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High Confidence Visual Recognition of Persons 
by a Test of Statistical Independence 

John G. Daugman 

Abstruct- A method for rapid visual recognition of personal 
identity is described, based on the failure of a statistical test of 
independence. The most unique phenotypic feature visible in a 
person’s face is the detailed texture of each eye’s iris: An estimate 
of its statistical complexity in a sample of the human population 
reveals variation corresponding to several hundred independent 
degrees-of-freedom. Morphogenetic randomness in the texture 
expressed phenotypically in the iris trabecular meshwork ensures 
that a test of statistical independence on two coded patterns 
originating from different eyes is passed almost certainly, whereas 
the same test is failed almost certainly when the compared codes 
originate from the same eye. The visible texture of a person’s iris 
in a real-time video image is encoded into a compact sequence 
of multi-scale quadrature 2-D Gabor wavelet coefficients, whose 
most-significant bits comprise a 256-byte “iris code.” Statistical 
decision theory generates identification decisions from Exclusive- 
OR comparisons of complete iris codes at the rate of 4000 per 
second, including calculation of decision confidence levels. The 
distributions observed empirically in such comparisons imply 
a theoretical “cross-over” error rate of one in 131000 when a 
decision criterion is adopted that would equalize the false accept 
and false reject error rates. In the typical recognition case, given 
the mean observed degree of iris code agreement, the decision 
confidence levels correspond formally to a conditional false accept 
probability of one in about lo”’. 

Index Terms- Image analysis, statistical pattern recognition, 
biometric identification, statistical decision theory, 2-D Gabor 
filters, wavelets, texture analysis, morphogenesis. 

I. INTRODUCTION 

FFORTS to devise reliable mechanical means for bio- E metric personal identification have a long and colorful 
history. In the Victorian era for example, inspired by the 
birth of criminology and a desire to identify prisoners and 
malefactors, Sir Francis Galton F.R.S. [ 131 proposed various 
biometric indices for facial profiles which he represented 
numerically. Seeking to improve on the system of French 
physician Alphonse Bertillon for classifying convicts into 
one of 81 categories, Galton devised a series of spring- 
loaded “mechanical selectors” for facial measurements and 
established an Anthropometric Laboratory at South Kensing- 
ton [13]. Other biometric identifiers that have been adopted 
historically, ranging from cranial dimensions to digit length, as 
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well as some of the numerous geometric facial measurements 
currently being tried, are described in [17], [25]. 

Today there is renewed interest in reliable, rapid, and 
unintrusive means for automatically recognizing the identity 
of persons. Security breaches in access to restricted areas at 
airports are known to have contributed to terrorism; and credit 
card fraud now costs six billion dollars annually [3]. Other 
applications for high confidence personal identification include 
passport control, bank automatic teller machines, protected 
access to premises or assets, law enforcement, government in- 
telligence, entitlement verification, birth certificates, licenses, 
and any existing use of keys or cards. Some of the identifying 
biometric features now under investigation for potential use 
include hand geometry, blood vessel patterns in the retina 
or hand, fingerprints, voice-prints, and handwritten signature 
dynamics. The critical attributes for any such measure are: the 
number of degrees-of-freedom of variation in the chosen index 
across the human population, since this determines uniqueness; 
its immutability over time and its immunity to intervention; 
and the computational prospects for efficiently encoding and 
reliably recognizing the identifying pattern. 

The possibility that the iris of the eye might be used 
as a kind of optical fingerprint for personal identification 
was suggested originally by ophthalmologists [l], [12], [24], 
who noted from clinical experience that every iris had a 
highly detailed and unique texture, which remained unchanged 
in clinical photographs spanning decades (contrary to the 
occult diagnostic claims of “iridology”). Among the visible 
features in an iris, some of which may be seen in the 
close-up image of Fig. 1, are the trabecular meshwork of 
connective tissue (pectinate ligament), collagenous stromal 
fibres, ciliary processes, contraction furrows, crypts, a ser- 
pentine vasculature, rings, corona, coloration, and freckles 
[l], [ l l ] ,  [12], [24]. The striated trabecular meshwork of 
chromatophore and fibroblast cells creates the predominant 
texture under visible light [24], but all of these sources of radial 
and angular variation taken together constitute a distinctive 
“fingerprint” that can be imaged at some distance from the 
person. Further properties of the iris that enhance its suitability 
for use in automatic identification include 1) its inherent 
isolation and protection from the external environment, being 
an internal organ of the eye, behind the cornea and the aqueous 
humor; 2) the impossibility of surgically modifying it without 
unacceptable risk to vision; and 3) its physiological response 
to light, which provides a natural test against artifice. 

A property the iris shares with fingerprints is the random 
morphogenesis of its minutiae. Because there is no genetic 
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Fig. 1 .  Close-up image illustrating the trabecular meshwork and other fea- 
tures of a human iris. 

penetrance in the expression of this organ beyond its anatom- 
ical form, physiology, color and general appearance, the iris 
texture itself is stochastic or possibly chaotic. Since its detailed 
morphogenesis depends on initial conditions in the embryonic 
mesoderm from which it develops [11], the phenotypic ex- 
pression even of two irises with the same genetic genotype 
(as in identical twins, or the pair possessed by one individual) 
have uncorrelated minutiae. In these respects the uniqueness 
of every iris parallels the uniqueness of every fingerprint, 
common genotype or not. But the iris enjoys further practical 
advantages over fingerprints and other biometrics for purposes 
of automatic recognition, including 4) the ease of registering 
its image at some distance from the Subject without physical 
contact, unintrusively and perhaps inconspicuously; and 5 )  its 
intrinsic polar geometry, which imparts a natural coordinate 
system and an origin of coordinates. 

Unknown until the present work was whether mathemat- 
ically there were sufficient degrees-of-freedom, or forms of 
variation in the iris among individuals, to impart to it the 
same singularity as a conventional fingerprint. Also uncertain 
was whether efficient algorithms could be developed to extract 
a detailed iris description reliably from a live video image, 
generate a compact code for the iris (of minuscule length 
compared with image data size), and render a decision about 
individual identity with high statistical confidence, all within 
less than one second of computation time on a general- 
purpose microprocessor. The present report resolves all of 
these questions affirmatively and describes a working system. 

11. IMAGE ANALYSIS 

A.  Operators for Locating an Iris 

Iris analysis begins with reliable means for establishing 
whether an iris is visible in the video image, and then precisely 

locating its inner and outer boundaries (pupil and limbus). 
Because of the felicitous circular geometry of the iris, these 
tasks can be accomplished for a raw input image 1 ( x , y )  by 
integrodifferential operators that search over the image domain 
( f r .  y) for the maximum in the blurred partial derivative, with 
respect to increasing radius T ,  of the normalized conto 
integral of I(.rl y) along a circular arc ds of radius T ai 
center coordinates ( T O .  yo): 

where * denotes convolution and G,(r) is a smoothii 
function such as a Gaussian of scale o. The complete operator 
behaves in effect as a circular edge detector, blurred at a scale 
set by o, that searches iteratively for a maximum contour 
integral derivative with increasing radius at successively finer 
scales of analysis through the three parameter space of center 
coordinates and radius ( T O ,  yo, T )  defining the path of contour 
integration. 

At first the blurring factor o is set for a coarse scale of 
analysis so that only the very pronounced circular transition 
from iris to (white) sclera is detected. Then after this strong 
circular boundary is more precisely estimated, a second search 
begins within the confined central interior of the located iris for 
the fainter pupillary boundary, using a finer convolution scale 
o and a smaller search range defining the paths ( z ~ , y ~ . r )  of 
contour integration. In the initial search for the outer bounds of 
the iris, the angular arc of contour integration ds is restricted 
in range to two opposing 90" cones centered on the horizontal 
meridian, since eyelids generally obscure the upper and lower 
limbus of the iris. Then in the subsequent interior search for 
the pupillary boundary, the arc of contour integration ds in 
operator (1) is restricted to the upper 270" in order to avoid 
the corneal specular reflection that is usually superimposed in 
the lower 90" cone of the iris from the illuminator located 
below the video camera. Taking the absolute value in (1) is 
not required when the operator is used first to locate the outer 
boundary of the iris, since the sclera is always lighter than 
the iris and so the smoothed partial derivative with increasing 
radius near the limbus is always positive. However, the pupil 
is not always darker than the iris, as in persons with normal 
early cataract or significant back-scattered light from the lens 
and vitreous humor; applying the absolute value in (1) makes 
the operator a good circular edge-finder regardless of such 
polarity-reversing conditions. With o automatically tailored to 
the stage of search for both the pupil and limbus, and by 
making it correspondingly finer in successive iterations, the 
operator defined in (1) has proven to be virtually infallible 
in locating the visible inner and outer annular boundaries of 
irises. 

For rapid discrete implementation of the integrodifferential 
operator in (l), it is more efficient to interchange the order 
of convolution and differentiation and to concatenate them, 
before computing the discrete convolution of the resulting 
operator with the discrete series of undersampled sums of 
pixels along circular contours of increasing radius. Using the 
finite difference approximation to the derivative for a discrete 
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series in n,  

1 1 -- - G:)(n) = -GG,(nAr) - -GG,((n - l )Ar ) ,  
dr  Ar A r  

( 2 )  _ I  

where Ar is a small increment in radius, and replacing the 
convolution and contour integrals with sums, we can derive 
through these manipulations an efficient discrete operator (see 
( 3 )  at the bottom of the page) for finding the inner and outer 
boundaries of an iris where A0 is the angular sampling interval 
along the circular arcs, over which the summed I ( z ,  y)  pixel 
intensities represent the contour integrals expressed in (1). 

A nonlinear enhancement of this operator makes it more 
robust for detecting the inner boundary of the iris. Because 
the circular edge that defines the pupillary boundary is often 
very faint, especially in dark-eyed persons, it is advantageous 
to divide each term in the convolution summation over k 
in (3) by a further contour integral around a smaller radius 
( k  - 2)Ar. This divisor becomes very small and stable as the 
parameters (nAr, 20, yo) of contour integration become well- 
matched to the true location and size of the pupil, and this 
helps the resulting sum of ratio terms (see (4) at the bottom 
of the page) to achieve a distinctive maximum that reliably 
locates the pupillary boundary. In essence, dividing by the 
second contour integral exploits the fact that the interior of the 
pupil is generally both homogeneous and dark. This creates a 
suddenly very small divisor when the parameters (nAr, 5 0 ,  yo) 
are optimal for the true pupil, thus producing a sharp maximum 
in the overall search operator (4). 

Using multigrid search with gradient ascent over the image 
domain (z,g) for the center coordinates and initial radius 
of each series of contour integrals, and decimating both the 
incremental radius interval Ar and the angular sampling 
interval A8 in successively finer scales of search spanning four 
octaves, these iris locating operations become very efficient 
without loss of reliability. The total processing time on a 
RISC-based CPU for iris detection and localization to single- 
pixel precision using such operators, starting from a 640 x 
480 image, is about one-quarter of a second (250 msec) with 
optimized integer code. 

B. Assessing Image Quality, Eyelid Occlusion, 
and Possibility of Artifice 

The operators previously described for finding an iris also 
provide a good assessment of “eyeness,” and of the autofo- 
cus performance of the video camera. The normally sharp 
boundary at the limbus between the iris and the (white) sclera 
generates a large positive circular edge; if a derivative larger 
than a certain criterion is not detected by the searching operator 
using the contour integral defined in (3), then this suggests 
either that no eye is present, or that it is largely obscured 
by eyelids, or that it is in poor focus or beyond resolution. 
In practice the automatic identifying system that has been 
built continues to grab image frames in rapid succession until 
several frames in sequence confirm that an eye is present and 
in focus, through large values being found by operator (3), 
and through large ratios of circular contour integrals being 
found on either side of the putative limbus boundary. Exces- 
sive eyelid occlusion is alleviated in cooperating Subjects by 
providing live video feedback through the lens of the video 
camera into which the Subject’s gaze is directed, by means of 
a miniature liquid-crystal TV monitor displaying the magnified 
image through a beamsplitter in the optical axis. 

A further test for evidence that a living eye is present 
exploits the fact that pupillary diameter relative to iris diameter 
in a normal eye is constantly changing, even under steady 
illumination [ 11, [ 111. Continuous involuntary oscillations in 
pupil size, termed hippus or pupillary unrest, arise from normal 
fluctuations in the activities of both the sympathetic and 
parasympathetic innervation of the iris sphincter muscle [ 11. 
These changes in pupil diameter relative to iris diameter over 
a sequence of frames are detected by the discrete operators 
(4) and (3), respectively, in order to compute a “hippus 
measure” defined as the coefficient of variation (standard 
deviation divided by mean) for the fluctuating time series of 
these diameter ratios. Together with the accompanying elastic 
deformations in the iris texture itself arising either from normal 
hippus or from a light-driven pupillomotor response, these 
fluctuations could provide a test against artifice (such as a 
fake iris painted onto a contact lens) if necessary in highly 
secure implementations of this system. 

(Go ( ( n  -k) AT) -Go ((n - k - 1)Ar)) I [  (k AT cos(mA0) +z.o), (k Ar sin(mA0) +YO )] 

m 
( 3 )  
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C. Two-Dimensional Gabor Filters 

An effective strategy for extracting both coherent and inco- 
herent textural information from images, such as the detailed 
texture of an iris, is the computation of 2-D Gabor phasor 
coefficients. This family of 2-D filters were originally proposed 
in 1980 by Daugman [8] as a framework for understanding the 
orientation-selective and spatial-frequency-selective receptive 
field properties of neurons in the brain's visual cortex, and 
as useful operators for practical image analysis problems. 
Their mathematical properties were further elaborated by 
the author in 1985 [9], who pointed out that such 2-D 
quadrature phasor filters were conjointly optimal in providing 
the maximum possible resolution both for information about 
the orientation and spatial frequency content of local image 
structure ("what"), simultaneously with information about 2- 
D position ("where"). The complex-valued family of 2-D 
Gabor filters uniquely achieves the theoretical lower bound 
for conjoint uncertainty over these four variables, as dictated 
by an inescapable uncertainty principle [9]. 

These properties are particularly useful for texture analysis 
[2], [4]-[7], [lo], [14]-[16], [18], [23], [29]-[31] because of 
the 2-D spectral specificity of texture as well as its variation 
with 2-D spatial position. A rapid method for obtaining 
the required coefficients on these elementary functions for 
the purpose of representing any image completely by its 
2-D Gabor Transform, despite the non-orthogonality of the 
expansion basis, was given in [lo] through the use of a 
relaxation network. A large and growing literature now exists 
on the efficient use of this nonorthogonal expansion basis and 
its applications (e.g., [2], [14], [23], [28]). 

Two-dimensional Gabor filters over the image domain ( 2 ,  y ) 
have the functional form 

G(z, y) e-K[(z-zO )' + ( Y - Y O  ) 2  / a 2 ]  
1 (5) . e - 2 r i [ l l o  ( " - 2 0  )+I10 (Y -Yo )] 

where (z0,yo) specify position in the image, (cr,p) specify 
effective width and length, and ( U O ,  ? I O )  specify modulation, 
which has spatial frequency WO = d G i  and direction 
60 = arctan( U O / U O ) .  (A further degree-of-freedom included 
below but not captured above in (5) is the relative orientation 
of the elliptic Gaussian envelope, which creates cross-terms 
in q.) The 2-D Fourier transform F ( u ,  U) of a 2-D Gabor 
filter has exactly the same functional form, with parameters 
just interchanged or inverted [9]: 

F ( U ,  U) = e - " [ ~ " - " O ~ ~ " * + ~ " - " 0 ~ ~ 8 ' ] e - 2 ~ i [ z O ~ U - U O ~ + Y O ~ w - ~ O ) l ~  

(6) 
The real part of one member of the 2-D Gabor filter family, 
centered at the origin (50, yo) = (0,O) and with aspect ratio 
P/a = 1 is shown in Fig. 2, together with its 2-D Fourier 
transform F(u ,  U). 

2-D Gabor functions can form a complete self-similar 
wavelet expansion basis [lo], with the requirements of or- 
thogonality and strictly compact support [20]-[21] relaxed, 
by appropriate parameterization for dilation, rotation, and 
translation. If we take q ( x , y )  to be a chosen generic 2- 
D Gabor wavelet, then we can generate from this member 

SPATIAL FILTER PROFILE 

FREQUENCY RESPONSE 

Fig. 2. The real part of a 2-D Gabor wavelet, and its 2-D Fourier transform 
(from Daugman (1980) [SI). 

a complete self-similar family of 2-D wavelets through the 
generating function 

lJj'mpgf3(Z, Y )  = 2 - 2 m Q ( d  Y O ,  (7) 

where the substituted variables (2': y') incorporate dilations of 
the wavelet in size by 2-", translations in position @, q) ,  and 
rotations through angle 6': 

z' = 2-m[xcos(0) + ysin(O)] - p (8) 

y' = Tm[-xsin(6')  + ycos(O)] - q .  (9) 

It is noteworthy [9] that as consequences of the similarity 
theorem, shift theorem, and modulation theorem of Fourier 
analysis, together with the rotation isomorphism of the Fourier 
transform, all of these effects of the generating function (7) 
applied to a 2-D Gabor mother wavelet Q(z, y) = G(z, y) in 
order to generate a 2-D Gabor daughter wavelet Q m p q ~ ( z ,  y) 
have corresponding or reciprocal effects on its Fourier trans- 
form F ( u , u )  without any change in functional form. This 
family of wavelet filters and their Fourier transforms is closed 
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under the transformation group of dilations, translations, ro- 
tations, and convolutions [9]. We will exploit these self- 
similarity properties of 2-D Gabor filters in analyzing iris 
textures across multiple scales to construct identifying codes. 

D. Doubly Dimensionless Projected Polar Coordinate System 

Zones of analysis are established on the iris in a doubly 
dimensionless projected polar coordinate system. Its purpose 
is to maintain reference to the same regions of iris tissue 
regardless both of pupillary constriction and overall iris image 
size, and hence regardless of distance to the eye and video 
zoom factor. This pseudo polar coordinate system is not 
necessarily concentric, since for most eyes the pupil is not 
central in the iris. (Typically the pupil is both nasal to, 
and inferior to, the center of the iris [l], and it is not 
unusual for its displacement to be as great as 15%.) The 
stretching of the elastic trabecular meshwork of the iris from 
constriction of the pupil is intrinsically modelled by the doubly 
dimensionless projected coordinate system as the stretching 
of a homogeneous rubber sheet, having the topology of an 
annulus anchored along its outer perimeter, with tension 
controlled by an off-centered interior ring of variable radius. 

The homogeneous rubber sheet model assigns to each point 
in the iris, regardless of size and pupillary dilation, a pair of 
dimensionless real coordinates (T ,  e )  where T lies on the unit 
interval [0,1] and 0 is the usual angular quantity that is cyclic 
over [0,2a]. The remapping of the iris image I ( z ,  y) from raw 
coordinates (x, y) to the doubly dimensionless nonconcentric 
polar coordinate system (T-, 0) can be represented as 

where .(.,e) and y ( r , e )  are defined as linear combinations 
of both the set of pupillary boundary points (.,(e), ~ ~ ( 8 ) )  
around the circle that was found to maximize operator (4), and 
the set of limbus boundary points along the outer perimeter of 
the iris (xs ( e ) ,  ys ( e ) )  bordering the sclera, that was found to 
maximize operator (3): 

Z ( T ,  e )  = (1 - .).,(e) + T - X s ( O )  (11) 

Demarcations of the zones of analysis specified in this 
projected doubly dimensionless coordinate system, for two 
sample close-up iris images, are illustrated in Figs. 3 and 4. 
These zones of analysis are assigned in the same format for all 
eyes and are based on a fixed partitioning of the dimensionless 
polar coordinate system, but of course for any given eye 
their affine radial scaling depends on the actual pupillary 
diameter (and possible offset) relative to the limbus boundary 
as determined by operators (3) and (4). The zones of analysis 
always exclude a region at the top of the iris where partial 
occlusion by the upper eyelid is common, and a 45" notch at 
the bottom where there is a corneal specular reflection from 
the filtered light source that illuminates the eye from below. 

Fig. 3. Demarcated zones of analysis and illustration of a computed iris code. 

Fig. 4. Demarcated zones of analysis and illustration of a computed iris code. 

(Illumination at an angle is desirable to deflect its specular 
reflection from eye-glasses, which persons are not asked to 
remove. The much greater curvature of the cornea compared 
with that of spectacle lenses, however, prevents elimination 
of the illuminator's first Purkinje reflection from the moist 
lower front surface of the cornea or of contact lenses; this 
necessitates the exclusion notch in the zones of analysis near 
the 6-o'clock position.) 

Rotation invariance to correct for head tilt and cyclover- 
gence of the eye within its orbit is achieved in a subsequent 
stage of analysis of the iris code itself. The overall recog- 
nition scheme is thus invariant under the PoincarC group of 
transformations of the iris image: planar translation, rotation 
(due to cyclovergence and tilt of the head), and dilation (due 
both to imaging distance and video zoom factor). Through the 
doubly dimensionless coordinate system, the constructed iris 
code is also invariant under the nonaffine elastic distortion (or 
projected conic transformation) that arises from variable pupil 
constriction. 
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111. CODE CONSTRUCI‘ION AND ENTROPY MEASURES 

An uncompressed code length of 256 bytes was chosen 
because this is roughly the capacity of the three-channel 
magnetic stripe affixed to the reverse side of the standard 
IS-7811 credit/debit card [3]. But this absolute code length 
only establishes an upper bound on the information capacity 
of an iris code, and it is important to know its actual inherent 
capacity. This capacity is reduced by intrinsic correlations, 
if any, among the coding primitives themselves. It is then 
also important to know the “source entropy” associated with 
the typical human iris signal, which will be much less than 
the upper bound determined by the resolution of imaging, 
because of inherent correlations (especially radial) within the 
iris. These reduced entropies directly influence the confidence 
levels associated with any decision strategy. In the methods to 
be described here, irises are efficiently recognized by executing 
a statistical test of independence on their codes. In effect, 
this examines whether the degree to which one iris code 
predicts another iris code, is compatible with the hypothesis 
that they arise from independent random processes. Such a 
test of statistical independence is passed almost certainly for 
two iris codes from different eyes, but the same test is failed 
almost certainly when the compared signatures originate from 
the same eye. 

A. The 256-Byte Iris Code 

The 2-D Gabor filters used for iris recognition are defined 
in the doubly dimensionless polar coordinate system ( T ,  6’) as 
follows: 

G(r, 6’) = e - i ~ ( ~ - ~ o ) e - ( ~ - ~ o ) 2 / ~ z ~ - ( ~ - ~ o ) z / ~ 2 .  (13) 

Both the real and imaginary members of such quadrature filters 
are employed, so the resulting image projections are complex. 
The real parts of the 2-D Gabor filters are slightly adjusted 
through truncation to give them zero volume, and hence no dc 
response, so that computed iris code bits do not depend upon 
strength of illumination. (The imaginary parts of the filters 
inherently have no dc response because of odd symmetry.) 
The parameters Q and p co-vary in inverse proportion to w 
to generate a self-similar, multi-scale wavelet family of 2-D 
frequency-selective quadrature filters with constant logarith- 
mic bandwidth, whose locations, specified by 60 and TO, range 
across the zones of analysis of the iris. 

Each bit h in an iris code can be regarded as a coordinate of 
one of the four vertices of a logical unit square ir, the complex 
plane. It is computed by evaluating, at one scale of analysis, 
the sign of both the real and imaginary parts of the quadrature 
image projections from a local region of the iris image I ( p .  4) 
onto a particular complex 2-D Gabor filter: 

e - i W ( 8 0 - 4 ) e - ( r O - p ) 2 / a 2  

~e-(oo-4)z/021(p, q5)pdpdd 2 0, (14) 

Thus, a single complex 2-D Gabor filter (13), having a par- 
ticular set of size and position parameters ( T O , & ;  a , P , w )  in 
the dimensionless iris domain (T ,  e ) ,  performs a coarse phase 
quantization of the local texture signal by approximating it as 
one vertex ( h R e ,  h~,) of the logical unit square associated with 
this filter through conditionals (14H17). The time required for 
computing a complete iris code of 2048 such paired bits (256 
bytes) on a RISC-based CPU, once an iris has been located 
within the image, is about one-tenth of a second (100 msec) 
with optimized integer code. 

B. Commensurability of Iris Codes 

A critical feature of this coding approach is the achievement 
of commensurability among iris codes, by mapping all irises 
into a representation having universal format and constant 
length, regardless of the apparent amount of iris detail. In 
the absence of commensurability among the codes, one would 
be faced with the inevitable problem of comparing long 
codes with short codes, showing partial agreement and partial 
disagreement in their lists of features. It is not obvious 
mathematically how one would make objective decisions and 
compute confidence levels on a rigorous basis in such a situa- 
tion. This difficulty has hampered efforts to automate reliably 
the recognition of fingerprints. Commensurability facilitates 
and objectifies the code comparison process, as well as the 
computation of confidence levels for each decision. It thereby 
greatly increases both the speed and the reliability of iris 
recognition decisions. 

C. Bitwise Entropy and Iris Variation 
A primary question is whether there is independent variation 

in iris detail, both within a given iris and across the human 
population. Any systematic correlations in iris detail across the 
population would undermine the uniqueness of an iris code. 
Similarly, any systematic correlations within an iris would 
reduce its statistical complexity, or dimensionality, and thus 
also undermine its uniqueness. 

A code of any length has maximum information capacity if 
all its possible states are equiprobable [26] .  This reflects the 
fact that the Shannon entropy measure 

n 

s = - P3 log, PJ. (18) 
,7 = 1 
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for Pj the probability of each of the n states and with 
n 

j=1 

is maximum when for all j ,  

Pj = l /n.  (20) 

By construction, the 2-D Gabor filters (13) have no DC 
response in either their real or imaginary parts, as noted earlier. 
This eliminates possible dependency of the computed code bit 
conditionals ( 1 4 x 1 7 )  on mean illumination of the iris and 
on its contrast gain, and it also renders equiprobable the four 
vertices of the logical unit square ( h ~ ~ ,  h~,) associated with 
each 2-D Gabor filter. As a consequence of analyzing the iris 
texture with filters lacking any dc response, the iris code has 
the property of encoding zero-crossings, which are known [ 191 
to be exceedingly rich in information for band-limited signals. 

The variation among iris code bits as defined above in 
( 1 4 x 1 7 )  was tracked both across bit location within the code 
and across a population of 592 different iris codes. The ethnic 
groups and nationalities included in this sample are listed in 
Section V-A, together with further database details. For each 
of 128 code bit locations, drawn from all parts of the iris code, 
Fig. 5 plots the probability of a set bit. The graph shows that 
this is fairly equiprobable across all code bit locations, and that 
it remains close to one-half. (Mean of the means is 0.4984 5 
0.0244). The flatness of the graph reflects the existence of 
independent variation in the detailed iris texture, both across 
an iris and across the human population studied. The amount 
of independent variation that is typical in a given iris will 
be quantified in the following section, which estimates the 
underlying number of independent degrees-of-freedom in an 
iris code after its intrinsic correlations have been factored out. 
Across the population, the constant independent probability 
of any given code bit being set (i.e., the full equivocation 
entropy between iris codes) presumably reflects the absence of 
genetic penetrance in the detailed morphogenesis of this tissue, 
in favor of stochastic or chaotic processes. Any systematic 
feature, say at the 12-o’clock position in the iris, would have 
caused systematic deviation in Fig. 5 for the bit probabilities 
derived from that region. Second, this graph’s proximity to 
a probability of one-half establishes that, since very nearly 
p = 1 - p ,  the iris code is bitwise a maximum entropy code. 

D. Number of Independent Degrees-of-Freedom in an Iris Code 

Although there are 256 bytes or 2048 bits in any given iris 
code, such a code possesses far fewer than 2 048 independent 
binary degrees-of-freedom. One reason is that there are sub- 
stantial radial correlations within an iris. For example, a given 
furrow or ciliary process tends to propagate across a significant 
radial distance in the iris, exerting its influence on several 
remote parts of the code, thus reducing their independence. 
Similarly, a feature such as a furrow influences different parts 
of the code associated with several different scales of analysis, 
since the Fourier spectrum of such a punctate feature can span 
several octaves. Finally, inherent correlations are introduced 
by the bandpass property of the 2-D Gabor filters, specifically 
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Fig. 5 .  Equiprobable variation of iris code bits, for each of 128-code bit 
locations, across a population of 592 different iris codes. 

by the finite bandwidth determined by parameters a, p, and 
w in (13). 

As pointed out by Wiener [32], any signal convolved with 
a linear filter acquires a correlation distance that is greater 
than or equal to the reciprocal of the bandwidth of the filter. 
This property is well-known for low-pass filters but is perhaps 
less widely recognized for bandpass filters. Even though the 
peak response of the bandpass filter might be at a very high 
frequency, its passband introduces phase coherence that lingers 
for a greater number of cycles, the narrower its bandwidth. 
(This is easily grasped by considering the limiting case of 
the coherent response generated by a notch-pass filter.) In 
the present case, the correlations introduced inherently by the 
band-limited 2-D Gabor filters alone reduce the information 
capacity of the iris code by a factor of 4.05, from 2 048 bits to 
about 506 bits, given the values of a, p, w and the sampling 
densities employed at the different scales of analysis. 

The number of independent degrees-of-freedom typically 
remaining in an iris code after both of these sources of 
correlation have been factored in (those arising from the 2- 
D Gabor filters and those inherent within an iris), can be 
estimated by examining the distribution of Hamming distances 
computed across a population of unrelated iris codes. Compar- 
ing each pair of iris codes A and B bit-by-bit, their normalized 
Hamming distance HD is defined here as the fraction of 
disagreeing bits between them: 

- 2,048 

where the Boolean operator (XOR) equals 1, if and only if 
the two bits Aj and Bj are different. 

Since each bit of any iris code has equal a priori odds of 
being a 1 or a 0, there is probability p = 0.5 that any pair 
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Hamming Distances for Imposters A theoretical plot of the probability density function associated 
with such a binomial process having N = 173 and p = 0.5 
is also shown in Fig. 6 as a smooth curve, and it offers a 
good fit to the data. In summary it appears that there exist 
the equivalent of about 173 independent binary degrees-of- 
freedom typically remaining in a 2 048-bit iris code, once both 
the correlations introduced by the 2-D Gabor filters and those 
inherent in the iris have been factored in. The likelihood of 
two iris codes from different irises agreeing completely by 
chance is thus roughly one in 2173, or approximately 
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The problem of recognizing the signature of a given iris 
as belonging to a particular individual, either after exhaustive 
search through a large database or just by comparison with 
a single authentication template, can be formulated within 
the framework of statistical decision theory [22], [27]. This 
framework also resolves the critical problem of assigning a 
confidence level to any such recognition decision. By this 
approach we can convert the problem of pattern recognition 
into a much more expedient task, which is the execution of a 

N 

0 

Hamming Distanca 

Fig. 6.  Distribution of Hamming distances between unrelated iris codes. simple test of statistical independence. 
Solid curve is (22). 

A.  Nevman-Pearson Formalism 
of bits from different iris codes disagree. (Each of the four 
states 00, 01, 10, 11 has probability 0.25; the bits agree in two 
cases and disagree in the other two.) If each of the 2,048 bits 
in a given iris code were fully independent of every other bit, 
then the expected distribution of observed Hamming distances 
between two independent such iris codes would be a binomial 
distribution with p = 0.5 and N = 2048 (in other words, 
equivalent to tossing a fair coin 2048 times, and counting 
the fraction of heads in each round of 2048 tosses). Once 
the intrinsic code correlations introduced by the 2-D Gabor 
filters were factored in, the distribution should be a binomial 
with p = 0.5 and N = 506 if the iris itself had no inherent 
correlations. 

The actual distribution of observed Hamming distances 
between codes for different irises is shown in Fig. 6, which is 
generated from 2 064 complete comparisons between unrelated 
pairs of iris codes. This empirical distribution has a standard 
deviation of u = 0.038, with a mean of p = 0.497. Since 
the standard deviation of a binomial distribution is given 
by u = (where q = 1 - p ) ,  this distribution of 
Hamming distances would correspond to a binomial process 
with N = 173 Bernoulli trials per run. Given the estimate of 
roughly a four-sample correlation distance introduced by the 
2-D Gabor encoders, we can now estimate that a bound on the 
“source entropy,” reflecting the number of degrees-of-freedom 
of variation typical of iris texture resolved to 2048 samples, 
would be something like 690 bits. 

The binomial distribution for N Bernoulli trials with out- 
come probabilities p and q predicts that the likelihood of 
observing a fraction z = m / N  events among the N trials is: 

Yes/No recognition decisions have four possible outcomes: 
either a given pattern is, or is not, a true instance of the 
category in question; and in either case, the decision made 
by the algorithm may be either the correct one or the incorrect 
one. In the present application the four possible outcomes 
are termed Acceptance of Authentic (AA), Acceptance of 
Imposter (IA), Rejection of Authentic (AR), and Rejection 
of Imposter (IR). Obviously the first and fourth outcomes 
are desired, and the second and third outcomes are errors. 
The goal of the decision-making algorithm is to maximize 
the conditional probabilities of AA and IR, while minimizing 
the likelihoods of IA and AR. The pairwise trade-offs among 
the probabilities of these four outcomes can be manipulated 
in a way that reflects their associated costs and benefits in a 
particular application. 

The Neyman-Pearson formalism for decision problems in 
which the prior probabilities are not known and the error costs 
are not fixed, but the posterior distributions are known, is 
summarized in Fig. 7. A given measurement of the Hamming 
distance between two iris codes constitutes a point on the 
abscissa. This measurement is regarded as being a sample from 
one of two random processes (“Authentics” or “Imposters”), 
whose probability distributions have been arbitrarily shown 
here as Gaussians with large overlap for purposes of illus- 
tration. The two distributions, PA”(z) and PI,(z), specify 
respectively the probability density of a particular measured 
Hamming distance, 5,  arising from two comparisons of the 
same iris, or from two comparisons of different irises. Any 
measured Hamming distance smaller than a chosen decision 
criterion, as indicated by the dotted line in Fig. 7, is judged 
to belong to the Authentics distribution, while any Hamming 

N !  m ( ~ - m )  (22) distance greater than this criterion is judged to belong to the 
Imposters distribution. The probabilities of the four possible ’(.) = m ! ( N  - m ) ! p  
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Fig. 7. Statistical decision theory: Formalism for decisions under uncertainty. 

outcomes AA, IA, AR, and IR are equal to the areas under 
the two probability density functions, PA”(T) and PIlxl(.r), on 
either side of the chosen decision criterion C: 

(23) 

(26) 

These four probabilities are represented by the four shaded 
areas in Fig. 7. 

B. Strategies and Decidability 

It  is clear that the four probabilities separate into two 
pairs that must sum to unity, and two pairs are governed by 
inequalities: 

P ( A A )  + P ( A R )  = 1. (27) 

P ( IA)  + P ( I R )  = 1. (28) 

P (AA)  > P(1A). (29) 

P(1R) > P ( A R ) .  (30) 

It is also clear that the error rates, P ( A R )  and P ( IA) ,  could 
be minimized if the two Hamming distance distributions, 
P.A”(x) and Prm(z), had minimal overlap. Their overlap 

Lower Hamming Distance Criterion 

More liberal: 
Raise Hamming Distance Criterion 

0.0 0.5 1 .o 
Imposter Acceptance Rate 

Fig. 8. The Neyman-Pearson decision strategy curve 

would be reduced if their two means were farther apart, or 
if their variances were smaller, of both. Of course, the two 
distributions in general will not be matched in form and 
variance, as was implied in Figure 7 for simplicity. 

Manipulation of the decision criterion C in (23H26), in 
order to implement different decision strategies appropriate 
for the costs of either type of error in a given application, is 
illustrated schematically in Fig. 8. Such a decision strategy 
diagram, sometimes called a receiver operating characteristic 
or Neyman-Pearson curve, plots P (AA)  from (23) against 
P ( IA)  from (25) as a locus of points. Each point in such a 
plot represents a decision strategy as specified by a different 
choice for the criterion C, as was indicated schematically in 
Fig. 7. 

Inequality (29) states that the Neyman-Pearson strategy 
curve shown in Fig. 8 will always lie above the diagonal 
line. Clearly, strategies that were excessively conservative or 
excessively liberal would correspond to sliding along the curve 
towards the two diagonal extremes. Independent of where the 
decision criterion is placed along this continuum, the overall 
power of a pattern recognition method may be gauged by 
the length of the line segment in Fig. 8 joining the diagonal 
line and the bend in the strategy curve. This distance is 
monotonically related to the quantity d’, for “detectability” 
or “decidability,” defined as the difference between the means 
of the two distributions that were shown schematically in Fig. 
7 divided by a conjoint measure of their standard deviations. 
This standard measure of statistical decidability has a value of 
about d’ = 8.4 in the present work. 

V. PERFORMANCE 

With this biometric recognition problem now formulated 
within the frameworks of signal processing and statistical 
decision theory, we can evaluate the identifiability of persons 
by their irises. 
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A. Database 

The performance results reported here are based partly on a 
photographic database of eye images generously made avail- 
able in 1989 by Ophthalmology Associates of Connecticut, 
which were digitized and then combined with further databases 
of images subsequently acquired directly with video cameras 
in Massachusetts and in Cambridgeshire, England. The total 
number of different eyes represented in the combined database 
was 592, in images acquired over a three year period from 
323 persons. Multiple images were always acquired from each 
person, ranging from 2 to 10 images of each eye over the 
time period (average 3.04 images per eye). Some images were 
rejected manually because of excessive eyelid closure or poor 
focus, before the automatic operators to perform these tasks 
as described in Section 2.2 were developed. Images in RS- 
170, VHS (NTSC), and S-VHS (NTSC) formats were digitized 
by 480 x 640 monochrome 8-bit/pixel framegrabber boards 
in either Macintosh or (by SCSI interface) SUN sparcstation 
hosts. Image resolution and iris size within the images varied 
due to both distance and video zoom factor, but the outer 
diameter of the iris was always greater than 60 pixels and 
was usually in the range of 100 pixels to 200 pixels. Imaging 
distances ranged from 46 cm to 15 cm, normally through a 
330-mm positive meniscus lens. Ethnic groups and nationali- 
ties represented in the combined databases included persons of 
Northern European, Mediterranean, Eastern European, Indian, 
Semitic, Afro-American, Hispanic-American, Japanese, and 
Chinese origin. 

B. Imposters ' Humming Distances 

The distribution of Hamming distances generated by 2 064 
direct comparisons between painvise unrelated iris codes was 
seen previously in Fig. 6. The average Hamming distance was 
very close to 0.5 since any pair of corresponding bits in the 
codes for two different irises have equal probability of agreeing 
or disagreeing. The raw distribution was well described by 
a suitably fitted binomial model, whose effective number of 
implicit Bernoulli trials was appropriately reduced to factor 
out the residual correlations that exist among the bits within 
a given iris code. 

Because of possible cyclovergence of the eye in its orbit as 
well as tilting of the head, all iris code comparisons must be 
performed over a range of relative orientations. The compar- 
ison process then becomes a "best of 71'' test of agreement, 
and this must be factored into the statistical decision theory 
that underlies this method of personal identification. Let f o ( z )  
be the raw density distribution obtained for the Hamming 
distances between imposters after testing only at a single 
relative orientation; for example, fo(z)  might be the binomial 
defined in (22). Then Fo(z), the cumulative of f o ( z )  from 0 
to z, becomes the probability of making a False Accept in 
such a test when using Hamming distance criterion z: 

Hamming Distances for Imposters 

0 
Hamming Distance 

Fig. 9. Hamming distances between unrelated iris codes, allowing for 1 )  = I 

different degrees of eye or head tilt. Solid curve is (34). 

or, equivalently, 

Clearly, then, the probability of not making a false accept 
when using criterion z is 1 - Fo(:c) after a single test, and it 
is [I - Fo(z)]" after carrying out w such tests independently at 
n different relative orientations. It follows that the probability 
of a False Accept after a "best of , "  test of agreement, when 
using criterion x, is 

F7L(.z) = 1 - [l - Fo(.)]" (33) 

and the expected density f T 1 ( x )  associated with this cumu- 
lative is 

= r~fo(:c)[l - Fo(z)]'"-'.(34) 

Fig. 9 shows the distribution of Hamming distances obtained 
from 2064 painvise comparisons among the same set of 
unrelated iris codes as was used in Fig. 6, but allowing 
for w = 7 different relative orientations of the eye. The 
distribution is biased toward a lower mean Hamming distance 
of 11 = 0.450, since only the best level of agreement after all 
seven rotations (i.e., the smallest Hamming distance) is kept 
and registered as the degree of match. The solid curve in Fig. 
9 is a plot of (34), using as its f o ( z )  term the binomial density 
distribution specified earlier in (22) and plotted in Figure 6, 
and using the cumulative of this as its Fo(z) term. 

C. Authentics' Humming Distances 

Fig. 10 shows the distribution of Hamming distances com- 
puted between 1,208 pairs of different images of given irises 
("authentics"). Different images of the same iris never yield 
a Hamming distance of zero, because of variations in the 
Subject's angle of gaze, degree of eyelid occlusion, specular 
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Fig. 10. Hamming distances between pairs of different iris codes for each 
given iris, allowing for n = 7 different degrees of eye or head tilt. 

reflections from the cornea or corrective lenses, random silhou- 
ettes of the eyelashes upon the iris, and light-driven as well as 
uncontrolled oscillations in pupillary dilation (“hippus”) which 
cause some folding and unfolding of iris tissue that would not 
be captured by the homogeneous rubber sheet model. Nonethe- 
less, these Hamming distances (again with 7 possible relative 
orientations of the eye) are clearly substantially smaller than 
those seen in Fig. 9 for imposters. This distribution has a mean 
of p = 0.084 and standard deviation o = 0.0435. The solid 
curve plots a binomial as defined previously in (22) but with 
p = 0.084, and N = 41 chosen in order to match the observed 
o since the standard deviation of a binomial distribution is 
o = where q = 1 - p .  Continuous interpolation 
of these binomial distributions, as well as estimation of their 
factorial terms, was done by Stirling’s approximation which 
errs by less than 1% for n 2 9: 

D. Equivalent Bernoulli Trials 

The distributions of Hamming distances for 2,064 pair- 
wise comparisons of “imposters” (summed across pairwise 
unrelated iris codes), and for 1208 pairwise comparisons 
of “authentics” accumulated separately, are shown together 
for comparison in Fig. 11. They are clearly well separated, 
with no empirical overlap and with no observations whatever 
falling in the region of 0.25 to 0.35 Hamming distance. These 
superimposed density distributions should be compared with 
Fig. 7, which represented the classic two-choice decision 
problem from statistical decision theory. 

Each bit in an iris code is a random variable, and thus 
comparisons between iris codes are comparisons between 
ensembles of random variables. We have seen that on average, 
when comparing two iris codes obtained at different times from 
the same (“authentic”) iris and making provision for possible 
headleye tilt, any pair of corresponding bits have a probability 
of 0.084 of not matching. Similarly, we have seen that with 
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Fig. 11. Hamming distances for authentics and imposters, combined from 
Figs. 9 and 10. 

the same provision any pair of corresponding bits in two iris 
codes computed from different irises (“imposters”), have a 
probability of 0.450 of not matching. 

Asking whether a given pair of iris codes were generated by 
the same iris, or by different irises, is then formally equivalent 
to the task of discovering to which of two possible classes a 
given coin belongs. For one type of coin the probability of 
heads is p = 0.084, and for the other type it is p = 0.450; 
and the method for finding out which one it is, is to toss the 
coin many times. Needless to say, sufficiently many tosses 
could resolve the question about which type of coin it was 
with enormously high confidence. The shapes of the two 
distributions shown in Figure 11 would have been expected 
using about 480 tosses of the p = 0.450 coin, and using about 
40 tosses of the p = 0.084 coin, respectively, in each run of 
trials. 

E. Decision Confidence Levels 

The Bernoulli representation noted above for this pattern 
recognition task clarifies the calculation of confidence levels 
associated with any decision, including extrapolation of con- 
fidence levels into the region between the two distributions 
where no Hamming distances were observed empirically. As 
specified in (23)-(26), the conditional probabilities of personal 
identity or nonidentity given a particular observation can be 
calculated as the cumulative integrals under the two density 
distributions, taken from opposite directions up to whatever 
Hamming distance was observed. More generally, for any 
given operating choice of Hamming distance criterion, the 
latent probabilities of the two types of errors can be calculated 
by evaluating these cumulative integrals up to the chosen 
operating criterion. 

Empirically, comparisons of iris codes computed from the 
available database of eye images produced no Hamming 
distances in the range of 0.25 to 0.35, so the use of any 
criterion in this range would produce 100% correct perfor- 
mance. However, the natures of the two distributions seen in 
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TABLE I 
PERFORMANCE TABULATED AS ERROR PROBABILITIES 

FOR SEVERAL DECISION CRITERIA 

Performance 

HD Criterion Odds of False Accept Odds of False Reject 
~~ 

0.25 
0.26 
0.27 
0.28 
0.29 
0.30 
0.31 

)032( 
0.33 
0.34 
0.35 

1 in 13.5 billion 
1 in 2.04 billion 
1 in 339 million 
1 in 60 million 
1 in 12 million 
1 in 2.4 million 

1 in 603000 

pzziiiq 
1 in 39800 
1 in 11500 
1 in 3630 

1 in 1490 
1 in 2660 
1 in 4850 
1 in 9000 

1 in 17100 
I in 32800 
1 in 64200 

(lln1280001 
1 in 260000 
1 in 536000 

1 in 1.12 million 

Figure 11 and described by (22) and (34), allow us to calculate 
theoretical probabilities for False Accept and False Reject over 
this range. These probabilities are tabulated in Table 1. As the 
operating criterion is increased, the theoretical probability of a 
False Accept of course increases, while that of a False Reject 
decreases. The cross-over error rate occurs at a Hamming 
distance criterion of about 0.321, at which point both the 
False Accept error rate and the False Reject error rate are, 
theoretically, one in 131000. This cross-over error rate sug- 
gests adopting a Hamming distance close to 0.32 as a balanced 
operating criterion, although of course more conservative or 
more liberal decision criteria may be more suitable for different 
applications. Any such criterion is easily implemented, with 
performance consequences as listed in Table I.  

Finally, it is interesting to examine the posterior confidence 
levels associated with “typical” decisions for accepting an 
authentic, and for rejecting an imposter. The means of the 
two distributions in Fig. 11 indicate typicality. In the typical 
imposter comparison, which generates a Hamming distance 
of 0.45 after the “best of n” provision for eye rotation or 
head tilt, the confidence with which the subject is rejected 
(given this observation) corresponds to a conditional false 
reject probability one in or one in 4 billion. In the typical 
authentic comparison, which generates a Hamming distance of 
only 0.084, the confidence with which the Subject is accepted 
(given this observation) corresponds to a conditional false 
accept probability of one in 

F. Ergonomics, Robustness to Noise, and Imaging Factors 

In many respects, the iris of the eye is inherently difficult to 
image at a comfortable “social” distance (e.g., several feet 
from a mounted video camera). It is a small tissue only 
11 mm in diameter, and hence optical zoom is required, 
which creates problems of target motion amplification and 
limited depth of field for focus. More critical even than 
these limitations of spatial resolution is the limitation of grey- 
scale resolution, since without appropriate gain control of the 
video signal, many very darkly pigmented irises tend to be 
digitized flatly into only the lowest few states of an 8-bit 
A-to-D converter and thus reveal little structure. A further 

reason that spatial resolution is less of a challenge than grey- 
scale resolution is because the upper roll-off frequency of the 
multi-scale bandpass 2-D Gabor encoders can be equated to 
a “blur circle” always larger than three pixels in diameter, 
which effectively makes any spatial resolution sharper than this 
irrelevant. Significant parts of the multiscale iris code are based 
on analysis of the coarser modulations of this mottled tissue; 
indeed, some of the 2-D Gabor encoders that are deployed 
subtend as much as a 70” angle around the pupil. In addition 
to these issues of resolution, a further challenge arises from the 
fact that unpredictable amounts of the iris may be occluded by 
eyelids or corrupted by random silhouettes of the eyelashes. 

All of these factors contribute to the observation that differ- 
ent images of the same eye at different times may generate iris 
codes that disagree in as many as 25% of their bits (the highest 
observed Hamming distance in Fig. 10, for “authentics”). This 
percentage would be the net result, for example, if only half of 
the bits were deterministic and matched perfectly, while the 
entire other half were completely random and hence agreed 
just by chance half the time, yielding an overall agreement 
of 75% and thus a 0.25 normalized Hamming distance. The 
robustness of the present recognition method under such high 
levels of pattern degradation, noise, and inherent imaging 
limitations, is only possible because of the high statistical 
complexity associated with the myriad degrees-of-freedom 
in the iris signal. It is the consequent narrowness of the 
distribution of Hamming distances for unrelated eyes (the 
“Imposters” black distribution shown in Figure 11) that makes 
any Hamming distance significantly lower than 0.35 virtually 
impossible to achieve from independent random processes, i.e., 
unrelated eye images. Thus, the hypothesis of independence 
can be strongly rejected over all but a narrow range of possible 
Hamming distances. 

It is perhaps illuminating that at the “cross-over’’ Hamming 
distance of 0.321, at which point confidence against both 
types of errors is better than 1 in lo5, the level of image 
degradation or mismatch that is tolerated would be equivalent 
to obscuring fully two-thirds of the iris (producing just chance 
50% agreement among those bits) while finding complete 
agreement among the remaining one-third of the bits. This 
extreme example illustrates the robustness against occlusion 
and noise that can be achieved by converting a pattern recog- 
nition problem into a test of statistical independence with a 
sufficiently large number of degrees-of-freedom. 

G. Speed of Decision Making 

The Bernoulli trial XOR formulation of the decision prob- 
lem allows us to exploit the 32-bit architecture of a CPU for 
16-fold parallelization. Since iris code comparisons are fully 
vectorizable bitwise, they can be implemented in parallel in 
single-cycle logic at the register level using 16-bit integer 
XOR. As a result, on a RISC general-purpose CPU any 
“presenting” iris code can be compared exhaustively against a 
large database of stored codes in search of a match at the rate of 
about 4 000 per second. (This clocked rate includes significant 
overhead due to complete iris code transfers, as well as table 
look-up to convert 16-bit integer XOR outcomes into running 
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sums of Hamming distance.) With dedicated hardware, fuller 
vectorization can be achieved and a further 40 000-fold speed- 
up in recognition is now possible. Since the decision process, 
including the calculation of confidence levels, relies only on 
computing the logical XOR vector between two iris codes 
comprising 2 048 bits, conventional SSI devices that have been 
available for decades at negligible cost offer the basis for 
immediate parallel implementation. For example, the simple 
74F86 integrated circuit contains four independent XOR gates 
that can be clocked at 80 megahertz. Thus, a 32 x 32 array of 
74F86 ICs (or a single equivalent dedicated gate array) could 
in principle execute comparisons and decisions at the rate 
of 160 million complete iris codes per second, if exhaustive 
database searches were required and if such databases existed. 

Because of the speed of decision-making made possible by 
the commensurability of iris codes, it is not even necessary 
in this method for a Subject to make any claims about his 
identity (e.g., by entering a password, PIN, or swiping a 
card) that the biometric comparison then merely confirms or 
disconfirms. Rather, here he only needs to present his eye 
to the camera, and his identity is rapidly and automatically 
determined without any further interaction, by exhaustive 
search through a database that might be extremely large. 
As Shakespeare conveyed it much less mechanically in The 
Merchant of Venice (Act I, Scene l) ,  in the tradition of 
conceiving the eyes as windows to the soul, “Sometimes from 
her eyes I did receive fair speechless messages.” 

VI. CONCLUSION 

Aristotelian philosophy held that the ELSO< (%dos, distin- 
guishing essence) of something resided in that quality which 
made it different from everything else. When we need to know 
with certainty who an individual is, or whether he is who he 
claims to be, we normally rely either upon something that 
he uniquely possesses (such as a key or a card), something 
that he uniquely knows (such as a password or PIN), or 
a unique biological characteristic (such as his appearance). 
Technologically the first two of these criteria have been the 
easiest to confirm automatically, but they are also the least 
reliable, since (in Aristotelian terms) they do not necessarily 
make this individual different from all others. Today, we hold 
that the uniqueness of a person arises from the trio of his 
genetic genotype, its expression as phenotype, and the sum of 
his experiences. For purposes of rapid and reliable personal 
identification, the first and third of these cannot readily be 
exploited: DNA testing is neither real-time nor unintrusive; 
and experiences are only as secure as testimony. The remaining 
unique identifiers are phenotypic characteristics. It is hard to 
imagine one better suited than a protected, immutable, internal 
organ of the eye, that is readily visible externally and that 
reveals random morphogenesis of high statistical complexity. 
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