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Analysis of Stochastic Automata Algorithm 
for Relaxation Labeling 

P. S. Sastry and M. A. L. Thathachar 

Absfruct- A parallel stochastic algorithm for relaxation labeling is 
analyzed. For the case of symmetric compatibility functions, it is proved 
that the algorithm will always converge to a consistent labeling. 

Index Terms-Relaxation labeling, learning automata, constraint sat- 
isfaction. 

I. INTRODUCTION 
In computer vision, many problems can be viewed as assigning 

labels or interpretations to some abstract objects or parts of an image 
in a consistent manner [2]. Relaxation labeling is a mechanism for 
obtaining such consistent labelings in an iterative fashion. Relaxation 
operates by updating, at each object, the probabilities of assigning 
various labels. The iterative updating of label probabilities makes 
use of contextual information in the form of label probabilities at 
neighboring objects and general domain knowledge in the form of 
compatibility functions. 

In [l], we have presented an algorithm for relaxation labeling 
based on a network of learning automata. While some useful results 
regarding the convergence of the algorithm are presented in [l], 
the analysis is not complete. In this correspondence we analyze 
the algorithm for the case of symmetric compatibility functions and 
show that the algorithm, starting with any initial condition, always 
converges to a consistent labeling. We also present some general 
results regarding labeling problems with symmetric compatibility 
functions. 

11. RELAXATION LABELLING 
Consider a labeling problem with N objects and M labels. A 

labeling is a function from the set of objects, 0, to the set of labels, A. 
The domain knowledge relevant to the problem is specified through 
a set of compatibility functions, T ; ~  : h x A --+ R,Z,j E 0. 
(Throughout this correspondence, we use R” to denote n-dimensional 
real Euclidean space and R to denote the real line). ri, ( A ,  A‘) can be 
thought of as the degree of compatibility (specified locally) between 
object-label pairs (i, A )  and (j, A‘). 

In relaxation labeling we associate a probability vector, pz = 
( p , ~ .  ’ .  . , ~%.R.I) with each object, i (All vectors considered in this 
correspondence are assumed to be row vectors). p , ,  is the proba- 
bility with which label q is associated with object i. Define P = 
(PI , .  . . , p ~ ) .  P will be called a label assignment. If each of the 
pt,  1 5 i 5 N ,  are unit vectors then P is an unambiguous label 
assignment or a labeling, i.e., a unique assignment of label to each 
object. Define two subsets of R““ as 

K = { P E  R““ : P = (pl,...,pAv)> 

pi E R“‘ is a probability vector, 1 5 z 5 N }  

p, E R“ is a unit probability vector, 1 5 i 5 N}. (1) 
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Fig. 1. Picture to be labeled. 

It is easy to see that K is a convex hull of K' [3]. We will 
call points in K' as comers of K. We have P E K for all label 
assignments P. Any unambiguous label assignment P will be in 
K*. We will now define, following [3], what label assignments are 
consistent. 

Definition 2.1: Let P E K. The support for label q at object i 
under P is defined to be 

St,(P) = Tv(q,s)P35 (2) 
3.5 

It may be noted that S,,(P) does not depend on pz, if T ~ ~ ( . ,  .) = 0. 
We will assume in the rest of the correspondence that T * ,  (., .) = 0. 

Defrnition 2.2:  A label assignment P = (PI , .  . . , pw) E K is 
called consistent, if for every i ,  1 5 i 5 N ,  

SZ,(P) Pz, z SC,(P) % (3) 
9 '1 

for all V = (vI,-..,vN) E K. 
Let P = (esl,...,esN) E K', where esJ is the unit vector in 

RM with s,-th component unity. (This will correspond to a labeling 
where object i is assigned label sz). Then P is consistent (i.e., P 
satisfies (3)) if and only if 

TZJ(S,,S~) 2 c T t J ( s , S J ) ,  VS # S z . i  = 1 , . . . , N  (4) 
J I 

P is said to be strictly consistent if the inequalities in (3) or (4) are 
strict. We will sometimes write (SI. . . . , s v) for the unambiguous 
labeling (esl,...,esN) . 

An Example 

We will illustrate the concepts introduced so far through a very 
simple example. Fig. 1 shows an image consisting of a triangle. 
(This example is from [4] though we use different rc3 functions). 
The problem is to interpret the image by appropriately labeling the 
three line segments of the triangle. The possible labels for each of 
the three objects (line segments) are: 

XI: occluding edge, forward object above. 
X z :  occluding edge, forward object below. 
X3: convex fold. 
Xq: concave fold. 
An unambiguous labeling (X2, X z ,  A,) (in which two of the lines 

are labeled Xz and the third as X4) corresponds to an interpretation 
that the object on view is a triangular flap hinged on one side and 

TABLE I-A 
DIFFERENT COMPATIBILITY FUNCTIONS FOR TRIANGLE PROBLEM 

A1 1 0 0.5 0 
XZ 0 1 0 0.5 
A3 0.5 0 0 0 
A4 0 0.5 0 0 

Consistent Labelings: ( X I ,  XI, A I ) ,  ( Xz,  XP, A2). 

TABLE I-B 
DIFFERENT COMPATIBILEY FUNCTIONS FOR TTHE TRIANGLE PROBLEM 

A 1  XZ A3 A4 

A1 1 0 1 0 
A2 0 1 0 1 
A3 1 0 0 0 
A4 0 1 0 0 

9 

TABLE I-C 
DIFFERENT COMPATILIILITY FUNCTIONS FOR TTHE TRIANGLE PROBLEM 

A 1  0.5 0 1 0 
XZ 0 0.5 0 1 
A3 1 0 0 0 
A4 0 1 0 0 

tumed away from the viewer. ( XI, XI, X l )  corresponds to a triangular 
cutout floating above the background. It is easy to see that ( XZ, 
X4, X4) is a nonsensical interpretation. The labeling ( XI, XI, X I )  is 
represented by the point in K' given by (1,0,0,0, 1,0,0,0, 1,0,0,0) and 
by taking a convex combination of points in K', we get points in K. 

To pose the problem in the relaxation labeling paradigm, we 
have to formulate the compatibility functions that code background 
knowledge. We expect that with properly formulated rZ3 functions, 
all nonsensical interpretations will become inconsistent labelings. In 
Table I, we show three different sets of compatibility functions. We 
have used r Z J ( X z ,  A,) = R(X,, A,) and Tables I-A through I-C show 
the three 4 x 4 R-matrices. 

Once we fix the compatibility functions, using (4) we can find out 
which are the consistent unambiguous labelings. Table I shows, along 
with each R-matrix, the associated consistent labelings. 

From the given compatibility functions here, it is easy to see why 
only some of the labelings are consistent. Consider the R-matrix in 
Table I-B which represents a discrete labeling problem. If an object 
is labeled X3 or X4 then its neighbors have to be labeled XI or XZ 
respectively. Since each object is a neighbor of the other two, we 
arrive at the list of consistent labelings given. Table I-A and I-C 
illustrate, how, by tuning the knowledge coded in the compatibility 
functions, we can choose one or the other kind of interpretation. For 
example, ( X I ,  XI, XI) is no longer consistent for R given in Table I-C 
because R ( X I , X I ) + R ( X ~ , X ~ )  < R ( X ~ , X ~ ) + R ( X ~ , X I ) .  Using(41, 
we can verify that all the labelings given in the table are consistent. 

Even for this simple example, we have not answered many 
questions that can be asked. If we are given an arbitrary set of compat- 
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ibility functions should there always exist a consistent unambiguous 
labeling? How does one find consistent labelings in K - K' and 
what do such labelings signify? Consider the compatibility functions 
in Table I-C. For these, the point in K given by P = ( 0.5,0,0.5,0, 
1,0,0,0, 0.5,0,0.5,0 ) is a consistent labeling. This is obtained by 
a convex combination of the two consistent unambiguous labelings 
( X I ,  X I ,  X3) and ( X 3 ,  X I ,  XI). Are all such convex combinations 
consistent? Can every consistent labeling in K - K' be written as 
such a convex combination? These are the issues we address in the 
next subsection. 

Symmetric Compatibility Functions 

symmetric compatibility functions. 

symmetric if 

As stated earlier in this correspondence, we consider the case of 

Definition 2.3: The compatibility functions, r,] are said to be 

(5)  

Symmetry does not seem to be very restrictive because, in most ap- 
plications, rzJ are, in fact, symmetric. The three sets of compatibility 
functions given in Table I are all symmetric. Define a functional 
F : K + R b y  

F ( P )  = T 2 3 ( Q ,  S)PZ,PIS (6) 

If rtJ are symmetric, then it is known [3], [5] that consistent labelings 
are local maxima of F over K and vice-versa. Similar result is true 
for consistent unambiguous labelings if we consider a restriction of 
F to A-*, say F I ,  defined by 

r Z J ( X ,  A') = rll(X',X), V ~ , ~ , X , X ' .  

* , q  3 , s  

F ~ ( P )  = rzI ( sz , s3 )  (7) 
1.3 

where P = ( e s l , .  . . , e s N ) .  (Recall that es ,  is the unit vector in 
R" with sJth component unity). It is easy to see that F l ( P )  = 
F ( P ) .  V P  E K*. 

Definition 2.4: Let P = ( P I , .  . . , p ~ )  and Q = ( S I . .  . . , q . w )  be 
any two points in K'. Then Q is said to be a neighbor of P if there 
exists i ,1 5 i 5 N, such that p J  = e, V j  # i and p z  # qz.  

Q is a neighbor of P if the labeling given by Q differs from that 
given by P in exactly one object. 

Definition 2.5: P E K' is said to be a local maximum of F1 
(defined by ( 7 )  ) if F l ( P )  2 Fl(Q)  for all Q such that Q is a 
neighbor of P .  

Lemma 2.1: Suppose r,] are symmetric. Then P E K* is consis- 
tent if and only if it is a local maximum of F I .  

Proof: Using symmetry of r Z j ,  the proof is immediate from (4) 
U. 

We now show that, for symmetric r?, ,  we need essentially consider 

Lemma 2.2: Let the r,, functions be symmetric. Then the follow- 

a) There exists a consistent unambiguous label assignment. 
b) If there is a consistent label assignment P E K - K * ,  there 

exists P o  E K' such that F ( P )  = F(P")  = F1(Po) and 
Po is consistent. Further, P is a covex combination of some 
consistent labelings from K' all of which have the same 
F-value. 

and Definitions 2.4 and 2.5 [5] 

only consistent unambiguous labelings. 

ing are true of the labeling problem. 

Proof: 
a) Since K' contains only finitely many points, there exists Q in 

Fl(Q) = max F l ( P )  (8) 

K' such that 

where the maximum is over all P E K' . By Lemma 2.1, Q 
is consistent. 

b) The main idea of the proof is as follows. Consider a two object 
two label problem. There are four points in K" given by (l,O, 
l,O), (1.0, O,l), (O, l ,  1,0) and (0, I ,  0,l) corresponding to the 
labelings (XI ,  X I ) ,  ( X I ,  XZ), (XZ, X I )  and (XZ, XZ). Call these 
four points PI ,  P2, P3 and P4 respectively. Consider any 
P = ( P I ~ , P ~ Z , P Z I , P Z Z )  E K. We can write P as 

(9) 

Q = a l P 1 + a z P 2 + a 3 P 3 + a 4 P 4  (10) 

P = p l l p z l ~ '  + P ~ I P Z Z P ~  + P I Z P Z ~ P ~  +p12p22p4. 

Similarly, a convex combination of points in K' given by 

is a point in K given by (a1 + az, a3 + a4, a1 + a3, a2 + u4). 
In the proof, we first show that for a specific ordering of points 
in K', each point in K can be expressed, as above, as a unique 
convex combination of points in K' and that we get F ( P )  as the 
corresponding convex combination of F-values (same as F1 -values). 
We use this to show that every consistent point in K is a convex 
combination of some consistent points in K' and all these have the 
same F-value. 

Consider P = ( P I , .  . . , P N )  E K. From (6), 
N N M M  

by noting that, for any n, 
M M n  

Now using (7) in ( 1  l), we have 
M M N  

F ( P )  = ... 

Let us order elements in K' arbitrarily so that K* = { P',  . . . , P"}  
where L = M N .  Now, we can write (13) more compactly as 

f = l  

For any given P E K ,  the coefficients be in (14) are obtained by 
be = n,"=, pJql)  where the index l ( j )  depends on the ordering 
of K*. Now consider a mapping H : K + D C RL, where 
D = { @ I , . .  ., b L )  : b,  E [0,1], Cb, = l}, defined by 

H ( P )  = ( b i , . . . , b L )  (15) 

with 
N 

(16) 
]=l 

We want to use the set of coefficients, {be}, given by (16) as a 
representation of P as 

L 

P = C b e p f  (17) 
f=1 

Because K is the convex hull of K * ,  the representation given 
by (17) is well defined if the function H is one-to-one. Suppose, 
on the contrary, that there are P, P' E K, P # P', such that 
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H ( P )  = H(P') .  Without loss of generality, assume that p l l  # p; l .  
Since H ( P )  = H ( P ' ) ,  we have 

(18) 

for all SZ, . . . , SN. Summing both sides of the above equation over 
all s,, we get pll = p i 1  which is a contradiction. Thus, H(.) is 
one-to-one. 

Now let P' belong to K - K' and let P' be consistent. Then we 
know [3], [5] that P' is a local maximum of F ( - ) .  Suppose, without 
loss of generality, that in the representation for P' given by (17) 
only first L1 terms are nonzero. Let 

F1(P3) = max Fl(Pg)for s o m e j , l  5 j 5 L1 (19) 

where the maximum is over all P e ,  1 5 e 5 L1. Suppose there 
exists an i, 1 5 i 5 L1 such that 

F1(P3) > Fl(P ' )  where j is as given by (19). (20) 

I I '  
P l l P Z s 2  " ' P N s N  = P l l P Z s z  "'PNs,rq 

Now consider P" E K such that 
L1 

P" = byP' (21) 
1=1 

where b i  = bkVn # i , j ,  b:' = b: - Eandby = bl + E. By (19),(20) 
and (14), it is easy to see that, for all E > 0, 

F(P") > F(P' ) .  (22) 

Also with sufficiently small E, P" given by (21) will be in any 
small neighborhood of PI. Hence, (22) implies that P' is not a local 
maximum of F and hence it cannot be consistent. But since P' is 
to be consistent, we must have 

Fl(P ' )  = F l ( P J ) .  vi , j  E { l , .  . . , L l }  

F ( P ' )  = Fl(P ' ) ,  15 i 5 L1 

which in turn implies 

Now to complete the proof, we show that for P' to be consistent 
all P', 1 5 i 5 L 1 ,  should be consistent. Suppose there is a 
P-', 1 1. j 5 L1 which is not consistent. Then let P" be a neighbor 
of P-' such that Fl(P- ' )  < Fl(P") .  (Such a P" exists because P-' 
is assumed inconsistent). Now consider P" E K, given by 

L1 

e=i 
P" = E biPY + (bi  - E)P' + (b: + E)P" 

(If n does not belong to { l , . . .  , L1) then b', = 0). 
Now it is easy to see that F ( P " )  > F(P' ) ,  VE > 0 and PI' is in 

any neighborhood of P' for sufficiently small E.  Hence, P' cannot be 
consistent unless P', 1 <_ e 5 ~1 are all consistent.  his completes 
proof of the theorem. 0 

Remark 2.1: From the proof given above, it is obvious that for 
a P' belonging to K - K' to be consistent we must have P' in 
the convex hull of { P ' ,  . . . , P L 1 }  C K' such that all point in that 
convex hull are consistent. (See last paragraph of Section 2.1). Except 
for such cases, the only consistent labelings are in K*. This results 
holds only when T,, are symmetric; otherwise we do not have the 
correspondence between consistent labelings and local maxima of F 
and hence the above proof does not go through. 

We now give a characterisation of consistent labelings which 
is needed for the proof of convergence of our algorithm. Define 
functionals gz : K + R, 1 5 i 5 N, by 

gz(P) = C S z r ( p ) p z r  (23) 
r 

where the SZr's are given by (2). 

Lemma 2.3: Consider P E K. P is a consistent label assignment 
if and only if S,,(P) 5 gs (P) ,  V i , T .  

Proof: This follows easily from a more general result in Game 
Theory (for example, see [6] and [7]). Hence we omit the proof. 

In the analysis presented in next section, we assume that T ~ *  = 
0, Vi .  It is easy to see that consistent labelings remain unchanged if 
we transform T , ~  by T : ~  = a~~~ + b,a > 0 [l] .  Hence, without loss 

0 of generality we assume T , ) ( A ,  A') E [O, 11, V i , j ,  A, A'. 

In. AUTOMATA ALGORITHM FOR RELAXATION LABELLING 
The algorithm that we analyze in this correspondence was origi- 

nally proposed in [ 13. It is based on the model of a team of interacting 
learning automata [8]. 

In the relaxation labeling framework, at each instant k of the 
iterative process, there is a label probability vector p, ( k )  associated 
with each object i,l 5 i 5 N. The process starts with some 
initial probabilities P(O), obtained through noisy measurements on 
the image. The algorithm specifies how the label probabilities are to 
be updated at each instant. 

The Algorithm 

1) Initialization: Obtain initial label probabilities P( 0) = 
( p 1 ( 0 ) , - . . , p ~ ( O ) ) .  Set k = 0. 

2) Selection of labels: For each object i ( l  5 i 5 N )  Choose a 
label at random based on the current label probabilities p ,  (k). 

3) Calculation of responses: 
For each object i ( l  5 i <_ N )  do 

Let q be the label selected for i in step 2. Then the response 
to i,&, is computed as 

begin 

Paq = ( 1 / ~ )  E ~ * 3 ( q , s 3 )  

3 

where s, is the label selected for object j in step 2. 
end. 

4) Updating of label probabilities: For each object i( 1 5 i 5 N )  
do begin 
Let q be the label selected for i in step 2 Then p l  ( k )  is updated 
as 

P * q ( k  + 1) = P * , ( k )  + aD.g (1  - P d k ) )  
p d k  + 1) = p, , (k)  - abIq ptr (1C) ,~  # q. (24) 

end (here 0 < a < 1 is a parameter). 

vectors have not converged. 
5 )  Iteration: Set k = k + 1 and go back to step 2 if probability 

Remark 3.1: The algorithm can be viewed as a network of simple 
stochastic processing elements, namely the automata [9]. The internal 
state of each automaton is the label probability vector and its output is 
a random realization of this probability distribution. Each automaton 
is supplied with the outputs of other automata using which it updates 
its intemal state. There are two special features of the algorithm 
compared to other relaxation labeling algorithms. Firstly, in our 
algorithm, for updating the label probabilities at an object, we do not 
need the current label probabilities at other objects; only the label 
chosen by other objects is needed. Secondly, as discussed in [I], 
this algorithm is effective even when the compatibility functions are 
not explicitly available, if we have available to us random variables 
X, , (q , s )  such that E X , , ( q , s )  = T , , ( ~ , s ) .  In such a case we use 
X, ,  in place of T * ~  for calculating Pzq in step 3 of the algorithm. The 
analysis we present below will hold in that case also [l]. 
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Analysis of the Algorithm 

Consider the process { P ( k ) ,  k 2 0). The automata algorithm 
iteratively updates P ( k )  and hence we are interested in the asymptotic 
behavior of P(k) .  Define a continuous-time interpolation of P(k) ,  
Pa(t),  by 

where “a” is the parameter used in (24). Define functions f z q ,  1 5 
q 5 M ,  1 5 i 5 N, on K, by 

Consider the family of Processes {p}, indexed by “a.“ Using weak 
convergence techniques [lo], it can be shown (see [ l ]  for details) 
that p converges weakly, as “a” tends to zero, to the solution of 
the Ordinary Differential Equation (ODE), 

x = f ( X ) , X ( O )  = P ( 0 )  (26) 

where the components of f are f i q  defined by (25). 
Thus for sufficiently small value of the parameter ‘a’ used in 

equation (24). the asymptotic behavior of P( k) can be obtained from 
the asymptotic behavior of the solutions of ODE (26) with appropriate 
initial condition [ 11. 

In what follows we completely characterize the solutions to ODE 
(26). In [ l ]  we showed that every consistent unambiguous labeling 
is locally asymptotically stable. But the analysis in [ 11 is incomplete 
because we did not characterize all stationary points of the ODE. 
Also, we did not prove that starting from some arbitrary point in K 
the algorithm will always converge to some point in K rather than, 
e.g., exhibit a limit cycle behavior. (In a dynamical system limit cycle 
behavior means the system keeps tracing a closed trajectory in the 
phase space). 

Theorem 3.1: Consider a labeling problem with symmetric com- 
patibility functions. Then the automata algorithm starting with any 
P(0)  E K - K’ and with sufficiently small value of ‘U’ will always 
converge to a consistent labeling. 

Proof: From (24) and (25), we get 

Consider a function G : RMN + R defined by 

where P = (p~,.-.,p~) E RMN and p, E RM for all i. 
The function G restricted to K is the function F considered in 

Section II. G is continuous and differentiable over R M N .  Since T ~ ,  

are symmetric, we get 

Along the solution paths of ODE (26), G is nondecreasing because 

using (26), (27), and (28) 

Under the automata algorithm, the updating of the label probabil- 
ities is such that P ( k )  belongs to K for all k if P(0)  belongs to K. 
K is a compact subset of R’”. Hence, by (29), asymptotically all 
solutions of (26) will be in the set (see [ll, Theorem 2.71) 

{ P E K  : ,(P)=O} dG 

From (29), s ( P )  = 0 if and only if, for all i ,  q, T ,  we have either 

PrrPrq = 0 

or 

that is, 

3 , s  3.8 

This implies, from (27), that at such a P,  f , , (P)  = 0, V i , q .  
Thus, the solutions to ODE (26), for any initial condition in K, 

will converge to a set containing only stationary points of the ODE 
and hence the solutions do not exhibit any limit-cycle like behavior. 

Now the proof of the theorem will be complete if we can show 
that any stationary point of the ODE in K - K*, which is not a 
consistent label assignment, is unstable. (In [I] it is shown that all 
consistent labelings in K* are locally asymptotically stable and all 
other points in K* are unstable). 

Using (2) and (23), (27) can be rewritten as 

faq(P) = P , ,  [Szq(P) - gt(P)I. (31) 

Let P” be a stationary point of the ODE that is not consistent. Then 
by lemma 2.3, there exist 2,s such that 

S*,(P”) > %(Po) (32) 

By continuity of the functions involved, (32) should be satisfied at 
every point in a small open neighborhood around Po. This implies, by 
(31), that in a small neighborhood around Po, fits > 0 and hence Po 
is unstable for the ODE (26). This completes proof of the the0rem.U 

Remark 3.2: In the above theorem, we needed the initial condition 
P(0)  to be outside K* because all points in K* are absorbing for 
the algorithm (see (24)). By the above theorem we know that the 
algorithm always converges to some point in K that is consistent. 
Since all points in K* are absorbing for the algorithm, it is reasonable 
to conclude that, starting from any initial condition, the algorithm 
always converges to a consistent unambiguous labeling. This is 
supported by Lemma 2.2 which says, for symmetric T , , ,  that there 
always exists a consistent unambiguous labeling and unless there are 
uncountably infinite consistent label assignments, we cannot have 
consistent label assignments in K - K’. In the simulations the 
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algorithm always converges to consistent unambiguous labelings [ 11, 
[51. 

IV. CONCLUSION 

In this correspondence, we analyzed the automata algorithm for 
relaxation labeling [ 11 for the case of symmetric compatibility func- 
tions. It is proved that starting with any initial label probabilities, 
the algorithm always converges to a consistent labeling. Further, all 
consistent unambiguous labelings are locally asymptotically stable. 
The algorithm analyzed in this correspondence has been employed 
successfully in computer vision problems such as stereopsis and 
object recognition [ 5 ] .  
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Analysis of 3-D Rotation Fitting 

Kenichi Kanatani 

Abstmct-Computational techniques for fitting a 3-D rotation to 3-D 
data are recapitulated in a refined form as minimization over proper 
rotations, extending three existing methods-the method of singular value 
decomposition, the method of polar decomposition, and the method of 
quaternion representation. Then, we describe the problem of 3-D motion 
estimation in this new light. Finally, we define the covariance matrix of 
a rotation and analyze the statistical behavior of errors in 3-D rotation 
fitting. 

Index Terms-3-D rotation, singular value decomposition, polar decom- 
position, quaternion representation, essential matrix, covariance matrix. 

I. INTRODUCTION 

In robotics applications, we often encounter the problem of com- 
puting a 3-D rigid motion that maps a set of 3-D points to another 
set. This problem typically occurs when 3-D data are obtained by 
stereo, range sensing, tactile sensing, etc. If we compute the centroid 
of each set and translate them in space so that their centroids come 
to the coordinate origin, the remaining problem is to determine the 
3-D rotation that maps the first set of orientations to the second set. 
Thus, all we need to do is fit a 3-D rotation to the rotated data, say 
by least squares. 

The first analytical technique for 3-D rotation fitting was reported 
by Hom [2], who used the quaternion representation. Equivalent 
techniques were presented by Arun et al. [l], using singular value 
decomposition, and by Hom et al. [3], using polar decomposition. 
However, their techniques dealt with minimization over orthogonal 
matrixes. As a result, improper rotations (i.e., rotations of determinant 
- 1) can be predicted for noisy data. Umeyama [ 131 made a correction 
to the method of Arun et al. [l], but his derivation, based on a 
variational principle and Lagrange multipliers, is very complicated 
and lengthy. 

In this paper, we first recapitulate these techniques in a refined 
manner as minimization over proper rotations. Then we formulate the 
problem of optimal resolution of a degenerate rotation and show how 
this solves the problem of 3-D motion estimation from two images 
succinctly. Finally, we define the covariance matrix of rotation fitting 
and analyze the statistical behavior of errors. 

11. OPnMAL ESTIMATION OF 3-D ROTATION 
Consider the problem of computing a 3-D rigid motion that maps 

a set of 3-D points { ( P ~ ,  ya, z ~ ) ) ,  a = 1 ,  - . ., N, to another set 
( (xu‘, ye’. z ~ ‘ ) } ,  a = 1, .. -, N .  If we compute the centroids (E, 1, Z )  
and (Z’, g’, 2’ ) of the two sets and translate them in space so that their 
centroids come to the coordinate origin 0, the remaining problem is 
to determine the 3-D rotation that maps the first set of orientations 
to the second set [2]. 

Consider the following problem: 
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