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Abstract 

Thls thesis describes a n.ovel approach to curve infer~nce in digital images bâsed 

on curvature information . It divides the inference procedure into two stages: a trace ... . 
inference stage. and a curve synthesis stage. Only the trace inference stage is addressed 

f 

in this thesis. the curve synth~sis stage being the second part of a two-part research 

effort. It is shown that recovery of the tra~e of a curve requires that the tangent and 

curvature information be recovered at the same time. These make it possible to specify 
~ 

powerful constraints between estimated ta'ngcmts to a curve (in terms of a neighbourhood , 

reJationship called co-circularity), and between curvature estimates (in terms of a curyature 
, 

consistency relatipn). Because -ail curve information is quantized. special care must be 
. ' 

taken to obtain accurate estimates of trace- ~oints. tangents and curvatures. This issue 

is addressed by the introduction of a smootnness constraint and a maximum curvature 

constraint. The procedure is applied to two types of images: (i) artificial images designed 

to evaluat,e curvature sensitivity and noise sensitivity. and (i;) natural images. 
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Résumé 

Cette thèse décrit une nouvelle approche basée sur la courbure au problème de 

l'inférence de courbes dans les images digitales. 0 Elle ~cinde la procédure d'inférence en 

dewc étapes: une étape d'inférence de trace, et une étape de synthèse de courbe. Seule 
<> , , 

J'étape de J'inférence de trace sera traitée dans cette thèse, l'étape de synthèse de courbe 

étant la seconde partie d'un travail de recherche en deux volets. Il est démontré que la 

récupération de la trace d'une courbe exige que la tangentnt la courbure soient récupérées 

en même temps. Ces informations permettent de spécifier des contraintes puissantes entre 

les tangentes estimées à une courbe (en termes d'une relation de voisinage appelée co

circularité). et entre les courbures estimées .(en termes d'une relation de cohérence de 

courbure). Puisque toutes les informations sur les courbes sont discrètes, J'estimation 
'0 

'précise des points d~ la trate, des tangentes et des courbures doit se faire soigneusement. 

Ce ptoblème est résol,u par l'introduction d'une contrainte de diff~rentiabilité continue et 

d'une ~ontrainte de courbure maximale. La procédure es,t appliquée à d~ux typestdïmages 

digitales: (i) des images ~rtificielles conçues pour évaluer la sensib~lfté à la courburè et au 

bruit. et (H) des it:nages naturelles . 
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'and (b) satisfy th~ position al constraint (a). But ·the curve in (a) 

does not satisfy the tangent (b) or curvature (c) constfaints .............. 

2.3 (a) Tangent T is the limit of segment PA as A approaches P along 
.-.- \ r ~ 

C. (b) The curvature x: of C at P is,the limit of the ratio a/IABI as 

A and B appr9ach P independenily along C .. (c) The~osculating 

drcle 0 at P is the limit of the drcle that/Passes ~hrough A. P ~nd 
B as A and B approach P independently along C. The osculating 

.' 
drcle in (c) is a substantially better local approximation than the 

tangent in (a) ................. ~ ................................... 
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3.1 The initial convolutions are performed with this "Iine det~cto'" , .:: 

operator. which is ~ diffêrencè of three GauS\ians in the x direction: 
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4.1 ln (a). unit tangents A and B are both tangent to the sa me circle. 
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Chapter 1 Introduction 

Curves arise from the projection of various .kinds of structure in the visu al world. 

such as occluding contours of objects. curvature extrema in s~rfaces. and discontinuities 

in surface coverings and lighting. But curves are not directly observable in images: rather. 

curves are abstract entities (mappings) and images consist only of intensities. Ali that is 

observable in images is.information about the trace of curves. or information about the set 

of image locations through which the (projected) curve passes. The curve must then be 

inferred from this. inform~tiôn. In this thesis we formulate such an inference process in 

terms of traces. tangents. and curvatures. and develop c~nsistency relationsf1ips "6etween 

them. 

The formation of images of curves is a forward problem. and is well-posed. The 

inverse problem-the inference of curves from images-is not. how~ver. since information 
, ' 

is lost during the imaging process. Additional constrai~ts must be founèl. and we seek 

them through an analysis of the discrete nature of the problem~. We show. in -particular. 
'';::' 

how discretized versions of standard notions from differential geometry lead naturally to 

smoothness constr~ints. and how quantization leads to minimization as a method for using 

these constraints. 

\ -

Our approach differs from others in two fundamental ways. first. the standard 

approach to inferring curves assumes that the trace points are known. In spline inter- . 
. ( 

polation. for example •. a collection of points is given. and polynomial values are sought . r 
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between them [Pavlidls. 1982]. In our formulation. however. the tractt-points must also be~ -

determined. If images were purely bmary. with dark points correspondirig to ,trace points. 

and with adjacent traëe points on the curve adjacent in the image. then trace mference 

would be straightforward! But images contain structure other than the ra.w traces. so 
;'~ , 

that a preliminary problem-the inference (or sep~ration) -"t'the trace from other 'n:!!Ke 

structure-must be solved as weil. We therefore separate the curve inference .process into 

two distinct stages. the first in which local information (such as the trace) is determined. 

and the second in which the global curve is inferred. 

Other attempts at curve inference lumped the problem of inferring the trace of 

the curve together with the problem of inferrin~ the.curv,e. However. this mixes local and 

global information together. and makes it difficult to take advantage of interactions between 

them. Martellï'(Martelli. 197&1. for example. minimized a functional of intensity difTerences 

along the curve with a global constraint on curvature: however. it was still Ilecessary to 

specify the initial and final points. and the finaj _résult was dependent on properties of the 

noise. In ,general the t~ace of a curve is not 'the straighte~t sequence of pixels with the 

minimal ;~tensit-y ch~ng~ along' them. Pavlidis ,als~ examined {he minimization of global 

functionals through a split-and-merge procedure [Pavlidis. 198~1. ' 

Our decomposition of the curve inference pro!=ess into two stages corresponds 

naturally to their difTere!}!i;t1 geometry. We sh?w that reliable trace inference requires 
1 • 

information about tangents and curvatures as weil. s~_Jhe goal of the first stage is to 
, ~ 

recoyer the trace together with tangènt and curyature fields. Once these -fields are gi.yen. 

since the tangent is the tirst derivative of the cu[ve with respect to arc length. integrals 

through them car:' be readily found within the second stage. But there is still something' 

of a chicken-and-egg problèm. since the exact recovery of the trace requires information 
- r 

about the curve. and vice versa. Our solution to this problem is to fir~t recover the trace. 

tangent. and, curvatures only coarsely. so that discontinu~ties can Ile properly p4aced. and 

then. in the second stage. to recover them more exactly. 

The second sense in which this ... approach differs from standard ones, is the 

2 

(, 
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"~anner in which we see~ the constraints necessary to accomplish trace-. tangent. and cur

vature IOfer~nce. In fitting su'rfaces to disparity data. for example. il is now an accepted 

practice to assume a physical mode!. e.g. that. the surfaces consist of thin plates aoo ,. 
membranes (Terzopoulos. 1986). Energy considerations then lead to elegant minimizations 

of second-order functional~. However. it is not at ail clear that such physicaf assumptions 
, -

should motivate the trace inference process. We begin with standard notions in differentiaf 

geometry. and discretize them onto quantized grids. This feads to an anaJagous formula

tion. but suggests that we include one more derivative than is normally assumed. Rat.her 

than minirnizing a functional through curvature (Tertopoulos. 1986). we (impficitly) obtain 

" a functional through curvature variation. This additional derivative appears necessary for 

focalizing discontinuiiies. The minimization is accomplished usfng standard relaxation la

belling techniques. and this formulation substantially ~utperforms earlier. more' heuristic 
d 

attempts (Zucker. Hummel and Rosenfeld. 1977: Zucker and Parent. 1984J~ Of course. for 

reasons .of numerical stabil}ty. one must be careful how these derivatives are estimated. and 

we present a 'lovel approach to this as weil. It is much more accu rate than those based.' 

for example. on the chain code [Davis and Fceeman. 1977). 

This thesis is the first part of a two-part research effort. In this thesis we 
1 

develop the inferenc~ of th~ (discrete) trace. tangent. and curvatu"rè fields. Given 'these 

fields. tn the second part of the effort [Kimja and Zucker. in preparation] it is shown hovi J 

, . 
to find integral curves through them. i.e .. how to actually infer the global curves and their 

discontinuities. We begin.ln this thesis. by motivating the constraints. and end with several . 

real examples that iIIustrate the robustness of the approach. 

• 

~, 
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Chapter 2 Backgroimd and motivation 

Two different kinds of information are lost during the curve imaging process: (1) 
'. , 

information about the third diménsion. through projection: and (2) 'detatls about small-scale ' 
, ..... 

variations. becau~e of sampling. The latte~-quimtization noise-introduces significant 
l , 

uncertainty in position al information and réduces the image to a finite set. Consideration 

of the details of the q'uantization. and how they affect the discr'etization of concepts -From . .' 

difTetentia' 'geometry. forms the backbone of our approach. 

2.1 The discrete trace of a curve 

The, entir~ effect of the imaging process can be f9rmalized as foflows. Let the 

curve B bé a map~ing y: 1 _'E3. fr9m an ini~rv~11 on the real Jine'to Euclidian 3-space. 

5uch that 

.. (2.1) , 

is a continuous function of t. a parameter running along the cur~e. YI, Y2'and 113 are the 

Euclidian coordinates of the trace of B. that is. the ,mage of the mapping. Through a 

projection operator n. B ·maps to a turve C in the plane 

n B---.C, 

~here the curve C is a rriapping x : 1 -+ E2. with 

. ' 

• 

(2.2) 

• r 

-(2.3) 

.. • J. . . 
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JI 2.1 The discrete trace of.a curve 

. (a) (b) 

(c) (d) 

Figure 2.1 Various curve~ and corresponding discrete trace~ (shaded areas). • (a) 
distinct planar curves may share a common discrete trace. (b) a small orientation 
change is undiscernible. (c) a corner and a bend of high curvature have identical 
trace~. (d). two orientation changes in clo~e proximity and a smooth bend have 
similar discrete traces. 

b~ing a cont;n~ous function of the ,parameter t. Finall~.1 a sampling operatoi E-takes the 

~race of,C. which is t~e set {(Xl(t),X~(t)) 1 tEl}. into a disçrete trace on a squa're 

sampling lattiée with integer coordinates 

. - r 
trace C--tT. (2.4) 

T is a distrete trace.othat is a set, of points with integer coordinates. The sàmpling fùnction 

is given by 

(2.5) 

Observe that t is a Jn~ny-to-one mapping. which maps ail the' point~ of the curve inside 

a unit square of the sampling grid to the center point of the square." Therefore. both the 
- , 

projection operatQr n and the sampling operator I: are non-invertibl,e. Many distinct space 

curves-in fact an infinity of them. and some non-curves too-c~n giv~ rise to identical 
j! - , 

projectionS: likewise. distinct plan,:,r projections ma1 have indistinguishablè discrete traces. 
~ , 

~s depicted in figure 2.1. 

5 
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2.2 Smoothn,ess a~sumptlons permit trace inference 

2.2 Smoothness assumptions ,permit trace inference 

While the for.ward proble"ms of. obtaining a planar projection C from a space 

cune B .. and obtaining a discrete tracè T from the pl,anar projection ~re weU-posed. neither 

'of the corresponding inverse problems are. Additional constraints' ~ne requirèd to limit 

>1. t'le'. family of solutions. In 'the case of the inverse projection problem. constraints about 

physical object~ may com,e into play [Barrow and Tenenbau~ 1981. Witkin 1981). while 

only general-purpose co~straints. or. constraints that must hold over large classes of images. 
, " . 

·are available t~ invert the sampling process. From this point on. we shall ~onsider only 

the projected curve C.' Sinc~ small-scale details are primarily what is lost by sampling .. 
. l '_ 

it is natural to impose a certain order of smoothness on the projected curve (except at-

d~scàntinuitie~) giving ,rise to a given discrete. trace. an~othing more. 

The trace inference 'problem is further exacerbated by the fact that. In general. 

. the trace 'of a curve is not directly observable in the image in\which it is encoded. The trace 

itse/flmust be inferred From the image intensities. We contend that the trace 'nference prob

, lem is closely Iinked to the sampling inversion problem. since the smoothness assumptions --
about thè planar curve mqst influence the trace inference process. Thus it will be shown 

thàt it is not sufficient to infer only the trace of a curve. but th~t tangent and curvature 

fields must be inferred as weil. Again. we formulate these disdretely. The tangent and 
t . 

curvature fields embody the smoothness assumptions. and act as further constraints on 

the inverse sampling ptoblem .. Thus. the tangent and curvatur,e esti~aies ~ovi~e a local 

':moder of the curve in a neighbourhood around the putative trace point. 

TQ iHustrate the different orders of constraint. Figure' 2.2 depicts a discreiè 
~ , 

trace to which continuous curves have been fitted .. Given points in the discrete trace (a). - - . 
a discrete orientation constraint (through the discret~ .tangent ~eld) is added in (b). and 

then the combined orientation a-nd curvature constraints, (through the discrete tangent an~ 
- . 

curvature fields) are i~ (c); Observe that the curves in (c) and (11) satisfy the positional' 

constraint in (a): that is. they ail pass through t~e indicated positions. Similarly. the 
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2 3 Overview of dif!erentlal geometry 

(a) 

(b) 

, , 

. " Figure 2,2 Three curves fitted to' a given discrete trace: (a) positional constraint 
only. one fit among.a large family of curverwith a broad spectrum of behaviour: 
(b) position and orientation ·constraint. "the family of curves is more constrained: 
(c) positioll. orientation and curvature constraints combined with a smoothness 
crlterion.' the family of solutions is reduced to a single turve Observe that. the 
curve, in (c) satisfies the orientation (tangent) tOJlstraint and that both curves (c) 
and (b) satisfy the positional constraint (a), But the c:urve in (a) does not satisfy 
the tangent (b) or curvature (c) tonstraints 1 . , 

, 

curves in (b) and (c) satisfy ·the tangent constraint ln (b)~ but not (a)., Finally.,only 

c~rve (c) satisfies a curv~ture constraint (depicted as, short ~rcs of osculating cirdes ;n 
--~ 

(<:)). and 'it is also the smQo,thest curve satisfying these combined 'constraints., Thus. 
'. ", , ' 

a,~d~ional (smoothnes5) c?nstraint5 J;mit the space of possible curves: what ;5 r:equired 

for oU,r problem is to provide sufficient constraÎnts, so t~at there is a unique'lcurve which 

5atisfies them. The problem 15 then well-posed. We now start to' concentrate on the 

trace inference problem. and, begin our search for constraints with a review of differential 
" • .. " \'1 

geo';'etry: Morè global smoothness const,~ints limiting the full space' of 'possible curves \, 

will. of ~urse. infl\;l~ce the analysis. These will al50 be discussed in appropriate places. ' 
, ' 

2.3 Overview of differential geometry 

, Jt;5 useJul to review a few elementary notJ~ns 'of differential"geometry [do. 
1 

Carmo. 1976] to establish the context in which the smoothness constraints will be for-
, , 

, ' 

mulated. The reviéw will ,be centered on curves in the plélne. although géneralization's to 

higher.· dimensional curves IXÏst . . ' ' - 7 
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2.3 Overyiew of differe~tial geometry 

Let 1 be an interval in one-dirytensional Euclidian space E~. A curve C is defined ' 
-- . ' 

as a c~ntinuous mappj~g x : 1 -+ E2 from the interval to the plane. where 

(2.6) 

" , 

where tEl i.s a parameter running along the curve. and Zt. X2 a're continuous functions of 
, -

t. TheJ~.urve is said to have order of continuity k. denoted C k • if ail derivatives up to ahd 

încluding the kth derivative of xl and x2 are continuous. Ta'king the first derivative with 

respec,t to .ve~YWhere along C. we obtain the' tangen~s 

, X/(t) = (xHt),x~(t)),' (2.7) 

; where the vectors X/(t) have bases. at (Xl(t),X2(t)). Their magnitudes can be int~rpreted 
, , 

as the velocity of a particle following the curve. A curve may be reparameterized ln terms of -
, , 

its arc lengt~ s. equ;valent tQ a particle traveling at constant' unit velo~ity along thé curve. 

ln this case:--the tangent vectors are unit)ength vectors. 

(2.8) 

where oS = I(t} is a reparameterization of th,e curve. and /lx'll == 1. 

The interesting aspect of th~ tangent' is its o~ie~tation. Jhe geom~tric Jnter-
, ' 

pretation of the tangent to a cur've is depicted il1 ,Figure 2.3 (a). Letting P bé a point on 
. . 

a curve. and .('i a neighbouring point. the tangent T at.,E is the limit of the line AP as A 

approaches P along the curve. The tangent yields the ~rientation of "a curve at a point. 
, 1 

Taking the sec{)n~ derivative with respect to oS everywh~re along ,C, we obt~in 
, - ",.,." , 

. x"($) = (X1(8)'~X~(S)); (2.9) 

~ ... - ~ ... ' , -

where thè vector x"(s) is normal to the'vector xl(s) .. an~ the, ~agnitud~ of x"(s) is cailed 

thê curvature of C. Curvature is' a measure'of the ra~e of change of orientation p~er ùn;t ~rc 
o , .:--' '( _ 

length. The geometric interprétation for thé curvature is, dépicteCl in ,Figure 2.3 (b). L~t 

o P be a p~ on a c~rve. T th~,.tangent at tha~' po;~t. a~d A-a neighbouring p~;n~ on, the' , 
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2.4 Derivative~, through curvatu!e consistency 

,p B 

c c .,P 
'10 .C 

(a) (b) (c) . 

Figure 2.3 (a) Tangent T is the limit of segment'PA as A a'pproaches P along C, 
- ~ 

(b) The curvatùre K. 'Of C at Pis the limit of the ratio ojjABI ifS A and B approach " 
P independently along C. (c) The osculating drdé 0 at Pis tfle Umit of·the drcle 
tha~ passés throu'gh A. P and B.,as A and B approach P i{ldependently along C 
The osculatlng drcle in (c) is a substantially better local approxjmation than the 
tangent in (a), 

,\ 

curve. Let 0: denote the angle between the Une AP and T. The'curvature It at P is the 
,...." 

lim;t. of the ratio a(IABI as A approaches P along the curve. Related to this interpretation 

. of curvatur!! is the o$culating drcle. Re(erring to Figurè 2.3 (cJ, let A, P and B be three 

," ~ .neighbouring.points on a curve: and let 0 be a drcle through th~se poi,nts. As A and B 

" independently approach P aldog the curve. 'the drcle 0 converges towards a IÎmit. whose 

rad,iys .is precîsely t.he inverse of the eurvature It at P . 

. -' 2.4 . Derivàtives throùgh curvature consistency 

~ , . 
Alth0':Jgh third and higher order derivatives can be. defined for curves. practicaJ 

considerations dictate that the process must stop somewhere. Our position is that the 
~ .. ~ 

t;ace. t~nge),{ and curvature fie!ds provide the JocaJ basis for inferring glob~1 curves. an~ " 
• ' J 

~re neces'sary, for placing dis,cont,inuities. corn~s, or breakpoints. Qualitatively for' people., 
~ 

Înteresting events along curves c-onsist only of abrupt changes of orientation and curvature. 
~ 

1.local .:naxima of curvatùre. a~d inflection points (i.e. zero crdssings of curvature) [Attneave. 
0- - '> ' • 

1959:... HofTman and Richards. 1986: Koend~rink and van D~orn. 1982: Fischler. 1983). 

These are the places that a, huma" o~server ;s most likely to choose to segment fong 
, ... ' 

r, curves into shorter ones..' Higher arder dis,continuities s~cb ,as discont",uities' in curvature 
" . 

(1.' t "1 • • 

variation do Mt seem to matter. Between the ~elected corner points. curves simply appellr ' 
, . -

\ ~ ~ 

" 
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to be smooth. 
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2,5 Tangent and curvalure fleld$ 

Alth6ugh this argument for limiting the number of derivatives considered 15 
~ . 

informai and based on human perception. any machine vision system will have to coniront ( 

~his ISSlre as weil. While any namber of derivatives can be d~fined. only a finite (and .. in .. '.)-

fact. small) number oLthem can actually be computed. Evolution. presumably. has settled 

upon an optimal number. 

ln terms of ditTerential geometry. then. the visual system would appear to per

ceive curves as being piecewise-Coo. w~th' segmentation occuring .at discontinuities in the 

flrst and second derivatives of the curves. Iri the sequel. we shall show that curvature 

co'nsistençy-a ~ece~ry ~ela~ionship between discrete estimates of curvature alo~g a 

smooth ~urve--amounts to a bound on the third derivative. i.e. on the curvature vari

ation. Higher aider discontinuities ar~ smoothed over and ignored. 

, There is a numerical reason for limiting the an~lysis to curvature variation ,as 

weil. Quantization can be modeled as the addition of. "noise" (Papoulis. 1965], and each \' 

derivative numerically amplifies this noise. It is weil known that the numerical stabjJj~y of . 
computing higher-order deri~ativ,es is poor; Although we shall come ba~ ta this point later 

in this thesis. for now suffiee it to note that some number of derivatives are necessary to ' 

: control smoothness and to signal discontinuities. and we shall take that nurnber to be 3. 
, ~ 

Furthermore. real ca~e must be use~ in computingtem •. 
! \', 

'2.5 Tangent and cur'vàtur~ fields 

50 far. we have thought about cu;vés i~trinsically. i.e., as given functions X(8) 

of an arc-Iéngth parameter '8. However ~e this is primarily the abject we, are after: and 

not given.. it is necessary to forn:tulate sorne of our alg~rithms extrinsically in tetms of the 

Euclidian spacé in which the curves are embedded. Consider a retinotopic restriction of 
j 4o-~ 

th~ ,ptâne E2 to finlte .extent D ,~ E2. We shall be in'terested in 2 vector fields on D. 

one which is a mappi~g that associates a' tangent vectoi ~/(8) ta each point in D. and the 
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2.6 Discrete representation of trace. l.~ent. ~nd curvature 

J • 

other which associates a curvature x" (8). We refer to these fields as tangent and curvatur~ 

fields. respectively. The fields form the basis of our representation fo~urves. Thus. those 
. \. 

points in the trace of a curve will have unit tan~ents with associated curvatures mapped. 

to .ttIem. ~hile othe!s will have nul! tangents and curvatures. 

-
2.6 Discretè representation of trace, tangent, an~ curvature 

Sinc~ our problem begins in the discrete domain. we choose a representation 
• 1 

for curves based on their traces. with associated tangent fields and curvature fields. These 

latter fields are represented discretely as weil. to reflect the fact that cürve inference consists 
\ 

of a two-stage proces~. In this first step. the goal is to estimate the trace. tangent. and 

curvature fjelds finely enough so that discontinuities can be placed. but ..coarsely enough 

50, that overwhelmingly restrictive assumptions are not made. The compromise solution. 

then. is with discrete tangent and curvature fields. which serve as inequality bounds on 

which ·the next. global stage can be based. 

"-

The di,scre~e trace of ~ cur~e consists of a set of points in the discrete plane. 

,The discrete 'tangent field is fQrmed by. finding. for e~ch point of the discrete trace. the 

quantized orientation of the curve as it runs through that point. It thus consists of. a set of 

u'nit tangents to curves. characterized by their position and orientation. Hence. assuming 

m discrete orientat'ons. and letting 'h. denote the discrete orientation of the tangent at a 
, 1 

partic.ular position. À = 1, ... ,m." the actual orientation 0* lies in the interval 

, (J~ - ~ < (J*, < 0). + ~. 
2m - 2m (2.10) 

1 , 
The 'di$cret~ cùrvature field is similarly formed by associating to each unit tangent the 

quant;zed curvature at thai point. 

t 
It ,is desirable to have 'a uniform '. representation for ail points in the discrete 

pl~ne. capable. among other things. of distinguishing between trace points and non-trace 
, . 

point~. If. for, example. the orientation of a curve is allowed to have one of 8 values. i.e. 

11 
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2.1 (urve mference as 1 two-stage procedure 

the orientation is quantized to multiples of f = 71' /8. each point of the discrete plane cou Id 

be associated with a vector of 8 elements. each one a predicate true or false according 

to whether or not a curve passes through that point wi~h approximately that (quantiled) 

orientation. Alter,nately. the true or false p~dicates CQuid be replaced py real numbers in 

the interval [0,1]. where the extrem.es assert presence or absence of a curve with absolute , , 
certainty. white intermediate values represent'Iess certain assertions. Thus. for curve points. . . 
lhere is at least one element of the certainty vector with a value near 1. while for non-curve 

points. ail elements are near O. Sorne points may have more than one near-1 value. e.g. 

curve crossings. and orientation discontinUlties. The folJowing notation is used fo. the 

certainty of tangent >. at position (Xl' Yl): 

Pl (>.~ for i = 1, ... , n ). ~ 1, ... --;m. (2.11 ) 

assuming an Image wlth ~ pixels and m discrete orientations of tangents at each pixel. 

With each orientation vector element Pl ().) is associated a single discrete mea

sure of curvature. K,().}. It becomes part of the discrete curvatur~ field when the corre

sponding tangent is part of the discrete tangent field. 

2.7 -Curve inference as a two-stage procedure 

Sufficient background material has now been developed to specify the two stages 
, . 

involved in inferring a curve. 

Stage ~ Trace Infer,ence and Orientation Selectiol} 

Taking an image as input. infer the discrete trace. tangen~. and curvature fields 
-

subject to quantization and maximal curvature constraints. 

Stage 2: Curve Synthesis 

Taking the discreté tràce. tangent. and curvature fields as input. focate discon

tinui.ties and find integral ë~rves running through them. su~t to discontinuity 

and smootbness coq:;traints. \ 

'12 . 
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2 7 Curve inferenc.e as a two-stage procedure 

Stage 2. curve s~nthesis. will be treated in subsequent work [Kimla and Zucker. 

in preparation], We now concentrate on Stage 1. 

---

.. 
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Chapter 3 Trace inference and orientation selection 

• 

• a 

The goal of the first stage of our curve inference proceS5 ;5 the recovery of 
• t 

local information. Clearly this must include the recovery of trace points. If the curve . . ' 

were known. then .trac~ points could be separated from other image structure simply b~ 
, . 

, 
calculating them. But the curve is not known. so we are iorced to estimate the structure 

of the curve in the neighborhood of each putative trace point. As we shall show. coarse 

estimates of the tangent and curvatures provide sufficent l~al information 'about the curve. 

These estimates provide a partial local modef for the curve sufFiciènt to gather' evidence 
" about individual trace points from their neighbours. 

< • " 

Two terms used abovè--Iocal and coarse-warrant further expansion. because 

they are rela~ed in a fu~damental ~ay. Observe that. when searching for a book in th~ 
library. one first searches through broad categories before finely scanning the exact titles. 

Analogously. curve recovery is facilitated by first obtaining a rough-or coarse-estimate of 
-' 

its structure to guide subsequent analyses. Thé need for a local analysis follows for simila ... 

reasons . .,.si!1ce few (if any) assumptions can be made a priori about the global str\,Jcture of 

the curve. • Moreover. given the presence of noise from both sensors and quantization. such 

a coarse. local analysis becomes necessary: imagine trying to exactly estima~e the tangent 
, ' 

~f a contour from an- image to thr~e decimal places without strict a priori assI;Jmptions. 

such as the straightness of the' sides' of a bloC~Binford. 1981].\. Seeking,higher-order 

. approximations suffers the same problems as weil. 

Similar arguments tould be made in detail .about the tan,gents and curvatur~. 
1 : 

.. -
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3 1 The two.steps of Stage' 1 

If the curve were known. then these could be computed exactly. But since it is not. the~, 

they must be estimated as weil. There is s~methjng of a hierarchy of information here. 
:If 

with the (estimated) tangents supplying constraints on the positions of nearby (estimated) 

trace points. with the (estimated) curvatures supplying constraints on the (estimated) tan

gents and their (estimated) locations: and. finally. with curvature consistency relationships 

supplying constraints on (estimated) curvatures. We now develop these constraints in de

tail. based on quantizations of the differentiel geometry already described. In the end we 

will have obtained an inference procedure for estimating (quantized) trace. tangent. and 

curvature fields such that a particular funct/onal with terrJ:1S through curvature variation is 

minimized. 

, . 
3.1 The two steps of Stage 1 

a 

The Stage 1 inference procedure consists of two distinct steps. a measurement 

" step and an interpretation step. The functional minimization and tangent field inference 

are accomplished in the" second 'step. 

Step 1: Measurement 

Cew'0lution of linear operators against the image to obtain initial tangent cer

tainty ëstimates at each position and for each (quantized) orientation. 
) . , 

__ ~-_ Step -2: Interpretation 

S,election of a subset of the taflgents signaled in Step 1 according to the func- ' 

tional minimization procedure to ~è defined. 

Classically, of course. the linear operators amount to "Ii ne detectors" (Rosenfeld 

and Kak. 19761. although our selection procedure is 'much more complica~elthan simpfy 

taking the "strongest" convolutions. Râther. it amounts to selecting those "strong" con

volutions that are strongly supported by-or consistent with~the other convolutions in -

15 
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3.1 ~ The two steps of Stage 1 

-Figure 3.1 The iuitiaJ convolutions are performed with this "Ii ne detector"' operator 
which is a diff~ence of three Gaussians in the x direction, multiplied by a single 
Gaussian in the y direction 

their neighbourhood according to the estimated local curve mode!. We now discuss the 

two steps in turn, 

3.1.1 Step 1: Initial tangent estima tes 

-. . ~ 

The requirement for the fjrst step is a set of operators that estimate the presence 

of ~angent at each p~osition in th~ image. Since ~iscretely the tangent can be viewed as a . .' 
short. straight ,tine segment. templates tuned to this structure arè the obvious çandidates. 

~ Such templates amount. of co~rse. to so-called "fine detèctors" (Rosenfeld and Kak. 1976: , 

Zucker. 1982]. and,we use the, following one (see fig. 3.1): _ 

(3.1.a) 

witb..-

" (J.1.b) 

where Band C are thè normalized weights of the seè'ond and third .Gaussians. 

, The c1assical rationate for. choosirig such opera tors is cleaq they are template .. 
representations of short.' straight line segments. ' The Gaussian kernels "have the attractive 

, ~ 

'~property'thàt they s~ooth o~er intensity 'variations alol'lg the tangent direction. but sharpen 
, -- ~ ~ 

. th~m in the orthogo~al direction [Zucke~ and Hummel. 1986]. Suçh opera tors resemble the 
p 

receptive fields of so-called simple-cells in primate visual cortex [Hubei and Wiesel. 1977). 

\ a'nd hence" are al50 attractive from a biological point of view. 
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3.1 The two st~ps of ~ta,ge 1 

3.1.2 Step 2: Interpreting the initial/tangent estimates 
" 

'9 

Classical treatments of cur~e detection also involve two steps. the tirst of which 

is very similar to the onejust despibed. But the second-step-interprétation ofthe'operator 

convolutions-ls usually much simpler than the scheme that 'we shall be' describing. Since: 

the operator templates match high-contrast straight lines so weil. it is often assum~d that 
_ • " l , 

,si~ply seJecting the' str~ng~st convolutions 15 suffj'ceni f~r obtaining a loc~I'representation 

of the co.~tour (what we are calling a tangent field). B,ut this ;s not the ca'se fot any pattern ' 

.' other than widely spaced. straight lines. Curvature. corners. and nearby c~nto~rs ail affect 

the convolutions. and ail are sufficent to invaJidate the -maximum convolution selection 

strategy IZucker. 1982: 1985]. A richer model for curves is clearly n'eeded .• ' 

, , 

From the ditTerenttal geometry reviewed in Chapter 2. it is dear that our model 
. 

must at least include curvature. Recall that. in the neighborhood of each point. the osculat-
, , 

ing circle is a substantially better' approximation to the curve than the tangent (Fig. 2.3). 

We shall la~eT argue t,hat'curvature is also a high-enough-approximatioh to separate closely 
- -

~paced curves. 50 that incorrect convolutions that cover distinct curves can be properly 

interpreted. Therefore we shall foc us on curvature. and sha/J begin to derive an estimation 
, . 

p~ocedure base~ on (a quantized version of) Jt. Our goal. briefly stated. is to minimize t~e 

curvature variàtion at each point by maximizing circu{arity. 
-~ 

\ 

.-
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Chapter 4 

• 

: Orientation, curvature', 

smoothness, and position constraints 

ln .this chapter. we shall tirst establish the neighbourhood circul~rjty measùre 

in terms of a pairwise relation .b~tween (estimated) tangent elel1'lents. called co-circularity. 
, ~ . . 

which determines an orientation constraint. Introducing the maximum curvature constraint 

Il that arises from grid quantization is then straightforward. Secondly. it will be shoWfl 
1 

4 

"that ~he orientation constniint is not sufficient and that interaction between neighbours 

should be mediated' by ~ curvature consistency constrai,nt.· This constraint can be applied 

provided local,estimates of curtature ilre available. It will be shown that these estim~tes 
can be obtained by partitioning neighbourhoods into regions ca lied curvat,ure classes. 'and 

, 
that ~angent estima~es can be o.btained by propagating support through' these regions. 

Çons'istency of curvature is achievec;f by comparison of the CUrvature classes. ThÎrdly. the 

. ,smoothness constraint is examined in relation to the maximum curvature constraint·and 

the neighbourhood size. 

Fi,nallY. a lenl of constraÎnt is requir.ed to achieve the high locali~ation accuraçy 
, " -

w~ich ;5 characteristic of curvilinear patterns in im~ges. This p,ositional constraint is a 

, form of lateral maximul)'l selection whereby a pixel-wide region is determined to be part of 

the curve: It is 'required because support for tangent elements may occur over a relatively 
. . 

wide area near curves. whereas -the di$crete' trace of a' curve is ~omposed only of the set of . . ' 

pixels' through whicfl the curve actually passes. This level of constraint thus imprC?ves the 

accuracy of t~e trace inference. procedure. 

• 
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4.1 Co-circularity 

The standard approach to estimating curvature is to fit a polynomial to a col

lection of points. and then to d'ifTerentiate the polynomiaÎ twice [Pavlidis. 1982]. This. 

however'. amplifies noise. and hençe is unusa~le il1 our quantized context. We sha" present 

a d.ifferent scheme. in which the information contai n,éd in tangent estimates provides the 

, basis for curvature estima tes through ~he co-circularity relationship. 0 

4.1.1 Definitio'n " 

The ~elation of co-circularity applies to distinct tangents to a drcle (see Figure 

4.1(a)): A property of this spatial configuration is that the tangents fprm angles of equaJ 

magnitudë. but of opposite sign: with the line joining the points o~ange~cy (see Figure 

4.1 (b)). Thus. a~straction can be made of tHe drcle. and the 'symmetty of the configuration 

can be retained ~s .the characteristic of co-circularity. Note that when the radius of tbe 

cjrcle hecomes infinite. we obtain a special case of co-cir'cularity: co-linearity. Co-circularity' 

is therefore a function of both the' orientations and the positions ?f the tahgen.ts . 
. 

. Definition. " Two unit tangents À and À' are co-circular, denoted 
, 1 ~ ... • , _ , • 

'i X )., 

ifT there exists a c;;icÎe ic; which they are both tahg lnt. '. 

., ' 

Co-circul~r;ty is a kinçJ of symmetry re'àtion betYt'eer;l tangeAts. and bears sQme 

relatio~sHip to the way' in which '[Brady and Asa~a. 19841 define a local symmetry. But our 
, ' T • \ 

'di$cretization and us~ of the notion differs substant~ally fro~ theirs: 

. 4.1.2 'Co-circularity in ,the di.crete case " . 

When ,position a'nd orientat~on are qu~ntized. tangent pairs are seldqm exactly 

co-éitc~lar. The' slriall perturbations introd,uced 'by quantizatio~'·must:so,mehow. be taken 
• • .. ,. c - • \ • ~ .. r. , 

. 
'0 



o. 

r 

, , 

-' 

o 

4.1 C~·eircUlarity 

(a) (b) 

Figure 4.1 I~ (a). unit tangents A and B are bot~ tangent to the samt:' circle. 
t~erefore A i's co-circular to B (denoted A x Bl This condition is geometriçally 
~uival~nt to t;hat depic~ed in'(b). where Q = -8. 

Fig~ré 4.2 Jw~ unit ta~gents ~ and ).1 with respective orjentati~ns 6 À' (J).' whose 
, positions aré restricted to the circte of radius 1/2 centered at the pixel positions 
'(z,. Yi)' (x), y]). the ~ine-with orientation fi,; joining the centers of the pixels; the, 
IIne with orientation 6t joining ~he tangents. '. 

/ 

-. 

into acçount. T 0 do this. 'we b~gin by allowing the p~sition of the tangen'ts ta be anywhere 

.wi~hin the ~itéf~ of\r~Qius 1/2' pixel center~d at the pixel. Lik~wise. we le~ the;r orièntatjon .. 
vary within·a nèighbourhood of size f. for c)rientation~ quantized ta multi~les of f. The 

, cr 

tang~nt .pair is thus co-circular. if the~ exists -at least on~ a~~jgnment.o~ th~ position and 

orientation variables for which ce-circ arlty as defined above is Uue. , - . . 
Let (Xi, Yi) and (x" Yi) be the coordinates of nodes i and j.' and let (x, y) be 

,an'erbitrary point with,in the drcle ai radius 1/2 centered at (Xi:, Ys}. and ('r, y') a point in 

a c'ircuiar neigh~ourhood 'of (x" 1Ii): let À and À' be unit t~j,gents at these locations and 
1. _ ' , 

IJ). and IJ).,I be their r~pectiv~ orientations: let (J be àn orienfâtion, in an f-neighbou'rhood 
, , 

of (J).. and (JI an orientation in an E~neighbourho~d of IJ)./ (see Fïgur~' 4.2). The'orientation 

of the Une joïning the centers of the pixels is give_n by 

Bi; = arctan(Ayj Ax) 

where Ax = Xi ~ Zi and A, -'Yi - Yi-

) .-

-' 
. '(4.1) , 
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, 4.1 Co·tircularity 

Figu~e '.4.3 'The interval for the grientation' 8t of the line jointng two u~it tangents 
~ and )'/Iocat,ed in circ/es-of radius 1/2 cèn,tered at (zid1i) and'(~jlYj) is (8 .. j ": 
Q,Oij+Q), whefF Bij is th,e orienta~ion of the line joining the centers of the"cirçles. 
and â depe,nds orr the dislance di] separàting them. The sine of Q ;s 1/2 dlvided 
by the distance from 0 to (z,'YÛi wlfi~h,.is dij/2. hence Q = atcsin(1/dtJ ). 

We wish to ,determ;ne the minimum and maximum values 'that may be taken . ' 

by Btl the orientation of the line joining the tang'enfs as (x; y) and (,cl, y') are allowed to 
, ' 

vary within their ~ircu~~r neighbourhoods. As il)' Figure 4.3. th~ e~trema coincide with thè ' 

two intersecting tangents comman to the circular neighbourhoods, ln the case of: drdes 
... ~. 1 \. , .. ' 

of e~ual radii, it can be shown that the angle between the,comman tangent and the line . 
, r 

jointng their cen,ters is given by' 

Q = arcsin(ljd,j) • (4.2) 

Let' the function r (P, "y) dèsignatè the interlor angle b~tween a pair of lines with • 
~, ,~ ... -

ori~l'Jtations ,s,·and 'Y. as in Figure 4,4. let the sign .of t~is fun~tion be the same~ a~ the 
" 

é djrection in which the first line must rot~te in ~der to close the interiQr angle and coin~ide 
, .-

,: with the second. that is. po~itive for. counterclockwise and negative for clQckwise rotations: 
• _ ~ t' 

The formai aefinition of this function. assuming that ~ S {3 < 'Tr and 0 :5 'Y < 'Tr. is. th~ 
, . 

foUowi~i .' , •• 
" if h .... ftl ~ ,;:: 

ifl<'Y-~~1lï 
jf -'Tr ,< ."1 - {3 < -J. ' 

,(4.3) 

'. ol' 

Turning back to Figure 4.2 ind recalling the geometrical definition of co-circu- -
',' \ 1 

, larity. we .find that the tangents at-Czi,Yi) and (xj,lIj)"âre co-circular if the interior angle 
, ..".-. - ,', " ' , .' 
~ 21 -. , 
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Figure 4-.4 The inte~i<?r angle functiofl r(.8,"'I) is the interio~ angle between a pair 
of lines with orientations /3 and "'r The sigl1 oJ this Junction is -determined by the 

, direction- in which ~he first li ne must rotate in order to close the interior angle, 

l'" .-, 

bétwee,n the first tangent ,and the,line.jOining the tange~ts"is the,same as·that betwe~n theJ 

latter Irne and the second tangent. Formally'. 

'(4.4) \ 

l ' . , 

. for s0":1e (Jt E ,(O,,) - ex, (Jij+ a). (J ,E (8).. -- 2-, q>: +. 7)' (JI ~ ((J,\I -,., (J)..I + 2 j. This condition 

tS clearly equivalent to 

.- -
').x).' iff.lr((J,x,(JI·.1)-r(9(1,6J..,)I<E,+,2a. (4.5) 

- Condition (4,~) Îsa discrete co-tirèularity. con,dition: it is either trùe or false. 
,,~... , 

A continuous version of this -Condition can be imp'ler:nented by measuring the closeness 
. ~ " , 1.... ~ ~ t 

ta c~cjrcularjty. and we refer to' t'hjs m~a~ù;e ,as Cl- c~circularity coéfficient. Depart",re 
" , 

from ~xact co-circul~rity oçèurs by rotatio~ ~f. one', of .the tan,ents. ~hich suggests t~at a 

funcfi~n of the difference in orientation bet~ee~'a tangent and' the èo-circuJar tangent in the 
, ' 

.. sa me position èould be used as a n1easure, Qf co-circularity. \ The Co-cifcularity coeffiéient 
,." ," l , ...... 

t,hen consists of a real number between 0 and 1. where 0' means not co-cîrcular. 1 means 
, , 

co-circular. and values clo~e to 1 are interpreted as nèarly'c9-circular. . 
. . } .. '" . ~ , 

'. 1 • 

Generally. the'cOéfficient is.1 for a certain range Qf orient~tÎons of tangents·at 
, - , \ '~ 

the-neighbo'uring node. because of buift-in qùantization noise tolerance in" (4.5).-Denote . ~ , , . . - , " " '- -
this range by [(J~'h (Jmaz) • . We le~ the magnitude of the.coefficient fatl C?ff monotonically 

• \ '-' , #1 , 1 

outside this rahg~ (~ee Figure 4.5). . . 
. . 
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4.1 Co-,circularity 

0.5 
• fi 

Figure _4.5 Co-circularity coefficient cti(.\' -,\'l as a fun,tion of orientation fi).1 ,of 
nelgtibouring tangent, The length of the interval f6mm,Oma:] is 'E + 2a (see 
Conditton 4.5). -;.-' , 

rh us the co-circufarity coeffjcie~ts ct.j(À, À'{are given by 

" (À ~') _ {l, . if 1 r(8).,8,,) - r(~-;;-U,\,)I < E+ 2a: 
c" ' - max(l - '118).1 - Oml ,Cmm), otherwise. ' , 

. '{ (4.6) 

where. 8~ is ~he extreme of t~e range -(8~tn, Orna:] cJos~st to 0,\/. and" js)he absolute 

, value of the ~Iop,e of the drop-off region: assuming a linear decrease .. 

Because of the grid and tangent quantization. it is necessary to consider tan-

-, gentt distributed in a neighbourhood around each image point. If only the 3 by 3 îmmediate 

neighbours wére <:ônsider~d. then-the angular quimtization of 0" would be much to~ severe. 

The co-circul~rity" coe~cient so defined can be me~sured for ail neighbouring tangents in 

~. ~eighb~urhood of ~ given size. and the set of ,th~se measures fo;ms t~e neighbour:hood 

support set. .... 
, . 
4.1.3 Maximum ,curvature constraint 

• 
.In order t6 introduce the maximùm curvatûre constraint (recaU Fig. 2.1(c)). a 

() , ~ . " \ .. 

measure of the radius of curvature implied by a pair of tangents is required", Létting Pii(À) . 
denote the implied radius! )Ve use 

, Pi; P') = 2 sin 1 ;i:.\"8.; Il (4.7) 

as its measure. The maximu,m curv.ature co'nstraint implies th~t 

, ., 
(4.8) 
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4.2 Co-circularlty support 
; , 

Figure 4-.6(a) shows the set of neighbours co-circûlàr to a tangent with a vertical orientation 

for a neighbourhood diameter of 15 with the maximum curvature constraint applied. 
• b ' 

4.2 Co-circula rit y SUppofl--

• We are now in a position to estim~te how weil 'a particular (estimated) tangent 

is supported by other (estimated) tangents in its neighbourhood, Recall that the first 

measurement st~ge consisted in convolutions against "Iine detectors" (Seçtion 3.1). Lettin~ 

8 À denote the orientation of the operator at node i with coordinates (Xi, Yt). for ). == 
2 • 

1, ... ,m. the normalized convolutions {Pt (>.), i = 1, ... ; n, >. =' 1, ... ,ni}, 0 ~ ,Pt (..\) ~ 1. 

provide an initial estimate of the confid~nce in ta~gent >. at node (. Note. for a long 
, ~ 

straight line of orientation 8).* passing th~ough i. that Pt{>'*) will be maxima1 at that 

posÎtion. and that pd..\) will drop off from Pi(>'*) according to the orientation tuning curve 

for the operator. 

, , 

,But wh en the ,curve -does not consist of lon~ straight lines. Pt P) can Jollow 

a . more complex distribution at eacn node i. Therefore. the circularity measure must be c 

-evaluated over a local neighbourhood around i and must dépend on the entire distribution of 

possible tangents at each point. We take a linear weighted sum to indicate the co-circularity. 
. . ' 

supp.ort for a unit tangent >. at po~ition i: 
,n m< 

,sd..\) = L L 't.1{>.,>")P1{>") . (4.9) 
. . i=l, ).'=1 

where r iJ (>', ..\') = Ci] (..\;"\'). the co-circularity coefficient. Clearly those tangents Iyi"g 

along a curve should have maximal support. More re"lain5 to be (fone beforf:! this i5 

guaranteed. however. because /ine~r averaging schemes 5uch as this have the potential to 
, . 

~ 

smooth across different but ne3(by (within the given neighbourhood) cdrves. 
, 

•• 4.3 'Curvature classes 

Consider a smalt neighbourhood of an image containing many curves. Within 

this neighbourhood. many tangent pairs are' mutually co-circular. with _ sorne co-circular 

( 
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4.3 Curvature classes 
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Figure 4.6 A diameter '15 neighbourhood (a). partitioned into 7 curvature classes 
for the vertical orientation (b) - (h). (a) bears some resemblance to the consistency 
opera tors for curve enhancement developed În IHedlund. Granlund and Knutsson. 
19821 

, " 

, .1' , .... --1' 

(h) 

pai~s belonging in fact _to distin.ct curves. More specifically. given three tangents A. Band 

C in such a neighbourhood and given that A ::=::: B and A ~ C. it does not follow necessarily 

that B xe." ln partic~lar. the interpr~tation of A remains ambiguous when B f:. C: does 

Aoelong tp the curve going through A and B. -or to the Q.ne through A and C? Oné way to 

decide the situation is to partttion the neighbollrhood support set about A into sufficiently 

narrow curvature classes Kk(A). le = 1, ... , K as in Figure 4.~(b)-(h). 

Eaçh curvature dass consists of ail the osculating cirdes whose, radius is be

tween the limits for that cJass or. equivalently. whose curvature is within certain limits. 
" . 

~ Thus.,'if A ::=:: B. A x C. and B. C belong to the same cu.rvature class Kk{A} with respect 

to A. it may be concluded that B x' C. 

• , T~o benefits acgue from the use of paf1:itioning. First. itO imposes n-wise 

consistency .of tangents within curvature'classes at a low cast in complexity. The tange,!! 

supp~~_func~ion can be modified to take advantage of'the partition. by measuring support . . , 

il1aependently by curvature class. and by selècting the highest as the final tangent support. 
- .,,'" -., 25 
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4 4 Consistency of curvltures 

(b) 

Figure 4.7 ln (a). A x Band . ....NInd B are tangent to the same curve. In lb) 
however. the spatial configuration of A and B 15 the same as ln (a). but they are 
tangent to distinct curves. 

The suppor:t of tangent .\ at node z· is thus given by 

6 n m 

8,(.\)= ~ax L 2:T~,(.\,'\')P1(.\')' (4.10) \ 
k-l,K 1=1 ~/=1 

~- J . 
where the 'Coefficient r~i~' ,\') is the product of the co-circuJarity coefficient c'] P, '\') and 

a partitioning function 

Kk.(.\ .\') = {l, if P~un < Pl](.\) ~ P~a%: 
'1' , 0, otherwise: 

(4.11) 

for given. curvature cJas's limits P~m and P~a%' 
, 

The second benefit is that a discrete e~ ft,('\) is obtained by 

correspondenC( w,ith the curvature c1as~ tha~âximizes the support function. With this . . 
estimate. it is be ,possible to introduce a further constraint on the selection of neighbouring 

1 

tangents for local.' su~port. This constraint is examined in the next Section. Fi~st note . . 
however. that these discrete curvature estimates have been obtained without the numerical 

problems inherent in stanlard. spline-fltting t~chniques. 

4 .. 4 ConsistenC!of curvatures 

One kind of ambiguity persists even after partitioning into cunrciture classes. 

C0t:lside~ ~or example Figures 4.7(a) and (b)., 

ln Figure 4.7(a). tangents A and B are co-circular and they are ta.,ent 10 

the same curve. In Figure 4.7(b) however. tangents A and B accur in the sa,,(e spatial 

26 
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4.4 Consistency of curvatures 
A 

(a) (b) . , 

Figure 4.8 In'(a). A ::::: B but the estimated ,curvature at B 15 inconsistent with 
the interpretation of a curve through A and B ln (b) however. mutuaLsupport is 
possible because the curvatllres are consist<lnt 

configuration as in (a). yet they are tangent to distinct curves. Should the tangents A and 

B mutuaiiY support each other in (b)? If not. how can configurations (a) and (b) be told 

apart? 

The solution to this problem requires companson of local curvature class es

timates. The orientation of a tangent and the local curvature class estimate together 
, 

.si!termine a region about the position of the tangent where a curve is most lil<ely to exist. r, 
ln Figure 4.8. B ;::::: A. therefore B belongs to at 16ast one of the curvature cla$ses of . . , 

A. But in Figure 4.8(a),_ the local curvatu~e c1ass e~timate at B does not include A as a 

member. The curvatures are s~id to be inconsÎstent ~nd' tbis 'Condition precludes 'mutual . '. 
support of A and B. Figure 4.8(b) depicts a situation' where curvatures are consistent ~ith 

th~ interpretatio~ that a curve passe~ through A and B. Note that in this case we h~'ye 0> 

~ , 

both A E Kk(B) and B ~. Kk,(A) for some k and k~ (not nec~ssarily eqù~,). 

Letting" Ci~~' (À, À') denote the predicate variable for c~rvature consistency. i.e. 

, "' . {l, if cur1atyre class k of >. at {is consistent ctlc (À, À') = , with e~timated curvature ,class Jç' of À' at j: 
0, otherwlse:. . '. . 

we obtain a new coefficiènt 
, . 

, . , 

which is a function of.·curvature as weil as orientation and position. 

• 

,,' .' . o 

\ 

- (4.12) 

(4.13) 
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45 Smoothness constraint 

4.5 Smoothness constraint 

50 far. it has been assumed that the, tangent and curvature fields_ embodied 

the smoothness constraint without explicitating its actual mechamsm. In this Section. the 
,- -

smoothness constraint will be dlscussed in relation to the circularity measure. whîch is a 

function of the maximum curvature constraint and the neighbourhood size. 

The smoothness constraint takes on two distinct but ,related forms. First and' 

foremost. it is mediated through the maximum curvature constraint. whose role is to filter 

out quantization noise ictroduced by discretization of the image. The upper bound on 

maximum curvature is dictated directly by the resolution.of the discrete image. As depicted 

in Figure 2.1 (c). very high curvature is indistinguishable from a çorner. so the limit is at 

the point where the maximum curvature leads to· a trace different from a corresponding 
,~ . 
corner. Experiments with the trace inference procedure suggest that the minimum radius 

of curvature should be in the range of 2.5 to 3.0 pixels. 

The second form of smoothness constraint depends on the size of the neighbour-

- hood used to collect support for unit tangents along a Curvè. It is implicitly assumed that / 

,the osculating circle is a good approximation of the neighbourQ,ood. that is. the curvature 

variation is small within a given neighb,ourhood size. Thus. the greater the neighbourhood 

is. the I~ss sensitive the circularity measure' ~iJJ be to small details in the eurve., and the . . 
smoother the inferred tracé will be. For example. a regular polygon would be perceived as a ... . -
circl~ using a sufficiently large neighbourhood. Chapter 6 describes an experiment showing 

the effect of varying neighbourhood size on inferred trace and tangent and curvature fields . 

. 
,Neighbourhood size and max.imum curvature are not totally independent. In'-' 

general. the minimum radius of curvature scales with neighbourhood size. just as the 

radius of. curvature limits of the curvature class~s (assuming a fixed number of curvature 

classes). As wil~ be seen in the next chaptér. the extent of the neighbourhood is d~fined in 
, -

such a way that ail circles tangent to thé center of the neighbourhood have equal arc length 

within the neighbourhood. This .is _one solution to avoiding, the proble,!, of preferenc-: for 
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4.6 Lateral màxima 

certain curvature classes over others. Thus. the minimum radius of curvature must scale 

with neighbourhood size. Another approach to the curvature preference proble~ would be 

to adjust the co-circularity coefficients to offset the eff!!Cts of variable intra-ne;ghbourhood 

arc lengths. Then. a la~ge neighbourhood size could be chosen while maintaihing a low 

minimum radius of curvature. perhaps at the cost of increasing the number of curvature 

classes to cover the extended range more effectively. This solution was not developed due 

to the high complexity cost of increa"iing the number of curvature classes. 

4.6 Lateral maxima 

ln this Se~tion. we address t~e problem of inferring the trate of a curve from the 

certainties associated with the tangent~during our procedure. The objective is to extra ct a 

pixel-wide region about a curve. The method is based on comparisons between certainties. 

in a 5mall neighbourhood. with selectio~of the tangents with hrghest certainty. i.e. the 
or 

lateral maxima., 

4.6.1 Tèchniques for extracting lateral maxima 
• . ' # 

, 

'the rationale for lateral maximum selection is the observation that the sup-

port function exhibits a th~Jracter;stic maximum at the precise location of a curve. The 

magnitude of the sup~ort function decreases gradually on either side of this location. 

lateral maximum selection is, in principle. -a simple t~hniqùe .. but its impie

ment~tion on à discrete grid requires care!ul consideration. The most obvious problem 
- . 

. is that. on an orthogonal grid. only tangents with orientation parallel to a grid axis have 
, , 

-Iateral neighbours with which to compare. For other ori~ntations, ,interpolated v~lues for 

lateral neighbours must be used. rather than the neighbour dosest to the ideaÎ position. A , . . . 
straightforward linear interpolation based on a plane fitted to the three nearest neighbours 
." . 

is quite sutficiènt. A tangent À at (x, y) is, therefore a lateral maximum if its certainty 

is ma'\.imal among ail tangents in the 3' by 3 neighbourhood in position~orientatjon space. 
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4.6 Lateral maxima 

Letting mi(À) denote the predicate variable for a later~1 maximum for <?rlent-ation ,\ at node-

i. we have 

,{ 1, iff Pt{À) ?>~Pl(~'). T/À' E {>. -1.~,>. f 1}. ~nd, ~ 
(À) _' Pt(À) > pr(A'). "if À' -:: .{~ - ~. À. ~ + 1}. and' 

mt - 'pt(A) > Pt{À'). '<lÀ' E {À -l,A + i}: 
~"\ 0', , otherwise: " " 

(4.14) 

where pLJA')f'arid Pr{-*') denote the certainties of the left and right. or interpolated left and 

right tertainties for tangent A'. 

As an alternative ta i,nterpolated certàinties. one côuld also perform a strid 

comparison against a set of neighbouring certainties determined by the orientation of the ~ 

certai~ty under test. Comparison sets can be defined in such CI way that thb selection 

process is stable. More formally. , . 

iff Ptf~) > p]p.'). 'VA' E {À -l:;À,À + 1}. 'Vj E Nf: 
otherwise: 

(4.15) 

where the neighbour set ~f is .a predefined set·depending o~ the local esti";'ated orientation 

A ~nd estim,ted curvatur~ k. 

The lateral maximum'.property of neighbouriry~ tangents can bë used as an ad-
. . 

ditionat constrain~ in the support fùnet.on. Sinee only those tangents in the neighbourhood 

that are laierai maxima are compatible with a curve' interpretation (observe, that the ini-.' ' 

tial convolutions drop off with tateral displacef11ent from the curve). }he support functiqn 

, should be-corres~ondingly restricted. Thùs. we' obtain a new expression for the support of 

a tange.ot: 
n m 

Si(À) = ~ax L L T~k' p, A') p} P/) mj(À'). 
k-l,K ;=1..\'=1 , ',1 

, (4.16) 

The net effect. of this constraint is toJurther narrow the region' near eurvés where tangents 

receive high support. 
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.,' 

" 

Since the expression (4.16) for the support 'of a tangent should be maximized 

at each 'position, a natural,choice for a global functional is the avetage local support 

n .-

A (p) = L 8, (.\) p, ( ;\) (5.1) 

Qualitatively. the Pi (.\) indicate whieh tangents and positions are cho~en, and ~he &, (.~) 
\ . 

!ndicate how mutually consistent they are, through the quafltized geometrical constructs 
, , 

just developed. That is. the si (l) codes the local model for the curvè in. the neighbourhood . . 
of tangent ..\ àt node i. In particurâr. as the position al quantization âi -t.O. orientation 

quantiza-tion 1:1~ - O. and the c~rvature classes' approach the actual curvature, s,(l)---t- 1 
, . 

fo,. ~II tangents along the. (smooth) curve, and Si(À) '--t- ,0 e1sewhere. 

Relaxation labeliing is a procedure for maximizing eXpressions such .as (5.l). 
1 -' 

[Hummel and Zucker, f983}. and in the followipg Sèction, we review the relaxation labelling 
, ".,: 

procedure and tailor it to this application. 

, : 

'5.1' Ove~view of relaxation 'Iabelling' 

~ " 
Relaxation labelling is an iterative prÔ'cedure applied over a network of nodes. . . 

1 

Associated witb each n'ode is a set of labels. a~d associated with each laber is a measure 
" - l ", 

~ of confidenc~. or certalnty. Let'there,be n nodes and. for the sake of simplicity,-a uniq.ue 

set of m 'Ia~.t e~h nO.de,' Further. let PiCA) den~te the confide,nce ,of label ~ at node' 

. ... 
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5 2 The relaxation graph " 

1. The values of the Pl (À) are restrict~d to-the intervaIIO.I}. and are' s,ubject to t~~ added' 
, , 

constraint that at each node i, 
m 

LP,(À)=l fori=l, ... ,n. (5.2) 
. \ ,\=1 , , , _ • _____ _ 

ln vect9r notation. this constraint can be written as Pl ·1 = 1. wheré 1 is the m-dim,ensional . " 
vector 'o{ l' s (1, 1, ... , 1) . The degree of compatibil~ty bet~een a label and its neighbour- , . . 
hood can be measured hy what f5' known as t~e lab'el!s support. which' is a function' of 

" , 

~ther laber certainties in the nerghbourhood and their cqmpatibility (pair-wise) with the 
• 1 

label being supported. The constraints between l;lbels 'are represented by a 'matrix of cb~-

patibiJities. riflA, IV). which serve to embody the p,oblem-dep~ndent knowledge. In this 

notation. r'l (À, A') denotes the compatibil~ty between laber A' associated Y'ith n'ode j ?nd 

'Iabel À associated with node i. We use the following expression fo/ ~h'e suppo 8 2 (>..) of 

label>" at node i: . ~ 
n m , 

St(>"}. = L L r2i(>'" >..')p) (>../) 
. )=1 A/=l 

1 ' .' 

Relaxation labelling is ,the process of achieving consisteQ,cy. Hummel and Zucker' 

[Hummel and Zucker'. 1983] defined ~!l~sistency in variational terms; they 'also, proved 
- - ~ '- . 

, that. for symmetric compatibility coefficients. consiste!lt, states qf the relaxation, network'~ 

m~ximjzed functionals of 'the form A(p) in (5.1). S'uch 'maxi~a a~e' achieved iteratively: 

beginning ~!th an il)Jtiallabelling {p?(~).}. th~ iteràtion ,. 
.. i. 'l.' .\. " 

" ·pf+l(>..) = f(pf{>..): 8:(À)} . "(5.4) 

continues untiJ convergence. ' Hummel ~nd Zucker iHu~~el and iùcker. ,1983) d~v«dop a 

gene,~1 ~cheme~for t~e 'iteration (5.4) utili~ing the 'Mohammed (Mohammed. -Hu~'mel and 

, Zucker. ,1983) projection operC!tor.· Ho~~ver. t'he efficien~y of titis schem~ can 'be improved 
• "1 .-

, \ , " ' . \ 
~ubs~antially Jor this,application: see (Parent and Zucker. 1985) and Appendix A.' \' 

• 1 ~ ... 

-, 
," , 

5.2, The ~elaxation graph, 
, 1 

,", 

'fi Th~ original appr,bàch (Zucker. Hummel and Rosenfeld. 1977) to representing . .-'" . , , 

, cu~~~s 1 i~ a relaxation 'graph use~ m: orientation; of taÎtgents to a' curve at eaèh, nodè. plus 
". '\ ' .' 1 
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5,2. rhe relaxation gra'ph 

the no-line label. with certainties. 'sùbject to condition 

m+1' , 

L pd.\) == 1, 
, 

for i = 1, ... ,!l. c (5.5) 
,\=1, 

Ac;cording to this èonventÎon.' a labelling is consistent 'and certain only if at most one 

9rientation Îs chose" by t~e relaxation p,rocess. However. cürve ,intersections and corners 
~ 

~ ~ ,~ 

require that multiple orientations be chosen at c~rtain nodes. 

Our 'solution is to have not one ,but many superimposed relaxation graphs. one 

for 'each label>' = 1,. ~ J', m. We shall refer to t,his collection as a relaxation hyper-gra'ph. 
, . ' 

Each node of graph >. requires ~ labels: >. and no-Iine, Interactions are permitted betwéen 
~ 

the graphs through the compatibility coeffidents. . . ' 

. 
Note that the certainty vector àt each no de of each 'graph consists 'of two 

co'mponents 'with unit sumo Clearly. not~irig is gained'tby representing both components 

of the ~ vector explièitly. one of the cOh1ponents being sim ply the complement of 'the other. 

Similar savings can' be achieved in th'e compatibililY matrix by eliminating the no-line label. 

completely. -.-

. é:o~sider ~thë Co~,tri~tltion of node 'j to the support of the t~~ lab.e~ (0 and 1 i 
• • 1. • 

a~ nodef >~tting ~ti = ~,j(~, ~). ~10'-==',;;1(~' 0) .. et~ .• and p~' " ' Pj(1). ~e o~tajn, from 

(5.3). J • ' , " • _ >_evl '\ ' - . 
-\ "~-, \ 

?' 
) / .... t'.~ 

\ / 

1 

'si(1) :: ,r10(1 - p,) f tl1PJ - (~.6) . 
"" \ r , , ' 

'--"" 8i(Or= roo(l'- p., ') +r~lPj' \ (5.7} 

, 

• 
. " 

Assuming that roo =. rU' rOI = ~10 = -ru. the above are reduced 'to 
\ " 

• 1 1 • 

" 
(5.8) 

(5.9) , 

, . 
- where both expreslÏons are void of terms related to label O. Hence. for this special case. 
1 ., 

, (,and mahY similar ones wh~e- ail compatibility coefficients are functions' of a single one). 
" ' 
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5.3" Complete relaxatiQn model 

it Îs' possible to reduce thè complexity of the relaxation graph and the compatibility matri'X, 
, '.. . ') , - , ''\. 

,The assumptions about the compatibility coefficiÈmts a~e not unreasonable when label 0 

,is interpreted as no-Iine. This result s~ows tha~ if certain labels 'are feft out and only . . 
the co~patibility coèijkients between the remaining labels ar~ -specified. the sys~em Îs 
., , 

equivalent to another one wh'ere ail .the' labels and compatibility coefficients are specified. 
/ " . 

Thus. truncation of the graph and compatibility matrix doe; nof violate r~laxation labelling 
, - • t.-, • ' 

• -) 
theory. The result is extensible to systems of more than two labels', 

5.3 Complete relaxatio," modeÎ 
.... 

. . 
, To su.mmarize. a sketch of the .complete relaxation model as it wiJI be used in 

the trace in~erence process is as follows: 

r 

• . Hyper~graph: m graphs of n nodes. o~e for each orientation, The labels represent 
, '~ 

ta'~gents with or~tions quantized to multiples o{ ~ = ~, The 

~"no.line·· label is not explicitly I.rep're~ented. , The 'm labels at node i 
'. ' 

ha,ve indepenqent certai~ties Pi (,\) (E' [0, 1). , 

.. 
Support fundiôn~, the sup'port Si (,\) of label À' at no'de i is' a normalized funetion of the , , 

f __ ,.. ':) 

\ ' 

sum of the products .of neighbouring label certainties hy appropiiately 
, .. . 

\, '. . , 

chosen compatibility coefficients. ,as in Eq. (4\16). 

Update formula: each pd.\) is ,updated as though in a two-Iabet'graph. with the other . ,-
'~bel interpreted as "no-line" and haviRg complementary suppott. i.e. '" 

, -, . 

. -s, (,xt. P.(À)ois updated ~ such a way as to converge asymptotical/y , 
. , , 

" . . . 
to 1 when excit~d. and to 0 when inhibited (see Appendix A). 

, " 

o 

..... 
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5 4 Normalizatlon detaits , 

Figure.5.l An equi-Iength neighbour.liood for the vertical orientation with 7 curva
. toré clllsses, Ali arcs of, ç,ircle, vertically tangent to the center of the.,oeighbourhood 

'have' the s~me length, "\~~n (= l/ltma:c) is the minimum radius, of curvàtu~e, 
, which /imits the extent of the neighbourho~d according to the maximum curvature 

constraint, ' 

5.4. Normalization detilii$ 

" . 

" 

Two details remain.' but' the-y are central to succe~sfll' implementations. First. 

the sUÎ,port functions must be normalized to account for arc-length effects. and secondly. 

they have to be mapped into a common interval 50 that values are comparable across 
1 1.. ... • .... ,# 

positions. We discuss each of these hormalizations in turn. 

5.4.1 ,Extént o~ neighbourhood support 

. 
.The unit tangent support function has so. far been described in terms of co-
y. 1 

, , 

circularity coefficients. but nothing has been said apout the shape or ,extent of the neigh-

bourho~d over w,hich tangents in~eract. We ~ould àssume a circular neighbourhood ~hape. 
detérmlned by. the neighbourhood diameter and the Jl)aximum curvature const.rairit. H<?w-

. 
- " . 

. eve~. this tircul'ë., shape is not ideal because arcs of different curvature have distinèt intra-

neighbourho.od lengths. implying a bias of the support fur:tction towards longer arcs. 
~ • :J , 

-. t ,,"",, 

- . ln ordèr to make the support 'of a ta,ngent to a curv~ independent of tire particular 

,cur~atur~. the extent of th~ neighbourhood. is adjuste.d ~o that arés of cirdès' with ail 

: curvatur~ , hav~ the sam~ intra-neighbourhood Jength . 

.. ~ . '" 
Letting R den~te 'the maximum arc "ength distance of interaction between unit 

1 
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• 5 4 Notmalization detaUs 

. , 

ta~gents. the-"c,urve' descril;»ing the boundary of the eq~i,.length r.oegiôn is given by, 
~ , 

, ' 

in 'polar coo~dinate form. Figùre' 5.1 depicts such a neighbourhood. with the minimum 
, \ 

,radius of curvature rmm ~ 1/ ""max constraint applied. Thé: neighbourhood of node i 

is, thus composed of ail unit tangents whose estimated arc le,t'gth distance from (Xi, 11,) 
, ' 

:.Pif(>') =::; R. The estimated 3rc length distance can be obtained from th~ e.sti~ated radius' 
,,' .. ' 

"?~ curvature Plj(>') with 

(5.11) 
, , 

Letting Eaj(>') denot, the neighbourhood extent' predicate. we have 
, " 

E' '(>') = {l, if Dt] (A) ~ 'R: 
. t] 0, otherwise, 

(5';12) 

,5;4.2 '!,tra-pixellength correction .. 

Next. we con~ide,:. the 'intra-pixel Jength correction to the compatibili~y coeffi· 

cients. This is necessary in ordet. to insure that the process is isotropie. A straight line 

of éI' gÎven length intersects a differeM number o( pixels of a digital grid, depen~ing on its 

orientation, For example. ,diagonal lines intersect fewer piXél~ than lines of the same length 

at any other orien~ation. whilé the-linès paraI/el to a grid axis i~ect the most. ,U~less a 

compensatiçn .is in~roduced. the process will !herefore c·"prefer" rthOgonal ~rientat~~ns to 

diagonal ones. A simple normalization coefficient i~ given hy 
• c 

(5.13) 1(>") == y'2', 
~ 2cosw,V 

. where w)/ is th~ angufar difTerence 'b~tweenëJ.v and the ~eàrest gri,d axis. 

With" these two co,ens~tiPns. we'obtain the fin~1 expression for the ~mpat· 
ibility coefficients by multiplying the expression of Equation (4.13) by E'J(>.j and 1(>.,).0 

giving b 
~, J~ 

r~k'p.:>.') = ctJ(,x,>.') :E,Jt>.) Kt~(>">") ç;~k'p.,>.~) 1(>"),' (5.14) 

where' Cij(.\, >") is the 'co-circularity coefficient. Kt (>', >") is tHe curva~ure cfass partitioning 

function. and ct'" (>', .\') is the curvature consistenoy predicate,. , ,J _ _ 
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5.4 Normalization details 

5.A.~ Normafization of the sùpport fùnction 

-
The support function obtained prevlously is 

(S.lS) 

but its range must be n~rmalized before use. 

For a given neigf1bourhood. radius. qne can compute the integral of ~e local 

'Co~patibjJjtr coefficients given trat a single curve (assume a straigh~ Une) traverses the 

'entire neighbourhood in the proper orientat!on. Denote this integral by Smax. This sum 

determines the maximum support that a label can obtain trom its neighbourhood. and the 
... \ "'1, 

sum varÎes according, to th~ radius of the neighbourhood. This is the maximum support 

th'at can be achieved. 

_ The mi!1imum acceptàble support for a label depends both on geometry and 

npise. First. the process should. be stable near the end of a genuine (non-noise) curve; that 
, 

is: the cur.ve should neither grow nor shrink du ring relaxation. Second. a threshold can be 

. established according to the response of the initial operafl>r convotutionsin the presence -. 
of pure noise. Now. consider the unit tangent at the end, of a low contra st li ne. The 

operator response. which is sensitive to contrast. will be rather low at that point. while - ' . . / ~ . 
the support for the tangent woutd be approximately smax/2 (the curve traverses only half 

the neighbourhood). times t~e average certainty of the tangents on the curve. Assuming a 

'minimùm contrast criterian. Pmsn. we fix the mini~um acceptable support of a label as 

Pmin 8max 
8min = 2 . (5.16) 

With this choice of Smin. relative stability at end-fines is insured for a wide 

ra nie of initial contrasts .. If. on the other hand. the ~njtial contra~t of a curve is below the 

minimum. t,hen that cUlve willgradually_ shorten until it 'disappears. 
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5 4 Normalizltion details 
\ 

The label support is normalized by mapping the ;nterv~1 [smtn, Smax} linearly 

intoJhe interval [O,lJ. The required normalized support. S,(-XJ. is therefore 

1 
j 

St ( -X) == St (-X) - Sm, n . 

smaf - Srmn 
(5'.17) 

It can readily be seen that this expression is equal to 1 when t"h-e raw su.pport St (.x) equals 

the màximum support. Smax. while the numerator vanishes if the raw support equals the 
~ , 

minimum acceptable support. Smtn. Of course. anything Jess for the raw support leads ta a 

negative ~o~malized support. The normaliza~ion of the support occurs before the projectIon 
, . 

of the support vector at anode onto the positive quadrant; see Appendix A. , \ 

"This completes the discuss10n of the technical issues related to the implemen

tation of a discrete trace inference process within a relaxation labelling, computational 

framework. We turn our attention now to the results of the trace inference process over 
- • 1 

various kinds of images. 

" 

~\ 

, 
r 
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Chapter 6 Experirrients 

Jn discussing the experiments perfo~with _the trace inference process de

scribed in the preceding Chapters. we will go from simple to camplex. Thus. in the first 
4 

part of this Chapter. we discuss experiments based on artificial images designed to evaluate 

specifie features of the process. such as sensitivity ta curvature. robustness in the pres

ence of noise. and the effect of neighbourhood size on the smoothness of the inferred trace. 

At the same time. the trace inference process is compared to ather procedures to extract 
( 

curves from images. in the presence of large amounts of noise. Further experiment$ based 

on real images. such as satellite and bio-medic.al imagery. and fingerprints. are discussed 

----.... iu-n the second part of.this Chapter . 

. 6.1 Artificiaf images 
.-
6.1.1 Senlitivity to curvature 

The first experiment is designed to evaluate sensitivity to curvature. Referring to 

Figure 6.1. the im_le is composed of 4 concentric circles whose radii were chosen to match 

individual curvature classes. :rhe following parameters are used for thè-initial operat~rs 

(tee Eq. (3.1) for the_ para~eterized form ~f thé operatoi): 

-

ul = 1'.14 'D2-= 1.8 CT3 = 2.28 Dy = 3.6 
• . -.•.. "'- B = 1.266 C = 0.5 

/ 

(6.1) 
/ 

.' '1 

~. 
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6 '1 Artif.cial images 

, 

nearly straight 
.... low cllrvature 
.. medium curvature -
... high curvature 

Figure 6.1 Trace inference process on concentric drcles after 2 Iterations. The 
resuTting tangent field (short segments) and curvature field (arrows pointing to 
center of curvature) are superimposed on the image (filled pixels) The assigned 
tangent and curvature fields are perlect everywhere except at a few locations were 
quantization affects the local structure of the curve more severely These errors 
would disappear using a larger neighbourhood size 

A neighbourhood diameter of 15 pixels IS used. with 7 curvature classes determined by the .. 
following radius limlts (in pixels): 

radius "mlts: 2.7,4.2,7.2,21.0 (6.2) 

The·circles have the following radii: 0 

radii of circles: 3.5,6.8,15.0,23.0 (6.3) 

The result displayed in Igure 6.1 is after 2 iterafions. with step size 1. and using a 
11\ 

supporting threshold s . = 0.5. In these displays. tangents are indicated by short line 

'Segments. and c atures by vectors pointing toward the center of the osculating circ/e . ....-=_."-- ' 
The magnitude of the curvatUre vector is proportion al to the radius of curvature. 

6.1.2 Se~sitivity to ~oise 

The next ex periment is designed to evaluate the effect of noise on the trace 

inference process. The image consists of a single hand-drawn curve on a uniform back

ground. featuring a sharp orientation discontinuity and varying curvature. The experiment 
" 

1 .& _ 
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6,1 Artifidal images 

is performed independently for two neighbourhood sizes. lS and 2S pixels respectiveiy.oand 

for each size there ar~ 5' noise levels: S / N = 00. 1.8. 0.9. 0.6. and 0.45. The noise added 
, 

to the image has unif~rm----a1strlbution U (0, A). where A is the peak-to-peak ~mplitude of 

t'he noise. Given thàt the 'curve has constant intensity le over a background of constant 

inten,sity lb' the SIN ratio is obta,i~ed by , 

SIN = Ile - lbl 
A 

(6.4)" 

Both experiments use 7 curvature classes. afld the radius limrts for each size 

are as follows: ' 

- . 

size 15 radius limits: 2.7,4.2, 7.2,21.0 

slze 25 radius limits: 4.5,7.0, 12.0, 35.0 (6.5) 

T~e initial convolutions are w;th operators whose size is adjusted to the respective .neigh

bou[hood sizes. For the smaller neighbo~rhbod slze; the parameters are those in (6.1). an~ 

for the larger one. the parameters are as follows: 

. 

0'1 = 1.9 0'2,= 3.0 0'3 = 3.8 O'y = 6.0 

B = 1.266 C = 0.5 

/ ' 

The results displayed in Figure 6.2 are after 2 iterations. using' à supporting thre~ho(d 

, Smln = 0.5. The performance of the trace inference, process in the presence of noise is 
H 

very satisfactory: especially for the larger neighbourhood size, 

To emphasize these results. a comparison between various other methods,for 
1 

sele~ting curv~s is displayed in Figure 6.3. these are based on the same curve as in Figure ~ 

6.2. at SIN = 0.45. the noisiest case. . 

~ , 

ln (a). an optimabintensity threshold is chosen. interactivély, 50 that most of 

the curve points are selected, but"this res';;'ts in too many nori-curve points being selected 

,at the ~ame time. Significant additional processing would be requin!d to rem ove these noise 

, points. 
Q 
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6.1 Artificiallmages 

Neighbourhood size 15 Neighbourhood size 2S 

00 

, 1.8. 

0.9, 

, 'Figure 6.2 Trace infer:nce on ah Image con~isting of a single curve. using tWQ 
neighbourhood sizes. and with the addition of various amounts of noise: to obtain 
$/ N rat.ios ofoo. 1.8.0.9 on tbis page and ratios 0.6 and 0.45 on the following page. 
After two Iterations. only those tangents with certai"ties ·above 0.5 are displayed. 
The sm ailer neighbburhood size results in fairly stable illference down to S / N = 0.9. 
wnile the larger neighbourhood size ~emains quite stable for S / N down to 0.45 • 

. wher.e tbe-turve is nearly imperceptible at close range. 
. (. .) 

ln (~). a thresh'old is applied to th'e làt~r~ maxima based on an initia,l operat~r' . 

size of .25. as for tne ,Iarg~ neighhourhood of Figure 6.2. T~is result is in fact the ot~ ~ 

iteration of the trace inference process. 6 and hence resembles a proc~ss of selecting the 
.' . , . ' 

maximal response at each-position. Again. ta obtain ail curve points. a low threshold must 
, ' 

h • 
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--'0 

0.6 

0.45 

Neighbourhood sile '15 

.. . 6 1 Artiflcial images 

, , 

Neighbourhood sile 25 
~ 

Figure 6.2 (,continued) Noise sensitivity experiment for SIN =? 0.6 and 0.45, 

be chosen'. resulting in too man y non~curve points. ,and signifieant post-processing wôuld . , 

. b~ requj~ed. 

, ln (c). the result dispfayed comes from 'an eartier attem,pt toformulate an, infer~ 
- -

ence p'rocess [Zucker and ,-Parent. 1984) in which consistenèy is achieved through compari-
, ' 

son of .expected versus observed operator responses. This method is corner-sensitive. and 
, .t 

, slightly curvature-sensitive. -and thu$. represents an' improvement over an earlier method 
," • 1 \ " 

using only tangent informatio!l [Zucker. Hummel and Rosenfeld.1977). the result of which 
, . 

is"not displayed here. The effective neighbourhood diameter for this experiment is ,3. Thus. 
l' -

,this procedure has ooly 'slight curvature sensitivity. and does not have a built-in noi~e re-
1- 1 • • 

mov~1 caRability for short low-contrast ~egments as in the trac~ i~ference process. It is no 

surpri,se then. that ~his method also degrades rapidly in th~ presence of noise. ' 
". " ~ , 

" ' ..,<:J' 

. " . Finàlly. in .(dl. the result fQr the la,rgest neighbourhood at SIN = 0.45- trom 
, " 

~ Figure 6.2 is reproduced. ' Compiuison with the rest of the figures clearly indicates the' 

43 



o 

. <. 

• 

1 

o 

.. 

6.1. Artlhtial ",mages 

'\ 
1 
J, 
1 .... 

\. 
~ ... " ... lit 

" "-
"- 1 

(a) (b) 

" ,- , 
" ... ' " .-

" ,. 
r ..., 

" ...:: , .... ,. 
-; .~ 

) (<.. r" '\ , -" 
'\" \ ' 

,--- "',--
" 

'- 1 , 
1 " '\ " / , 

(c) (d)' 
• > 

Figure 6.3 A cOll]parison of difTerent- methods for detecting curves (a) inJenslties ' 
thresholded to intlude most of the curV,e points. resulting in~many non-êurve points. 
bèing' selected. (b) thresholded lateral maxim~~equiVaîent to the oth iteration.of 
~he trace inferen~e protess: ag~ly-cr1ôw threshold allows ail turve points to 
be selected. at the cost onncluding sQme non-curve'-points: Tc) previous Parent 
and 'Zucker method. based on çomparison of expected versus observed operator 
responses. this method i~ not curvature-based. and depends onlyon the immediate 
3 by 3 neighbourhood for support. hence the noise sensitivity .. (d) trace inference 

- process. same as prevlous Figure for neighbourhood size 25 and S / N = 0.45. It 
tlearly iIIustrates the advantage of using curvature information 

importance of curvature information. 
t;) 

\ 0 

6.1.3 Neighbour.hood size and smoothness 

} . 
The experiment designed to evaluate the effect of neighbourhood size on smooth-

ness is ,perfor~ed on a 'single curve. using threé 'nejg~6ourhoo~ sizes. The curve is essen-
, 

tialty a straight line. with a gaussian-like bump in its center being the region of interest f~r 

this experiment. Three neighbourhood diameters werè used: . - , 

size 15 radius limits: 2.7, 4.2, .7.2,21.0 
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'" 6.1 Artiflciallmages 

sii~ ~5 radi~s limits: 4.5, 7.0,12.0,35.0 

size 45 radius limits: 8.1. 12.6, 21.ô, 63~O (6.7) . 

a'~'d each neighbourhood size W3S mat:ched with initial convolution operators of c~rre~pond

ing size: 

Size 15: 'tYl = 1.14 (12 == 1.8 03 == 2.28 Oy = 3.6 

B = 1.266 C=O.5 

Size 25: ul = 1.9 u2 = 3.0 tY3' =' 3.8 D'y = 6.0. 

B = 1.266 C=0.5 

Size 45: tYl = 3.8 0'2 = 6.0 u3=7.6 D'y = 12.0 

B = 1.266 C= 0.5 ~ (6.8) 

The results are displayed in Figure 6.4. The progressÎpn ~f neighbourhood si;e 

is from thè smallest in (a) to the largest in (c). White the bump is fully represented in (a). 

with positipn. orientation and curvature. there is only a slight variation in position' in (c). 

ltnd neither orientationnor curvature variation. Thu.s. the inferred trace is smoother when. 

using a huger neighbourhood.' 

Note that this expeiiment is possible only becausè the macro-struct'ure of the' 

curve used in this experiment is that of a straight line. hence that 'its CUrvature is within 
, - ' . . 
certain limits. It is always possible to utilize large neighbourhoods when the macro-structure . . 
.of the curves in an image have curvatures within the maximum curvature constraint implied 

b~ the n~ighbourhood ~.ize (as discussed in Sec~ion 4.5) .. and it may be interestlng to d~ 
50. as in multiple-.level processing. However. if the image consists of curves with IOhg high-

~ 

. curvature segments. the effect of utilizing 3' larger neighbourhood. or of imposing ~ smaller '. 

maximum curvature constraint. would be to filter out the higher curvature compon~nts 

of the curves. This happens because the ·tangent support along these segments re!"ains 

smaU for any given cUlYatur~c1ass. because the curves will tend to traverse many curvilture . . ' 

~cI~sses ,within ~uc:h a large neighbourhood. 
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(a) (b) 

.. ' 

1 

(c) 

, Figure 6.4 Effeef of varying neighbourhood size on the smoothness of the inferred 
trace of a curve. The image is'a single eurve. essentially stralght but wlth a gausslan
Ii~e bump. Three neighbourhood sizes are used. going fr:om the smallest ln (a) to 
the .argest ln (c). In (a). the diameter of the neighbourhood is 15. and the bumPl. 
is weil represented in the result. its curvature being within the maximum eurvature 
,constraint. In (b). the diameter is '25. and already the bump is smoother than ln -
(a). -Fi~ally. in (e). wh~re the diameter of the neighbourhood li 45. the eurvlture 
field. inferred is straight everywhere: "nd therds only a slight lateral dlsplacement 
of the trace where the bump Is. 
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6.2 Natural images. 

(a) , (b)' 

, , 

Figure 6.5 (a) a satellite image of a forest with logging roads. and (b) the result ~f 
2 iterations of the trace inference process, using a neighbourhood size of 25. ,a step 

'size of 1.0. and displayed at a confiden'çe threshold of U.6 ' The curvature v~ctors ar 
, omi~ted for the sake of clarity " 

~ 6.2 N.tural images 

The preceding 'experiments on arti~icial images ~~Q.wed that the cu~vature in-, 

formatio~ helped the t-race inference process to find curves in controlled situations. The / 

main interest of the procedure. however r lies in it~ applicatk>n to finding curves 'in real im':' 
'," . 

ages. ~uch as satellite images. :bio-medical imagès. and fingerprints. In this Section. three 
1 

experiments based on such images are described,. 

6.2.1 Sa,t~lIite image: logging roads in, fo~est 

The first riatural image experiment is based on a satellite. image of forest terrain 
" 

in which logging roads are visible as' 1ight. elongated streaks. on a slightly darker back-

'ground~ The experiment is pelfor~ed using a size ~5 nèighbourho~~. with parameters for 

thé initial.con~olution and radius limits as defined in Eqs. (6.7) and (6.8) ,fo~ Size 25. The 

i"f~re .... ce process is run for two iterati<?ns. with a step size of 1.0. 
1 

! 
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6.2 Natural images 

(a) 
, , , ~ 

Figùre ~.6 (a) an IIngiogram. or radiograph of blood vesse/s'in the bnlin.'and. (b) , 
" the result after 2 iterations of the trace inference process. using 'a neig'hbourhood 

'size of 15. a step size of 1. O. and ~isplayed at a confidence 'threshold of 0.5, ' 
• 1 

The result displayed in Figure 6.5 is thresholded at a èonfidence level of 0.6. 
" 

. " 
6.2.2 Angiogram 

, 

Il Th~ second experiment takes a, bio-medical image as' !ts input. an angiogra~. 

or a radiograph of blood vessels in the brain. It 1s a good example of an image with m~ny 
" 

·curves: ail of which have varying curvature. with many -curve crossings at various angle$. 

The image is first convolved with operator parameters as given in Eq. 4 (6.1). 

The neighbourhood,size is 15. the number of.iterations is 2: with a step size of 1. 

A'II tangents with a certainty of al Jeàst '0.5, are displayed in Figure 6.6. however 
1 

the curvature vectors are omitted for the sake of clarity . 
. , 

6.2.3· Fingerprint· 

Th~fi,nal experiment in volves a fingerprint j~age. The neighbourhoo~ size whic~ 
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62 Natural images 

(a) (b) 

Figure 6.7 (a) the image of a fingerprint. and (b) the result after 2 iterations'of the 
; trace Inference process. using a neighbourhood size of 11. a step size of 1 O. and , 
, displayed at.iI confid~nce threshold of only 03. ,due to the extremely low contrast , 

of the original image. . 

, was' chose~ ... l1 plxels in diameter. is s~aller than in the other experim~nts. However. the 

. inItiai convolutions w~re perf;r~~d with the sa me operator as for 'lbe angiogram experiment. 

i.~. with 'parameters as in Eq. (6.1). 

Âgain. 2, i'teratiqns of the process were l,Ised. The display threshold for the 

tangents 1s set to 0.3. a'iow value because the image itself had low contrast. 
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" Chap~er 7 Summary and Conclusions 

Infor!,"ation about the 'exact structure of curve~ is lost when they are projected 

into quantiled imagès. Hence curve detection is an inferential process. utilizing both image 

information and other constraints. We formulate the curve inference process-as two distinct 

stages. in which local information is .first recovered 50 that Oit can guide the global stage. 

ln this thesis we concentrated on the recovery of local information. and demonstrated that 
, , 

lt could be accomplished both in ,theory and in practice. 

Images contain information not directly about curves. but rather about their 

traces; or the set of quantized image positions through which the curve passes. But<

these traces ~r~rtot uniquely specified; they must be separated from other image st ruc-. , " 

ture. Therefore the first stage of eurve inference must include trace inferenee. and the 

, ~evelopment of an approach to this occupied most of this. thesis. 

Inherent in trace inference is a chicken-and-egg problem. If the functional form 
l-

of the curve were known. then the trace could simpl{be calculated. But sinee it is not. . , 

most of the effort went into deve/op,ing an estimation procedure sufficently powerful ta 

provide a model for the curve in the neighborhood of each possible trace point.' The model 

for curves included the tangent and curvature at each point. and it is this model that guided 

trace inference. The result was what ~e called- a tangent. field. or a representation of the 

trace. tangent. and curvatures suitably quantjzed\ 

, ,Sinœ oit is the high-frequency m~o-st!'Uc~. of curves that is ,'ost through 

.. -
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Summary and C~nclusions 

\,. quantization. it i~ natural to emp10y smoothness constraints while estimaEmg 1,hem. We 
" . 

derived such an es~imation procedure by examining how discretization and quantization 

affect- their differential-geometric definitions. The result was a functional with terms through 
> , 

curvature variation which could be maximized to guide trace inference. It appears that 
" 

functiQnals through curvature variation are necessary to properly separate the influences of , , 

nearby curves. yet are sufflcient to place discontinuities. \. 

The computation of curvat",re is notoriously sensitive to noise. To avoid these 

prob1ems. we introduced an alternate method for coarsely estimating it. based on average 
1 

values of tangent estimates within spatial neighbourhoods ca lied curvature classes. fi 

Computrng the tangent field was the overall goal of the first stage of curve 

inference. and we demonstrated that curvature and curvature ·cons;stency (or limits on 
- . 

curvature ~ariation) can be utili~ed advantageously. The information in the tangent field 
- - , 

certainly provides a rich. stable foundation for global curve inference. 
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A. RadiaI Projection: An Efflçient Update Rule for Relaxation Labe/ling 

~<o ....... , 

A. Radial. Projection: An Efficient U pdate ~ for Relaxation 

· Labelling 

A.1 Notation and ternlinology 

Let the relaxation graph consist of.n nodes. with m labels at each node. For 

·simpficity. we assume that each no de has the same set ,of 'labels A = {À 1 ~ = 1, ... ! m}. 

let Pi (À) denote the certainty of label À at node i. restricted to the inte,val [0,1). and such 

that the sunrof .the certainties at any given node ;s 

m 

L Pi{A) = 1 for i = 1; .• '.! n. 
~=1 

(A.t) 

~ 

ln vedor notation, the certainty vector at n~de i is 'Pl' and Eq. (A.1) can be e~pressed as 

PI • 1 = 1. where t denotê thJ m-dimensional vector of t' 5 (t, t, ... ! t) . 

The support of label ~ at oode i is denoted s, (A). Jand the support vettor at 

node i is denoted si. The normalized support vedor is obtained from i;, by sta1ing it by 

1/{Si .1): the sum of the component~ of the normalized support vector is 1. and it thus 

. :. satisfies constràint (A.t). . 

-----
Let·a superscri~t on a'vector denote the iteration number. Thus. pf and s* 

.! '" ') '& • , 

denote respectively the certainty vector and the sllpport vedor of node i at iteration k. 

A labelling at node i is said to be on the boundary of the labelling space if' 
. " ' \ 

Pif.\) = 0 for at least one value 9f À. Saturati~n of node i occurs when Pi(À) =. 1 

for sorne À; this condition is alos referred to as an unambiguous labelling 9f node i. If 
, ". 

'v'À,O < Pi{.\) < 1. then ~the labelling is said ta be ambiguous:, a labelling is perfectly 
"1' ' \ 

"ambiguous if 'v'~!Pi(.\) = l/m . 

-A.2 ~ Conaiatent labellings " 
l , ' 

Definition •. ,A labf1//ing is consistent if a:d ~/Y if the certainty .octor matches' t~ no,-
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A. Radial Projection: An Efficient Update Rule for Relaxation Labelling 

maiize~ support 'vector at ellery node. that is. 

,- ' 

Pi = -~ 1 (or i = ,1" ... ,n.'" s, . 

. , 

, .' 
To find a consistent labelling From an inconsistent one. one possibility wou Id 

be. to assign the normalized support Vtcto~ dir~tly to t~e certainty veGtor of th,e fqllôwing 

iteration. with 
'. 

(A.3) 

However. since the support vector ~ may vary considerably From one labelling assignment 

to another. it is more catltious to take a series of small steps, towards the support vector 

instead. Let ut denote the difference between the ,normalized support vector and the 

certainty vector at iteration k: 
sic 

v~ = -'- - pk (A.4) , ;:Iel "& 
li' si . 

A consiste~t labelli~g i~ obtained by taking. at each itera~ion k. ~ step in the same direction 

as vf. Note tnat vector v:c lies in a plane tangent to constraint (A.1), o'n the labelling 

assig~ment. It seems, natural therefore to obtain an update vector by projecting the ~ort 

vector s: onto th;s tangent plane. which is Jndeed the stand~rd solution to ~ems 
[Faugeras and Berthod. 1979: Mohammed. Hummel and Zucker. 1.983]. Care must be 

taken. however. to avoid projecting st in such a way that the resulting updated labelling 

no (onger satisfies the constraint 

0:;5 Pi(À) ~ 1 for i = 1, ... ,n, À = 1, ... ,m. (A.5) 

ThJ case of an initi:1 assignment inside the bounèlary is tr;~ial and requires only normal 

projection onto the tangent plane. with the proviso,that the update vector may have to be 
,. 

scaled to avoid violating the constraint. On the other hand. when the initial assignment 
~ , 

--- . -- "" 
is on the boundary-when at least one of the p,(À) is o-scaling .is not sufficient. and a--

more sophisticated projection scheme must be utilized to find a ptoper direction for the 

update vector [Mohammed. Hummel and Zucker. 1983]. To date. ail proposed projection 
, 

methods suft'er from this basic drawback--the' adde~ éomplexity incurred when boundaries 

are encountered-which makes them computationally expensive. 
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Pi(l) 

Pi (2) 
Filure A.l For the case of anode with two labels: an updatèd fabelling assignment 

is obtalned by scaling pk :.. le to satisfy the çonstraint ~ 1 = 1. 
1 1 • 

We' propose a method lhat avoids thi; problem entirely by restricting support 
, ~ 

vectars to the positive quadrant. and by using radial projection instead of normal projection . 

. thus. if the initial'abelling is strictly within (not on the boundary of) the positive quadrant: 

the" ail updated Jabellings wiIJ also be strictly within the positive quadrant. hence avoiding 

any complex computations at, the ~oundary. This property holds although the labelling may 

in fact be conver'ging towards sorne boundary or intersection of boundaries of the labelling 

space. 

-. 
A.3 Ract.ial projection qpdate rule 

-The update rule that we pro,pose do es not use normal projection onto the ,tangent 

plane. Instead. it uses a radial projection wlth 'the origin as center. Thus. 'an updated 

, labelling assignment is obt~ined sim ply with 

~ '+ ;:le :::!Ic + ;de ::k+l _ Yi' 8,' _ Pi' s, & 
p. -:::k;:le - ;:le; lor i = 1, ... " n. 
l, (p. + 8. ) ·1 1 + s ·1 

,J a , 
(A.6) 

Referring to Figure A.1. it can be seen that (A.6) amounts merely to scaling tbe sunLOf 

the support and Ctrtainty vectors.' Pf + ~. to satisfy the as~ignment constraint (A.t). 

What we require i~ th'at the update vector tif .:. ~+1 - ~ be parallel to t,h.e 

vector vf of Equation (A.4). We have (dropping the subscript i momentarily) 

\ 

-k _ 1+8* :-:.ok 
ui -: 1 ,: s* . 1 - p / ---
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A. .Radial Projection: An Efficient Update Rule for Relaxat/on Labelling 

\ 

k-k t ' 1 = 0:, vi Idr l = , ... , n. (A.7L .. 

Thus. tif ~s a ~calar multiple of v:. and consequently. these two vectors ate parallel. 'ii~ Îs 

therefore in the correct direction. The scalar a:. under the conditions defined in the -next 

Section. satisfies the condition 0 ~"a: < 1. 

A.3.1 Avoiding projection outside fabelli~g space 

The update rule (A.6) produces vaifd labelling assignments as long as the \!ect~r 

fm',pf + 8f Ii~s in the positive qu~drant. This is ~Jways the case ~hen the supp~rt vector 

'itself points to that quadrant,. i.e. , when ail of its components are non-negative. If such is 
. ... ' 

_ not the case. however. the onJy way, to insure correctness is to first project (s~e figure A.2) 

the support vector onto the bound~ry of the positive quadrant with the formula 

(A.8) 

(~>9) 

ln vector notation. s:k -: st ~ 18,11. when Si < O. After this transformation. 

ail components of the support vector are eithér positive or O. It follows that labelfing 

assignments updated using s:k'with (A6) always lie in the valid labelling space. 
, , ''; -

It is in~eresting to note that the n'ormal projections' o~to the tangent plane of 
, .. ' " if an'd iik coincide. Thus. as far as the standard projection methods are conc~rned. if ' 

and 'S;k are strictly equivalent. 
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A. RadiaI Projection: An Efficient Update Rule for Refaxation Labelling 

. \ 

Pi(l) 

Pi(2) 
Figure A.2 When the vector sum ~ + 1 lies outside the positive quadrant. the, 

vettor;le Is first projected onto the boundary of the positive quadrant (t'k). Thus. 
1 t 

~ + r k is guaranteed to fie in the positive quadrant. ~k is obtained from ~ by 
, • 1 - l , 

subtracting its most nega~jve component from ail its coml?onents. 

A.3.2' Convergence properties and preservation of order information 

None of the components 'of the updated labelling a~signment can actually be 0, 
'0 - -

unle$s the initial assignment contained nuit components as weil. This follows b~cause the 

radial projection rule is such that successive labelling assignments converge asymptotically 
--" 

towards a limiting vâlue. The rate of convergence is determined by 1 the magnitude of the ...., 

support vectçr S:. ' 

This property is what distinguishes the radial projection method most" from 

, traditional projection methods. Wbile the latter methods allow labellings to satu,rate ~t 

unambiguity, the radial update ru le do es not. provided the initial labelling Îs everywhere 

ambiguous. Moreover. in a hypothetical graph where many nodes in a small neigh~our~ood 

received essentially unambiguous support. tradit'onal updating would eventually sa~urate 

ail the nodes. regardless of the magnitude of the support vector at each nod~. In the event 

that the outcome of the relaxation process is meant to be further processed by technique~ 

which rely on relative magnitudes of certainties in a small neighbo'urhood. '.uration wou.ld 

be totally, unwelcome. 

. ' 

Radial updating. on the other hand. produces a labelling structure that ,reflects 
, " 

tbe rel~tive m,agnitudes of the support vectors throughout the relax~tion network. Recall 
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A. Radial Projection: An Efficient Update Rule for Relaxation Labelling 

from Section A.3 that the update:-vecto~ ii~ is equal to a constant times the difference 

vector v~. In th,e light o~ the saturation avoidance technique of the preceding Section. we 
~ 

are now in a position to determine the range of this constant. ~ubstituting S;k for s~ in . 
Equation (A.7). we'obtain 

.rk .1 
a~ = 1 

1 -l-+~gt--r-k -. -1 . 
, l 

(A.tO) 

But since ail compOrlents of Sik are non-negative. by definition. it follows that the quantity 

S;k . 1 is also non-negative. Cons~quently. a~ is non-negative. strietly I,ss than -unity. 

and is a monotonie incre_asi~g function of the magnitude of S;k. over ail S;k"'în a constant 
. 1 

direction. Thus. given the same initial certainties. two nodes receiving supports which differ 

only in magnitude will obtain distinct certainties. with the node receiving greater support 

converging fastest towards its limit. 

A.3.3 Cofnparison with previous rules 

The radial projection rule' is ~dentical in' essence to 'the normal projection rule . ' ~ -', ' . ' 

employed in [Faugeras and 8erthod. 1979) when the labelling ~s made to converge towards 

purely consistent labelli"gs. The inconsistency t'erm that is mini~ized~ in that method is 

the norm 1/ ut II· Given the sa me support vèctor if. and provided that ail components of the 

support vector a're non-?egative. both their method and the radial projection rule converge 

t6 the same result. The principal difference between the two methods lies in the haodling 

of the ,case of projection outside the valid labelling space. 
l ' 

The radial projection rule can also be related to the framework described in 

(Hummel and Zucker. 1983). In this method. Hummel and Zucker propose 'a global func-, 
-

tional ta' ma~imize which is effectively t,he dot product P~ . sf. Note that the magnitude of 
, , 

pf varies with position on the con9traint P~ ·1 = 1. In facto the magnitude of p~ reaches a ' 
, . 

maximum in the corners of the ~onstraint. Le. for perfectly unambiguous labellings. Thus. 

, for constant. sf over the enti~,e I;belling space. the '(unctional will be maximized for the 

unambiguous labelling corresponding to' the maximal co":,pçnent of sf. This explains the 

built-in bias towards unambiguous labellings of theïr method. 
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IIpij, = 1 

Pi (2) , 

• J 

Figure A.3 If the constraint IIpill = 1 is substitutecl for the usual labelling con* .; 
straint. the Hummel and Zucker framework converges to the same Jabelling 3$'with 
the radial projection ruJe. assuming that ail components of ~ are non-negative. 

1. , 

Moreover. ,if mo~e than one component of st i~ maximal. there iS
J 
no unique . , 

solution to the -optimizatiori problem as they h,ave formulated it. Jn the extreme case where , 

ail components of sk are equal. i = 1,.;., n. the pr~c~ss temlinates. regardress of the 
1. _, 

initial labelling assjg~men~. because the 1J0rmal projection of the support vector onto the· 

tangent plane is the nul! vector. 

éonsider the, following modifiçation to the Hummel and Zucker framework: if 

the corastraint (A.l) on local labels is changed to 
m 

L (Pi(.\))~ = 1 for i = 1, ... , n; (A.l1) 
..\=1 

'then their method is virtually identical to the radial projection ru lé. ,Referring to Figure A,3. 

it can readily be, seen that the constraint over which t~e global functional would then b,e 

maximized ;5' a hypersphere ln5tead of a hyperplan~. Beeause the magnitude of pf is now 

. constant over the entire labe~ling space. the aforementioned bias no ronger takes effect. 

And since their m~thod maximizes a linear functional. the process is guaranteed to ,have a 
, qp , 

~nique solution over this non-linear convex set. In particu~a-r. when, ail components of st 
are positive. the solution is the sa me as with the radial projection rule. 

A.3.4 Summary of radial projection method 

, ln summary. three steps are required to obtain updated labelling assignments 
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usi,ng the radial projection method. Give~ tlte initial measures of confidence. p~('\). and the 

compatibility coefficients. Tij('\,'\'). the first step is accumulating thé support eviitence for 

each label: • 
n m-

sf('\) = L E rt·('\, ,\') p1(,\'), (A.t2.a) 
1=1..\'=1 

The second step is a projection. if required. of the support vector at anode onto the 
., 1 01 • 

boundary of ~he positJv~ quadrant. to avoid labelling outside the valid ,assignment space: 

,81 = min s: (,\) 
, "\::;l,m 

(A.12.b) -

."(,\) = {8f (À) - s~ 
St , s:(A) \ 

if sic < O· , ~ . 
otherwise. 

(A.12.c) 
j 

,F.inally. the third"step is thè radial p1ojection method as such. It consists. for each node i. 

of the scaled vector sum " 
! 

(A.12.d) 

, , This rule amoun,ts to raking. from the curaent assignment. a step ln the: direction 

'of the nearest ~onsistent a~signment. T~e magnitude of this 'step Îs governed by the 

quantity 

" s~k .1 ex - --,,-'-.,..-
i - 1 + 8~k.1 ' 

l 

. 

where it is known that 0 < af < 1. Jhe'rate pf convergence a~ can be mocJified by scaling 

the suppo~ vector. i'f uniformly' throughout the netw~ by any positive constan~. . ,. , 

A.4 COf.1c1usion 

ln t~is Appendix. ifwe have shown that an efficient update mechanism ~or ,con

tinuous relaxation labelling, is possible. The radial projection rule is formally r~lated to 

previous rules. but overcomes the complexity of update vector projection at theiboundaries 

of the Jabelling spa ce. 

-... ----_. - . ~---- -- -~~--" -_. 

o The' réduction in complexity 'is achi~ved by tirst restricting ~upport vectors to 
\ , 

the positive quadrant. and th en using radial projection onto the constraint instead of normal 
l ' ' 
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projectipn. Among thè features of the new update ru 'e are smooth conv~rgence towards 
if..... 1 \ - ' 

a solution. and p~eservation of crucial orde~ information wf1ich is sometimes required for 

other cooperative processes. 
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