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Learning Compatibility  Coeffic ients 
for Relaxation Labeling; Processes 

Marcello Pelillo, Member, IEEE 

Abstract-Relaxation labeling processes have been widely used 
in many different domains including image processing, pattern 
recognition, and artificial intelligence. They are iterative pro- 
cedures that aim at reducing local ambiguities and achieving 
global consistency through a parallel exploitation of contextual 
information, which is quantitatively expressed in terms of a 
set of “compatibility coefficients.” The problem of determining 
compatibility coefficients has received a considerable attention 
in the past and many heuristic, statistical-based methods have 
been suggested. In this paper, we propose a rather different 
viewpoint to solve this problem: we derive them attempting to 
optimize the performance of the relaxation algorithm over a 
sample of training data; no statistical interpretation is given: 
compatibility coefficients are simply interpreted as real numbers, 
for which performance is optimal. Experimental results over 
a novel application of relaxation are given, which prove the 
effectiveness of the proposed approach. 

Index Terms- Compatibility coefficients, constraint satisfac- 
tion, gradient projection, learning, neural networks, nonlinear 
programming, part-of-speech disambiguation, relaxation label- 
ing. 

I. INTRODUCTION 

M ANY problems in pattern recognition and artificial 
intelligence involve labeling a set of objects in such 

a way that existing domain-specific constraints are satisfied. 
They are commonly referred to as consistent labeling (or 
constraint satisfaction) problems [I], and have been proved 
to be NP-complete [2]. Basically, there are two ways of 
representing the constraint (or world) model. The first consists 
simply of specifying the set of allowable object-label config- 
urations. This is the discrete problem, which can be solved, 
for example, by an iterative label discarding algorithm [3]. In 
a more general approach, instead, labels are no longer either 
completely compatible or incompatible; rather, the constraints 
are expressed in terms of real-valued compatibility coejj’icients 
that measure the strength of agreement for N-tuples of object- 
label pairs (in practice N = 2, but some experiments with 
higher order compatibilities have been attempted [4]-[6]). This 
is referred to as the continuous labeling problem, and can be 
solved by means of a (continuous) relaxation labeling process 
[31, [7]. This paper is primarily concerned with the continuous 
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problem, but the approach advocated here can be adopted for 
the discrete problem as well. 

Relaxation labeling processes are iterative procedures that 
aim at reducing labeling ambiguities and achieving global con- 
sistency through a parallel exploitation of local information. 
They are given as input an initial ambiguous labeling assign- 
ment, and iteratively update it taking into account the com- 
patibility model. The iterative nature of relaxation processes 
allows information to propagate, until global consistency is 
achieved. The notion of consistency for the continuous model 
has been precisely defined by Hummel and Zucker [7], but 
alternative definitions can be formulated [8]. 

The attractive feature of relaxation processes, which 
strongly relates them to certain connectionist models [9], 
[lo] is that a global, complex task is accomplished by means 
of simple, local computations. This is what Fahlman et al. [ 1 l] 
call massively parallel architectures. Actually, the majority of 
the applications of relaxation labeling have been implemented 
on serial machines, but recently parallel architectures have 
been developed [ 121, [ 131, for attempting to exploit the 
parallel nature of relaxation. 

It is widely recognized that the behavior of relaxation 
processes is greatly affected by the choice of compatibil- 
ity coefficients. Haralick et al. [14], for example, derived 
analytical expressions for the fixed points of relaxation, in 
terms of the compatibilities, and introduced the notion of 
“no-information” fixed point for attempting’ to study possible 
biases of coefficients. In [15], instead, O ’Leary and Peleg 
studied a simple but significant case in which only two 
objects and two labels are involved; they analyzed three 
different relaxation schemes and showed how certain choices 
of compatibility coefficients result in an unacceptable behavior 
of the algorithms, as they yield a result independent of the 
initial labeling. They conjectured that the same situation occurs 
also in the general case, where more objects and more labels 
are given, and emphasized the importance of having guidelines 
for determining compatibilities. 

A number of studies have been conducted over the last 
years, aimed at providing suitable interpretations for com- 
patibilities and devising methods to derive them. In their 
seminal paper, for example, Rosenfeld et al. [3] proposed 
the use of correlation coefficient, on the basis of simple 
empirical considerations; later, Peleg and Rosenfeld [ 161 sug- 
gested also mutual information, and developed a method of 
deriving the coefficients directly from the initial ambiguous 
labeling assignment; this “unsupervised” method has been 
widely applied especially within the machine vision domain. 
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Yamamoto [ 171 proposed another form for compatibilities 
based on heuristic modification of mutual information. In [ 181, 
Peleg derived a theoretical-based relaxation scheme in which 
compatibility coefficients were found to be a normalized con- 
ditional probability measure; this measure was also suggested 
by Davis and Rosenfeld [19]. More recently, Kittler [20], 
within a similar statistical framework, developed a general 
“evidence combining formula” and argued that the choice 
of compatibility coefficients depends only on the interaction 
relation over objects and labels of the problem at hand. He 
showed that under appropriate assumptions about interaction 
relations, well-known relaxation schemes can be derived from 
his formulas. A different, nonstatistical approach was proposed 
by Hummel [21] who suggested to determine compatibility 
coefficients so that given sample labelings become consistent, 
according to the definition of consistency defined in [7]. His 
approach, however, requires solving a large system of linear 
inequalities, that can be even incompatible. Also, the presence 
of undesirable “spurious” labelings should be avoided; he 
discussed how to overcome this difficulty over simple toy 
examples. Finally, it is worth mentioning that in some prac- 
tical applications compatibilities have been subject to ad-hoc, 
problem-dependent choices (see e.g., [22], [23]). 

In contrast with the standard statistical approach, this paper 
presents a somewhat different viewpoint for the compatibility 
coefficients: we propose to derive the’m attempting to optimize 
the performance of the relaxation algorithm over a sample of 
training data. No statistical interpretation is given: compati- 
bility coefficients are simply interpreted as real numbers, for 
which relaxation labeling attains optimal performance. More 
specifically, we formulate the problem of determining the 
coefficients as a nonlinear programming problem that can be 
solved by standard gradient-descent methods. In particular, we 
develop an iterative algorithm based on the gradient projection 
method of Rosen [24], [25]. The resulting process can be 
regarded as a learning process since the performance of 
relaxation improves over time. Optimization methods have 
been widely used in connection with relaxation labeling [7], 
[8], [26], [27] especially for attempting to provide theoretical 
justifications to the algorithm. However,  the novelty of our 
approach relies on the use of optimization techniques not 
for the development of a new relaxation scheme, but for the 
determination of an optimal set of compatibility coefficients, 
once that a relaxation scheme has been previously chosen. 

The idea of determining the parameters of a model from 
data by minimizing (or maximizing) an appropriate objective 
function is of course an old one, and it is the basis of many 
statistical methods such as regression analysis and maximum- 
likelihood estimation. More recently, the same optimization 
approach has proved to be successful in estimating the param- 
eters of a Markov chain [28], and it has become the standard 
approach to train artificial neural networks [29]. The latter is 
especially interesting owing to the close relationship between 
the fields of neural networks and relaxation labeling. 

The paper is organized as follows. We begin by briefly 
describing relaxation labeling processes in Section II. Section 
III, instead, formulates the problem of learning compatibility 
coefficients as a nonlinear programming problem and Section 

IV develops an algorithm for solving the problem based on 
the gradient projection method, giving recursive formulas for 
evaluating the gradient of the objective function. In Section V, 
a comparison with neural network learning theory is outlined, 
and Section VI presents some results over a practical appli- 
cation of relaxation labeling. Finally, Section VII concludes 
the paper. 

II. RELAXATION LABELING PROCESSES 

Relaxation labeling literature contains a variety of different 
algorithms (a survey and an extensive bibliography is given 
in [30]); in this paper, however, we will refer to the standard 
Rosenfeld et al.‘s formulas [3], although the same arguments 
can well be applied to other schemes. 

Consider a set of objects B = {bl, . . , b,}, and a set of 
labels A = { 1, . . , m}. It is our purpose to label each object 
of B with exactly one label of A. By means of some local 
measurement we can derive, for each object bi, a vector pi (0) = 
(p,‘:‘, . . . P!“)~ such that 0 < pi:) < 1 for i = 1. . . n and 
)( = 1 . . .> mlmand C~p!l’ = 

- 
1, for i = 1: . . n. Each p!“; can 

be interpreted as the a priori probability distribution ofz labels 
for the object bi. By simply concatenating py), pp’, . . . , p$,” 
we obtain an initial weighted labeling assignment for the 
objects of B that will be denoted by p(O) E Pm. Also, it is 
supposed that labels do not occur independently on each other, 
but are subject to contextual constraints, which are expressed 
in terms of an n x n block matrix R 

where each Rij is an m  x m  matrix of nonnegative real-valued 
compatibility coefficients: 

[ 

rtj(l,l) ... rij(l,m) 

Rij = ; ; . . 1 . 

r;j(m, 1) . . r;j(m, m) 

The coefficient rij(X, cl) measures the strength of compatibil- 
ity between /\ on object b; and p on object b,: high values 
correspond to compatibility and low values to incompatibility. 

The relaxation algorithm accepts as input the initial label- 
ing p(O) = (pyjT, . . . , PL’)~)~, and updates it iteratively 
according to the constraint model in order to achieve global 
consistency.’ At the tth step the labeling is updated according 
to the following formula: 

(t+l) _ P,'X) 
PiA -m 

c 
pqjt) ' 

211 zc1 
u=l 

(1) 

I We mention that the original definition of consistency of Rosenfeld et al. 
131 is somewhat different from that developed later by Hummel and Zucker . _ 
[7]. However, recently, a correspondence between these two notions have 
been established [31]. 



PELILLO AND REFICE: LEARNING COMPATIBILITY COEFFICIENTS FOR RELAXATION LABELING PROCESSES 935 

where the denominator is simply a normalization factor, and 

represents the strength of support that context gives to X for 
being the correct label for bi, at step t. 

Ideally, the relaxation process should evolve until a fixed 
point is reached; in practice, however, the algorithm is gen- 
erally stopped when some termination criterion is satisfied. 
For example, it can terminate when the distance between suc- 
cessive labelings becomes small enough or, more commonly, 
after a fixed number of steps. The final labeling can be used 
to label the objects of B according to a maxima selection 
criterion [32]. 

In practical applications, some simplifying assumptions are 
made. First, it is usually assumed that objects interact only 
within a small neighborhood; for each i = 1.. . n we will 
denote by A, the neighborhood of object b;, that is the 
set of relative positions that are supposed to influence the 
object on site i. Note that our definition of neighborhood is 
slightly different from the usual one. In our notation, Ai is 
a set of “relative positions” (or offsets); thus, for example, 
if the neighborhood of object bi consists of its immediate 
predecessor and successor,  we have Ai = { -1, +l}. Second, 
it is generally supposed that compatibility coefficients are 
“stationary, ” in the sense that do not depend on the absolute 
position of objects but, rather, on their relative distance. 
This is formally expressed with the relation Rij = Rhk, for 
j --i = k-jr. Having made these simplifying assumptions, only 
IAl compatibility matrices are needed, where A = UrZIAi 
and 1 1 denotes the cardinality of a set, provided that the 
support formula (2) is replaced with 

Now, r6xP denotes the compatibility between labels X and p, 
when b is at offset 6 from X. 

We will find it convenient to abandon the matrix notation 
for compatibilities, regarding them as real vectors: r E RD, 
with D = lAlm2. 

III. FORMULATION OFTHE PROBLEM 

The learning algorithm developed in this paper is based on 
the assumption that a set of instances of the problem we intend 
to solve is available. To be more specific, it is supposed that 
a number of learning samples exist: 

L = {Ll,'.' >LN}> 

where each sample L,(y = 1 . N) is a set of labeled objects 
of the form 

L, = {(b?, A;) : 1 5 i 2 n,, b; E B, A; E A}. 

Clearly, the bz’s can well be feature vectors describing real 
objects. 

For each y = 1.. . N  let ~(~7) E R”y” denote the 
unambiguous labeling assignment for the objects of L,, that is 

Furthermore, suppose that we have some mechanism for 
constructing an initial labeling ~(‘7) on the basis of the objects 
in L,, and let ~(~7) denote the labeling produced by the 
relaxation algorithm when ~(~2) is given as input. The same 
mechanism for deriving the initial labelings should be used 
both in the “learning” and in the “testing” phases. In order 
to clarify our discussion, we need to specify that, for the 
proposed algorithm to work, the final labeling ~(~7) is by no 
means required to be the converged, fixed-point solution of 
the relaxation process; rather, it is simply the labeling obtained 
employing an appropriate stopping criterion whatsoever. In the 
experiments reported in this paper, for example, the criterion 
was to stop relaxation after a fixed number of steps. 

A relaxation process is a function that, given as input a 
vector of compatibility coefficients r and an initial labeling 
~(‘1, produces iteratively the final labeling pcF), i.e., pcF) +- 
Relax(r, p(I)). In our approach we consider the relaxation 
operator as a function of the compatibility coefficients only, the 
initial labeling being considered as a constant. To emphasize 
this dependence we will write p,‘:‘(r) to denote the ix 
component of the final labeling. 

Within this framework, a natural way to derive compatibility 
coefficients is to choose them so that ~(~7) be as close as 
possible to the desired labeling pcL7), for each y = 1 . . . N. 
To do so, we can define an error function measuring the loss 
incurred when ~(~7) is obtained instead of P(~T), and attempt 
to minimize it. As an example, a quadratic error function may 
be adopted: 

which measures the (squared) Euclidean distance between 
~(~7) and pcF7), when r is used. Also, the total error achieved 
can be defined as 

E(Q)(r) = 5 E$Q'(r). (5) 
y=l 

An alternative error function comes from information the- 
ory. Notice, in fact, that both ~(~7) and ~(~1) are compy;e,” 
of ny discrete probability distributions: piF7) and pi ’ , 
respectively (i = 1 . . . ny). Of course, we wish that each 
p,(“” be as close as possible to piL’). A well-known infor- 
mation-theoretic divergence measure between two probability 
distributions is Kullback’s I directed divergence [33], wyh 
has been successfully employed also in certain connectlon- 
ist learning procedures [34], [35]. Kullback’s divergence is 
defined as2 

ZWe 
used. 

have used natural but, of any other base can be 
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Since p!L7) is a simple class indicator vector, containing all 
zeros eicept at the position corresponding to AT, (6) reduces 
to 

I(p!Ly’(p(F7)(r)) = - InpTFy)(r) t 2 zx: . (7) 

It turns out that I > 0, with equality, if and only if the two 
distributions are identical [33]. In addition, I is not symmetric. 
Nevertheless, as pointed out in [34], this is a reasonable 
property, as the difference between the actual and the obtained 
distributions is weighted by the actual probabilities p!t’)‘s. 

In order for 1 to be well defined, it is required that PI be 
uhsolutely continuous with respect to pi (F7) [33]. This means 
that pip)(r) # 0 whenever pi, (L,) rf 0 or, in our case, 

r@)(f)  # 0, fori=l.*.n,; 

this amounts to requiring that the relaxation algorithm assigns 
nonzero probability to the correct labels. In practice, this 
situation should occur rarely as long as the initial labelings 
~(‘7)‘s are accurate enough, but even in this case one can 
use a recent divergence measure proposed by Lin [36] that 
does not suffer from this drawback and is closely related to 
Kullback’s measure. 

The “logarithmic” error achieved for sample y is 

E!+(r) = - 2 lnp~~~‘(r) 
i=l 

(8) 

and the total error is 

E(‘)(r) = 5 Ey)(r). 
y=l 

(9) 

In the following, E will be used to denote either EcQ) or EC’). 
Now, the problem of determining the compatibility coef- 

ficients can be restated as the problem of minimizing the 
function E with respect to r. More formally, the problem we 
wish to solve is 

minimize E(r),r E RD 
subject to r&p 2 0. (10) 

This is a nonlinear programming problem with linear con- 
straints that can be solved by any gradient-descent method 
P51. 

IV. THE LEARNING ALGORITHM 
One popular algorithm for solving linearly constrained 

minimization problems is Rosen’s gradient projection method 
[24]. It is basically an extension of the steepest descent 
procedure for unconstrained problems, to accommodate the 
presence of constraints. Here, we make use of a simplified 
form of the algorithm developed in [25]. 

The algorithm begins with an initial feasible point do) and 
iteratively produces a sequence of points {d’)} so that the 
objective function E decreases: 

E(dkf’)) 5 E(r(‘)). (11) 

At the kth stage a new point is derived according to the 
following formula 

r(k+l) = #I _ pku(k), (12) 

where u(‘) is the projection of the gradient of the objective 
function E onto the intersection of hyperplanes defined by 
the active constraints (i.e. the constraints that are satisfied 
as equalities by the current point r(‘)), and pk is a suitable 
positive step length, determined so that the new point remains 
feasible. 

Suppose that q constraints are active at step li; the projection 
of the gradient is accomplished by means of a projection 
matrix 

Mk = I - A;(AkA;)-lAk, (13) 

where AI, is a q x  D matrix, the rows of which are the 
coefficients corresponding to the active constraints, and I is 
the D x D identity matrix. Therefore, we have 

UC’) = MkVE(r(“)). (14) 

If ~(~1 # 0 a suitable step length is determined and the next 
point is derived according to (12). If, instead, a(‘) = 0 the 
q-dimensional vector 

q(‘) = (AkA;)-bI,VE(rck)) (15) 

is constructed. If nik) 2 0 for all j corresponding to active 
inequalities,3 the algorithm stops as the Kuhn-Tucker con- 
ditions are satisfied [25]. Otherwise, the inequality constraint 
corresponding to the most negative component is dropped from 
the set of active constraints, and the algorithm continues. A 
thorough discussion of the algorithm can be found in [25]. 

In general, computing the projection matrix Mk is not a 
trivial task as a matrix inversion is to be performed. Rosen, in 
his original paper [24], developed some recursive formulas that 
greatly reduced the computations involved. Fortunately, owing 
to the very simple form of constraints, the calculation of the 
projection matrix as well as of the vector qck) for our problem 
is straightforward. In fact, suppose that, at step Jc, q constraints 
are active, and denote by il , . 3 . , i, the corresponding indices.4 
The matrix Ak has the form [ei,e,, . ei,lT (here the ej’s 
are the standard basis vectors of RD), so that AkAT = I = 
(Ad:)-1, (k) and the projection matrix Mk = (77~~ ) is as 
follows: 

(k) _ 
1, ifi=jAiisnottheindexof 

mig - 
i 

some active constraint; 
0, otherwise. 

As for the vector r/ck), it is simple to verify that it contains 
the components of the gradient corresponding to the active 
constraints: 

4:‘) = e: VE(r(“)), forj = 1.. . q. (16) 

In summary, the proposed algorithm for learning compatibil- 
ities is as follows. 

3Notice that problem (10) involves inequality constraints only. 
4For notational simplicity we use simple subscripts, rather than muh- 

indexed subscripts. 



PELILLO AND REFICE: LEARNING COMPATIBILITY COEFFICIENTS FOR RELAXATION LABELING PROCESSES 937 

Algorithm I. 
Input: An initial feasible compatibility vector r(O); 
Output: An “optimal” compatibility vector. 
1) k  := 0; 
2) determine the indices of active constraints, that is J(“) = 

{(d,$P) : & = o>; 
3) evaluate the vector ~(~1, as follows: 

dw-(“)) 
U 
(k) _ -, 

ard,fl 
if (d, (Y, /?) @  J”), 

dn3 - 

0, if (d: cy, /?) E J(‘“); 

4) if U(‘) # 0 
4.1) determine a suitable step length ph; 
4.2) move to the next point using the relation r(‘+‘) = 

.(k) - pkuw; 
4.3) k  := ik + 1; 
4.4) got0 2); 

5) else 
5.1) if dE(rcL))/d Tdafi 2 0 v(d, Q, /?) E J(“) EXIT; 
5.2) else 

5.2.1) delete from J ck) the index corresponding to 
the most negative value; 

5.2.2) goto 3); 
One possible choice for the initial point T(O) can be to 

derive it randomly but, more interestingly, it can be determined 
using some “traditional” statistical measure, combining the 
statistical, classical approach with the new optimization one. 

The step length pk can be determined by means of any line 
search technique [25] so that the function v(p) = E(r(“) - 
puck))  is minimized, and r(‘) - puck) remains feasible. This 
usually requires evaluating the derivative v’(p), which should 
be computed in an iterative fashion as for partial derivatives. 
An alternative, less expensive approach is to use fixed step 
lengths, according to feasibility constraints. More precisely, 

pk = min{ p(l), pf’}, (17) 

where p(l) is some predetermined maximum step length, and 

(18) 

The maximum step size p (l) should be carefully chosen. In 
fact, if p(l) is too small the algorithm converges slowly, while 
if it is too large an unexpected increase of E, or an oscillation 
about the minimum, can occur. An appropriate strategy could 
be to decrease p (I) slowly as the process converges. 

.A. Recwsive Gradient Calculation 

The algorithm described above requires evaluating partial 
derivatives of the objective function E: 

In the case of quadratic error function E(Q) we have: 

while the logarithmic cost function E(I) yields 

Whatever the error function used, partial derivatives of the 
final labeling ~(~7) are to be computed. The final labeling of 
a relaxation process is the result of a number of iterations 
and depends on the stopping criterion used. This makes the 
analytical formulation of derivatives very difficult or even 
impossible when the number of iterations is not determined 
in advance. However,  we have overcome the problem by 
developing some recursive formulas that will permit us to 
calculate derivatives with an iterative algorithm. For notational 
simplicity we put h!?(r) = ~ii’(r)ql:)(r), and suppress the 
index y. We have 

where 

ah/y(r) 
(23) 

and 

= !D(d E ai A I2 = X)pi$8(r) 

(24) 
66A, p=l 

Here, Q  denotes a function that takes a Boolean expression 
X, and returns 0 or 1 according to its truth value: 

Q (X) = 1 
0, if X is false; 
1, if X is true. 

Notice that the initial probability labeling p(O) does not depend 
on r, and hence 

i3p!“(r) zx ~ = 0. 1- for all i. d. A. cy, /3. (25) 
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Accordingly, (24) simplifies to 

aq!“(r) zx 
drdap 

= cP(d E Ai A CY = x)P~?~,, (26) 

and  consequent ly  

ap!l’(r) 2x  
drdap 

= +(d E A .)p(o)p!o) z zX z+d,P 

(a(~ = A)Fh$i)(r) - p$i)q$)(r) 
p=l 

. (27) 

Equations (22)-(24) define a  discrete-time dynamical system, 
with initial condit ions given by  (25), that can be  used for 
evaluating the derivatives needed  to the learning algorithm. 
The  process begins at time step t = 0  and  evolves in parallel 
with relaxation labeling. To  compute exactly the derivatives of 
the final labelings p(F)’ s, the process must be  s topped when 
relaxation labeling terminates, according to its own stopping 
criterion. Thus,  if relaxation stops at step t = T, the dynamical 
system will terminate at time step t = T, too. 

B. Computat ional Requirements and  Numerical Stability 

It is clear that the major computat ional effort of the algo- 
rithm stems from the evaluation of partial derivatives. In fact, a  
number  of derivatives proport ional to m3 is needed  to maintain 
and  update at each  iteration (m being the number  of labels); 
moreover,  the algorithm takes a  time roughly proport ional to m 
to compute each derivative, making at all O(m4) calculations 
on  each step. Nevertheless, the computat ional complexity of 
the algorithm seems not to be  a  severe limitation because in 
most interesting applications of relaxation labeling the number  
of labels is not so  large as  to preclude the applicability of 
the method. In addition, it is easily seen that comput ing each 
derivative dpix/drdc,.p requires local information only, making 
the algorithm especially suited for parallel implementation. 
However,  updat ing each compatibility strength needs  access 
to nonlocal information, as  seen from (20) or (21). 

In order to successfully implement the algorithm, some 
practical considerat ions about  its numerical stability are re- 
quired, which are especially useful when “sparse” labelings 
(i.e., containing many  zeros) are involved. In the course of the 
optimization process, in fact, it might well happen  that some 
compatibility component  r6,+ becomes zero. In case of sparse 
labelings, this could result in a  “divide-by-zero” error, when 
formulas (l), (22), and  (27) are evaluated. To  circumvent this 
difficulty, problem (10) can be  rewritten as  

minimize E(r),r E RD 
subject to r&Q 2  t, (28) 

where, now, t is a  small positive constant. This new problem 
formulation involves a  straightforward modification to the con- 
dition for the active constraints and  the step size determination 
formula (18), and  we will omit the details. 

In addition, another  subtle problem could arise if the ‘r&y’s 
are al lowed to become too small. In fact, it is easily seen 
that partial derivatives could become too large or, even,  
an  overf low condit ion could occur. Again, this is especially 
likely when sparse labelings are involved. In some special 
circumstances, and  when fixed or adjustable step sizes are 
used,  this situation can potentially result in unexpected jumps 
toward “poor” points. This actually occurred in our  early 
experiments [37], [38]. In order to avoid these difficulties we 
found it convenient  to keep the value of E not excessively 
small. 

V. COMPARISON WITH NEURAL 
NETWORK LEARNING ALGORITHMS 

There exists an  acknowledged connect ion between relax- 
ation labeling and  certain models of neural  networks for 
which, in recent years, a  number  of learning algorithms have 
been  developed (see [29] for an  excellent and  up-to-date 
introduction to this field). Thus  it is instructive to discuss the 
analogies and  the dif ferences between our  learning algorithm 
and  those of neural  networks, and  point out the implications 
of the proposed approach.  

At first, the analogy between relaxation labeling and  neural  
networks appears  evident: both are parallel processing models 
consisting of highly interconnected units that perform simple 
local computat ions. They make use of distributed knowledge 
representat ion which is encoded in the connect ion strengths 
between processing elements (the compatibility coefficients 
in relaxation labeling). In particular, relaxation labeling can 
be  regarded as  a  recurrent network (with no  h idden units) 
and,  in this respect, is much similar to the model  developed 
by  Hopfield [9], [lo]. Moreover,  this similarity is further 
s t rengthened by  the property that both the models have  a  
common Liapunov (or energy)  function, when the weight 
(compatibility) matrix is symmetric [7], [9], [lo]. 

However,  a  little more detailed analysis reveals that the two 
models differ significantly in at least two ways. Firstly, the task 
carried out by  the relaxation labeling processing units is much 
more complicated because relaxation (unlike the Hopfield net) 
performs a  mapping in probability space.  This implies that 
some form of projection is needed  in relaxation labeling to 
accommodate constraints: in the simplest nonl inear scheme of 
Rosenfeld et al. [3] this is accompl ished by  a  straightforward 
row normalization, but much more complex projection opera-  
tors can be  devised [8], [39], [40]. The  inability of neural  net- 
works to deal with constraints is usually overcome by adding 
appropriate penalty terms into the energy function so as  to 
“encourage” valid solutions [41]. Unfortunately, experimental 
analyses revealed that this approach is far from being reliable 
because the resulting computed solutions frequently violate 
many  of the imposed constraints [42], [43]. The  second major 
dif ference between relaxation labeling and  neural  networks is 
perhaps more important and  concerns their dynamic collective 
behavior.  It has  been  previously stated that the symmetry of 
the weight (compatibility) matrix assures the existence of a  
common energy function which is spontaneously minimized 
as  the processes evolve. This implies that the two dynamical 



systems will always converge toward stable configurations. As a final remark, we would like to emphasize that recently 
A fundamental result of Hummel and Zucker [7] assures much attention has been devoted to the problem of establishing 
that relaxation labeling still performs useful computations a formal correspondence between the fields of relaxation 
even if the symmetry condition is removed: they proved labeling and neural networks [50], [5 11. In particular, Yu 
that relaxation processes are attracted by strictly consistent and Tsai [51] have stressed that one resulting advantage 
labelings (which lie on the corners of the search space) whether of strengthening such a relationship is that research results 
or not the compatibility matrix is symmetric. Interestingly, of one domain can be instructive to the other. The work 
the same result, though demonstrated for a mathematically- described in this paper can be considered as a step toward 
derived class of relaxation processes, remains valid for the such a direction: the idea of learning, standard within the 
simple heuristic nonlinear scheme of formula (1) [44]. As neural network community, has now been incorporated into 
Hummel and Zucker pointed out, their local convergence result the relaxation labeling domain, making the two fields more 
is much more desirable than a global convergence result as closely related; the resulting learning algorithm can be usefully 
the final solutions depend on the initial configurations. By employed in all the applications where relaxation labeling is 
contrast, when the connections are allowed to be asymmetric, being used as a standard technique. 
the Hopfield network is no longer guaranteed to converge 
toward stable states and it can exhibit a cyclic or a chaotic VI. AN EXAMPLE: PART-OF-SPEECH DISAMBIGUATION 
behavior [9], [lo]. It should be mentioned that the symmetry 
requirement is recognized to be one of the major drawbacks of In this section, we present some experiments that prove the 
the Hopfield model since makes it unplausible as a biological effectiveness of the proposed approach. In particular, we tested 
model. our learning algorithm over a novel application of relaxation 

Now, let us focus on the learning problem. Learning in labeling that involves tagging words according to their correct 
recurrent neural networks has proved to be much more difficult parts-of-speech, as determined by the context in which they 
than in feed-forward architectures, for which the well-known occur. This is a fundamental problem that arises not only 
back-propagation algorithm has been developed [45]. Various in linguistics but also in various, more practical applications 
generalizations of back-propagation for arbitrary recurrent such as speech recognition, optical character recognition, and 

networks have been proposed [46]-[48], which are entirely speech synthesis [52], [53], to name just a few. 
based on the assumption that the network being trained settles In this application, the objects to be labeled are words of 
down to a stable state. Recurrent back-propagation (like its a sentence W  = ~1”’ w, and the labels are the parts-of- 
original feed-forward version) is basically a two-step proce- speech. The word labeling task can be accomplished by a 
dure: the first step involves relaxing the network to reach two-step procedure. First, by means of some local analysis, 
a stable state, while the second propagates the discrepancy one derives an initial labeling assignment p(O). The simplest 

between the desired and the actual output values backwards, way of doing this consists of using a dictionary look-up 
and updates the connection strengths accordingly. In contrast which provides for each word the list of its potential parts- 

with recurrent back-propagation, our learning algorithm is of-speech, but more sophisticated methods that exploit the 

extremely general because it does not make any assumption orthographic structure of words have been developed [54]. 
about the dynamic behavior of the relaxation process and, to Due to the presence of homographs in natural language, that 

work, it is not required to wait for relaxation to converge. is words belonging to more than one syntactic class, local 

Rather, as described previously, a given (arbitrary) criterion is information does not suffice to achieve good labeling results; 

used to stop the relaxation process (as well as the calculation therefore, in the second step of the word-labeling procedure, 

of derivatives) whether or not a stable state has been reached. contextual constraints are taken into account. This task can be 

Moreover, unlike back-propagation, it does not make use of accomplished by a relaxation labeling process [55], where the 

a successive backward pass for computing derivatives but compatibility coefficients express the strength of agreement 

it propagates them forwards in parallel with the relaxation between neighboring syntactic classes. 

labeling process. In the field of neural networks the idea of In the experiments presented here, the initial labelings p(‘) ‘s 

propagating derivatives forwards has been used by Williams were constructed by uniformly distributing the probability 

and Zipser [49] in the very different context of learning mass among the labels found into a dictionary look-up. More 

temporal sequences. There, convergence to a stable attractor precisely, let Ai C_ A be the set of possible labels for word 

is not desired; instead, a network is trained to go through a wi, as found by consulting the dictionary; then 

predetermined sequence of states (a limit cycle) in response to (0) _ 
specific input stimuli. Recurrent networks of this kind appear PiA - -I 

l/lAil: if X E A;; 
0. otherwise. 

to be very promising to solve problems like speech recognition 
and grammatical inference, where temporal dependencies are The final labelings ~(~1’ s, instead, were obtained by stopping 
to be captured. Unfortunately, current learning algorithms the relaxation process after the first iteration. The neighbor- 
for such networks are computationally very expensive and hood chosen for disambiguation contained only the right offset 
this has seriously limited their applications to real-world position (i.e., ai = { +l}), while the label set A consisted 
problems of practical interest. Observe that relaxation label- of the main parts-of-speech: verb, noun, adjective, adverb, 
ing is not suited for such a task due to its convergence determiner, conjunction, preposition, pronoun, plus a special 
properties. miscellaneous label. 
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In the first phase of our experiments, we took a 3,500-word 
sample text containing sentences extracted from some issues 
of the EEC Italian Official Journal. This was part of a larger 
corpus that was subject to a semi-automatic labeling within 
the ESPRIT Project 860 “Linguistic analysis of the European 
languages” [56]. We divided the sample text into three separate 
parts. The first one (containing about 1,500 words) was used 
to derive two different statistical compatibility vectors to be 
used as the initial points for the learning algorithm. More 
specifically, we determined correlation-based coefficients 

co) = 1 + &(A PI - P(~P(PL) rap J(W) - p(J)2)(fYIJ) - p(P)*) 
(29) 

and Peleg’s compatibilities [ 181 

Here p&(X, ,u) denotes the probability that the pair (X, cl) 
occurs, p being at offset S from X, and P(.) is the marginal 
distribution of labels. Clearly, marginal probabilities can be 
derived from the joint distribution using the relation P(X) = 
XpP6(X,p), for some S. 

Robust estimation of probabilities from naturally-occurred 
texts is acknowledged to be a difficult task due to the “sparse- 
ness” of real data [57]. Typically, the major problem is to 
allocate probabilities to never-occurred pairs, for which the 
standard maximum-likelihood estimate becomes zero. This 
problem is especially undesirable in our application in light of 
the considerations about numerical stability made in Section 
IV. One way to overcome the difficulty with maximum- 
likelihood estimation was suggested by A. M. Turing, and 
his idea was developed later by I. J. Good [58]. Turing’s 
suggestion is to estimate the probability of a pair that occurred 
exactly T times in a sample of size N by T*/N, where 
I.* = (r + l)r~,+~/n, and n, represents the frequency of 
the frequency T (T > 0), that is the number of different 
pairs that occurred in the sample exactly T times. In the 
experiments reported here, we used a hybrid approach which 
combines both Turing’s and maximum-likelihood estimates. 
The basic idea was suggested by Katz [57] in the context 
of estimating n-gram probabilities for the language models of 
speech recognition systems. Essentially, the idea is to estimate 
the probability of never-occurred pairs by means of Turing’s 
formula, and the probability of pairs occurred more than, 
say, K times using the usual maximum-likelihood method, 
considering it as reliable. Finally, pairs occurred less than K 
times were given an estimate proportional to their counts, using 
a suitable smoothing coefficient derived so that the axiomatic 
properties of probabilities are fulfilled. The reader is referred to 
(381 for a more detailed discussion on this topic as well as the 
full derivation of estimation formulas. The results presented 
here were obtained by setting K = 5, as suggested in [57]. 

In addition to determining statistical-based starting points, 
a third initial point for the proposed learning algorithm was 
derived randomly. 

Later, we took the second sample text and ran the proposed 
learning algorithm using a maximum step size /-‘cl) = 0.1, 
which appeared to be near-optimal. The text contained about 

TABLE I 
DISAMBIGUATION ACCURACY OF RELAXATION LABELING OVER A 

1 ,OOO-WORD TEST SAMPLE, USING BOTH THE INITIAL POINTS 
AND THE BEST POINTS FOUND BY THE LEARNING ALGORITHM 

Initial Points Optimal 
Points 

Quadratic Logarithmic 
Error Error 

Peleg 72.0% 88.2% 92.6% 
Correlation 73.5% 93.4% 94.1% 

Random 42.6% 89.7% 91.9% 

1,000 words (26 sentences), 148 of which were ambiguous 
(i.e., the dictionary provided more than one syntactic class). 
In Fig. 1 the behavior of the quadratic error function E(Q) 
is plotted for the three different starting points, along with 
the disambiguation accuracy5 of relaxation during the leam- 
ing process. Fig. 2, instead, shows learning curves for the 
logarithmic error function E (I). As we can see, after few 
iterations of the learning process the relaxation algorithm 
dramatically improved its performance, approaching nearly a 
100% accuracy, regardless of the starting point. 

In order to assess the generalization ability of the algorithm, 
we tested the performance of relaxation labeling over the re- 
maining 1 ,OOO-word test sample which contained 37 sentences 
and 136 ambiguous words. Table I makes a comparison among 
the disambiguation accuracies achieved by using the initial 
points and those obtained with the learning algorithm, both 
for the quadratic and logarithmic error functions. Each figure 
was computed with the best point produced by the algorithm, 
using the three above-mentioned starting points. As we can 
see, the learned compatibilities clearly outperform the standard 
statistical ones; moreover, the best generalization results were 
achieved using the logarithmic error function. It is interesting 
to observe that logarithmic error functions appear to produce 
better generalization results also in neural network learning 
[591. 

In concluding this section, we mention that the word-class 
disambiguation task discussed here was tackled using a layered 
feed-forward neural network trained with the back-propagation 
algorithm [60]. Although a direct comparison with our results 
cannot be attempted especially because of the diversity of 
the languages used (English vs. Italian), we simply notice 
that they were able to achieve essentially our generalization 
performance (e.g., 94.7% accuracy) but using a much larger 
context window involving four preceding unambiguous words 
and one succeeding ambiguous word. In contrast, we achieved 
the same results by using only the succeeding ambiguous word. 
Clearly, a much more systematic comparison would be needed 
before drawing any significant conclusion. 

VII. SUMMARY AND CONCLUSION 

In this paper, a new approach to determining the compat- 
ibility coefficients of relaxation labeling processes has been 
described. The viewpoint introduced here contrasts sharply 
with the traditional one since compatibility coefficients have 

SThe disambiguation accuracy is measured as the proportion of ambiguous 
words that are labeled correctly. 
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Fig. I. Behavior of the quadratic error function (on the left side) and the corresponding disambipuation accuracy (on the right side) during the learning 
prxess. using different Sarting points: (a) Peleg’s measure: (b) correlation; (c) random point. 

been commonly interpreted on the basis of statistical or 
information-theoretic grounds. Our  approach, instead, is based 
on rather “pragmatic” motivations: we derive them so that 
the performance of the relaxation algorithm over a sample 
of learning data is optimal. After formulating the problem 
of determining compatibilities in terms of an optimization 
problem, we have developed a straightforward algorithm for 
solving it based on the well-known gradient projection method 
0“ Rosen. One difficulty with the algorithm relies on the 
e\(aluation of the gradient of the objective function, as the 

iterative nature of the relaxation function makes the analytical 
formulation of derivatives prohibitive. In order to solve this 
problem, we have developed recursive formulas for derivatives 
which permit us to calculate them iteratively, in parallel with 
the relaxation process. Experiments over a practical application 
concerning syntactic category disambiguation have been pre- 
sented, and the results achieved demonstrate that compatibility 
coefficients derived with the proposed optimization algorithm 
are clearly superior to standard statistical ones. The results are 
very encouraging as relaxation labeling demonstrated of being 
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Fig. 2. Behavior of the logarithmic error function (on the left side) and the corresponding disambiguation accuracy (on the right side) during the learning 
process, using different starting points: (a) Peleg’s measure: (b) correlation; (c) random point. 

able to learn the constraints between Italian syntactic classes 
very quickly and using very limited contextual information. 

In addition, a comparison with neural network learning 
procedures has been outlined, and it is argued that our al- 
gorithm can contribute to make the domains of relaxation 
labeling and neural networks more closely related. However,  
in spite of the close similarity between the two models, 
many questions remain to be answered in order for neural 
networks to be considered a practical technique for problems 
where relaxation labeling largely succeeds. As pointed out by 

Jamison and Schalkoff [61], the most serious problem to be 
tackled concerns the mapping of an arbitrary problem into 
the proper network architecture. Recently, this point has been 
addressed by Yu and Tsai [5 11. 

The algorithm presented in this paper has mainly a practical 
value. Relaxation labeling is a standard technique in computer 
vision and pattern recognition, and is still receiving much 
attention by many researchers in these fields. The proposed 
algorithm is hoped to provide a definite answer to the old 
open question concerning the determination of compatibilities 
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in real-world applications of relaxation labeling. It could be 
usefully employed, for example, in optical character recogni- 
tion, automatic phonetic transcription (for which the celebrated 
NETtalk was developed [62]), multispectral pixel classifi- 
cation, and any other problem for which learning data are 
available. 

Of course, several modifications and improvements to the 
basic algorithm presented here could be brought in, such as 
including second order information, choosing optimal step 
lengths, speeding up the convergence, and so on. Alternatively, 
global optimization techniques can be used [63], [64], which 
should prevent the algorithm from being trapped into poor 
local minima. However,  it should be stressed that the main 
contribution of this paper is not the development of an algo- 
rithm for determining compatibility coefficients but, rather, the 
introduction of a new, unconventional standpoint from which 
they can be derived. 

Our  concluding considerations are rather speculative. It is 
generally acknowledged that a certain similarity exists between 
relaxation labeling and the structure of the human nervous 
system [7], [65], [66]. This is especially supported by the 
evidence that cerebral cortex contains extensive collateral 
interconnections among pyramidal neurons, and this strongly 
resembles the type of connections existing in a relaxation 
labeling network. Recently, Zucker et al. [67], have explic- 
itly hypothesized that the first 2-3 iterations of relaxation 
labeling are carried out by the pyramidal cells connecting 
two areas of the visual cortex. From a biological point of 
view, the development of a learning mechanism for relaxation 
labeling has two major consequences. On  the one hand, this 
removes one of the biggest obstacles to considering relaxation 
labeling as a plausible biological model. Human brain, in 
fact, learns from experience while relaxation labeling did 
not. On  the other hand, assuming that relaxation labeling 
is actually implemented in the brain, one might wonder 
whether our learning algorithm has a biological plausibility. 
At this stage of development we can just note that some 
of the properties that biological learning mechanisms are 
supposed to have are fulfilled, but some others are not. For 
example, there is much experimental evidence in support 
of the hypothesis that biological learning schemes are error 
correcting, in the sense that learning is driven by the difference 
between what is required and what actually exists [68]. Our  
algorithm is clearly of this kind as the adjustment of a 
compatibility strength depends on the difference between the 
teacher signals and the actual outputs. Moreover, the algorithm 
overcomes the recognized implausibility of back-propagation 
which requires propagating information in reverse direction 
[69]. On  the other hand, the proposed learning algorithm 
updates the compatibility strengths using nonlocal information 
and this seems to be the most serious argument against its 
biological plausibility. 

However,  whatever the value of such speculations may be, 
we believe that the development of suitable learning mecha- 
nisms, like the one proposed in this paper, can greatly enhance 
the potential of relaxation labeling in many practical applica- 
tions. It is hoped that further experiments can serve to support 
our claims, and this is what we are currently trying to do. 

APPENDIX 

LEARNING SYMMETRIC COMPATIBILITIES 

As discussed in Section V, the use of symmetric com- 
patibilities guarantees the existence of an energy function 
that is minimized as the relaxation process evolves. This 
property has been shown to (approximately) hold also for 
the heuristic nonlinear relaxation scheme discussed in this 
paper [26]. Therefore, when symmetric coefficients are used 
we do know what task the relaxation process accomplishes, 
and it could be desirable that the learned coefficients be 
symmetric. In this appendix, we develop a straightforward 
modification of our learning algorithm that allows us to 
derive symmetric compatibility coefficients. In our notation, 
the symmetry condition is expressed by the relation r6xP = 
r-hP~, provided that 6 E & + -S E L&+6. Observe that this 
last condition implies that a is symmetric, that is if S E a 
then -S E .!L 

In order to derive symmetric compatibilities, problem (10) 
is to be reformulated as 

minimize E(r), T E R" 

subject to 

7'dn3 2 0 

l'&,j = r-&%x. (31) 

Now, equality constraints have been introduced, and some 
modifications to the basic algorithm are required. Actually, 
the major difference with respect to Algorithm 1, relies on the 
determination of the direction u and the vector q. 

As in Section IV, let A denote the matrix of active con- 
straints (we omit the subscript k, for simplicity). If, at a 
feasible point, s  inequality constraints are active, q = s/2 of 
them will be redundant, because of equality constraints. For 
example, if r,inLj = 0 then, necessarily, r -docu = 0. In order 
for AAT to be nonsingular, the rows of A must be linearly 
independent (241, and this means that q redundant inequality 
constraints must be dropped from A. Assuming that indices 
have been arranged appropriately, the constraint matrix A can 
be partitioned as 

(32) 

where I is the D/2 x D/2 identity matrix, 0 is the q x D/2 
null matrix, and C is a q x  D/2 matrix corresponding to the 
“first” inequality constraints, that is C  = [e,, ? eiz . . ei,lT, the 
e,‘s being the standard unit vectors of RD12. We have 

AAT = F TT , [ 1 (33) 

where the number of rows and columns of the I’s is clear 
from context. Simple calculations yield 

(34) 
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where X is a D/2 x D/2 diagonal matrix of the form IX1 
A- = diag(zii, 222;. . ~JD/z,D/z), with 

xii = 

i 

1; if 1; is the index of some active 
inequality constraint; [91 

l/2. otherwise. 
1101 

Notice that CTC = 2X - I and, accordingly, we obtain 

AT(AAT)-lA = I TX ‘ix . 
I 

1111 
(35) 

Finally, the projection matrix M is as follows: 1121 

M=I-AT(AAT)-lA= ;I; 1 (36) 1131 

The components of q = (AAT)-lAVE(r) corresponding 1141 
to the active inequality constraints are of the form 71,, = 
(et,et)VE(r), for j = 1 ... y. In conclusion, in order to 
derive symmetric compatibilities, steps 3) and 5) of Algorithm 

,ls, 

1 must be replaced with: 
3) evaluate the vector z&‘), as follows: 1161 

1 dE(r(L)) (’ ___ li. (k) _ 5 ____ 
dn3 - a7 

+ aEp) 

1 
if (ct. 0. a) $ J(“). 

(10 ‘9 i37.-d,j,, - 
0. if (d. IY. /j) E Jk). 

and 
5) else 

1) if d~Y(r(~))/i37.~~~ + ~)E(T(~))/&-~~~~ > 0 
V (d, (I, p) E J(‘;) EXIT; 

2) else 

5.2.1) delete from J (‘1 the indices (d. o. p) and 
(-d, ,O. 0) corresponding to the most negative 
value; 

5.2.2) goto 3). 
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