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Separability of Spatiotemporal Spectra
of Image Sequences

Summary

We calculated the Spatiotemporal power spectrum of 14 image sequences in order to determine the

degree to which the spectra are separable in space and time, and to assess the validity of the

commonly used exponential correlation model found in the literature. We expand the spectrum by

a Singular Value Decomposition into a sum of separable terms and define an index of

Spatiotemporal separability as the fraction of the signal energy that can be represented by the first

(largest) separable term. All spectra were found to be highly separable with an index of

separability above 0.98. The power spectra of the sequences were well fit by a separable model of

the form:

f2)

where k is radial spatial frequency, f is temporal frequency, and a,b are spatial and temporal model

parameters which determine the effective Spatiotemporal bandwidth of the signal. This power

spectrum model corresponds to a product of exponential autocorrelation functions separable in

space and time.

introduction

The statistics of images and image sequences have been extensively studied for image

coding and compression applications [1,2], as well as for the development of models of biological

image processing [3, 4]. An exponential autocorrelation function has been shown to be a good

model for temporal frame to frame correlations of image sequences [e.g., 5, 6, 7, 8], and for

spatial correlations within each frame [e.g., 2, 3, 9].

This paper focuses on the separability of the Spatiotemporal statistics of image sequences

and on the validity of using a separable exponential autocorrelation model for the Spatiotemporal



statistics. The autocorrelation function is uniquely related to the power spectrum via a Fourier

transform, and either is valid as a description of the statistics.

The spectra of 14 image sequences were calculated. The sequences represented a small

ensemble of possible motion activity. The sequences were selected for a range of motion activity.

For example, a fast camera pan represents the maximum image motion activity and a small moving

object with a static background represents the least activity. Sequences with motion activity

between these extremes had slight camera motion and some object motion.

Calculation of Image Statistics

We collected 14 image sequences (256x256x64 @ 8 bits/pixel, 30 frames/second with no

scene cuts) from a video disc which contained scenes from a broadcast TV source. Each frame

was originally sampled at 512x512 pixels/screen, but adjacent pixels were averaged, and the image

was subsampled to 256x256 pixels/screen. The sample mean of each sequence was removed to

reduce low frequency bias in the calculations.

The sample power spectrum, P(ki,k2,f) of each sequence, x(ni,n2,t), is the squared

magnitude of the Discrete Fourier Transform, calculated as

P(ki,k2,f) =
1

256-256-64

255 255 63

x(ni,n2,t)e-J23l(kini+k2n2+ft)
2

(1)

where ki,k2 are spatial frequencies, f is temporal frequency, ni,n2 are spatial locations, and t is

time measured in frame number.

We converted the two spatial frequency dimensions, ki and k2, into one radial frequency

dimension, k, by averaging in 32 annuli around the spatial frequency origin as illustrated in

Fig. 1. In this manner, the spatial frequency range of 0-127 cycles/screen of ki and k2 is

represented by 32 annuli in bands of 4 cycles/screen. Averaging the spatial spectra in annuli is

equivalent to assuming a circularly symmetric spatial autocorrelation function. This autocorrelation

function is not separable in the two spatial dimensions, but is considered a better fit than the

corresponding separable autocorrelation function for most images [9].

Figure 1 near here



The average magnitude of the power spectrum in each annulus can be obtained by summing over

the power spectrum, P(ki,k2,f), in the annulus indexed by k and normalizing by the number of

sample points, A(k), within each annulus

k22 < (k+4)2

2 P<k l 'k 2 ' f) k = 0,4,8, ...124 (2)
+ lc2

2 * k2

where

kj2 + k22 < ( k + 4 ) 2

A(k) ^ l k = °'4'8' - 124 (3>
k2

The resulting 14 sample spectra were described in terms of a 33 (temporal frequency) x 32 (spatial

frequency) matrix, P, with the spatial frequency axis ranging from 0-127 cycles/screen in steps

representing bands of 4 cycles/screen, and the temporal frequency axis ranging from 0-15 Hz in

steps of 15/32 Hz each.

Models of space-time statistics

The most commonly used statistical model for intraframe correlations and frame to frame

correlations is an exponential correlation model in both space and time,

R(v) = c-M (4)

where v represents a two-dimensional spatial lag, T represents temporal lags, and a,b are spatial

and temporal parameters. A separable formulation for the spatiotemporal correlation of image

sequences is found as a product of (4) and (5). An equivalent description of the statistics is the

power spectrum, which for the exponential correlation function of Eqs. 4 and 5 would be

S(k) = „ ,„ k*0 (6)V '
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T(f) = - —^ - - - o o < f < o o (7)
' 2 + f2

where k is radial spatial frequency, f is temporal frequency, and a is a spatial parameter with units

of cycles/screen, and b is a temporal parameter with units of Hertz. The parameters a and b

describe the effective spatial and temporal bandwidth of the signal. A spatial power spectrum

(Eq. 6) has 85% of its power in the frequency band k s a. The temporal power spectrum (7) has

90% of its power in the band f ^ |6|. A separable spatiotemporal power spectrum is formed as the

product of Eqs. (6) and (7).

((a/2*)2 + k2)3/2((6/2;i)2 + f2)

Singular Value Decomposition and Index of Separability

A space-time separable spectrum is modeled as the product of a spatial and temporal

spectrum (as in Eq. 8). In this section we define an index of separability for an arbitrary spectrum,

P(k,f), based on a Singular Value Decomposition.

Any m x n matrix, D, with m £ n may be expanded into a sum of terms by a Singular

Value Decomposition [10, 11],

where

\l 2: X-2 ^ ... Xn are the real non-negative eigenvalues of the n-th order symmetric matrix S =

DTD. ui, 02, ...un are normalized, orthogonal row eigenvectors associated with the

corresponding eigenvalues Xi & \2 * — ̂ n °f S. vj, \2, ...vn are normalized, orthogonal

column eigenvectors associated with the corresponding eigenvalues Xi a X.2 2 ... Xj, of the m-th

order symmetric matrix Q = DDT, where Q can have a maximum of n nonzero eigenvalues which

are the same as those of S. In the case of duplicate eigenvalues, an orthonormal combination of

eigenvalues can be selected.

Approximating D by the first term of the decomposition,



D1 = vTivmi , (10)

gives the minimum mean squared error separable approximation to D, where the mean squared

error is

n in
— X* \* (H H'^

^^^ ^^^ J

where dy and dy1 are the elements of D and D1 respectively. Noting that

n m n

V V A2\ > d .. =L L u

and

n m

E V< j t2 ^\

• ! ?! *

the mean square error between the approximate matrix D' and the true matrix D is determined by

the eigenvalues as,

e = \2 + ̂ 3 + - ^n- (13)

We define an index of separability, a, as the relative energy share of D1,

+ •••
(14)

Since Xi a \2 * — Xn ^ 0, a will range from 1/n for the most inseparable spectrum to 1 for a

completely separable spectrum. The eigenvalues represent the energy carried by each term of the

expansion in Eq. 9. The index of separability, a, is simply the fraction of the total energy carried

by the first and largest term in the expansion, the term which constitutes the best separable

approximation.

We applied the Singular Value Decomposition to the spatiotemporal spectra by considering

each spectrum as a matrix P of dimension 33x32. As shown in Eq. 9, P can be expanded as



32

where s; are now orthonormal row vectors representing spatial spectra and tj are orthonormal

columns vectors representing temporal spectra in each term of the sum. A separable approximation

of the form

P' = vTitjsi (16)

exists where si and t\ represent the spatial and temporal components of the separable

approximation. The normalized energy share of this term is a, the index of separability.

Examination of a for the spatiotemporal spectra of the 14 image sequences (Table 1) shows that

for 13 out of the 14 sequences, a > 0.993, which constitutes a high degree of separability [10].

Though for one sequence, the separability was low (a = 0.982). This suggests that a space-time

separable model, such as Eq. 8, may adequately describe the spatiotemporal spectrum of image

sequences since the assumption of separability is valid. The extraction of nearly all the energy with

the separable term is also significant for perceptual reasons since small fractions of image energy

can markedly affect the perception of some images [12].

Calculation of Model Parameters

Since the spatiotemporal spectra of the image sequence, P, are all highly separable, we

need only determine whether the model of Eq. 8 adequately characterizes the frequency distribution

of the spectra and find the spatial and temporal parameters a and b. This will determine whether

the commonly used model defined by a separable exponential autocorrelation in space and time is

satisfactory.

We find the model parameters a and b by minimizing the mean squared error between the

actual signal spectra, P, of Eq. 2, and the analytical separable model of Eq. 8.

min[ (P-P(k,f))2] (17)

The optimal parameters a,b for each of the sequences were calculated using the Nelder-Meade

simplex algorithm [13]. The mean squared error between the analytical separable model (8) and

the true spectrum, expressed as a percentage of the average squared power of the spectrum is small



(0.03% < mse < 4.7%) and is given in Table 1. The parameters a and b determine the effective

bandwidth for the spatiotemporal power spectrum. Fig. 2 illustrates the relationship between the

parameters a and b for all 14 sequences, and thus the simultaneous spatial and temporal

bandwidths. All of the pairs of a and b are located within a well defined range for this ensemble

such that no sequence contains both high spatial and high temporal frequencies.

Figure 2 near here

The separable kernel in the model of Eq. 8 is based on theoretical considerations, mainly

statistical properties of Markov processes as models for image signals. It is interesting to

investigate how this theoretical separable model captures the functional shape of the spectra in

spatial and temporal frequency compared to the empirically derived separable kernels derived by

the Singular Value Decomposition. The empirically derived kernels are not constrained by a

predetermined functional shape as is the theoretical model. We compare the spatial and temporal

components of the analytical separable model to the corresponding components of the separable

approximation (Eq. 16). Four examples are shown in Figures 3 and 4. The model provides a

good fit for the sample signal spectra in all frequency ranges. (Note that the ordinate scale is

logarithmic, so the contribution to the mean squared error is small at high frequencies.) This

finding is consistent with the applicability of the models of Eqs. 6 and 7 in earlier studies of spatial

and temporal statistics [2, 5, 7, 8, 9].

Figures 3 and 4 near here

Discussion

We calculated the spatiotemporal power spectra of 14 image sequences to investigate

whether these spectra are separable in space and time. Using a newly defined index of

separability, we show that a separable approximation for the spectra derived from the Singular

Value Decomposition extracts over 98% of the signal energy (Table 1). We also investigated

whether the space-time separable exponential model commonly used in the literature provides a

reasonable description of the statistics of image sequences. This exponential model is equivalent to

the space-time separable power spectrum model of Eq. 8. We show that this model provides a

good analytical description of the spectrum of image sequences.

For this ensemble of image sequences, no sequence possessed both high spatial and high

temporal frequencies (Fig. 2). This property may be a result of spatial blurring caused by motion.



If so, it is not an inherent property of the image sequence, but rather caused by the low pass

temporal filtering of the camera. The visual system also temporally low pass filters images (mainly

due to photoreceptor integration time), so this property holds true for a signal perceived by the

visual system as well. This limitation on signal spatiotemporal bandwidth may be useful for

perceptually based image coding and processing applications [14].

Applications of the model to image processing accrues both the advantages and limitations

of using autocorrelation and power spectrum methods. As descriptions of images, the

autocorrelation and power spectra are global in the sense that they represent a calculation averaged

over the entire image or image sequence. This averaging does not retain the phase spectrum of

images and removes local nonstationarities and hence specific local details of images. Also, the

separable model may not apply to local sections of image sequences even though the global

spectrum of the sequence is separable. In those cases where the autocorrelation and power

spectrum methods are applicable, the assumption of separability enables considerable mathematical

simplicity. Any methods of image processing developed for spatial only or temporal only

processing using Eq. 6 and 7 can be extended in a straightforward manner to spatiotemporal

processing with Eq. 8.

* Michael P. Eckert was supported by the NASA Graduate Fellowship Program. Partial support

for this paper was provided by grants NSF 8351637 and AFOSR 91-0082.
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Figure Captions:

Figure 1. Conversion from two dimensions of spatial frequency to one dimension of radial spatial

frequency is done by averaging the spectrum in annuli around the spatial frequency

origin. The temporal frequency axis is denoted by /.

Figure 2. Scatter plot of the parameters a and b for all sequences. The parameters a and b are

measures of the effective spatial and temporal bandwidths of the signal spectrum. No

spectrum had both a large spatial and large temporal bandwidth within the spatial and

temporal frequency spans of the sequences.

Figure 3. The magnitude of the spatial component of the spectrum derived by the Singular Value

Decomposition (stars) compared with the analytical model (solid line).

Figure 4. The magnitude of the temporal component of the spectrum derived by the Singular Value

Decomposition (stars) compared with the analytical model (solid line).
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Table 1. Description of image sequences and results of calculations.

Sequence Motion Index of Spatial Temporal
Number Type Separability Parameter Parameter mse (%)

a a b

1 IJ01300 l,a 0.999 14.33 0.59 0.01
2 IJ04454 l,b 0.999 7.54 0.51 0.04
3 IJ10833 2,a 0.993 9.45 1.08 0.09
4 IJ10897 2,a 0.995 9.42 1.30 0.07
5 IJ11907 l,c 0.999 6.91 3.50 4.70
6 IJ12100 l,a 0.999 15.80 0.41 0.03
7 IJ12164 l,b 0.999 13.85 0.92 0.06
8 IJ12426 2,b 0.998 8.10 0.92 0.04
9 IJ14461 3,a 0.998 6.00 4.30 0.70
10 IJ15300 3,b 0.997 8.93 2.99 4.10
11 IJ17830 l,c 0.982 12.30 2.32 0.40
12 IJ07860 l,c 0.993 11.50 1.85 0.60
13 IJ33960 l,a 0.999 10.20 0.24 0.005
14 IJ30229 l,b 0.999 12.40 0.85 0.06

a : Index of separability, unitless (0.982,0.999)
a : Spatial parameter, cycles/screen (6.0,15.80)
b : Temporal parameter, Hertz, (0.24,4.30)

mse : The mean squared error between the actual spectrum and the model with the parameters
a,b of Eq. 8. The mse is expressed as the percentage of the average power of the
sequence.

1. No camera motion
2. Some camera motion
3. Much camera motion
a. Little object motion
b. Some object motion
c. Much object motion
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