
ELSE
state(stateEvents)

ENDIF

69
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TABLE 11
Basic Simulation Theory

SimulationSnapshot : TYPE+ =
[# commManager : list[(ValidEvent?)],
processes

list[(AtLeastAState?)] #]

TABLE 12
Basic Simulation Theory and Communication Theory

getNewOutput ( processes :
RECURSIVE 1list[(ValidEvent?)]
cleanAllEther( processes :
RECURSIVE list[SimObjStatel

RECURSIVE list[(ValidEvent?)]

RECURSIVE 1list[(ValidEvent?)]

list[SimObjState] )
list[SimObjState])

nextEvents(processes:list[(AtLeastAState?)])

sublistProcessId(eventl: (ValidEvent?), listil:list[(ValidEvent?)])

commManager at the beginning of each simulation cycle.
They output events to the commManager addressed to
other simulation objects after processing has concluded.
More sophisticated communications models can be imple-
mented by altering the definitions of routines used by
processes to read and write from the communications
manager.

The three definitions modeling communication layers are
specified in the Basic Simulation and the Communication
theories (see Table 12). The observer getNewOutput scans
through the processes and extracts the events from their
output buffers. The list of events provided through this
observer represents all the outgoing messages of all the
simulation processes. After collecting all events, all local
buffers are flushed. This functionality is specified by the
observer cleanAllEther. Finally, messages are delivered
to the receiving processes. The generation of this list of
messages is dependent on the destination field and the
process identifier. This is specified by the observer sub-
listProcessId. The processidentifierisretrieved from the
destination field of the event that is passed in as a parameter
to sublistProcessId. One more observer on the set of
processes has to be provided before the system specification
can be completed. The observer next Events collects (into a
list) from each process an event with a timestamp equal to the
timestamp of the event(s) scheduled for execution. If a
process is idle, no event is added to the list.

The definition of a snapshot does not enforce any
restrictions on the simulation processes. But, as time warp
poses several restrictions on the simulation processes, the
subtype ValidSystem? is specified. The ValidSystem?
specification (Table 13) is a conjunction of two properties.
The first property requires that a frequent state saving
scheme be applied for each process (represented by the
definition of frequentState). The second property
states that every simulation process must have a state
earlier than GVT.

The definition of GVT used in the ValidSystem?
predicate is represented by the timestamp of the smallest
event in the union of commManager, getNewOutput, and
nextEvents. The first part of the GVT definition is
reflected by the events returned by the nextEvents
operation. The second part of the GVT definition, repre-
senting all events in transit, is specified by the communica-
tion layer (commManager and getNewOutput). As a GVT
value of positive infinity (simulation end) is represented by
an empty list, the state property must hold only if the list is
nonempty.

Having specified the snapshot of a distributed system, all
that remains to be specified is transitioning between the
individual snapshots. Again, the specification provides a
simplified model. This model strictly states that all
processes simulate and receive events exactly once between
snapshots. It is important to understand that this limits the
application of the model. In reality, the distributed
processes might not receive any messages due to network
delay or may not even execute as the system load of the
distributed processor might be high. This limitation is
acceptable as the network delay and other such distributed
effects may be modeled by introducing predicates into the
specification of the execution model. A more severe
limitation is that a snapshot assumes that all processes
wait between arrival of new events and execution. This
assumption is only true for the initial snapshot and the final
snapshot of the simulation system. Hence, it does not affect
the proof of the time warp paradigm. This simplification
might have to be removed if a more precise distributed
system behavior is required. The distributed system
behavior is specified with executeAllProcesses and
allEventsToProcess.

The definition executeAllProcesses specifies the
transition of processes in a snapshot during simulation
execution. Each simulation process in the system receives
all events from the current network state before simulation
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TABLE 13
Time Warp Theory

ValidSystem?( snap: SimulationSnapshot )

(
(

(processes(snap))

)
AND

(

(processes(snap))

)

: bool =

every( (LAMBDA (process: (AtLeastAState?)): frequentState(process) ) )

cons?(putAll (putAll (commManager (snap),
getNewOutput (processes(snap))),
nextEvents (processes(snap))))
=> every( (LAMBDA (process: (AtLeastAState?)):
1VT(smallest(stateList(process)))
< recvTime(smallest (putAll (putAll (commManager (snap),
getNewOutput (processes(snap))),
nextEvents (processes(snap))))) ) )

TABLE 14
Time Warp Theory

list[(AtLeastAState?)] =
CASES processes(snap) OF
null: null[(AtLeastAState?)],
cons (process, restProcesses):
cons( simulate(

)
),

)
ENDCASES
MEASURE length(processes(snap))

(ValidSystem?) = snapshot with [

processes 1=
executeAllProcesses(

executeAllProcesses( snap: (ValidSystem?) ) : RECURSIVE

insertEventsCheck( process, allEventsToProcess(process,

executeAllProcesses( (# commManager :
processes

TimeWarpSimulation (snapshot: (ValidSystem?) )

commManager := getNewOutput (processes(snapshot)),

(# commManager := commManager (snapshot),
processes  := cleanAllEther(processes(snapshot)) #)

commManager (snap))

commManager (snap) ,
restProcesses #) )

of the process is performed. In Table 14, the observer
simulate specifies that execution is performed if events
are pending. The observer allEventsToProcess is a
rewrite rule for the communication operation sublist-
ProcessId. The TimeWarpSimulation operation

specifies the flow of events through the communication
layer. From snapshot to snapshot, all buffers (ethers) of the
simulation objects are emptied and collected in the
communication network. In addition, before the execution
of the simulation object, every object receives messages
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TABLE 15
Lamport’s Second Clock Condition

outputMemberNewInput : CONJECTURE

(

FORALL (currentState: (StateAndNewInput?), event:(ValidEvent?)):
member (event, currentInputEvents (currentState))

=>
recvTime(event) > stateLVT(currentState)
)
AllO0utputCreatedIsInRealFuture : CONJECTURE
(
FORALL (currentState: (StateAndNewInput?), event:(ValidEvent?)):
member (event, processOutput(currentState)(
currentInputEvents (currentState),
currentProcessState(currentState)
)
)
=>
recvTime(event) > newlVT(currentState)
)

from the network (previous snapshot) and executes with an
empty ether.

The specification is sufficient to provide complete cover-
age of the time warp protocol and can be extended to show
correctness of various optimizations. The framework can
also be refined to model a more realistic distributed system
behavior such that a proof of correctness similar to Leivent
and Watro’s [18] may be attempted. However, this
specification is designed to be sufficient for proving
correctness of optimizations to the algorithm and helps in
providing a better understanding of the time warp protocol.

5 VERIFICATION OF THE TIME-WARP
SPECIFICATION

The purpose of this specification is to provide a framework
for better understanding the time warp paradigm and to
develop correct optimizations and extensions to it. Hence,
the verification of the specification concentrates on proving
the assumptions and invariants stated informally by
Jefferson [15] in the definition of the time warp protocol.
Specifically, the following sections detail two important
proofs: 1) verification of the Lamport’s clock conditions and
2) verification of the invariant that each process must have
one state earlier than GVT at any time since a rollback to
GVT is possible. Because the PVS system provides a proof
assistant that tracks and maintains proof statements in a
repeatable form, only a high-level description of each proof
is included here. The complete specification and the actual
proofs are freely available from the authors.

5.1 Second Clock Condition for Simulation Objects
Section 3 stated the two clock conditions defined by
Lamport [17] that define: 1) correct event processing and
2) correct event ordering at a node. These conditions

together state the most fundamental correctness criteria
for any discrete event simulator. Specifically, that indivi-
dual events are not processed in negative time and that
sequences of events are processed in causal order. Lam-
port’s first clock condition is a defined property of the
application and is safely stated as an invariant over events.

The second clock condition must be satisfied by the
simulation protocol. The definitions outputMemberNew
Input and AllOutputCreatedIsInRealFuture
represent Lamport’s second clock condition (Table 15).
outputMemberNewInput states the clock condition for
input events while AllOutputCreatedIsInRealFu-
ture states the condition for output events. Both conditions
are necessary as the simulation object must both process
input events and produce output events in causal order.

The conjecture outputMemberNewInput (as shown in
Table 15) states that any event in the set of current input
events has a receive time stamp greater than the local
virtual time of the current state. To prove this conjecture, a
lemma is proven (not shown in this paper) showing that all
events in the set of input events ready for processing have
the same virtual receive time. If not, then one or more of the
events must have a receive time less than others implying
they should be processed first. Taking advantage of this
lemma, the conjecture is proven by rewriting, instantiation
of quantified variables, and case analysis.

The second conjecture in Table 15 (Al1lOutputCrea-
tedIsInRealFuture) can be read as follows: Any event
generated from a process during execution has a receive
time greater than the local virtual time of the process before
execution. To prove this conjecture, the process subtype
predicate (ValidProcess?) is used. This combined with
the attributes of the input events and the definition of LVT
provide all the knowledge needed to complete this proof.
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TABLE 16
Time Warp Protocol Invariant

TimeWarpSimulation_TCC2: OBLIGATION

(FORALL (snapshot: (ValidSystem?)):
ValidSystem? (snapshot

WITH [commManager

processes :=

:= getNewOutput (processes(snapshot)),

executeAllProcesses((# commManager :=
commManager (snapshot) ,
processes :=
cleanAllEther (processes(snapshot))
#)1));

As in the previous case, the proof steps include
instantiation, rewriting, and case elimination.

Note that in both conjectures the predicate subtype
ValidEvent? is used to assure satisfaction of Lamport’s
first clock condition. The PVS type-check condition gen-
erator forces the verification of this property on events
considered by the conjecture, automatically assuring that
the property holds. TCCs are used extensively in this work
to specify invariants and correctness conditions in this
manner to assure their validity over changes to the
specification.

5.2 The Time Warp Protocol’s Invariant

While Jefferson’s original definition of the time warp
protocol [15] does not explicitly identify any invariants in
the algorithm, it does define the invariant as a property that
must be satisfied during memory management. Memory
management is, however, not part of the basic time warp
algorithm. The property states that, for each process, all but
one saved state older than GVT can be discarded. The
formal specification provides a more precise description of
time warp and identifies this property as an invariant. This
invariant must hold even if no global control or memory
management mechanisms are specified. As with Lamport’s
first clock condition, PVS automatically generates type
correctness conditions for this property and requires it to be
proven correct whenever the specification is used.

In the specification of a simulation object, the insertion
and execution of straggler events requires the existence of a
state older than GVT. The need to prove this invariant arises
from the fact that, by the definition of insertion, a state
earlier than the smallest arriving event must be present
(legalInsert?). As a result, the PVS system requires a
proof of the following TCC generated from the definition of
TimeWarpSimulation.

Table 16 illustrates the PVS generated proof obligation
for the time warp invariant. The obligation, named Time-
WarpSimulation_TCC2, is identified as an automatically
generated type-check condition by the canonical PVS
naming convention using TCC. This type-check condition
is automatically generated because the predicate Valid-
System? embeds the condition of the invariant (see Section
4.1.1, Table 13). The TCC states that the execution of any
legal process results in a valid global system state as
defined by validSystem? property. This TCC represents
an important correctness property because any Time-
WarpSimulation system definition requires transition
from one valid system state to another. Stating the
correctness condition using a predicate subtype forces its
verification for any specific event processing algorithm. As
time warp developers use the framework to describe
specific simulation systems, PVS requires maintenance of
this critical invariant.

The proof of the TCC is extensive and is partitioned into
several subproofs. Specifically, verification of the valid-
System? predicate requires the proof of the frequent state

TABLE 17
Frequent State Saving Property

frequentStateAfterExecution : CONJECTURE

ValidSystem? ((# commManager
processes  :=

#))
frequentState(process)))

processes

( FORALL ( messages: list[(ValidEvent?)],

objects: list[(AtLeastAState?)] ):
1= messages,
cleanAllEther(objects)

=> every((LAMBDA (process: (AtLeastAState?)):

(executeAllProcesses((# commManager := messages,

cleanAl1Ether (objects) #))) )
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TABLE 18
Valid State Execution Property

ValidStateExecuteAllProcesses :

ValidSystem?( (# commManager
processes =

#) )
AND

(objects)
=>

( executeAllProcesses((# commManager

#)) ) )

CONJECTURE

( FORALL ( x: Time, messages: list[(ValidEvent?)],
objects: list[(AtLeastAState?)] ):

1= messages,

cleanAllEther (objects)

every( (LAMBDA (process: (AtLeastAState?)):
1VT(smallest(statelList(process))) < x) )

every( (LAMBDA (process: (AtLeastAState?)):
1VT(smallest(statelList(process))) < x) )
1= messages,

processes  := cleanAllEther(objects)

saving property and the GVT advancement property. The
following paragraphs provide a brief description of the
subproofs.

Preservation of the Frequent State Saving Property: The
frequent state saving property must be guaranteed at any
time point in the simulation. This is stated in the theorem
frequentStateAfterExecution (Table 17). The theo-
rem states that, if the current system satisfies the conditions
of a ValidSystem?, it is guaranteed that every process in
the system after execution satisfies the frequent state saving
property. The proof of this theorem is partitioned into two
subproofs. The preservation of the frequent state property is
stated for event insertion and for execution. The actual
theorems (not illustrated here) are proven with the help of
additional instantiations of theorems, rewrite rules, and
extensive case analysis. With the help of a few subproofs,
the theorem frequentStateAfterExecution is proven
by induction on the list of simulation objects.

In some circumstances, the frequent state saving prop-
erty is not applicable to a specific simulation system. For
example, using an infrequent state saving scheme is one
proposed optimization for time warp simulators. In such
circumstances, the conjecture in Table 17 is not applicable to
the proof and modification of the proof scheme is required.
Chernyakhovsky et al. [6] present one such application of
the framework where an infrequent state saving scheme is
specified and verified.

GVT advancement: The second part of the ValidSys-
tem? (Table 13) theorem states that every process maintains
at least one state previous to any unprocessed event in the
system. The proof of this conjecture is performed in
multiple steps. The ValidStateExecuteAllProcesses
(Table 18) conjecture establishes that if a virtual time z is
greater than the time of the earliest state in a process’ state
list, then the virtual time = would still be greater than the
earliest state in the state list of the process following
execution. Induction on the list of simulation objects and the
instantiation of several theorems is required to complete

this proof. The theorem can not be satisfied as stated if fossil
collection (removal of state history) is specified. In this case,
a lower bound on the time value must be made as an
additional precondition. However, the remainder of the
proof remains applicable as the time value selected for fossil
collection is usually the actual GVT value and the GVT
value would be larger than any lower bound.

The second stage of the proof requires a transformation
of the everyListAtLeastAState property (shown in
Table 19). If it is known that every process has a state earlier
than some time z, then the property is known to hold for
any time y greater than x. Knowing that the system satisfies
the ValidSystem? predicate before the execution cycle, it
provides a time (GVT before execution) where the property
is guaranteed. The proof of the second part can then be
completed by ensuring that the new GVT is greater or equal
to the old GVT. This is stated by the theorem Time-
Increment. It should be noted that the original informal
specification of the time warp protocol does not identify the
valid system state property. The formal specification of the
complete time warp paradigm identified the need for a
definition of a valid state, that, in turn, identified a complete
and correct invariant of the algorithm. By proving the
properties specified by the ValidSystem? predicate, we
are able to prove the TimeWarpSimulation_ TcC2 TCC
generated by the invariant.

5.3 Verification Summary

Any verification activity must address 1) what properties
were verified and 2) the sufficiency of the verification
results. In this work, all assumptions and preconditions
required for the correct execution of the basic time warp
protocol are verified within the framework. Further, all
proofs are mechanized, providing a degree of assurance in
the proof process. Examples of simple preconditions and
assumptions include properties such as 1) never rolling
back prior to the initial state, 2) Lamport’s first clock
condition, and 3) properties of simulation object data
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TABLE 19
State and GVT Properties

everyListAtLeastAState : CONJECTURE

(objects)
AND
X <=y

)

=>

(objects)

TimeIncrement : CONJECTURE

ValidSystem? ((# commManager

commManager
processes

( FORALL ( objects: list[(AtLeastAState?)], x:Time, y:Time ):
(every ((LAMBDA (process: (AtLeastAState?)):
1VT(smallest (stateList (process))) < x ))

every ((LAMBDA (process: (AtLeastAState?)):
1VT(smallest(stateList (process))) <y ))

( FORALL ( messages: list[(ValidEvent?)], objects: list[(AtLeastAState?)] ):
:= messages,
cleanAllEther(objects)

:= messages,
:= cleanAllEther (objects)

processes =
#))
AND
cons?(putAll (putAll(getNewOutput (objects),
getNewlutput
(executeAllProcesses ((#

commManager
processes

nextEvents (executeAllProcesses ((#
:= messages,
:= cleanAllEther(objects)

=> recvTime(smallest (putAll (putAll (messages,
getNewOutput (objects)),
nextEvents(objects))))
<= recvTime(smallest (putAll (putAll (getNewOutput (objects),
getNewOutput (executeAllProcesses((#

commManager := messages,
processes := cleanAllEther(objects)
#)))),

nextEvents (executeAllProcesses ((#
commManager := messages,
processes  := cleanAllEther(objects)
#)))))

#)))),

#))))

structures. Proof obligations for most of these properties are
generated automatically by the PVS type-check condition
generator. These verification obligations and proofs do not
warrant separate discussion here; however, all details of
both the specification and verification are available from the
authors.

Of greater importance are the verification of Lamport’s
second clock condition and the time warp invariant.
Lamport’s second clock condition states that events are
processed in causal order by simulation objects. This

condition represents the most fundamental correctness
criteria for any discrete event simulator and is particularly
important for time warp verification. Time warp’s optimis-
tic synchronization approach allows initial out of order
processing of events. By supporting rollback to previous
states, time warp corrects out of order event processing
when it is detected. If out of order events are not detected or
rollback does not behave correctly, the simulation result
may be invalid. Verification of Lamport’s second clock
condition assures that eventually all events are eventually
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processed in order regardless of the order in which they
arrive at the simulation object.

The time warp invariant proof verifies several important
properties of GVT and simulation object state storage. As a
part of the invariant proof, GVT advancement and frequent
state saving properties are verified and provide important
supporting results. The objective of the invariant proof is to
demonstrate that there exists a stored state earlier that GVT.
Knowing that no message or event in the system has a
timestamp earlier than GVT this implies that rollback
operations will always be legal because a state always
exists that rollback can use to undo a processed event. This
is an important result as it defines an upper limit for fossil
collection processes that make time warp implementations
feasible.

The two lemmas used to support the invariant proof are
equally important. Verifying GVT advancement shows that
GVT does not decrease. Looking at GVT as a measure of
system progress, this lemma implies that the distributed
simulation makes progress if individual simulation objects
make progress. Nothing about out of order event processing
and rollback can cause the overall simulation to go
backwards beyond GVT. If LVT increases in the slowest
simulation object, then GVT increases. However, if LVT
never increases in one simulation object, then global
progress as measured by GVT halts. It is a safe assumption
that individual simulators do make temporal progress, thus
assuring global simulation progress.

The frequent state savings lemma assures that system
state will be saved following each event execution. Its
verification assures that rollback to the state prior to
execution of any individual event is always possible. As
noted earlier, this condition can be too strong for some
optimizations. For example, infrequent state saving optimi-
zations do not save states following each event execution.
This allows simulation objects to consume less memory at
the expense of less precise rollback.

A distributed simulation is correct when it produces
simulation results that are legal results from a traditional,
single process simulator. Nondeterminism of simulation
models and sheer complexity make verifying this prop-
erty virtually impossible. However, verifying correct
causal event ordering in distributed simulation is an
operational description of the same property. Given that
the processing of events is uniform between the mono-
lithic simulator and distributed simulator, processing the
same events in the same order will generate the same
results. Thus, without knowing the specifics of event
processing, verification of Lamport’s second clock condi-
tion is a strong indicator of the time warp framework’s
correctness. In addition, verification of state maintenance
and GVT properties assures the correctness of time
warp’s internal data structures. Specifically, verification
of the time warp invariant ensures the correctness of
rollback, GVT, and state maintenance functions.

6 CONCLUSIONS

The formal framework of the time warp protocol is
designed to 1) specify fundamental properties of the time
warp protocol, 2) verify the correctness of basic time warp
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properties, and 3) provide a formal framework for research
into extensions to the protocol.

The specification of the basic time warp protocol
presented here closely follows the original definition by
Jefferson [15]. The major components of a time warp
simulator are defined along with correctness criteria. In
addition to Jefferson’s basic specification, additional
assumptions and correctness criteria are defined. Most
importantly, a new time warp invariant describing
correctness properties of simulation object data structures
is formally defined. The close resemblance of the formal
specification and the informal description of the algo-
rithm enables the specifiers and the developers/program-
mers to get a much clearer, more complete, and quicker
insight into the time warp protocol or parts of it. The
precision required to write the formal specifications
caused the specifiers to ask detailed questions of the
developers. In answering these questions, the developers
considered and resolved details that previously went
unnoticed. Although difficult to quantify, our experience
here suggests that an easy-to-follow formal specification
of the time warp protocol results in a faster, more
efficient software implementation [27], [28].

Each of the verification conditions identified in the
specification have been verified using the PVS mechanized
proof system. The most important properties verified
include Lamport’s second clock condition and the time
warp invariant. Verifying Lamport’s second clock condition
assures that, upon completion of the simulation, all events
have been processed in causal order. This condition is a
fundamental correctness condition for any discrete event
simulation system. Verifying the time warp invariant
assures that rollback is always possible and establishes that
time warp simulations make progress. The frequent state
saves condition assures that rollback can be performed for
any processed event by ensuring the prior state is available.
The GVT advancement property assures that GVT never
decreases and that, if all simulation objects make temporal
progress, then the overall simulation makes progress.

The reusability and extensibility of the time warp
framework represent the most difficult objective to quantify
and evaluate. Extensibility is achieved by specifying only
critical aspects of the time warp system. Domain specific
properties can be added by further defining event proces-
sing, optimizations to state saving and rollback algorithms,
and other generally defined functions. Verification obliga-
tions are expressed as predicate subtypes on parameters
whenever possible. Thus, PVS generates obligations for,
and manages the proofs of, important properties such as the
time warp invariant. Most importantly, the formal verify
the correctness of infrequent state saving algorithms [6], 2)
represent and verify continuous-time and discrete-time
synchronization protocols [9], [10], [11] in a mixed signal
simulation environment, and 3) efforts are ongoing to
specify and verify several distributed snapshot estimation
algorithms.

From our experience with the formal specification
activity, we have redesigned and rebuilt a general purpose
parallel discrete-event simulator called WARPED [28]. The
design of the interface classes of the WARPED simulation
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kernel have been heavily influenced by the formal
specification. However, it is difficult to assess the savings
gained by undertaking the specification activity. Naively, it
can be claimed that performing specification and verifica-
tion significantly reduced implementation time for the
prototype system. However, supporting such a statement
with quantitative data is difficult. This is not our first
experience with developing a parallel simulator [21], [27]
and, thus, our previous experience contributed substan-
tially to the improved development time. However, this
was our first attempt at building a general purpose object-
oriented parallel simulation kernel, so differences in the
development goals did exist. Furthermore, time to working
prototype is not necessarily an accurate measure of
productivity as prototypes exist at widely different matur-
ity levels. What can be said definitively is that components
of the WARPED kernel were running after three months of
design and implementation. A completed system [28] was
available after six months. Furthermore, both the early
components and implemented system were extremely
stable for their relatively early development stage. Experi-
ence implementing parallel simulators suggests that this
represents a significant time savings.

Limitations of the specification framework identified in
the paper include an ideal communications assumption and
the behavior of simulation object snapshots. Communica-
tions between time warp objects is assumed to be lossless
and instantaneous. More realistic communication models
must be developed if an application considers the under-
lying communications system. The snapshot model enforces
a restriction that all processes simulate and receive events
exactly once between snapshots. As stated earlier, in
implemented systems, a simulation object may not receive
or process events between snapshots. The snapshot model
also assumes that all processes wait between the arrival of
new events and execution. This assumption does not
dramatically affect this verification activity. Finally, the
use of list types to store events and processes introduces an
ordering that is not utilized by the specification. Routines
used to read from and write to the communications
manager do not explicitly take advantage of this ordering.
However, eliminating the ordered property by using sets to
represent the events being communicated and active
simulation objects would eliminate any possibility that the
use of lists adversely affects the verification result.

Potential limitations of the verification performed deal
primarily with the sufficiency of Lamport’s second clock
criteria. Although proper causal ordering of events is a
strong correctness criteria, it remains to be proven that this
is mathematically sufficient. Specifically, it is appealing to
argue that, if events are processed in proper causal order,
the distributed simulation is correct with respect to a
traditional simulation of the same system. The probabilistic
behavior of many simulated systems complicates verifica-
tion of this argument substantially. However, causal
ordering of event processing is a major goal for any parallel
distributed event simulation, making it sufficient as a
correctness criteria in this work.

The formal time warp specification provides a complete
and verified framework of the original time warp protocol.

The specification provides both a correctness proof for time
warp and a platform for verifying future optimizations and
extension. This paper presents the specifications of major
time warp components along with verification criteria used
to assure correctness. An abstract discussion of the
verification activities is provided along with commentary
on the rationale behind, and sufficiency of, each verification
condition. Mechanisms supporting reuse and extension are
discussed throughout the specification and verification
descriptions. Finally, objectives of the specification activity
and how those objects are met, along with limitations of the
model and verification conditions are presented.
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