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Abstract

A multiscale Canny edge detection is equivalent to finding the local maxima of a wavelet

transform. We study the properties of multiscale edges through the wavelet formalism. For pat-

tern recognition, one often needs to discriminate different types of edges. We show that the evo-

lution of wavelet local maxima across scales characterize the local shape of irregular structures.

Numerical descriptors of edge types are derived. The completeness of a multiscale edge

representation is also studied. We describe an algorithm that reconstructs a close approximation

of one and two-dimensional signals from their multiscale edges. For images, the reconstruction

errors are below our visual sensitivity. As an application, we implement a compact image coding

algorithm that selects important edges and compresses the image data by factors over 30.

This research was supported by the NSF grant IRI-890331. AFOSR grant AFOSR-90-0040 and ONR grant

N00014-91-J-1967.
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1. Introduction

Points of sharp variations are often among the most important features for analyzing the

properties of transient signals or images. In images, they are generally located at the boundaries

of important image structures. In order to detect the contours of small structures as well as the

boundaries of larger objects, several researchers in computer vision have introduced the concept

of multiscale edge detection [24,29,31]. The scale defines the size of the neighborhood where

the signal changes are computed. The wavelet transform is closely related to multiscale edge

detection and can provide a deeper understanding of these algorithms. We concentrate on the

Canny edge detector [3], which is equivalent to finding the local maxima of a wavelet transform

modulus.

There are many different types of sharp variation points in images. Edges created by occlu-

sions, shadows, highlights, roofs, textures... have very different local intensity profiles. To label

more precisely an edge that has been detected, it is necessary to analyze its local properties. In

mathematics, singularities are generally characterized by their Lipschitz exponents. The wavelet

theory proves that these Lipschitz exponents can be computed from the evolution across scales of

the wavelet transform modulus maxima. We derive a numerical procedure to measure these

exponents. If an edge is smooth, we can also estimate how smooth it is from the decay of the

wavelet transform maxima across scales. Lipschitz exponents and smoothing factors arc numeri-

cal descriptors that allow us to discriminate the intensity profiles of different types of edges.

An important open problem in computer vision is to understand how much information is

carried by multiscale edges and how stable is a multiscale edge representation. This issue is

important in pattern recognition where one needs to know whether some interesting information

is lost when representing a pattern with edges. We study the reconstruction of one and two-

dimensional signals from multiscale edges detected by the wavelet transform modulus maxima.

It has been conjectured [22,24] that multiscale edges characterize uniquely one and two-

dimensional signals, but recently Meyer [27] has found counter-examples to these conjectures.

In spite of these counter-examples, we show that one can reconstruct a close approximation of the

original signal from multiscale edges. The reconstruction algorithm is based on alternate projec-

tions. We prove its convergence and derive a lower bound for the convergence rate. Numerical

results are given both for one and two-dimensional signals. The differences between the original

and reconstructed images are not visible on a high quality video monitor.

The ability to reconstruct images from multiscale edges has many applications in signal

processing. It allows us to process the image information with edge based algorithms. We

describe a compact image coding algorithm that keeps only the "important" edges. The image

that is recovered from these main features has lost some small details but is visually of good qual-

ity. Examples with compression ratio over 30 are shown. Another application to the removal of
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noises from signals is described in [23].

The article is organized as follow. Section 2 relates multiscale edge detection to the wavelet

transform. It shows that a Canny edge detector is equivalent to finding the local maxima of a

wavelet transform modulus. Until Section 6, we concentrate on one-dimensional signals. Sec-

tion 3.1 reviews the wavelet transform properties that are important for understanding multiscale

edges. The wavelet transform is first defined over functions of continuous variables and Section

3.2 explains how to discretize this model. The numerical implementation of fast wavelet

transform algorithms is given in Appendix 2. Section 4 explains how to characterize different

types of sharp signal variations, from the evolution across scales of the wavelet transform max-

ima. Section 5 studies the reconstruction of signals from multiscale edges. We review some pre-

vious results and explain how to formalize the reconstruction problem within the wavelet frame-

work. The reconstruction algorithm is described in Section 5.2 and numerical results are

presented in Section 5.3. A two-dimensional extension of the wavelet transform is given in Sec-

tion 6.1 and its discrete version is explained in Section 6.2. Fast two-dimensional wavelet algo-

rithms are given in Appendix 4. Section 7 differentiates the edges of an image from the evolution

across scales of the wavelet modulus maxima. The reconstruction of images from multiscale

edges is explained in Section 8.1 and numerical examples are shown in Section 8.2. Section 9

describes an application to compact image coding.
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Notation

2
L (R) denotes tJic Hilbcrt space of measurable, square-integrable one-dimensional functions

2 2

fix). ¥oTf(x)e L (R)andg(j:)e L (R). the inner product of/ (x) with ^(x) is written:

<g(x),f(x)> =
I
g(x)f(x) dx.

oo

The norm (energy) of/ U) e L (R) is given by

||/||2 =
J \f(x)\^ dx.

2 2
We denote the convolution of two functions /U) e L (R) and g(j:) e L (R) by

+00

f*8ix) =
I
f(u)g{x-u) du.

—00

2 '*

The Fourier traasfonm oif{x) e L (R) is written /(co) and is defined by

+00

/(CO) =
j f(x)e-"^dx.
00

L (R^) is the Hilbcrt space of measurable, square-integrable two dimensional functions /(x.y).

The norm of/ (x,}-) e L, (R'^) is given by

+00 +00

ll/ll^ =
I J

l/(x.>')|2 ticdy .

—00 —00

The Fourier transform of f{x,y) e L (R ) is written /(a);c,a)j,) and is defined by

/((0,.cop = 7 7/(^-^) e-'''^'^^'' dx dy .
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2. Multiscale Edge Detection

Most multiscale edge detectors smooth the signal at various scales and detect sharp varia-

tion points from their first or second order derivative. The extrema of the first derivative

correspond to the zero-crossings of the second derivative and to the inflection points of the

smoothed signal (see Fig. 1). This section explains how these multiscale edge detection algo-

rithms are related to the wavelet transform.

We call a smoothing function any function 0(;c) whose integral is equal to 1 and which con-

verges to at infinity. For example, one can choose Q(x) equal to a Gaussian. We suppose that

Q(x) is twice differcntiable and define respectively y\i°(x) and y*(x) as the first and second order

derivative of 9(j:)

„, . dQ(x) ^ j,^ , d^Q(x) ...

Y(x) = ——^ and \f{x) = y^ . (1)
dx dx^

By definition, the functions v^U) and \^(x) can be considered as wavelets because their integral

is equal to

J
Y(x)dx = and

J
\\f^(,x)dx = .

In this article, we denote

s s

the dilation by a scaling factor s of any function l,{x). A wavelet transform is computed by con-

volving the signal with a dilated wavelet. The wavelet transform of fix) at the scale s and posi-

tion x, computed with respect to the wavelet \\i^ix), is defined by

W^fix) = f*^,Ux} . (2)

The wavelet transform of/ (a:) with respect to \i^(x) is

W'sfix) = f*Vsix) . (3)

We derive that

dQ, d
Wlf{x) = f*(s -T^Xx) = s ^(/* ejU) and (4)

dx dx

dx' cix

W'ifix) = f*(s^ f )(;c) = s^ -^(f*Qs)ix) . (5)

The wavelet transforms W^,f(x) and W^f{x) are respectively the first and second derivative of

the signal smoothed at the scale s. The local extrema of W.fix) thus correspond to the zero-

crossings of W^fix) and to the inOection points of / * 0^U). as illustrated in Fig. 1. In the
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particular case where 8(jc) is a Gaussian, the zero-crossing detection is equivalent to a Marr-

Hildreth [25] edge detection where as the extrema detection corresponds to a Canny [3] edge

detection. When the scale s is small, the smoothing oi f {x) by 9j(j:) is negligible and hence

these edge detections provide the locations of most sharper variations of /(x). When s is large,

the convolution with Q^ix) removes small signal fluctuations so we only detect the sharp varia-

tions of larger structures.

Detecting zero-crossings or local extrema are similar procedures but the local extrema

approach has some important advantages. An inflection point of /* 6i(x) can either be a max-

imum or a minimum of the absolute value of its first derivative. The maxima of the absolute

value of the first derivative are sharp variation points of f*Qs{^)> whereas the minima

correspond to slow variations (see Fig. 1). With a second derivative operator it is difficult to dis-

tinguish these two types of zero-crossings. On the contrary, with a first order derivative, we

easily select the sharp variation points by detecting only the local maxima of \'Wlf{x)\. Also,

zero-crossings give a position information but do not differentiate small amplitude fiuctuations

from important discontinuities. When detecting local maxima, we can also record the values of

Wsfi^) ai ihe maxima locations, which measure the derivative at the inflection points. Section 4

explains how to characterize different types of sharp variation points from the evolution across

scales oiW^f {x) at the modulus maxima locations, defined as follow.

Definition 1

We call a modulus maximum of g{x) any abscissa .xo where \gix)\ is locally maximum and is

strictly maximum either over the left or the right neighborhood of xq.
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n-r

f*0,{x)

w:f{x)

W^fix)

Fig. 1: The extrema of W^fix) and the zero-crossings of Wt/(x) appear at the inflection

points of f* e^U). We only record the points of abscissa Xq and X2 where I W^fix) I is local-

ly maximum, because they locate the sharper variation points of f (x) smoothed at the scale s.

The local minima of \W^f(x)\ at Xi is also a zero-crossing of W^f (x) but corresponds to a

slow variation point.

The Canny edge detector is easily extended in two-dimensions. We denote by

X y
Ux,y)= ^^{-M .

s s

the dilation by s of any two-dimensional function ^(;c,>'). We call two-dimensional smoothing

function any function Q{x,y) whose integral over x and y is equal to 1 and which converges to at

infinity. The image /(x,>') is smoothed at different scales ^ by a convolution with G^C^.y). We

then compute the gradient vector \{f* 9^)(j:,y). The direction of the gradient vector at a point

Uo.Jo) indicates the direction in the image plane {x,y) along which the directional derivative of

f{x,y) has the largest absolute value. Edges are defined as points {xo.yo) where the modulus of

the gradient vector is maximum in the direction where the gradient vector point to in the image

plane. Edge points are inflection points of the surface /* ejU.y). Let us relate this edge detec-

tion to a two-dimensional wavelet transform. We define two wavelet functions \/^{x,y) and

\|f^(x,>') such that

V'U.y) = —T— and \^-{x,y) = —^-^—
(6)
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Let \\ilix,y)= -^ v|/'(— . ) and vj/^(;c,>') = -^ \|/^(— ,— ). Let f{x,y)^ L (R^). The wavelet

transform off{x,y) at the scale s has two components defined by

Wlf{x,y) = f* ^^\{x,y) and W]f{x,y) = f*\V^{x,y) . (7)

Similarly to equation (4), one can easily prove that

a

Wlfix,y)

W^fix.y)

= s
dx

lay

(f*Qs)(x,y)

(f*Qs)ix,y)

= s'^(f*Qs)ix,y) . (8)

Hence, edge points can be located from the two components wlf(x,y) and W^f(x,y) of the

wavelet transform.

In this article, wc explain how to characterize different types of edges from the evolution of

the wavelet transform maxima across scales. We also study how much information is embedded

in multiscalc edges and how to reconstruct a close approximation of the original signal. Up to

Section 6, we concentrate on one-dimensional signals. The next section reviews the main proper-

ties of a wavelet transfomi that are needed to understand the behavior of multiscale edges. For

most purposes, the wavelet model does not require to keep a continuum of scales s. To allow fast

numerical implementations, we impose that the scale parameter varies only along the dyadic

sequence
;eZ

3. Dyadic Wavelet Transform in One Dimension

3.1. General Properties

We review the main properties of a dyadic wavelet transform and explain under what condi-

tion it is complete and stable. For thorough presentations of the wavelet transform, the reader is

referred to the mathematical books of Meyer [26] and Daubechies [8] or to signal processing

oriented reviews [20,28]. The wavelet model has first been formalized by Grossmann and Morlet

[13]. A wavelet is a function \^{x) whose average is zero. We denote by \\i2'(x) the dilation of

\\iix) by a factor 2-'

^y(x) = — \\f{—) .

The wavelet transform oi fix) at the scale 2-' and at the position x is defined by the convolution

product

Wyfix) = f*\\l2'(x) . (9)
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Wc call ihe dyadic wavelet transform ihc sequence of functions

W/ = Wyfix)
jeZ

and VV is the dyadic wavelet transfonm operator.

Let us study the completeness and stability of a dyadic wavelet transform. The Fourier

transform of Wjifix) is

Wj'fm = /(w) v(2^0)) . (10)

By imposing that there exists two strictly positive constants A \ and B \ such that

VcoeR Ai < X IV(2^w)|2 < Bi , (11)
J=-oo

wc insure that the whole frequency axis is covered by dilations of vj/Co)) by 2-' . so that no
L ) jeZ

information about /(w) is lost. We call reconstructing wavelet xM ^ny function whose Fourier

transform satisfies

X V(2^a)) x(2^(o) = 1 . (12)

The function fix) is recovered from its dyadic wavelet transform with the summation

f(x) = X Wyf*X2'(x) . (13)

This equation is proved by computing its Fourier transfonm and inserting equations (10) and (12).

There exists an infinite number of functions x(w) that satisfy equation (12). One example is

ic(o» = ^:r^ . (14)

Z IV(2^(0)|2

where \\iiio) denotes the complex conjugate of ylco). With the Parseval theorem, we derive from

equations (10) and (1 1) an energy equivalence equation

/\i ll/ll- < X IIVV2./(a;)II' < 5i II/II^ . (15)

This proves that the dyadic wavelet transform is not only complete but also stable. The closer

fi,

to 1 the more stable it is.

-41

A dyadic wavelet transfonn is more than complete, it is redundant. Any sequence

~i ->

gjix) , with gjix) 6 L'(R). is not necessarily the dyadic wavelet transform of some
J jeZ
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function in L (R). Wc denote by W~' the operator defined by

W" (16)

The reconstruction formula (13) shows that ^;(^)
J6Z

is the dyadic wavelet transform of some

function in L (R) if and only if

W W" giix)
/€Z

gM)
;€Z

(17)

If wc replace the operators W and W * by their expression given in equations (9) and (16), we

obtain

vy e z X ^/ * ^i.M^ = sM') '
w'^ (18)

Kijix) = X2' * ^2Kx) . (19)

These equations are called reproducing kernel equations. The energy of the kernel Kij{x) meas-

ures the redundancy of the wavelet transform at the scales 2' and 2'.

For numerical applications, it is necessary to discretize the parameter x while keeping and

complete and stable representation. One approach is to build a frame of L (R) by sampling uni-

formly the parameter x at different scales [7]. The value of Wyfix) at xq can be written as an

inner product in L (R). Indeed

Wyfixo) = f*\\ivixo) = j fix)\V2'ixo-x)dx , thus

WyfiXo) = <fix), y\l2'iXo-x) > . (20)

By imposing a weak condition on \\i(x), Daubcchies [7] proved that if the sampling interval a is

small enough, the family of functions \\i2i{a2^n-x) is a frame of L (R). This means
(1,7 )€Z^

W2jAayn)=<f{x) , \^2'ia2Jn-x) >
- 2

that for any /(x) e L (R), the inner products .. ^,j^— ..,— j ,„, , ^^.^— .. ...

L ) (n,))^TJ-

provide a complete and stable characterization of/ (x). The function/ (a:) is thus characterized by

sampling uniformly VJyfix) at intervals aV , at each scale V . Wavelet orthonormal bases

[20, 26] are particular example of frames with a - 1. The Laplacian pyramid of Burt [2] as well as

the DOLP transform of Crowley [5] are other examples of multiresolution frames. A major

inconvenience of frames is that the signal descriptors W2^/(a2-'/j) are considerably
I J (n,j)e Z

modified when the signal is translated. This is a problem in pattern recognition where one does

not know a priori the position of the patterns we want to analyze. Let us explain this behavior
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wiih iranslaiion. Let f^ix) =f(x-x) be a translation of f(.x) by x. Since a wavelet transform at

a scale 2-' is given by a convolution product (equation (9)), it is clear that

WyMx) = Wyfix-^). However, the samples WiiMal^n) and Wjifial^n) may be totally dif-

ferent, unless i = ka2\ with k & Z (see Fig. 2). Hence, when a signal is translated its wavelet

frame coefficients are not translated but modified. Distortions through translation are maximum

for wavelet orthogonal bases [20].

We saw in Section 2 that if the wavelet \\i{x) is the first derivative of a smoothing function,

then a Canny edge detection is equivalent to an adaptive sampling of Wyfix) at the locations

where \W2jf(.x)\ is locally maximum. Since W 21fix) is defined by the convolution of two func-

T 2
tions in L (R), it is a continuous function and hence this adaptive sampling is well defined.

When f(x) is translated by x, Wyfix) is also translated by t so its modulus maxima are

translated as well. The amplitude of the wavelet transform modulus maxima are therefore not

modified by translations.

Fig. 3(a) is a quadratic spline wavelet of compact support which is further defined in

Appendix 1. It is the derivative of the smoothing function Q{x) shown in Fig. 3(b). Fig. 4(a) is

the plot of a discrete signal of 256 samples. Fig. 4(b) shows its discrete dyadic wavelet transform

computed on 9 scales. At each scale 2-', we compute a uniform sampling of the dyadic wavelet

transform that we denote Wjif. The next section explains how to discretize the continuous

wavelet model and solve border problems. Fast algorithms to compute the wavelet and the

inverse wavelet transform are described in Appendix 2. The reader not interested by numerical

issues might want to skip Section 3.2. Fig. 4(c) gives the locations and values of the modulus

maxima of the dyadic wavelet transform. At each scale 2-', each modulus maximum is represented

by a Dirac which has the same location and whose amplitude is equal to the value of Wiifix).

The modulus maxima detection is an adaptive sampling that depends upon the local signal regu-

larity. The first pan of the signal in Fig. 4(a) has few sharp variations and thus creates few

wavelet modulus maxima in Fig. 4(c). The second part is an irregular texture which produces

many modulus maxima.
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Fig. 2: This drawing shows that the sample values of a wavelet transform (given by the arrows)

are modified by translating the signal. If fi{x)=f {x-^), then V/2ifxix.) = ^vfix-i), but the

samples do not translate ifx is not proportional to the sampling interval aV

.

-0.8

Fig. 3: (a): This wavelet is a quadratic spline of compact support which is is continuously dif-

ferentiable. It is defined in Appendix 1 and it is the derivative of the cubic spline function Q(x)

shown in (b).



scale

stf

Page 13

'

I

'

(a)

-1—I—I—

r

A A =>£ A.

2^

22

23

2^

2^

26

2'

2«

2^

1 I r I
1—I—|—1—

r

J L

I I I
1

—

\—I—I

—

\

—n—I—

r

(b)

n ». I

JS L.

_i «_ -L^

-A 1_

-» , L

1 I r I I I I
I

I I I I I I r I I I I

(c)

Fig. 4: (a): Signal of 256 samples.

(b): Discrete dyadic wavelet transform of signal (a) computed on 9 scales. At each scale 2'
,
we

plot the signal Wjifwhich also has 256 samples.

(c): Modulus maxima of the dyadic wavelet transform shown in (b). Each Dirac indicates the po-

sition and amplitude of a modulus maximum.
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3.2. Discrete Wavelet Transform

A proper implementation of a discrete dyadic wavelet transform raises several important

questions. The input signal is generally measured with a finite resolution which imposes a finer

scale when computing the wavelet transform. We only know the signal on a finite domain which

limits the coarser scale. We introduce a wavelet transform over a finite range of scales and give

efficient discrete algorithms to compute the wavelet transform and its inverse.

Since the input signal is measured at a finite resolution, we cannot compute the wavelet

transform at an arbitrary fine scale. Let us normalize the finest scale to 1. In order to model this

scale limitation, we introduce a real function ^{x) whose Fourier transform is an aggregation of

y(2-'(o) and x(2-'o)) at scales 2-' larger than 1

I ^((0)1 2 = 5 v(2^co) x(2^co) . (21)

7=1

We suppose here that the reconstructing wavelet x(tt)) has been chosen so that

2 V(2^co) £(2^(0)

is a positive real function. As an example, the reconstruction wavelet x(w) defined by equation

(14) satisfies this property. As a consequence of equation (12), one can derive that

lim I ^((0) 1 = 1.
(0->0

If <Sf{x) is real, this implies that the integral of (j)(x) is equal to 1 and hence that it is a smoothing

function. Let S2> be the smoothing operator defined by

S2>fix)=f*if2'ix) with (l)2KJ:) = y<t>(y) • (22)

The larger the scale 2', the more details of f{x) are removed by the smoothing operator 52^. In

between the scales 1 and 2^, equation (21) yields

I $((0)1 2- 1^(2^(0)1 = X V(2^w)x(2^co) . (23)

;=i

One can derive from this equation that the higher frequencies of S\f{x) which have disappeared

in S2'f(x) can be recovered from the dyadic wavelet transform W2>f(x) , between the

scales 2' and l' . We cdll finite-scale wavelet transform of Sif(.x), the sequence of functions

\s2'f(x),\Wyf(x)\
1<:J<J
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The discrete data that we process are often obtained by filtering and sampling uniformly an

analog signal. We suppose that there exists two constants Ci > and C2 > such that <Sf{(£i)

satisfies

VcoeR . Ci < X I4>(a>i-2rt;i)|2 < C2 (24)

It has been proved [22] that for any discrete signal D = d^

2

function fix)e L (R) (not unique) such that

n€ Z
of finite energy, there exists a

The discrete signal D can thus be rewritten D = 5i/(n)
neZ

(25)

. Any finite energy discrete sig-

nal is therefore interpreted as the uniform sampling a function in L'(R) that is smoothed at the

scale 1. For a particular class of wavelets \^(x) described in Appendix 1, the samples

Sif(n)

of Sif(x)

ne7.

are sufficient to compute a uniform sampling of the finite scale wavelet transform

5v/(n-i-w)
neZ

Wjjfin+w)
neZ

J \<j<J

The sampling shift w depends upon the wavelet \\i{x). Let us denote

Wi,f = W- fin+w)] and Sijf = ISyfin+w)
J neZ L neZ

(26)

The sequence of discrete signals < 5v/

transform of D = 5 1/ (n)

Wif
\<j<j

is called a discrete dyadic wavelet

ne Z

In practice, the original discrete signal D has a finite number A' of non-zero values:

D =
\<ji<M

. To solve border problems, we use the same pcriodization technique as in a

neZ
cosine transform. We define the signal D =

that

^d„ if \<n<N

which has a period of 2N samples and such

d„ =
div+i-n if N <n<2N

(27)

By periodizing the signal with a symmetry, we avoid to create a discontinuity at the borders.

Since D has a period of 2/V samples, the corresponding discrete wavelet signals W2j/have also a

period of 2A' samples. If the wavelet is antisymmctrical with respect to 0, like in fig. 3(a), then
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the values W2y/(/i+>v) arc antisymmetrical with respect to the abscissa 1/2 and N+l/2.

Each discrete signal Wyfis thus characterized by the A^ samples whose abscissa are between 1/2

and A'+l/2. Similarly, the discrete signals S2>/ also have a period of 2N samples. For the

wavelets defined in Appendix 1, if 2-' >2/V, the signal S2>/is constant and equal to the mean

value of the original signal D whereas W2>/is equal to 0. The signal D is thus completely charac-

terized by the discrete wavelet transform signals W2'/over log2(/V)+l scales plus its mean value.

Appendix 2 describes a fast discrete wavelet transform algorithm that requires O (N log(A'))

operations. The fast inverse wavelet transform also requires 0(A^ log(/V)) operations.

From the discrete wavelet transform, at each scale 2\ we detect the modulus maxima by

finding the points where \W2if(n+w)\ is larger than its two closest neighbor values and strictly

larger than at least one of them. We record the abscissa n+w and the value Wyfin+w) at the

corresponding locations.

4. Analysis of the Muitiscale Information

One signal sharp variation produces modulus maxima at different scales 2-'. We know that

the value of a modulus maximum at a scale 2^ measures the derivative of the signal smoothed at

the scale 2-', but it is not clear how to combine these different values to characterize the signal

variation. The wavelet theory gives an answer to this question by showing that the evolution

across scales of the wavelet transform depends upon the local Lipschitz regularity of the signal.

This section explains what is a Lipschitz exponent and how this exponent is computed from the

behavior across scales of the wavelet transform maxima. A more detailed mathematical and

numerical analysis of this issue can be found in [23]. When the signal is not singular, we show

that one can still measure how smooth the signal is by estimating the decay of the wavelet max-

ima across scales.

Dennition 2

Let 0<a< 1. A function f (x) is Lipschitz a at xq if and only if there exists a constant /w such

that for all x in a neighborhood of a:o. we have

l/U)-/Uo)l ^ K U-;col° . (28)

The function / (x) is uniformly Lipschitz a over an interval ]a,b [ if and only if there exists a con-

stant K such that equation (28) holds for any (x,xo) e ]a,b [^.

U fix) is differentiate at xq, then it is Lipschiu a= 1. We call Lipschiu regularity of

/(;c) at xq, the upper bound Oo of all a such that fix) is Lipschitz a at xq. The larger the

Lipschitz regularity 0(o, the more "regular" the singularity at ;co. U fix) is discontinuous but
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bounded at xq, its Lipschitz rcgulariiy at xq is 0. We also define the uniform Lipschitz regularity

oi fix) over an interval ]a,b[ as the upper bound of all a such that / (x) is uniformly Lipschitz a

over ]a,b[. Theorem 1 proves that the Lipschitz exponent of a function can be measured from

the evolution across scales of the absolute value of the wavelet transform. We suppose that the

wavelet y(x) is continuously differentiable and has a decay at infinity which is 0{ 7).
1 -\-x^

Theorem 1

Let < a < 1 . A function / {x) is uniformly Lipschitz a over ]a,b [ if and only if there exists a

constant A" > such that for all x e ]a,b[, the wavelet transform satisfies

\W2if{x)\ < K(y)°- . (29)

The proof of this theorem can be found in [26]. From equation (29) we derive that

log2 I Wyf (X) I < \og2(f^) + a ;•
. (30)

Theorem 1 characterizes uniform Lipschitz exix)nents over intervals but not pointwise Lipschitz

exponents. Jaffard [16] as well as Holschneider and Tchamitchian [14] have shown that the

Lipschitz regularity of a function at a point Xq can also be characterized by the decay of the

wavelet transform across scales, but this theorem is more technical and is not useful for the scope

of this article. A tutorial review of the characterization of Lipschitz exponents from the wavelet

transform is in [23]. To study isolated singularities. Theorem 1 is sufficient We shall say that a

function has an isolated singularity at xq if there exists a neighborhood ]a,b[ of xq, where the

worst singularity is at xq. In other words, the uniform Lipschitz regularity of the signal over

]a,b [ is equal to the pointwise Lipschitz regularity at xq.

If the Lipschitz regularity is positive, equation (29) implies that the amplitude of the

wavelet transform modulus maxima should decrease when the scale decreases. This is not the

case for the modulus maxima corresponding to the singularity at the abscissa 3 of Fig. 5(b),

where the wavelet transform maxima increases when the scale decreases. Such singularities can

be described with negative Lipschitz exponents which means that they are more singular than

discontinuities. The signal is viewed as a tempered distribution and at the abscissa 3 of Fig. 5(b)

this distribution is locally equal to a Dirac. The reader might want to consult the booic of Folland

[10] for a quick presentation of the mathematical theory of distributions. The wavelet transform

of tempered distributions of order k. is well defined if the wavelet is k times continuously differen-

tiable. For example, a Dirac 6{x) is a tempered distribution of order and

Wy^ix) = 5 * \\I2'(X) = \]I2J(X),
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if yU) is continuous. Definition 3 enables us to extend Lipschitz exponents to negative values

for tempered distributions such as Diracs.

Definition 3

Let / (x) be a tempered distribution of finite order and a < 0. The distribution / (x) is said to have

a uniform Lipschitz regularity equal to a on ]a,b[, if and only if, its primitive has a uniform

Lipschitz regularity equal to a+1 on ]a,b[.

For example, the primitive of a Dirac centered at xq is a function which is bounded and has

a discontinuity at^o (step edge). The uniform Lipschitz regularity of the primitive of this Dirac is

thus equal to in the neighborhood of xq. Definition 3 implies that a Dirac centered at xq has a

uniformly Lipschitz regularity equal to -1 in the neighborhood of xq. One can prove that

Theorem 1 is also valid for negative Lipschitz exponents. Let 0(o < 1 be a real number that may

be negative. A tempered distribution f{x) has a uniform Lipschitz regularity equal to Oq over

]a,6 [ if and only if Oo is the upper bound of the a such that there exists K that satisfy

IW2^/U)I < K(2T . (31)

Since the Lipschitz regularity of a Dirac is -1, this result implies that the maxima values of

I Wydix) I increase proportionally to the scale 2-'. This can indeed be verified in Fig. 5(b).

In practice, we can only process discrete signals that approximate the original function at a

finite resolution, that we normalize to 1. Strictly speaking, it is not meaningful to speak about

singularities, discontinuities or Diracs. In fact we can not compute the wavelet transfonn at

scales finer than 1 and thus can not verify equation (31) at scales smaller than 1. Even though we

are limited by the resolution of measurements, we can still use the matiiematical tools tiiat dif-

ferentiate singularities. Suppose that the approximation of f{x) at the resolution 1 is given by a

set of samples /„ , with /„ = for rt < «o and/„ = l forn > /iq. like at die abscissa 2 of Fig.

neZ

5(a). At the resolution I, fix) behaves as if it has a discontinuity at n =no. altiiough / (x) might

be continuous at no witii a continuous sharp transition at that point which is not visible at this

resolution. The characterization of singularities from the decay of tiie wavelet transfonn gives a

precise meaning to this "discontinuity at the resolution 1". We measure the decay of tiie wavelet

transform up to die finer scale available and the Lipschiu regularity is computed by finding the

coefficient oto such that K (2^)"^ approximates at best the decay of I Wyf (x) I over a given range

of scales larger tiian 1. In Fig. 5(b), in die neighborhood of the x = 2, the maxima values of

\W2jf(x)\ remain constant over a large range of scales. Equation (31) implies tiiat the Lipschitz

regularity oto »s equal to at that point which means that tiiis singularity is a discontinuity. In the

edge detection procedure described in Section 2, we only keep the wavelet transfonn modulus
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maxima. One can prove that any singularity creates modulus maxima in the wavelet transfomi

[23]. If there is no modulus maxima at fine scales over a given interval, then the function is uni-

formly Lipschitz 1 in this interval [23]. If there are some modulus maxima, the decay of the

wavelet transform is bounded by the decay of these modulus maxima and we thus measure the

uniform Lipschitz regularity from this decay.

A signal is often not singular in the neighborhood of local sharp variations. An example is

the smooth edge at the abscissa 1 of fig. 5(a). It is generally important to estimate how smooth is

the signal variation in such cases. We model a smooth variation at xq, as a singularity convolved

with a Gaussian of variance CT^. Since the Gaussian is the Green's function of the heat equation,

one can prove that a is proportional to the time it would take to create a singularity at the point

Xq if we apply a backwards heat equation to the signal. Let us explain how to measure the

smoothing component o as well as the Lipschitz regularity of the underiined singularity. We

suppose that locally the signal f{x) is equal to the convolution of a function h{x), which has a

singularity at xq, with a Gaussian of variance C5^

1 x'^

fix) = h*gc(x) with g„(x) = -^^exp(-—2") . (32)

V2rtO 2cr

We also suppose that h{x) has a uniform Lipschitz regularity equal to Oq in a neighborhood of

Xq. If the wavelet v(j:) is the derivative of a smoothing function 9(x), equation (4) proves that

the wavelet traiisform of / (x) can be written

Wyfix) = y -^(f* e2;)(;c) = y 4- ('' * Sc * ^vXx)

.

(33)
dx ax

Let us suppose that the function Q(x) is clo.sc to a Gaussian function in the sense that

62^ *goix) = Qsoix) with 50 = ^2^^+0^
. (34)

Equation (33) can thus be rewritten

W2,f{x) = 2' ^ {h * e,„)(;c) = — W.^Kx) , (35)
dx So

where W^^hix) is the wavelet transform of /; (x) at the scale sq

W.Jiix) = h * \\is,{x) .

This equation proves that the wavelet transform at the scale 2-' of a singularity smoothed by a

Gaussian of variance a^ , is equal to the wavelet transform of the non-smoothed singularity /i (x)

at the scale so = ^2^J +0^
. Equation (29) of Theorem 1 proves that the Lipschitz regularity is

the upper bound of the set of a that satisfy

\W2jhix)\ < K{2'f- .
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This result is valid for any scale s > 0. Hence, oto is the upper bound of the set of a such that

there exists K that satisfy

\Wsh(x)\ < /Tj"
,

for any scale ^ > and any x in the corresponding neighborhood of xq. By inserting this inequal-

ity in equation (35), we obtain

I W2>f(x) \<K2J 5o""' , with sq =<W+^ . (37)

This equation is satisfied at all points x, if and only if, it is satisfied at the locations of all the local

maxima of I Wyfix) I . Fig. 5 gives the examples of a step edge and a Dirac smoothed by Gaus-

sians of different variances. The decay of the maxima are clearly affected by the different

Lipschitz exponents as well as the variance of the Gaussian smoothing.

Let us explain how to compute numerically the Lipschitz regularity Oq and the smoothing

scale o, from the evolution of the wavelet transform modulus maxima across scales. If we detect

the modulus maxima at all scales s, instead of just dyadic scales 2-', their position would define

smooth curve in the scale-space plane {s,x). These curves have been called "finger prints" by

Witkin [31]. We say that a modulus maxima at the scale 2-' propagates to a maxima at the

coarser scale 2-'*', if and only if, both maxima belong to the same maxima curve in the scale-

space plane {s,x). In Fig. 5, there is one sequence of maxima which belongs to the same maxima

curve and converges to the position of the discontinuity at x = 2. For the Dirac at the abscissa 3,

there are two such sequences. Each one gives an information respectively on the left and the right

part of the Dirac singularity. In order to find which maxima propagate to the next scale, one

should compute the wavelet transform on a dense sequence of scales. However, with a simple

ad-hoc algorithm, one can still try to estimate which maxima propagate to the next scale, by look-

ing at their value and position with respect to other maxima at the next scale. The propagation

algorithm supposes that a modulus maximum propagates from a scale 2-' to a coarser scale 2-''^'
, if

it has a large amplitude and if its position is close to a maximum at the scale 2-''^' that has the

same sign. This ad-hoc algorithm is not exact but saves computations since we do not need to

compute the wavelet transform at any other scale. The Lipschitz regularity as well as the smooth-

ing variance a^ of a sharp variation point are then computed from the evolution of the modulus

maxima that propagate across scales. Let us suppose that we have a sequence of modulus max-

ima that propagate from the scale 2' up to the scale 2' and converge to the abscissa xq. Let aj be

the value of the wavelet transform at the maximum location at the scale 2-' and let us also suppose

that in a given neighborhood of j:o the wavelet transform modulus is smaller than aj. This means

that the signal change at xq is the sharpest variation in this neighborhood. We compute the three

values K, o and Oq so that the inequality of equation (37) is as close as possible to an equality for

each maximum Oj. These values arc obtained by minimizing
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(38)

This is done with a steepest gradient descent algorithm. The value K gives the amplitude of the

sharp variation. If the signal is multiplied by a constant X then K is also multiplied by X, but o

and Oo are not affected. On the contrary, if the signal is smoothed by a Gaussian of variance Oq

(and integral 1), then K and Oq are not affected but o^ becomes o^ + Oq. This shows clearly that

the parameters oc, o and K describe different properties of the sharp variation that occurs at ;co.

When computing the values of a and a from the evolution of the maxima across scales in Fig. 8,

we have a numerical error of less than 10%, which is mainly due to the fact that the wavelet we

use is not the derivative of a Gaussian but only an approximation. In this case, Q(x) is the cubic

spline shown in Fig. 3(b). When the variance o^ increases, the measurement of Oq becomes more

unstable because the smoothing removes the fine scale components that characterize reliably oto-

For singularities of fractal textures such as in the right part of Fig. 4(a), this analysis is not valid

because singularities are not isolated and none of the singularities dominate the others in a given

neighborhood. The behavior of the wavelet transform modulus maxima of non-isolated singulari-

ties is studied in more detail in [23].
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Fig. 5: (a): The four sharp variation points of this signal have different Lipschitz regularity Oo

and smoothing variance o^. These values are respectively given by (ao = 0.c = 3) ,

(ao=0,o = 0),(ao=-l ,a = 0)amf(ao = -l .0 = 4).

(b): The behavior of the modulus maxima across scales depends upon the Lipschitz regularity Oq

and the smoothing factor o.
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5. Signal Reconstruction from Multiscale Edges

Section 4 shows that one can get a precise description of the signal shaip variation points

from the evolution of the wavelet transfonn modulus maxima across scales. An important ques-

tion is to understand whether the whole signal information is embedded into these modulus max-

ima. Is it possible to have a stable signal reconstruction only from the modulus maxima informa-

tion at the dyadic scales 2^ ? The next section reviews briefly some results on the reconstruction

of signals from zero-crossings and multiscale edges. Section 5.2 describes an algorithm that

reconstructs a close approximation of the original signal from the wavelet transfonn modulus

maxima. Numerical results are presented in Section 5.3.

5.1. Previous Results

The reconstruction of signals from multiscale edges has mainly been studied in the zero-

crossing framework. We saw in Section 2 that if the wavelet is given by \^(x) = )r^, mul-
dx

tiscale edges are detected from the zero-crossings of the wavelet transfonn W^f(x). The most

basic result concerning the reconstruction of signals from zero-crossing is the Logan theorem

[19]. However, as it is explained in [22], the hypothesis of the Logan theorem are not appropriate

to study the reconstruction of signals from multiscale edges. The Logan theorem has been gen-

eralized by several authors [6, 30, 34] and the reader is referred to a review by Hummel and

Moniot [15] for more details.

If the smoothing function Q(x) is a Gaussian, the properties of the wavelet transform zero-

crossings are more easily understood because W^fix) can be interpreted as the solution of a heat

diffusion process, at time t = s^ [17]. With this approach. Hummel and Moniot [15] as well as

Yuille and Poggio [33] have proved some completeness properties under restrictive conditions,

like supposing that f(x) is a polynomial [35]. In general, there are know counter-examples

which prove that the positions of the zero-crossings of W^f (x) do not characterize uniquely the

function f(,x). For example, the wavelet transforms of sin(jc) and sin(x) + —sin(2x) have the

same zero-crossings at all scales s >0. Meyer [27] found a large family of such counter-

examples.

To obtain a complete and stable zero-crossing representation, one of us [22] conjectured

that it is sufficient to record the zero-crossing positions of W2jf(x) at all dyadic scales

as well the integral values

;ez

z.-i

en= J W'yfWdu , (39)
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between any pair of consecutive zero-crossings (z„.z„+i). This conjecture was motivated by a

reconstruction algorithm that is able to reconstruct a close approximation of the original signal,

from these zero-crossings and integral values [22]. We proved in Section 2 that the zero-

crossings of W^if {x) occur at the extrema points of the wavelet transform W^tf (x), defined with

respect to the wavelet \|/^(a:) = Y^' . From equations (4), (5) and (39), we derive that

en=Wlif(z„^^)-Wlif{z,). (40)

To record the zero-crossing positions and integral values of W^if {x) is therefore equivalent to

record the positions where V/^ifix) has local extrema and the value of W^ifix) at the

corresponding locations. Meyer [27] proved that the completeness of this representation depends

upon the choice of the smoothing function Q{x) but that the conjecture is not valid in general. Let

Mx) =
\

^(l-.cos(x))if 1^1 <,t
^^j^

otherwise

For the wavelet shown in Fig. 3(a), Meyer [27] found a non-countable family of functions

such that at all scales 2-', W2>/e(j:) and V/2ifo{x) have the same extrema (positions and values).

The functions XeC^) ^^ small high frequency perturbations, implicitly defined by constraint equa-

tions that guaranty that the local extrema of M^2>/o(^) are not modified. It seems that in order to

maintain the local extrema of WyfoO^-) unchanged, the perturbations XeC^) roust remain small,

which would explain the quality of the signal reconstructions obtained in [22], but this has not

been proved. For another wavelet defined by V|/^(x)=—^, with 9(x)=/o(x), Meyer proved
dx

that any function of compact support is uniquely characterized by the zero-crossings and integral

values of its dyadic wavelet transform. This characterization is however not stable at high fre-

quencies. The numerical precision of reconstructions is thus not improved with this other

wavelet. A discrete analysis of the completeness conjecture was done independently by Berman

[1] who found nimierical examples which contradict the completeness conjecture.

We explained in Section 2 that for a wavelet equal to the first derivative of a smoothing

function, the local minima of the wavelet transform modulus correspond to slow variation points

of the signal. Hence, among all the wavelet transfomi extrema, we detect only the points where

the wavelet transform modulus is locally maximum. For the quadratic wavelet of Fig. 3(a), since

the wavelet transform local extrema do not provide a complete signal representation, the subset of

modulus maxima is certainly not complete either. The next section describes an algorithm that

still recovers a precise approximation of the original signals from these modulus maxima.
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Let /(x)G L^(R) and be its dyadic wavelet transform. We describe an

WvAx) , given the positions of the local
>eZ

5.2. Reconstruction Algorithm

algorithm that reconstructs an approximation of

maxima of I Wyf (x) I and the values of Wyf (x) at these locations. For this purpose, we charac-

terize the set of functions h (x) such that at each scale 2-'
, the modulus maxima of Wyh (x) are the

same as the modulus maxima of W^fix). We suppose that the wavelet v(a:) is differentiable in

the sense of Sobolev. Since W^f (x) is obtained through a convolution with \\/2'ix), it is also dif-

ferentiable in the sense of Sobolev and it has at most a countable nimiber of modulus maxima.

Let (.xi)„ez be the abscissa where IW2>/(x)l is locally maximum. The maxima constraints on

Wyhix) can be decomposed in two conditions.

(a) At each scale 2^, for each local maximum located at xi,, W^h (xj,) = WiJf (xi)

.

(b) At each scale 2-', the local maxima of I Wyh (x) I are located at the abscissa (xi)„ez-

Let us first analyze the condition (a). We saw in equation (20) that a wavelet transform can be

rewritten as an inner product

Wyf (Xo) = </ («).V|/2;(Xo-M)> . (42)

The condition (a) is thus equivalent to

</ (M). \|/2'(^i-")> = <h (m).V2^(4-«)> . (43)

Let U be the closure in L (R) of the space of functions that are linear combinations of functions

in the family

]w(^i-A:)[ • (44)

One can easily prove that the functions h{x) that satisfy equations (43) for all abscissa

(!f«)(«.;> z^. ^e the functions whose orthogonal projection on U is equal to the orthogonal projec-

tion of fix) on U. Let O be the orthogonal complement of U in L (R), which means that the

space O is orthogonal to U and that

O Q U = L\r) . (45)

The functions that satisfy equations (43) for all abscissa (j:0(n,;)gz^ can therefore be written

hix)=f{x) + g(x) with g{x)&0 . (46)

This defines an affine space that we denote /+ O. If U = L (R). then O = { } which implies

that /z (a:) must be equal lof(x). In general this is not the case so the equations (43) do not charac-

terize uniquely / (x).
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The condition (b) is more difficult to analyze because it is not convex. One can generally

find two functions hi(x) and hiix) that satisfy (b) and a, P with a + P=l, such that

ah\(x) + ^ h2(x) docs not satisfy the condition (b). In order to solve this problem numerically,

we approximate the condition (b) with a convex constraint. The condition (a) defines the value of

the wavelet transform at the points (x{\n,j)ez^- Instead of imposing that the local maxima of

Wyh^x) are located at these points, we impose that \W2ih(x)\^ is as small as possible on aver-

age. This generally creates local modulus maxima at the positions (.xi)(„j)ez^. The number of

modulus maxima of Wyf (x) depends upon how much this function oscillates. To have as few

modulus maxima as possible outside the abscissa (.xi\„j)ez^' we also minimize the energy of the

derivative ofWyhix). Since these conditions must be imposed at all scales 2^ we minimize glo-

bally

111 /j 111 2 = 1 1 w/2'/jU)i I = Z wwyhw^ + i}> II —:

—

dx
(47)

J— I ' dx \

The weight 2^^ expresses that the relative smoothness of V^^if (x) increases with the scale V . Let

\|/'(x) be the derivative of yU). If there exists two constants /I2 > and B^ such that for all

coe R

A2< Y. lH'(2^w)|2 -h £ I V (2^(0)1^ < B2 . (48)

then for any /j (x) g L (R)

/I2 ll/ill^ ^ Nl/illi^ < B2 WhW'^ . (49)

2 2

Hence. Ill III is a norm over L (R) which is equivalent to the classical L (R) norm. We prove

that (48) implies (49) by observing that

. dW2,h{x')
1> -^=f*^\i{x) .

dx

Like for the energy equivalence equation (15), we then prove the implication by applying the Par-

seval theorem to each L (R) norm component of the norm defined by equation (47). Equafion

(48) is valid for any dyadic wavelet \|/(a:) that satisfies equation (11) and which is smooth enough.

For example, there exists two such constant A^ and B^ for the wavelet shown in Fig. 3(a). By

replacing the condition (b) by the minimization of III/2 III , we define a problem that has a unique

solution. Indeed, the condition (a) imposes that h{x) must belong to the closed affine space

/-(- O and the minimization of a norm over such a closed convex has a unique solution.

Let us study a simple particular example that explains why a multiscale edge detection is an

efficient strategy to obtain an adaptive signal characterization. If the two constants i4 2 and B2 of

equation (48) are equal, the norm III III is proportional to the classical L (R) nonn. One can then
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easily prove that the solution of the minimization problem is the orthogonal projection of f(x)

over U. The reconstruction error is then given by

ll/-Pu/l|2 = ||/||2-||Pij/||2 . (50)

This error is decreased by increasing II Py/ll . The space U is defined from the wavelets

V2>(*n-") such that I </(u),V|/2>W-«)> I are local maxima. By chosing wavelets whose inner

products with fix) are large, we guarantee that the projection of/(x) on U is large. The local

maxima detection can thus be interpreted as a procedure to define an adaptive space U where the

projection off {x) has a large energy, in order to minimize the reconstruction error.

Although there exists a unique element of/+ O whose norm III III is minimum, the com-

putation of this function might not be stable. If the two constants Ai and B2 of equations (48)

are equal, we saw that the solution is equal to Pi^fix). The frame theory proves [9] that one can

make a stable computation of Puf(x) from the inner products </ {x),\\i2j(.xi-x)> , if and

is a frame of U. The factor ^'2-' normal-only if, the family of functions V^^
yj' W-Jt)

{nJ)eZ^

izes the L (R) norm of each function in the family. By definition, such a family is a frame ofU
if and only if there exists two constants ^4 3 > and Bj such that for any function g g U

/I3 WgW^ < I 2^ \<giu),\]iyixi-u)>\^ < 83 WgW

When the two constants /i 2 and 82 of equation (48) are different, the norm

(51)

II is not equal but

equivalent to the classical L (R) norm, so one can prove that the stability also depends whether

,T ^3-/^3
the family of wavelets is a frame of U. The closer to the value of , the more stable the^ 82+A3

computations. Outside a few particular cases, it is difficult to prove analytically whether a given
• ^

family of wavelets ^2^ Wi'i^i-^) '^ °'' '^ "°^ '^ frame of the space U that it generates

because the points a:^ are not uniformly distributed.

Let us now describe an algorithm that computes the solution of our minimization problem.

Instead of computing the solution itself, we reconstruct its wavelet transform with an alternate

projection algorithm. Let K be the space of all sequences of functions gjM such that
;eZ

gjix)
J€Z

WgjW^ + 2^' II

dgj_

dx
< -Hx> . (52)

The norm I I defines a Hilbcrt structure over K. Let V be the space of all dyadic wavelet

transforms of functions in L (R). Equation (49) proves that V is included in K. Let F be the

affine space of sequences of functions gj(x)
J jeZ

6 K such that for any index ; and all maxima
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positions xi

gjixi) = Wyfixi) .

One can prove that V is closed in K. The dyadic wavelet transforms that satisfy the condition (a)

arc the sequences of functions that belong to

A = Vnr.

We must therefore find the element of A whose norm I I is minimum. This is done by alter-

nating projections on V and T.

Equation (17) shows that any dyadic wavelet transform is invariant under the operator

Pv = W W-' . (53)

G K. it is clear that Py}' e V, so Py is a projector on V. WeFor any sequence Y = gj(x)

saw in equation (19) that this operator is characterized by the kernels

f^ijM = X2' * ^ii'M

One can easily prove that the projector Py is self-adjoint and therefore orthogonal if and only if

the kernels Kij{x) are symmetrical functions. This is the case if the wavelet \j/(j:) is symmetrical

or antisymmetrical. For the wavelet shown in Fig. 3(a), the orthogonal projection on the space V
is thus implemented by applying the operator W~' followed by the operator W. The fast discrete

implementation of these operators is given in Appendix 2. Appendix 5 characterizes the projec-

tion on the affme set T which is orthogonal with respect to the norm I I . We prove that this

operator Pp is implemented by adding piece-wise exponential curves to each function of the

sequence that we project on T. Let P = Py o Pp be alternate projections on both spaces. Let P^"^

be n iterations over the operator P. Since F is an affine space and V a Hilbert space, a classical

result on alternate projections [32] proves that for any sequence of functions

X = sM) G K
76 Z

lim P('')X = PaX . (54)

Alternate projections on T and V converge strongly to the orthogonal projection on A. IfX is the

zero element of K which means that gj{x) = for all j g Z. the alternate projections converge to

the element of A which is the closest to zero and thus whose norm I I is minimum. This is

illustrated by Fig. 6. This iterative algorithm can be related to techniques based on frame opera-

tors for reconstructing signals from irregular samplings [12].
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If the minimization problem is unstable, the convergence of the alternate projections is

-^ ^\l2'(xi-x) IS

is a frame of U, and if there

extremely slow. We saw that the numerical stability depends whether

a frame of U. Appendix 6 proves that if '^ \u2j(x^-x)

exists a constant < D < 1 such that at all scales 2-' the distances between any two consecutive

maxima satisfy

\xi-xU\ > D2^

then the convergence is exponential. Moreover, there exists a constant R such that for any X g K
D A-

I p('')x - PaX I < R(\ -y'^
2B,

(55)

where the ^3 is the frame bound defined in equation (51) and 5 2 the norm equivalence bound

defined in equation (48). This equation gives a lower bound for the convergence rate and shows

how it decreases when the frame bound A 3 goes to zero.

When the original wavelet transform Wyf {x) has an abrupt transition, the minimization of

I I can yield a smoother solution Wyhix) which oscillates slightly at the location where

^2'fix) has this sharp change. These oscillations are similar to a Gibbs phenomenon. Appendix

5 explains how to modify the alternate projections in order to suppress these oscillations. Numer-

ical experiments show that this oscillation removal does not perturbate the convergence of the

algorithm.

Fig. 6: An approximation of the wavelet transform off {x) is reconstructed by alternating orthog-

onal projections on an affine space T and on the space V of all dyadic wavelet transforms. The

projections beginfrom the zero element and converges to its orthogonal projection onT f^\

.
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S3. Numerical Reconstruction of One-Dimensional Signals from Local Maxima

There are several open issues beiiind the reconstruction algorithm that we described. From

the results of Meyer's work [27], we icnow that in general we can not reconstruct exactly a func-

tion from the modulus maxima of its wavelet transform. Our algorithm approximates this inverse

problem by replacing the maxima constraint by the minimization of a norm and thus has a unique

solution. We thus do not converge towards the wavelet transfonm of the original signal but

towards some other wavelet transform that we hope to be close to the original one. We also

explained that the computation of the solution might be unstable, in which case the alternate pro-

jections converge very slowly. It therefore important to measure how far we are from the conver-

gence point after a given number of iterations.

If the original signal has N samples, we record the positions and values of the modulus

maxima at all scales 2-', for 1 ^y < log2(A/)+l. We also keep the average value of the original

discrete signal, which characterizes S^fiox J = \og2{N)+\, as explained in Section 3.2. Equation

(53) proves that we can compute the projection Py by implementing W"* followed by W. With

the fast algorithms described in Appendix 2, this requires a total of O (/*/ log2(A^)) operations.

Appendix 5 proves that the implementation of Pp also requires 0(,N log2(A^)) operations. The

projection operator that suppresses the wavelet transform oscillations is computed with the same

complexity. Hence, each iteration on P involves 0{N log2(N)) operations.

The signal to noise ratio of the reconstructions is measured in db. Let o^ be the variance of

the function g (x) that we want to reconstruct and of be the variance of the reconstruction error

eix). The SNR ofg{x) + e(x) with respect to gix) is

SNR = 20 log,o(— ) -

At the scale 2-'. for 1 < y < 6, Fig. 8(a) gives the value of the S>fR for the reconstruction of WJif,

after n iterations on the operator P, with 1 < /; <100. At all scales, the error decreases quickly

during the first 20 iterations and then decays much more slowly. For a fixed number of iterations

on P, the SNR increases when the scale increases. This proves that the remaining error is rather

concentrated at fine scales, like in the counter-examples of Meyer [27]. After n iterations, we can

reconstruct a signal by applying the inverse wavelet transform operator on the reconstructed

wavelet transform. Fig. 8(b) shows the increase of the SNR, computed with respect to the origi-

nal signal. This SNR is an aggregation of the wavelet transform SNR at all scales. The signal in

Fig. 7(b) is reconstructed by applying the inverse wavelet operator on the reconstructed wavelet

transform after 20 iterations. In this case, the SNR is 34.6 db. The remaining error after n itera-

tions has two components. The first one is the distance between the reconsuaicted wavelet

transform and the wavelet transfonn we converge to. The other one is the distance between the
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wavelet transform we converge to and the wavelet transform of the original signal. We saw that

the convergence rate of the algorithm is related to the frame properties of the family of wavelets

defmed by the maxima positions. In numerical computations, there is a finite number of maxima

so the family of wavelets that generates U is finite. A finite family of vectors is always a frame,

but the frame bound A 3 can be very small so that the lower bound of the convergence rate given

by equation (55) is also very small. Fig. 9 is the SNfR of the reconstructed signal computed with

respect to the signal we converge to, instead of the original signal. After 30 iterations, the slope

of the SNR curve is constant, which proves that the convergence is exponential, but the conver-

gence rate is slow. In Fig. 8(b) and Fig. 9, the increase of the SNR slows down at the same point

which corresponds approximatively to 30 iterations. One can verify that at this point, the dis-

tance between the reconstructed signal and the signal we converge to is of the same order as the

distance between the original signal and the signal we converge to. Increasing the number of

iterations slowly reduces the distance with respect to the point we converge to, but does not

decrease much the distance with respect to the original signal. This is why SNR in Fig. 9 contin-

ues to increase slowly while the SNR in Fig. 8(b) reaches a maximum which is of the order of 38

db.

We made extensive numerical tests including reconstructions of special functions such as

sinusoidal waves, Gaussians, step edges, Diracs, fractals, and the counter example of Meyer given

by equation (41). In all these examples, the SNR has the same type of behavior as in Fig. 8 and

9. In some cases, the convergence rate is faster than in Fig. 9, but this does not influence much

the numerical precision of reconstructions since we are limited by the distance between the point

we converge to and the original signal. In most cases, after 30 iterations, the relative increase of

precision that is obtained by increasing the number of iterations is negligible. Since each itera-

tion requires 0{N log{N)) operations, these reconstructions do not require extensive computa-

tions and can be done in real time. The reconstructed functions are not equal to the original sig-

nal but are numerically close. They have no spurious oscillations and the same type of sharp vari-

ations. Qualitatively, the reconstructed signals arc thus very similar to the original one and the

errors are hardly noticeable by comparing the graphs, as shown by Fig. 7. We have no upper

bound on the error due to the distance between the signal we converge to and the original signal.

This is an open mathematical problem, but the numerical precision of this reconstruction algo-

rithm is sufficient for many signal processing applications.
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Fig. 7: (a): Original signal, (b): Signal reconstructed with 20 iterations from the modulus maxi-

ma shown in Fig. 4(c).
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(b)

Fig. 8: (a): Signal to Noise Ratio for the reconstruction of the wavelet transform Wyf, as a func-

tion of the number of iterations on the operator P. Each curve is labeled by the scale 2^
, for

l<j <6.

(b): SNR of the reconstructed signal computed with respect to the original signal, as a function of

the number of iterations on the operator P.
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Fig. 9: SNR of the reconstructed signal computed with respect to the signal we converge to, as a

function of the number of iterations on the operator P.
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6. Wavelet Transform of Images

We explained in Section 2 that in two dimensions, a multiscale edge detection can be refor-

mali/xd through a wavelet transform defmed with respect to two wavelets \f^{x,y) and \^{x,y).

In the second part of this article, we extend our one-dimensional results for image processing

applications.

6.1. General Properties

We denote vk^.>') = T^ y'(— .:^) and '^2'{x,y)=-^y^{—,^). The wavelet

¥ 2 9
transform of a function f{x,y)& L, (R ), at the scale 2-', has two components defined by

W\jf{x,y)= f*yif\,{x,y) and W^f {x,y) = f *\fli{x,y) .

We call the two-dimensional dyadic wavelet transform of / ix,y), the set of functions

W/ = W'yf(x,y),Wijfix,y)
jeZ

(56)

(57)

Let Y ((0i,C0j,) and y ((0^,(0y) be the Fourier transforms of \\i^(x,y) and V}r(x,>'). The Fourier

transforms of Wyfix.y) and W^jfix.y) are respectively given by

Wyf (.(Oj^ciiy) = /(Wx.cOj,) V (2''a);t,2-'cOy) ,

'2 " "2
WyfiiUx^diy) = f{(x)x,(x>y) \\i (2Ja);t,2^C0j,) .

(58)

(59)

To insure that a dyadic wavelet transform is a complete and stable representation of f(,x,y), we

impose that the two-dimensional Fourier plane is covered by the dyadic dilations of \\f (a)j,(Oy)

"2
and y ((0;,,C0y). This means that there exists two strictly positive constants /44 and B4 such that

V(co„(Oy)€R2 , Ai < Y. I V|/ (2^0);,, 2^ cop 1 2 -I- I v (2^0)^,2^0)^)1

Let x^(x,y) and X^i^^y) ^ ^^o functions whose Fourier transform satisfy

I y (2^o)x.2^0)y)x (2^w„2^0)y) + v\2^0);.,2^o)y)x\2^0);„2^0)y)

< S. (60)

= 1 (61)

There is an infinite number of choices for x'(^.>') and X^(x,y). We can derive from equations

(58), (59) and (61) that/(x,>') is reconstnicicd from its dyadic wavelet transform with

f(x,y)= I w\,f*x2'ix,y) + wlf*x2'ix,y) (62)

A two-dimensional dyadic wavelet transfomi is more than complete, it is redundant. Any

sequence of functions g]{x,y),gjix.y) is not necessarily the dyadic wavelet transform of

7€Z
2

some functions in L (R^). We denote by VT* the operator defined by



Page 35

W" 8j(x,y),gj(.x,y) = S isj * X2'(x,y) + gj * X2'(.x,y))
J jeZ

(63)

The sequence 8](x,y),gj{x,y) is a dyadic wavelet iransform if and only if

W vr'

J ;eZ

8j(x,y),gj{x,y)
;6Z

8](.x,y),g]{x,y)
jeZ

(64)

In Section 2. we explained that multiscale sharp variation points can be obtained from a

dyadic wavelet transform if

Tix,y) =—)r-^^ and Y{x,y) =—^^^
.

ax dy

Equation (8) proves that the wavelet transform can be rewritten

(65)

Wvf{x,y)

^lifix,y)

= 2^

-^if * ^2>){x,y)

-^(f*Qy)(x,y)
dy

= y "^(f * Q2')(.x,y) (66)

The two components of the wavelet transform arc proportional to the two components of the gra-

dient vector y(f* 92>)(x.>'). This appears clearly in Fig. 10 that shows the two-dimensional

wavelet transform of the image of a circle. At each scale 2\ the modulus of the gradient vector is

proportional to

Myfixj) = '^\W\,f{x,y)\' + \wl,f {x,y)\'^ .

The angle of the gradient vector with the horizontal direction is given by

A2'f0^<y) = argument{\V2if{x,y) + iW2if{x,y))

(67)

(68)

Like in the Canny algorithm [3], the sharp variaiion points of/* Q2>(x,y) are the points {,x,y)

where the modulus M2jf(x,y) has a local maxima in the direction of the gradient given by

A2'f(x,y). We record the position of each of ihcse modulus maxima as well the values of the

modulus Myf {x.y) and the angle A2if {x,y) at ilic corresponding locations.

The circle image at the top of Fig. 10 has 128 by 128 pixels. The first two columns of Fig.

10 gives the discrete wavelet transform W^j'^/and \v])'^f, for 1 < ;' < 8. The next section explains

how to define such a discrete dyadic wavelet transform and how to solve border problems. The

reader not interested by numerical implemeniaiions can skip Section 6.2. The discrete modulus

images A/2j/and angle images A^f^rt shown along the next two columns. Along the border of

the circle, the angle value turns from to 2k and the modulus has a maximum amplitude. When

the scale 2-' is larger than 2^, we see that the circle is dcfonmed due to the image periodization

that we use for border computations. The position of the modulus maxima at all scales are given
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in the last column on the right. The original Lena image is shown at the top left of Fig. 12 and

has 256 by 256 pixels. The third column of Fig. 11 displays its discrete modulus images Myf

and the fifth column gives the position of the modulus maxima, for 1 <_/' <9. At fine scales,

there are many maxima created by the image noise. At lhe.se locations, the modulus value has a

small amplitude. The last column displays the maxima whose modulus are larger than a given

threshold, at all scales. The edge points with a high modulus value correspond to the sharper

intensity variations of the image. At coarse scales, the modulus maxima have different positions

than at fine scales. This is due to the smoothing of the image by Q2i(x,y).



Fig. 10: see caption page 39. Page 37
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Fig. 11: see caption page 39. Page 38
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Fig. 10: The original image at the top has 128 by 128 pixels. The first two columnsfrom the left

show respectively W^j^f) and
I <.]<.»

wYf
1 SjS8

The scale increasesfrom top to bottom.

Black, grey and white pixels indicate respectively negative, zero and positive pixel values. The

third column displays the modulus images Mvf . Black pixels indicate zero values
1S;S8

whereas white ones correspond to highest values. The fourth column shows the angle images

Aijf
J is>sf

. The angle value turns from (white) to 2k (black) along the circle contour. The

images of the last column display in black the points where M^if has local maxima in the direc-

tion indicated Ayf

Fig, 11: The original Lena image at the top left of Fig. 12 and has 256 by 256 pixels. The first

two columns from the left show respectively ^.duWiff and
l<,j<.9

Wf
1 ^7 5 9

The third

column displays the modulus images Mi,f
1 <,] <.9

The fourth column shows the angle images

Aif . The fifth column displays the position of the local maxima ofMyf for \<j<9.
J \<.j <,9

The last column gives the positions of local maxima where the modulus value is larger than a

given threshold. Local maxima that correspond to light texture variations are removed by the

thresholding.
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62. Discrete Wavelet Transform of Images

The discretization of the two-dimensional wavelet transform raises the same problems as in

one-dimension. Images are measured at a finite resolution so we cannot compute the wavelet

transform at scales below the limit set by this resolution. As in one dimension, in order to model

the limitation of resolution, we introduce a smoothing function ^{x,y) whose Fourier transform

satisfies

l(|)(a),.co,)|2 = 2 V (2^co^.2S)x'(2^Wx.2^a)y) + v^2>co,.2>cOy)x^2^co,.2^cay) (69)

As a consequence of the admissibility condition (61), one can derive that

lim I^(c0;i,c0v)l = 1 .

(a)..w,)-,(0,0)

We also impose that ^(.x,y) is real. This limit implies that the integral of ^{x,y) is equal to 1

which means that it is a smoothing function. We define the smoothing operator 52^ by

S2if(x,y) = f*^2'(x,y) with (t>2>Cx.y) = y <t»(^'^) • (^0)

Like in one dimension, one can prove that the wavelet transform between the scales 1 and 2',

W2'f(x,y) . W2jfix,y) . provides the details available in S\f(,x,y) but that have disap-

peared in S2'fix,y). Any image S\f(x,y) is thus characterized by the finite dyadic wavelet

transform

\ [wW(x,y) . Wlfix.y)] ^^^
. S2>f(x,y)[ .

In order to compute the wavelet transform with a minimum amount of operations, we

choose two wavelets v^ (,x,y) and \\i^{x,y) that can be written as separable products of functions of

the X and y variables. Given a one-dimensional dyadic wavelet \\i{x) such that \^(x) = ——— , we

build the two wavelets

^\x,y) = \\iix)^(y) and V|r=(x.y) = ^{x)\^f(y) . (71)

The function ^(x) is a one-dimensional smoothing function tiiat is defined in Appendix 3, so that

the two-dimensional wavelet transform can be implemented with a fast pyramidal algoriUim.

Since v|/(x) =—^. these two wavelets can be rewritten
dx

y. (;,,,) = ieliMl and ^v'(x,y) =^^ . with (72)
ax oy

Q\x,y) = Q{x)^(y) and e^{x,y) = ^{x)e(y) .
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The fast discrete wavelet algorithm does not allow us to have %(x) = 9(x). Hence,

Q^{x,y) ^ Q^(,x,y). Although the two functions Q^ix,y) and Q^(x,y) are different, we choose ^(x)

so that they are close enough and can be considered as equal to a single function Q{x,y), in a first

approximation.

At the output of a camera digitizer, an image is a finite energy two-dimensional discrete

signal D = As in one dimension, one can prove that there exists a function

/(x,}')g L« (R'') (not unique) such that

yin,m)e T} , Sif(n,m) = <i„„, .

The discrete image can thus be rewritten D = S\f{n,m)
< J (/i.m)eZ*

\]f^(x,y) and \^(x,y) given in Appendix 3. from the sample values S\f(n,m)

(73)

For the class of wavelets

, we can
(n.m)e Z^

compute a uniform sampling of the finite-scale dyadic wavelet transform of S if (x,y). For any

scale 2-', we denote

^2,^/ = W2if(.n+w,m+w)

d.f -
Si;f =

(/i.m)e Z^

S2'fin+w,ni+w)

Wijf(n+w,m+w)\ and
' (n.m)€Z^>].

(n,m)e Z^

The sampling shift w depends upon the choice of wavelets. Given an image D, Appendix 4

describes a fast algorithm that computes the discrete dyadic wavelet transform

si^f. W\)'^f
\<J<J

wYf
\<.]<j

Images are finite two-dimensional discrete signals D =

(74)

of N hy N pixels.

We solve border problems like in a two-dimensional cosine transfonm. We define an infinite

two-dimensional discrete signal D = of period 2A' by 2A', by extending the image
(n.m)€Z^

D into an image of 2N by 2A' pixels with a symmetry with respect to its left and right borders, and

periodizing the resulting signal. The signal D is given by

dn^m if l<n<N and \<m<N
d2N+\-n,m 'f N +\ < n < 2N and \<m<N
dn.2N+\-m if \^n<N and N+\<m<2N

^2^+i-n.2N+i-m 'f N+]<n<2N and N+\<m<2N

dn.m = i

The discrete wavelet images W^/^f and wlj^f are computed from D by a sequence of discrete

convolutions that are described in Appendix 4. Since D has a period of 2A' by 2N pixels, VV2'

/
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and W^j^/have also have a period of 2^ by 2N samples. The two wavelets \if^{x,y) and '^(,x,y)

are defined from the one-dimensional functions \f{x) and '^{x), that are respectively antisymmetri-

cal and symmetrical with respect to a: = 0. Hence, each row of W^f^ is antisymmetrical with

respect to the points of abscissa 1/2 and N + \/2 and each column is symmetrical with respect to

1/2 and N + \/2. The transposed result is valid for wlf^. We thus only need A'^ samples to

characterize W^j^ as well as wlf'. The smooth signals S2>/has also a period of 2N by 2N sam-

ples. Fory = log2(A') + 1. one can prove that 52'/is constant and equal to the average of the ori-

ginal image D. We thus decompose images of /V^ pixels over log2(A^)+l scales. Fig. 10 and 1

1

are two examples. The numerical complexity of the fast discrete wavelet transform is

0(N^ \og(N)). The reconstruction the original image from its discrete wavelet transform is also

performed with 0(N^ \og(N)) operations. The discrete modulus images M2>/and angle images

Ayf are computed with equations (67) and (68). The modulus maxima are the points of the

modulus images Af2>/that are larger than the two neighbors whose position are in the direction

indicated by the angle value of ^2^/, at the corresponding location.

7. Characterization of Image Edges

Sharp variations of two dimensional signals arc often not isolated but belong to curves in

the image plane. Along these curves, the image intensity can be singular in one direction while

varying smoothly in the perpendicular direction. It is well known that such curves are more

meaningful than edge f)oints by themselves because they generally are the boundaries of the

image structures. For discrete images, we reorganize the maxima representation into chains of

local maxima to recover these edge curves. Lii<c in one dimension, we then characterize the pro-

perties of edges from the modulus maxima evolution across scales.

At a scale 2\ the wavelet modulus maxima detect the sharp variation points of/* 92>(x,y).

Some of these modulus maxima define smooth curves in the image plane, along which the profile

of the image intensity varies smoothly. At any point along maxima curve, v(/ * 92>)(x,y) is per-

pendicular to the tangent of the edge curve. \Vc thus chain two adjacent local maxima if their

respective position is perpendicular to the direction indicated by A2Jf(x,y). Since we want to

recover edge curves along which the image profile varies smoothly, we only chain together max-

ima points where the modulus Myfix.y) has close values. This chaining procedure defines an

image representafion that is a set of maxima chains. Image edges might correspond to very dif-

ferent types of sharp variations. Like in one dimension, we discriminate different types of singu-

larities by measuring their local Lipschitz regularity.
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Dennition 4

Let < a < 1. A function / U) is said to be Lipschitz a at (a:o,>'o) 'f and only if there exists a

constant K such that for all (,x,y) in a neighborhood of (xo.yo).

\fix,y)-f(xo,yo)\ ^ K Kx-x^f + {y-yof\'^^ • (75)

The function /(x) is uniformly Lipschitz a over an open set of R^ if and only if there exists a

constant K such that equation (75) is satisfied for all {x,y) and (xo.yo) in ihis open set. The uni-

form Lipschitz regularity of /(j:) over this open set is the superior bound of all a such that / {x)

is uniformly Lipschitz a.

In two-dimensions, the Lipschitz regularity is characterized by the decay across scales of

both I W2'fis,x) I and I Wyfisa) I . The decay of these two-components is bounded by the decay

of M2if(x,y). Let us suppose that the two wavelets \\f^(x,y) and y^(x,y) are continuously dif-

ferentiable and that their decay at infinity is O (
; r— ).

il+x^)il+y^)

Theorem 2

LctO < a < 1. A function /(j:,^) is uniformly Lipschitz aover an open set of R^, if and only if,

there exists a constant K such that for all points (x,y) of this open set

Myf{x,y) < K{2')°- . (76)

This theorem is the two-dimensional extension of Theorem 1 and its proof is essentially the

same [26]. The logarithm of equation (76) yields

\og2{Myf{x,y)) < log2(K) + aJ .

Uniform Lipschitz exponents can thus be measured from the evolution across scales of

log2(M2>/ (x,y)). This result enables us to discriminate different type of singularities.

When the signal variations are smooth, we can measure how smooth they are with the same

approach as in one dimension. Locally, we model the smooth variation oi f(x,y) at (.xo,yo), as

the convolution of a function h(,x,y) that has a singularity at (xo.yo), with a two dimensional

rotationally symmetric Gaussian of variance a^

2 2

f(x.y) = h*ga(x,y) with gdx.y) = '^^ '^^^^'^^'^^^ "
^'^'^^

We suppose that the uniform Lipschitz regularity o[hix,y) in a neighborhood of (a;o.>'o) 'S Oo- If

the two wavelets \\i\x,y) and "^(x^y) are the partial derivatives of a smoothing function Q(x,y)

which closely approximates a rotationally symmetrical Gaussian, then we can estimate the
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variance o^. The wavelet transform modulus oif{x,y) is defined at any scale s by

MJ{x,y) = ^\W\f{x,y)\^ + \W]f {x,y)\^ . (78)

With the same derivations as for equation (35), we prove that

Myf{x,y) = —Ms,h{.x,y) with 50 ="^+^ . (79)

Equation (76) of Theorem 2 is valid not only at dyadic scales 2-', but at all scales s > 0. For

a < 0!o, h{x,y) is uniformly Lipschitz a in a neighborhood of (xo.jo)- Hence, there exists ^^ >

such that for any points {x,y) in this neighborhood

Ms,h{x,y) < Ks^ .

We thus derive from equation (79) that

M2if{.x,y) < KV sV with Sq = ^2^' +o^ . (80)

Along a maxima chain, the singularity type varies smoothly so the parameters K, Oq and a^

do not change much. We thus estimate these values for portions of chains, by looking at the evo-

lution of the modulus values across scales. Let us suppose that we have a portion of maxima

chain that propagates between the scales 2' and 2'. We also suppose that in a given neighbor-

hood, at each scale 2-', the value of Af2'/(^.>') is bounded by its values along this maxima chain.

This means that the maxima chain corresponds to the sharpest image variation in the neighbor-

hood. Since M2if{x,y) is bounded by the maxima values, we estimate the parameters a and o

that satisfy equation (80), from the evolution across scales of these modulus maxima values. In

theory, this should be done by using the absolute maximum of M2if{x,y) along the maxima

chain, at each scale 2-'. It is often better to regularize these computations by averaging the max-

ima modulus value along the corresponding portion of chain. This is justified since we suppose

that the singularity type does not vary much along this portion of chain. Let Oj be the average

value of M2'f(.x,y). Like in one dimension, we estimate the smoothing factor o and the

Lipschitz regularity Oq by computing the values that minimize

2

I
7=1 I

log2 \aj\- log2(/r) - J - -^log2(o2+22>) (81)

This algorithm associates to each portion of maxima chain, three constants K, a^ and o that

describe the intensity profile of the image sharp variation, along the chain. Such a characteriza-

tion of edge types is important for pattern recognition. For example, we can discriminate occlu-

sions from shadows by looking whether the image intensity is discontinuous or is smoothly vary-

ing. For the circle image of Fig. 10, the wavelet transform modulus along the boundary remains

constant across scales, which means that Oo = and o = 0. Indeed, the image intensity is
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discontinuous along the border and the constant K gives the amplitude of the discontinuity. In

general, we believe that an edge detection should not be viewed as a binary process that labels the

image pixels as edge points or non edge points but as a procedure that characterizes precisely the

different types of image sharp variations.

8. Reconstruction of Images from Multiscale Edges

8.1. Reconstruction Algorithm

The algorithm that reconstructs images from the local maxima of their wavelet transform

modulus is an extension of the one-dimensional algorithm described in Section 5.2. Let

W\<f{x,y),wl,f{x,y)f(.x,y)e L\r2) and be its dyadic wavelet transform. For each
76 Z

scale 2-', we detect the local maxima of Myfix.y) along the direction given by the angle image

A2>f(.x,y). We record the positions of the modulus maxima,

M2'f(xi,yi),A2>f(xi.yi)

(xi,yi) , as well as
v€R

. In two dimensions, the number of modulus maxima is not
veR

countable anymore. From Myfixi.yi) and A2if(xi,yi), we can compute w\jf(xi,yi) and

W2jf(x{,yi), and vice-versa. The inverse problem consists in finding the set of functions h{x,y)

that satisfy the following two constraints.

(a) At each scale 2-' and for each modulus maxima location (xi.yi), we have

W\jh ix{,yi) = W\,f (xi,yi) and W^jh {xi,yi) = Wl'f {x{,y{).

(b) At each scale 2-', the modulus maxima obtained from W^h {x,y) and Wyh {x,y), are located

at the abscissa {x{,y{)
veR

Let us analyze the property (a). At any point (xo,>'o) the wavelet transform can be rewritten as

inner products

W\,h (xo.jo) = </ i.x,y) , ^^\>{xo-x,yQ-y)> . (82)

W^;72(xo,>'o)= </U,y) , ^vixQ-x,yQ-y)> .

Let U be the closure of the set of functions that are linear combinations of any function of the

family

lli y^\i{x{-x,yi-y) ,V ^ifl,{x{-x,y{-y)\ . (83)

L J 0»eZxR

The factor 2-' normalizes the L (R^) norm of each function. One can prove that the set of func-

tions h{x,y) whose wavelet transform satisfy the condition (a) are the functions whose orthogonal

projection on U is equal to the orthogonal projection of/(;t,y) on U. Let O be the orthogonal
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complement of U in L (R^). This set is therefore the affine space /+ O of functions that can be

written

h(,x.y)=f(x,y) + gix,y) with g{x,y)eO (84)

The condition (b) is not convex. We replace it by convex constraint which has a similar

effect, in order to solve the problem numerically. We do not impose that the points

(xi,yi)
0,v)€ZxR

Sobolev norm defined by

are the only modulus maxima of the wavelet transform, but minimize a

= I

WW^jh

Wyh\x,y),Wyh\x,y) 1^
jeZ

\Wl,li\\^ + 2^J
{\

dx
(85)

The minimization of this norm creates a wavelet iransform whose horizontal and vertical com-
_ 2 2

ponents have an L (R ) norm as small as possible. In conjunction with the condition (a), this has

a tendency to create modulus maxima at the positions ixi,yi). The partial derivative components

are added in order to create a wavelet transform with as few spurious oscillations as possible.

Since W2jh(x,y) is computed by smoothing the signal and taking the partial derivative along x, it

oscillates mostly along the x direction and we use a partial derivative along x in (85) to minimize

these oscillations. The transpose result is valid for Wjjhix.y). The weight on the derivative

components is proportional to the scale 2-' because the smoothness W2jKx,y) and W^Kx.y)

increases with the scale 2-'.

Let vif'(x,y) = '^V (^'.^^
and V(x,y) = '^'^ ^^'>\

if ihcre exists two constants /is > and
dx dy

B5 > such that for all ((Ox,(Oj,) e R^,

As^ Z Iv (2^U;„2^coJI'+ lv"(2^{0;„2^wJI'

IV (2^(0;„2^a)pi' + \\\i (2^a);„2>(0y)l'

(86)

<S5

then for any function h{x,y) g L (R^), the norm defined in (85) is equivalent to the L (R^)

norm \

As ll/ill^ < lll/illl- < B5 II/jII^ . (87)

Similarly to equation (49), we prove this implicalion by applying the Parseval theorem on each

L (R^) norm component of the nonn defined in (85). We saw that the set of functions h{x,y)

whose wavelet transform satisfy the condition (a) is ihc closed affine space /+ O. This minimi-

zation of the norm 111 III over this closed convex has a unique solution, whose computation might
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however not be stable. Like in one dimension, we can prove that the computation of this

minimum is stable, if and only if, the family of functions

2J \V2'U-x,yi-y) .

2J
x^,lj(xi-x,yi-y)\ (88)

0.v)€ZxR

is a frame of the space U that they generate. The factor 2-' normalizes the L (R^) norm of the

functions in this family. The frame condition expresses the equivalence of the L (R^) norm of

any function in U and the sum square of the inner products of this function with each function of

the family (88).

To compute the solution of our minimization problem, we use an alternate projection algo-

8}ix.y),gjix,y)rithm, like in one dimension. Let K the space of all sequences of function

such that

yez

I g](.x,y),gj(.x,y) I < -K»
;eZ

where the norm I I is defined by the expression (85). We define the set F of all sequences of

g] (x,y),gj(x,y) e K, such that for any index J and all maxima position ixi,yi)functions
J ;eZ

g)ixi,yi) = Wijf(xi,yi) and gj(xi,yi) = wlfixlyl) (89)

The set r is an affine space which is closed in K. Let V be the space of dyadic wavelet

transforms of all functions in L (R^). Equation (87) proves that V c K. The sequence of func-

tions that satisfy the condition (a) are the dyadic wavelet transforms that belong to T. These are

the elements ofK that belong to

A = Vnr.

To reconstruct the element of F p| V that minimizes the norm I I , we alternate projections on

r and V, that are orthogonal with respect to the norm I I . Like in one dimension, one can

prove that the orthogonal projection on V is the operator

Pv = WoW-i
,

that was defined in equation (64). The orthogonal projections Pp on T is defined in Appendix 5.

For a discrete image of A'^ pixels, the implementations of both Py and Pp require O^N^ogjiN))

operations. Let P = Py o Pp be the alternate projection on both sets. Since F is an affine space

and V a vector space, it has been proved [32] that for any initial sequence

X = gjix,y),g'j(.x,y) , lim P^"^X converges strongly to the orthogonal projection of X onto
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A = r Pi V. Hence, if we begin the iteration from the zero element of K, the algorithm con-

verges strongly to the element ofA whose norm I I is minimum.

8J2. Numerical Reconstruction of Images from Multiscale Edges

We study the error of the reconstruction algorithm as a function of the number of iterations

on the operator P. At each scale 2^ the SNR integrates the error on the horizontal and the vertical

components of the wavelet transform. Fig. 12(a) gives the evolution of the SNR when recon-

structing the wavelet transform of the Lena image, from the modulus maxima shown in the Fig.

11. After n iterations, we reconstruct an image by applying the inverse wavelet transform opera-

tor on the reconstructed wavelet transform. Fig. 12(b) is the SNR of the reconstructed images,

computed with respect to the original one, as a function of the number of iterations on the opera-

tor P. The graphs of Fig. 12 are very similar to the graphs of Fig. 8 that show the reconstruction

SNR for a one-dimensional signal. The increase is fast during the first 20 iterations and then

slows down. After a given number of iterations. Fig. 12(a) shows that the error is mostly concen-

trated at fine scales. This error has two components. The first one is the distance to the wavelet

transform we converge to and the other one is the distance between the point we converge to and

the wavelet transform of the original image. Like in one dimension, the convergence is exponen-

tial but the convergence rate is very slow. After 20 iterations, the distance between the recon-

structed image and the image we converge to is of the same order as the distance between the ori-

ginal image and the image we converge to. Increasing the number of iterations thus do not

increase much the SNR. The top right image in Fig. 13 is reconstructed with 10 iterations. The

SNR is 28 db. The reconstructed image has no visual difference with the original image shown at

the top left of Fig. 13 which means that the errors are below our visual sensitivity. Qualitatively

the original image is well reproduced because the reconstruction has no spurious oscillation, the

important singularities are well reproduced and the errors are mostly concentrated at fine scales

where our visual sensitivity is not so acute.

The reconstruction algorithm has been tested for a large collection of images including spe-

cial two-dimensional functions such as Diracs, sinusoidal waves, step edges, Brownian noises...

For all these experiments, the SNR behaves similariy to Fig. 12. The visual quality of recon-

structed images, with 10 iterations, is as good as in Fig. 13. For image processing applications,

the numerical precision of this reconstruction algorithm is sufficient, even if we limit the number

of iterations below 10. Since each iterations requires O (N^\og2iN)) computations, this recon-

struction can be implemented in hardware for real time applications. The reconstruction algo-

rithm is stable for precisions of the order of 30 db. We can therefore slightly perturbate the

wavelet transform modulus maxima and reconstruct a close image. The lower left image in Fig.

13 is reconstructed from the modulus maxima shown in the third column of Fig. 11. By
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ihrcsholding the wavelet transform modulus maxima based on their modulus values, we

suppressed the modulus maxima produced by the image noise and the light textures. As

expected, these textures have disappeared in the reconstructed image but the sharp variations are

not affected. In the lady's shoulder, the thresholding removes the maxima created by the image

noise and the reconstructed image reproduces a skin quality which is much smoother, while the

boundaries of the shoulder are kept sharp. This thresholding can be viewed as a non-linear noise

removal technique. Hwang and one of us [23] have developed a more sophisticated procedure to

suppress white noises from images, which removes the maxima produced by the noise through an

analysis of their behavior across scales.

40 —

35 ^

20 H

15^

20 40 60

(b)

SO 100

Fig. 12: (a): Signal to Noise Ratio when reconstructing the wavelet transform components 'W\i^f

and Wif'ffrom the modulus maxima of the Lena image, shown in Fig. 11. The abscissa gives the

number of iterations on the operator P. Each curve is labeled by the scale 2' ,for 1 < y < 6.

(b): SNR of the reconstructed Lena images computed with respect to the original image, as a

function of the number of iterations on the operator P.
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Fig. 13: Top left: original image. Top right: image reconstructedfrom the maxima representation

shown in the second column of Fig. 11. This reconstruction is performed with 10 iterations and

the SNR is 28 db. Lower left: image reconstructedfrom the thresholded modulus maxima shown

in the third column of Fig. 11 , with 10 iterations on the operator P.
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9. Compact Image Coding from Multiscale Edges

An important problem in image processing is to code images with a minimum number of

bits for transmission or storage. To obtain high compression rates in image coding, we cannot

afford to code all the information available in the image. It is necessary to remove part of the

image components that are not important for the visualization. A major problem is to identify the

"important" information that we need to keep. From this point of view, the problems encountered

in compact image coding are similar to computer vision tasks, where one also wants to extract the

"important" information for recognition purposes. Since edges provide meaningful features for

image interpretation, it is natural to represent the image information with an edge based represen-

tation, in order to select the information to be coded. Previous edge coding algorithms have

already been developed by Carlsson [4] and Kunt et. al. [18], but at a single scale. This section

describes a compact coding algorithm based on the wavelet transform modulus maxima. The

coding algorithm involves two steps. First we select the edge points that we consider important

for the visual image quality. This preprocessing is identical to the feature extraction stage of a

pattern recognition algorithm. We then make an efficient coding of this edge information. To

select the "most important" edge curves can require sophisticated algorithms, if we take into

account the image context. For example, in the Lena image, it is important to introduce no distor-

tion around the eyes because these are highly visible for a human observer. In the following, we

do not introduce such context information in the selection.

To code efficiently the edge information, we need to take advantage of the similarities

between edges obtained at different scales. As it can be observed in Fig. 11, the edges of the main

image structures have similar positions at the three finer scales 2', 2^ and 2^. These three finer

scales also carry more than 90% of the image frequency band-width and thus covers most of the

image information. We build our edge encoding from these scales only. The coarse scale infor-

mation, corresponding to the wavelet transform at scales 2-' >2^, is kept as a low frequency

image 523/defined in Section 6.2. The edge selection is first performed at the scale 2^ because at

the finer scale 2' edges are too much contaminated by high frequency noises. The boundaries of

the important coherent structures often generate long edge curves. We thus remove any edge

curve whose length is smaller than a given length threshold. Among the remaining curves, we

select the ones that correspond to the sharpest image variations. This is done by removing the

edge curves along which the average value of the wavelet transform modulus is smaller than a

given amplitude threshold.

Once the selection is done, we must code efficiently the remaining information. This

requires coding the position, modulus value and angle value of each modulus maximum along the

maxima curves, at the scales 2', 2^ and 2^, plus the low frequency image 525/. The geometry of

the edge curves is coded only at the scale 2^ because we consider that the maxima positions are
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the same at the scales 2' and 2^. Maxima chains are coded by recording the position of the first

point of each chain, and then coding the increment between the position of one edge point to the

next one, along the chain. Carlsson [4] showed that this requires on average 10 bits for the first

point and 1.3 bits per point along the chain, with an entropy coding. At each scale, the direction

of the gradient image intensity at the edge locations is approximately orthogonal to the tangent of

the edge curves. We thus do not code the angle values, but approximate each of them by the

orthogonal direction of the edge tangent at the corresponding location. The values of the

modulus along the edge curves at the scales 2', 2^ and 2^, are recorded with a simple predictive

coding using a coarse quantization of the prediction values. In the frequency domain, the image

S23/has an energy mostly concentrated in a domain that is (2^)^ times smaller than the frequency

support of the original image. We thus subsamplc this image along its rows and columns by a

factor 2-', and its grey level values are coded on 6 bits.

We give in Fig. 14(a), 14(b) and 14(c) three examples of images coded with this algorithm.

The same length and amplitude thresholds were used for each of these images to select the edge

chains at the scale 2^. For each example, wc display at the top left the original image, at the top

right the image reconstructed from the coded rcprcscnialion, at the bottom right the edge map at

the scale 2^ that is encoded and at the bottom left the subsampling of the low-frequency image

52'/. Each original image has 256 by 256 pixels. The total amount of data to code the recon-

structed images are: 0.30 bits per pixels for Fig. 14(a), 0.24 bits per pixel for Fig. 14(b) and 0.19

bits per pixel for Fig. 14(c). The compression rate varies with the number of edge pwints that

remain after the selection operation. This type of coding removes the image textures, however it

does not produce distortions such as Gibbs phenomena. For the Lena image, errors are particu-

larly visible around the eyes because too much edge points have been removed in this region by

our simple selection algorithm. Although a lot of details have been removed in the coded images,

they remain sharp and most of the information is licpi.

This compact coding algorithm is a Icasibility study and it can certainly be improved both

at the selection and the coding stages. For applications to images where textures are important,

Froment and one of us [11] have extended the mciliod by developing an algorithm that makes a

specific coding of textures after this edge based coding. Distortions of textures are generally

much less visible than distortion of edges and a separate coding of these two types of features can

be adapted to the specificity of the visual perception. High compression rates are also obtained

without a complete removal of textures contrari!\ to the coded images in Fig. 14.
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(0

Fig. 14: Top left: original image of 256 by 256 pixels. Top right: reconstructed image from the

coded multiscale edge representation. Image (a) requires 0.30 bits per pixel, image (b) 0.24 bits

per pixel and image (c) 0.19 bits per pixel. Bottom left: image Si^f subsampled by a factor 2^

along its rows and columns. Bottom right: position of the modulus maxima selected and encoded

at the scales 2'
,
2^ and 2^

.
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10. Conclusion

We showed that multiscale edges can be detected and characterized from the local maxima

of a wavelet transform. One can estimate the Lipschitz regularity as well as the smoothing com-

ponent of sharp variation points from the evolution of the wavelet maxima across scales. We

believe that this complement of information is important for pattern recognition algorithms based

on edges.

The reconstruction algorithms that are described in one and two dimensions recover a close

approximation of the original signals. For images, the reconstruction errors are below our visual

sensitivity and can thus be neglected in image processing or computer vision applications. To

reconstruct such signals requires few iterations which can be implemented in real time on a pipe-

line hardware architecture. The stability and approximation range of the reconstruction algorithm

are open mathematical problems. As an application, we described a compact image coding pro-

cedure that selects the important visual information before coding. The compression rates are

between 30 and 40 in the examples that are shown, but most of the light image textures are not

coded. A double layer coding based on multiscale edges and textures has recently been

developed by Froment and one of us ( 1 1 ].
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Appendix 1

A Particular Qass of One-Dimensional Wavelets

This appendix defines a class of wavelets that can be used for a fast implementation of

discrete algorithms. To compute the wavelet transform with cascade of discrete convolutions, we

define a wavelet \\i(x) which can be factorized into convolutions of discrete filters. The same idea

was used to build orthogonal wavelets [21]. The fast discrete wavelet transform algorithm is

described in Appendix 2. We first define the smoothing function ^(x) introduced in Section 3.2

then we build the wavelet \\i(x) and the reconstructing function xix) that satisfies equation (12).

We impose that the Fourier transform of the smoothing function ^(x) defined by equation

(21) can be written as an infinite product

^(w) = e-"^" n H{2-Pu>)
, (90)

p=i

where //(CO) is a 2n periodic function such that

l//(co)l^ + l//(o>f7t)l^ < 1 and I// (0)1 = 1 . (91)

One can prove [21] that equation (90) defines the Fourier transform of a function <t)(x) which is in

L (R). The parameter w is the sampling shift that was introduced in Section 3.2. It is adjusted in

order to obtain a smoothing function (j)(;c) which is symmetrical with respect to 0. Equation (90)

implies that

^(2(0) = e-'""//(co)$(co) . (92)

We define a wavelet v(x) whose Fourier transform \j/(co) is given by

y(2a)) = e-'""G(co)$(o)) . (93)

where G (co) is a 27: periodic function. Let x(w) be a function that satisfies

V(2co)x(2a)) = l$(a))l'- l$(2co)l^ (94)

One can prove that if I ({)(0)) I converges to ai innniiy and to 1 when O) goes to 0, then equation

(12) is also valid which means that x(^) is a reconstructing wavelet with respect to \\f(,x). If //(co)

is differentiable at (0 = then l<()((i))l does converge to 1 when co goes to [21]. Let us suppose

that x(w) can be written

X(2co) = e''^'"/r(co)^(co) . (95)

where /w (co) is a 2k periodic function. Substituting equations (92), (93) and (95) in equation (94)

yields

l//(co)l^ + G(co)/ir(w) = 1 . (96)
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This equation on K{(Si) is necessary and sufficient so that the function x(w) defined by equation

(95) is a reconstructing wavelet.

We want a wavelet -^{x) equal to the first order derivative of a smoothing function 0(x).

This implies that v((o) must have a zero of order 1 at 0) = 0. Since l<t)(0)l = 1, equation (93)

yields that G(to) must have a zero of order 1 at (o = 0. We choose //(o)) in order to obtain a

wavelet \f{x) which is antisymmetrical, as regular as possible and with a small compact support.

A family of 2;c periodic functions //(co), G((o) and /^'(co) that satisfy these constraints is given by

//(CO) = e"-'2 cos(o)/2)
2/1+1

G((0) = 4 / e""'2 sin(co/2) ,

a: (CO) =

From equation (90) and (93) we derive

^((0) =

\J/((0) = /CO

1- l//(CO)l'

G(co)

(97)

(98)

(99)

sin(co/2)

0)/2

sin(a)/4)

CO/4

2n+\

2n+2

(100)

(101)

The Fourier transform 9(co) of the primitive is therefore

sin(co/4)
e(co) =

CO/4

2n+2

(102)

In the example of Fig. 3, we chose 2n+l = 3. In order to have a wavelet antisymmetrical with

respect to and ^{x) symmetrical with respect to 0, the shifting constant w of equation (92) is

equal to 1/2. Equations (101) proves that V|/(x) is a quadratic spline with compact support where

as Q{x) is a cubic spline whose integral is equal to 1. The 27i periodic function //(w), G(co) and

^(co) can be viewed as the transfer function of discrete filters with finite impulse response. The

corresponding impulse responses are given by Table 1. These filters are used in fast wavelet

transform computations.
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n
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The proof of this algorithm is based on the properties of the wavelet \^(x) described in

Appendix 1. At each scale 2-', we divide the values of the samples oi Syf* Gj by Xj to obtain

accurate measures of Lipschitz exponents from the wavelet maxima. Due to discretization, the

wavelet modulus maxima of a step edge do not have the same amplitude at all scales, as they

should in a continuous model. The constants Xj guarantees that values of the maxima modulus

remain constant at all scales, for a step edge. This enhance the accuracy of the measurement of

the Lipschitz regularity for all types of singularities. The values of Xj are given in Table 2 for the

quadratic spline wavelet The border problems are treated by making symmetry and a periodiza-

tion of Sif(n)
l^iN

, as explained in Section 3.2. The convolutions must take into account

this periodization. The complexity of this discrete wavelet transform algorithm is O {N log (N)),

and the complexity constant is proportional to the number of non-zero coefficients in the impulse

response of the filters H and G.

The inverse wavelet transform algorithm reconstructs 5f/ from the discrete dyadic wavelet

transform. At each scale 2-', it reconstructs Si'-^f from Si'f and Wyf. The complexity of this

reconstruction algorithm is also 0(N log(N)).

J = J

while (j > 0)

Si,-^f = Xj . Wi>f*Kj., + Siif*Hj_,

end ofwhile

j
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Appendix 3

A Particular Class of Two-Dimensional Dyadic Wavelets

In this appendix we characterize the two-dimensional wavelets used for numerical computa-

tions. The two wavelets

Vix^y) = W)^(y) and \\i^(x,y) = ^(x)\if(y) (103)

are defined from a one-dimensional wavelet V|/(x) that belongs to the class described in Appendix

1 and whose Fourier transform is defined by

\If(2co) = e-'"'"G((o)^o(w) with ^o(w) = e"'*" fl ^(^-^co) . (104)

We impose that the smoothing function ^(x,y) of Section 6.2 can be written

(^(x,y) = ^oix) (^o(y) .

X (tOx.cOy) and % ((«>i.Wy) such that

where the Fourier transform of ^o{x) is given by equation (104). Let us now find two functions

i;c,(Oy) such that

l^((0j,(0y)l^ - l^(20);t,2C0y)l^ =
M -1 -2 -2 (105)
\|/ (2cO;j.2cOy) X (2cO;t,2Uy) + \\i {2(o^,2(xiy) % (2a);,.2(Oy) .

One can prove that if l(t)(C0;(,(0j,)l converges to at infinity and to 1 when (co^.tOy) converges to

(0,0) then the functions x^(^^i<(^) and X^(Wi,C0y) satisfy the admissibility condition (61) of

reconstructing wavelets. Let us impose that the smoothing function ^(x) that defines the two

wavelets ^\x,y) and \\P'(.x,y) in equation (103) is i,(x) = 2 ^o(2x). Equations (103) and (104)

imply that the Fourier transform of the two wavelets \\i^(x,y) and '<^(.x,y) are given by

\|i' (2co^,2cay) = e"'*'"' G (CO;^) ^o(Wx) 0o(w>) and (106)

\\f^{2(ii„2aiy) = ^o(coJ e"'"'^ G (co^) ^o(Wy) •

The functions % (W;,,tay) and x (co^t.Wy) that satisfy equation (105) can be wntten

X (2(o„2(o,) = e'"'"'A:(ayL(cOy)^(coJ$((Oy) ,

i\2cO;,.2cOy) = e'*'^A:((Oy)L(coJ^(oi;,)^((Oy) .

The fonctions K((i)) and L((o) are 2k periodic and satisfy

G{(i))Ki(a) + I// (CO) 1 2 = 1 ,
(107)

Z.(co) = _L±i^
. (108)

If we could choose G(co) = /co, then y' {x,y) and \^{x,y) would be the partial derivatives along x
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and y of Q{x,y) = ^ <!)(2x) ^{2y). For discrete implementations, we must choose a function G(co)

which is 2k periodic. Like in Appendix 1, we choose G(a)) = 4 / e'"'^ sin((0/2) to approximate a

derivative. The two-dimensional wavelets used in the computations of this article are derived

from the one-dimensional quadratic spline wavelet shown in Fig. 3. The values of the discrete

filters H, G and K are given by Table 1 . Table 3 gives the finite impulse response corresponding

to the transfer function L (co).

n
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Each function hjix) is chosen so that

I lle.ll' + 2^J
II^ II

2

djc

(109)

is minimum. To minimize this sum, we minimize separately each component

dz
II e, II

^ + 2^n\—^\\^ .

•' dx

Let xo and x\ be the abscissa of two consecutive modulus maxima of Wf2j(.x). Since

hj(x) r, we have
jeZ

EyC^o) = WyfiXo) " gj(Xo)

EjixO = WyfixO - gjixO .

(110)

Between the abscissa Xq and X] , the minimization of (109) is equivalent to the minimization of

1

- - d£,(x) ,
\eiix)\^+2^J I

^
1^

* dx
dx . (Ill)

The Euler equation associated with this minimization is

- d'^t.ix)
tjix) - 2^'—^ = .

dx'
(112)

for X G ]xq,x
1 [. The constraints (110) are the border conditions of this membrane equation. The

solution is

e/x) = ae"' + pe--"'' . (113)

where the constants a and P are adjusted to satisfy equations (110).

In numerical computations. W2'/is a uniform sampling of Wi'fix) at the rate 1 and has a

total of N samples. At each scale 2', the operator Pp modifies a discrete signal

i1- gj(n)
1 Sn ^N

that is computed from equa-by adding a discrete signal ef = e,(/i)

lion (113), between two consecutive modulus maxima. This requires 0(N) computations. Since

there are at most log2(A')+l scales, the total number of computations to implement Pp is

0(Nlog2m).

We know that the modulus maxima of the original wavelet transform are only located at the

positions xi. We can thus also impose sign constraints in order to suppress any spurious oscilla-

tion in the reconstructed wavelet transform. This is done by imposing that the solution belongs to

an appropriate convex set Y. Let sign{x) be the sign of the real number x. Let Y be the set of

sequences 8j(x)
J€Z

e K such that for any pair of consecutive maxima positions {xi„xi,^i ) and
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xe [xi,xU\],

sign{gj{x)) = signixi,) if sign (4) = sign (xi+i

)

dgjix)
signi-

dx
-) = signixi+i -xi) if sign (,x{) ?t sign (xUi

)

The setY is a closed convex and Wyf
y€Z

Y. Instead of minimizing I I over F p, V as

explained in Section 5.2, we can minimize it over Y p^ F p^ V. We thus alternate projections

on Y, r and V. To compute the orthogonal projection on the convex Y we need to solve an

elastic membrane problem under constraints. This can be done with an iterative algorithm that is

computationally intensive. Instead, we implement a simpler projector Py on Y which is not

orthogonal with respect to the norm I I Let gjix) K and
J jeZ

gjix)
>eZ

hj{x) . For each index y, hjix) is obtained by clipping the oscillations of
>eZ

gjix) as illustrated in Fig. 15. If the original signal has N samples, at each scale 2-' the discrete

implementation of this clipping procedure requires OiN) computations. The total number of

computations to implement Py is thus OiN logaCA')). Since this projector Py is not orthogonal,

the iteration on the alternate projection operator P = Py o Pf o Py is not guaranteed to converge.

Numerical experiments shows that in most cases, after a few iterations we stay inside Y, even

after projections on T and V. Hence, the operator Py acts as the identity operator and P can be

rewritten P = Pv o Pp. The analysis of Section 5.2 proves that we are then guaranteed to con-

verge strongly to an element in Y p Fp V.
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gj(x)

h/x)

Fig. 15: The projector Py is defined by clipping the function gj(x) so that the resulting function

hjix) has a constant sign between two consecutive modulus maxima or its derivative has a con-

stant sign.

In two dimensions, the operator Pj- transforms a sequence g](x,y),gj(x,y) e K into

the closest sequence h]{x,y),hjix,y) r. Let e){x,y),ej(x,y) be such that for any

yeZ, e]ix,y) = g]ix,y)-h]{x,y) and ejix,y) = gj{x,y)- hjix,y). The sequence

h]{x,yUJ(x,y)
;eZ

is chosen so that

I e! II 2 + II e; II 2 + 2^J
( II
—^ II

^ + II V" H ^)

dy
(114)

is minimum. The constraints on tj(x,y) and e^Cxy) are independent. The minimization of equa-

tion (114) is obtained by minimizing each component

and

3e'
I e! II 2 + 2^J

II^ II

2

ax

J III

(115)

II eh\^ + 1^!
II
—

^

dy

for all integer } e Z. Let us concentrate on the minimization of equation (1 15). Let (xQ,y) and
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(x\,y) be two consecutive modulus maxima position at a fixed y. The function e](x,y) must

satisfy

ejC^o.j) = wy(xo,y) - g)(xQ,y)

ejCxi.y) = wy(xi,y) - g)ixi,yy

The minimization of equation (115) subject to these constraints is obtained by minimizing

(116)

J
'0 L

, , _. dc](x,y) ,
\e](x,y)\^ +2^J

I
^^ 1^

* dx
dx . (117)

For y fixed, we obtain a one-dimensional minimization problem which is identical the minimiza-

tion of the expression (111). The solution is a sum of two exponentials like in equation (113).

This analysis shows that the solution of the two-dimensional minimization problem is obtained

by fixing the parameter y for e](x,>') and computing the one-dimensional solution along the x

variable, between two consecutive modulus maxima. The same analysis can be performed on the

other component ej(,x,y). The discrete implementation is thus a straight forward extension of the

one-dimensional algorithm that is applied along the rows and columns of the images that belong

to the sequence that we project on T. One can verify that if the original image has A^^ pixels, the

implementation of Pp requires 0(N^ log(N)) computations. In two dimensions we do not intro-

duce any sign constraint as it is done in one-dimensional reconstructions.

Appendix 6

Convergence Rate of the Alternate Projection Algorithm

We prove that if Vp^ \\i2i{xi-x) is a frame of U then the alternate projection con-

verges exponentially and we give a lower bound of the convergence rate. We first prove that

there exists constant C > such that for any element X =

2

Wygix)

2

;eZ

I X - PrX I >c\x-Pj,x\ . (118)

Let Ejixi,) = Wyfixi,) - Wjigixi,) be the error at each modulus maxima location. We first prove

that there exists two constants C
i
> and C2 > such that

2

(".;)ez'

(119)

and



(1.7)6 Z^

Let us begin with equation (119). Let

ej(x) = hj(x) - Wygix). By definition

hj(x) = Pr
jeZ

Wygix)
;eZ

I X - PrX I =1 Ejix) = y II e, II
^ + 2^J

II -r- II

2

ieZ iZL dx
I
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(120)

= PpX and

(121)

Hence,

J
le/x)|2(ic + 2^^

J
1-^^^

—

\^dx

xi
dx

(122)

We saw in Appendix 5 that Zj(x) satisfies the differential equation (112), so by integrating by

parts we obtain

(n.J)eZK d^ ^ dx
(123)

The derivative at x^+i is the left derivative whereas the derivative at x^ is the right derivative.

We know that the ftinction Zj{x) is the sum of two exponentials given by equation (1 13) between

any two consecutive modulus maxima located at x^ and xi+i . If we replace the constants a and p

by their values specified by Zj{xi,) and e;(A:i+i ), with a few algebraic manipulations we derive

that

,. . tfe,(aci+i) .. . dZi{x{)
22v ZjixU )

'\ - 1^' eM) -^^ >
dx ^ dx

V— ( I e,(A:i^, )
1 2 + I e^.(xi) 1 2) MinQT' (xU -xi) . 1.)

.

(124)

Since we suppose that there exists a constant D > such that 2 '
I xi - xi.i I > D < 1 , we obtain

2

(125)
^ ('..y>Z^

which proves equation (1 19) for C
i
= — . Let us now prove equation (120). The element X is the

dyadic wavelet transform of the function g (x). Let U and O be the spaces defined in Section 5.2.

The function g (x) can be decomposed into

gix) = gi(x) + g2(.x), (126)

with g\(x)e. U and g2(x) e O. The original function / (x) can also be decomposed into

f(x)=fi(x)+f2(x), (127)
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with /i (x) G U and fzix) g O. Let us now define the function

hix)=Mx) + g2(x) .

Since h(x)=f(x) + uix), with uix) e O, we know from equation (46) that h(x) satisfies the

constraint (a) and thus that Wyhix)
J€Z

G r. We also have h{x)-g ix)=fi ix)-gi (x) g U.

Since we suppose that ^2^ \u-!j(xi-x) is a frame of U, equation (53) implies that

II hix)-g(x)\\^ < ^ X 2^ I <h (xyg (X).V2>(4-a:)> I ^ .

r, we have W2ih(xi) = W2y/(j:i) and thus

(128)

Since W2ih(x)
>€Z

<h (xyg (X) , \|/2>(4-x)> = W2jfU) - W2Jg(xi) = Ejixi,)

From the norm equivalence of equation (49), we can also derive that

I |'w2^/i(x)l -\w2Jg(x)\ I < B2\\hix)-g(x)\\^
I J jeZ < J jeZ

(129)

(130)

Since the projector P^ is orthogonal and [Wyhix)
L J jeZ

Wygix) -P.
>eZ

Wygix)
>eZ

I . I Wvgix)
;eZ

W2ih(x)
>€Z

I .(131)

Equation (128). (129). (130) and (131) imply that

I [Wygix) -P.
yez

W2'g{x)

B:

I < -^ X 2^ le,(xi)l' (132)

This proves equation (120) for C2 =
• From equation (125) and (132), we then derive that

^3

Ix-PrXl >^ Ix-P^xl (133)

This inequality gives a lower bound for the "angle" between the affine space T and the space V.

Let P = Pv o Pr be the alternate projection on both spaces. A classical result on alternate projec-

tions [32] enables us to derive that for any element X g K there exists a constant R such that

I PaX - P^^^X I < R (l-^r^)"'^
2^2

(134)

This proves that the algorithm converges exponentially with a convergence rate larger than

DA
"-liT^

3 N-1/2
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