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only holds if we consider the whole set &. If more information about 
the curves are given, e.g. if fiducial points are given, then it might be 
possible to construct invariants which are non-constant and continu- 

Thus the euclidean nature of image distorsion and the projective 
nature of camera geometry do not interact well. It is possible that one 
could construct projective invariants which are continuous with re- 
spect to some other metric, but would this metric be relevant? 

ous. 
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An Evaluation of Intrinsic 
Dimensionality Estimators 

Peter J .  Verveer and Robert P.W. Duin 

Abstract - The intrinsic dimensionality of a data set may be useful for 
understanding the properties of classifiers applied to it and thereby for 
the selection of an optimal classifier. 

In this paper we compare the algorithms for two estimators of the in- 
trinsic dimensionality of a given data set and extend their capabilities. 
One algorithm is based on the local eigenvalues of the covariance matrix 
in several small regions in the feature space. The other estimates the in- 
trinsic dimensionality from the distribution of the distances from an ar- 
bitrary data vector to a selection of its neighbors. 

The characteristics of the two estimators are investigated and the re- 
sults are compared. It is found that both can be applied successfully, but 
that they might fail in certain cases. The estimators are compared and 
illustrated using data generated from chromosome banding profiles. 

I. INTRODUCTION 

A traditional practice in the field of pattern recognition is to select 
a small set of features before training a classifier. Neural network 
applications, however, have shown many examples where networks 
are trained successfully having large numbers of inputs, sometimes 
even larger than the number of training objects, see for example [ 1- 
41. One way to understand this is to assume that in these applications 
the data is located in some low-dimensional, possibly non-linear 
subspace of the feature space, see Duin [5 ] .  Due to its non-linear 
mapping properties a neural network might be able to approximate 
this low-dimensional subspace by its first layers and to perform the 
classification in this subspace by its output layer. 

Before investigating this hypothesis, the tools to analyze data in 
non-linear subspaces have to be defined and evaluated. In this paper 
we report on such an evaluation for estimators of the intrinsic di- 
mensionality. This can be defined as the smallest number of inde- 
pendent parameters that is needed to generate the given data set, see 
Bennett [6] and Trunk [7 ] .  

Consider a set of Mimensional vectors with intrinsic dimen- 
sionality K.  The usual interpretation is that the vectors lie on a pos- 
sibly non-linear surface with topological dimensionality K: they lie 
in a K-dimensional subspace of the Mimensional feature space. We 
represent a vector x in this set using the following model: 

x = f (4) +U, (1) 

where f(4) is an Mimensional (possibly non-linear) function of the 
K-dimensional parameter vector 4. The Mimensional variable U 
denotes the noise. If U is equal to zero the function f defines a K- 
dimensional surface or sheet S containing the vectors. 

If U is not zero, then x does not lie exactly on S but will have an 
offset perpendicular to S. Thus the effect of noise on the data set can 
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be understood by modeling the data set as a K-dimensional surface 
that is not infinitely thin. 

To gain better understanding of this effect we examine the set in a 
small region around a point y on S. We approximate S at y by a K- 
dimensional linear surface. This surface is spanned by K orthonormal 
vectors si, i = 1, ..., K. Furthermore we have L-K vectors, nj, pointing 
in the directions that are perpendicular to S, defined by: 

n . .s .=O.  
J J  

So the vectors si, and nj constitute local descriptions for the function 
f(4) and the noise U in (1). Within this small region, we will only be 
able to see that the vectors are approximately in a linear surface if the 
largest variance in the directions perpendicular to S is much smaller 
than the smallest variance in the directions of S: 

ein{var(si)} 

Mkr{Var(nj)j i >a’ 
i = 1, ..., K, j = 1, ,.,, L - K and a >> 1 (2) 

This should be true for all valid choices of si and ni A typical value 
for a used by us is 10. Var(si) depends on the size of the region that 
is chosen. Var(n,) depends on the variance caused by the noise (the 
“thickness” of the surface) and the variance caused by the fact that S 
cannot be exactly represented by a linear surface. If the region is cho- 
sen too large then Var(nj) might be high due to the non-linear nature 
of S. If there is noise then Var(nj) will still have a non zero value, 
even if S can be perfectly represented by a linear surface. In that case, 
if the region is chosen too small, equation (2) will not be satisfied. 
Thus the noise in the data set defines a lower bound to the size of the 
region that can be chosen. If the noise in the set is large this region 
should be large, possibly conflicting with the non-linearities in S. In 
that case the intrinsic dimensionality cannot be observed at y. 

This analysis shows that an algorithm, that tries to determine the 
intrinsic dimensionality from local information, may have to deal 
with the problem of noise. We will see this with the two algorithms 
that are discussed in this paper. 

Another problem arises if the number of vectors in the set is too 
small to represent the surface S. The shape of this surface then will 
not be retrievable from the vectors and it will be impossible to find 
the correct value of the intrinsic dimensionality. The sample size has 
to be sufficiently large to represent the non-linearity in S and to filter 
out the influence of noise. Even for infinite sample sizes, however, 
the conflict between noise and non-linearities remains. 

In the last few decades, several methods to estimate the intrinsic 
dimensionality of a given data set have been published. Dubes and 
Jain [8] give a summary of the literature. Wyse et al. [9] compare the 
existing algorithms that compute the intrinsic dimensionality. 

This paper concentrates on two algorithms, that, according to 
Wyse et al., can be successfully applied to estimate the intrinsic di- 
mensionality of a data set. In this paper an extension of an algorithm 
published by Fukunaga and Olsen [ 101 will be presented that reduces 
the necessary amount of interaction. Furthermore a slightly different 
implementation of an algorithm by Pettis et al. [ 111 will be presented. 
This modified algorithm is not iterative, in contrast to the original al- 
gorithm. These two algorithms are compared to each other. As an ex- 
ample, the algorithms are applied to find the intrinsic dimensionality 
of “real” data sets constructed from chromosome banding profiles. 

11. THE LOCAL EIGENVALUE ALGORITHM 

The algorithm of Fukunaga and Olsen for computing the intrinsic 
dimensionality, as described in [ 101 is based on the well-known Kar- 
hunen-Wve expansion [12]. For vectors in a linear subspace, the 
dimensionality of this subspace is equal to the number of non-zero 
eigenvalues of the covariance matrix. Fukunaga and Olsen assume 
that the intrinsic dimensionality of a data set can be computed by di- 
viding the data set in small regions. In each region the surface in 
which the vectors lie is approximately linear and the eigenvalues of 
the local covariance matrix are computed. They are normalized by 
dividing them by the largest eigenvalue. The intrinsic dimensionality 
is defined as the number of normalized eigenvalues that are larger 
than some threshold T. Choosing a low T. means ignoring directions 
with a normalized variance less than T. However, if the number of 
vectors in each region is small, the eigenvalue estimates will not rep- 
resent well the true variance. Choosing T i s  then difficult. We there- 
fore developed the following procedure to estimate the intrinsic di- 
mensionality, using the eigenvalues of the local covariance matrix. 

Consider a set of M vectors with dimensionality L. The L eigen- 
values /Ji of the local covariance matrix are computed for a region 
consisting of N neighboring vectors from this data set. The eigenval- 
ues are normalized by dividing them by the largest eigenvalue and 
ordering the result: p1 = 1 and pi 2 pi+[, fo r i  = 1, ..., L. In order to 
find the number of significant eigenvalues we study the hypothesis 
that the vectors lie within a subspace of dimension i and are locally 
uniformly distributed. In a Monte Carlo experiment we studied the 
probability that the smallest normalized eigenvalue Vi computed for 
N points uniformly distributed in an i-dimensional sphere is smaller 
than some threshold U~,N. : 

(3) 

If for a givenp (typically p = 0.05) an observed eigenvalue pi <Ui,N,  
we decide that pi  is not significant, so K < i. Thus p is the probability 
of an incorrect decision K < i. For large N, (or small i) Ui,N will ap- 
proach to one leading to underestimates of the intrinsic dimensional- 
ity for deviations of the assumption of locally uniformly distributed 
vectors. We therefore introduced another threshold Ti,N, by bounding 
U(,, with: 

(4) 

A typical value for T-, is 0.1 (see (2)) stating that only eigenval- 
ues that are at least 10 times smaller than the largest one are ne- 
glected. See also the discussion in the introduction conceming the 
“thickness” of a surface. We computed the values of Ui,N using com- 
puter simulations and tabulated them for repeated use. Fig. 1 gives 
Ui,N as a function of N for i = 2, 10 and 25. Note the high values of 
Ui,N for high N and low i. An estimation 4, for the intrinsic dimen- 
sionality can now be defined as the smallest value i for which pi + 1 
< Ti+,, N, if I = 0, ..., L-1, else K,, = L. Note that in contrast to the 
original algorithm of Fukunaga and Olsen the threshold may differ 
for testing different eigenvalues. We will refer to this estimator as the 
local eigenvalue estimator. 

The assumption that the vectors are uniformly distributed in a K 
dimensional linear subspace indicates that N should be chosen as 
small as possible. However if there is noise present in the set, N has 
to be chosen larger. Eigenvalues related to the functional behavior 
will increase if N increases (as it determines the size of the regions), 
but eigenvalues caused by the noise will not. Therefore, the eigenval- 
ues indicating the noise will be smaller after normalization. Further- 
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more N vectors span an N-1 dimensional space, therefore N should 
be chosen larger than K otherwise the estimation will be certainly too 
low. 

This procedure is repeated for several regions yielding the local 
intrinsic dimensionality in each region. These regions might overlap. 
In [ 131 we describe a procedure to choose the regions and to control 
the amount of overlap between the regions. 

To find an estimate for the global intrinsic dimensionality the 
normalized and sorted eigenvalues can be averaged over all regions. 
These can then be used to compute the intrinsic dimensionality using 
the method described above. In that case it is assumed that the nor- 
malized and ordered eigenvalues are approximately the same in all 
regions. 

111. THE NEAR NEIGHBOR ALGORITHM. 

Another approach to estimate the intrinsic dimensionality was 
taken by Pettis et al. [ 111. Assuming that the vectors are locally uni- 
formly distributed, they derive the following expression for the in- 
trinsic dimensionality: 

where 5 is the average of the distances from each vector to its k* 
nearest neighbor. Pettis et al. derived the expected value of this esti- 
mation for the special case of three uniformly distributed one- 
dimensional vectors. They found E(K) = 0.9. Apparently this estima- 
tor is biased even for this simple special case. 

Pettis er al. also describe an iterative algorithm that gives an esti- 
mate of the intrinsic dimensionality that is based on an arbitrary 
number of neighbors. We found that it often did not iterate to a cor- 
rect value. We derived a non iterative solution from equation (5). If 
Fk is observed for k = k,., to k,-, a least square regression line can 
be fit to 6 as a function of (K+l  - 6)k .  A non-iterative estimation 
for the intrinsic dimensionality, that will be called K,, , can be ob- 
tained [ 131: 

We will call this the near neighbor estimator. Note that the result 
will generally not be an integer. To interpret the result it has to be 
rounded to the nearest integer value. It can be expected that using 
more than two neighbors yields more accurate estimations. The as- 
sumption that the vectors are locally uniformly distributed implies 
that kmin and k,, should be as small as possible. If there is noise pre- 
sent in the data the distances to the first nearest neighbors should not 
be used: kmin > 1 .  

Pettis et al. found empirically that outliers tend to distort the esti- 
mation of the intrinsic dimensionality. They describe a scheme to re- 
move outliers. We implemented this scheme in our software. 

Another problem is the possible influence of edge effects. Vectors 
on or close to the edge of the cluster cannot be assumed to be uni- 
formly distributed. If the fraction of such vectors is high, it can be 
expected that the estimation of the intrinsic dimensionality will be 
distorted. This might be the case if the intrinsic dimensionality of the 
data set is high and the density of the vectors is low due to small 
sample size. In the limit (K+-) all data points generated within a 
K-dimensional sphere will be on its surface. 

We tried to quantify the “edginess” of the data in the following 
way. For a data point on the edge it holds that there are no points 
further away from the data set mean in the direction of the vector 
pointing from the mean to the data point. Thus, if the hyperplane 
perpendicular to this vector and containing the data point under con- 
sideration has no data points on the outside then this is an edge point. 
The edginess of a data set is now defined as the fraction of data 
points that are edge points. For K-dimensional Gaussian distributions 
with N data points we found by simulations for the edginess Q(K,N): 
Q(1,N) = W, Q(2, 10) = 0.38, Q(2, 100) = 0.06, 
Q(l0, 100) = 0.77, Q(20, 100) = 0.94, Q(l5, 1OOO) = 0.75, 
Q(20, 1OOO) = 0.99, Q(40, 1000) = 1. From these numbers can be 
concluded that for many high dimensional problems large fractions of 
the data will be on the edge. 

IV. COMPARISON OF THE ALGORITHMS. 

In this section we compare the properties of the two algorithms 
that were described in the previous sections. For each property that 
we discuss we compare the algorithms to each other. The following 
observations are based on experiments that were done on a large set 
of artificial problems with known intrinsic dimensionality, using 
uniform and normal distributions, data on spirals, etc. These experi- 
ments are described in [13]. 

The accuracy of the near neighbor algorithm increases by using 
the distances to more than two of the nearest neighbors for a 
given data point. 
For data sets that are too small, the intrinsic dimensionality can 
not be found. For both algorithms the number of vectors in the 
set that is needed depends on the nature of the set. However, 
the near neighbor algorithm usually needs fewer vectors than 
the local eigenvalue algorithm. This is because the near neigh- 
bor algorithm in principle can compute the intrinsic dimen- 
sionality from the average of the two nearest neighbors to each 
vector (if no noise is present). 
In real data sets, noise will be present. We found that the near 
neighbor algorithm still can be used to compute the intrinsic 
dimensionality for moderately noisy data. In that case kmin has 
to be chosen larger than one, Similarly the local eigenvalue es- 
timator can still be used if N can be sufficiently increased. We 
found that the near neighbor algorithm was less sensitive to 
noise than the local eigenvalue estimator. 
If a large fraction of the vectors in the data set lies at or close to 
the edge of the set, then the near neighbor estimate will gen- 
erally be distorted. The local eigenvalue estimator does not 
suffer from this problem. 
We found that the near neighbor estimator generally yields an 
underestimate of the intrinsic dimensionality for sets with high 
intrinsic dimensionality. This is not necessarily the result of 
edge effects because we also found that the near neighbor esti- 
mator was an underestimate for the intrinsic dimensionality for 
vectors that are uniformly distributed on the surface of a high 
dimensional sphere. This set has no edges. The local eigenvalue 
estimator is not an underestimate of the intrinsic dimensional- 
ity. However, the number of neighbors in each region needs to 
be very high to find the correct value of the intrinsic dimen- 
sionality for sets with high intrinsic dimensionality. This is be- 
cause the thresholds Ti,N, computed using the procedure, de- 
scribed in Section 11, are very low for low N and high i (see 
Fig. 1). 
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0.25 0.51 
First the near neighbor algorithm was applied to the sets. The near 

neighbor algorithm is very useful for a first inspection of the sets be- 
cause it is so fast. Even for these large sets the edge effect may be 
important, as discussed in Section 111. 

0 10 20 30 40 N 50 

Fig. 1 .  The upper limits U[.N for the thresholds T ~ , N ,  as a function of N, for 
i = 2, i = 10 and i = 25. 

Both algorithms that we described are based on the assumption 
that the vectors in the data set are a uniformly distributed in a 
local (small) region on the K-dimensional surface. We have not 
detected any problems for sets that had an intentionally non 
uniform underlying density. 
For the local eigenvalue algorithm, the computer time that is 
needed depends both on the dimensionality of the data set and 
the number of regions that is used. The needed time increases 
quickly if the dimensionality increases, because in each region 
the eigenvalues of the local covariance matrix need to be com- 
puted. For the near-neighbor algorithm considerably less com- 
puter time is needed. For this algorithm, the time depends 
mainly on the number of vectors in the set. Typical CPU times 
for a 20 dimensional set, containing 1000 vectors are 55 sec- 
onds for the local eigenvalue algorithm and 17 seconds for the 
near neighbor algorithm, on a Silicon Graphics Iris Indigo 
R4000 computer. 

v. EXPERIMENTS ON “REAL” DATA SETS 

As an example we will study data from sampled chromosome 
banding profiles. A classical approach is to characterize a banding 
profile by a fixed set of features. Errington and Graham [ 141 showed 
that it is possible to classify chromosomes with a very good perform- 
ance using the gray values of resampled profiles for the input of a 
neural network, using as few as 15 samples for each profile. This 
number is far below the number needed to reconstruct the banding 
profile for most chromosome classes. So it is likely that the data has 
some hidden redundancy. Beside the redundancy, the possibility to 
choose the sampling density freely for the chromosome profiles 
makes this data type attractive for a study of the intrinsic dimen- 
sionality. 

We will investigate the intrinsic dimensionality for the sampled 
profiles of the longest human chromosome. A number of sets have 
been generated from these profiles, each containing 1000 vectors. 
Each set is constructed using a different sampling density, yielding 
different dimensionalities. The sets c20, c40, c60 and c80 have di- 
mensionality of respectively, 20, 40, 60 and 80. Results of experi- 
ments on these sets are validated by running the experiments on nor- 
mally distributed sets. These sets, coded as g20, g40, g60 and g80, 
have the same dimensionality and size as the chromosome sets. Fur- 
thermore, they are generated using the covariance matrix of the corre- 
sponding chromosome set. 

5 1  
0 :  I I I I I 

0 10 20 30 40 kn 50 

Fig. 2. K,,,, as a function of the first of five neighbors used to compute it, for 
sets constructed by sampling chromosome banding profiles at different sam- 
pling densities. 

Fig. 2 shows the results for the chromosome sets. Knn is plotted 
against kmi,, the first of five neighbors used to compute K,, using 
equation (6). Thus k,, = kmin + 4. The results for c60 and c80 are al- 
most identical. Apparently 60 samples are enough to represent the 
banding profiles. Fig. 3 plots K,, for g60 and g80 along with the re- 
sults for c60 to show that the results for c60 are considerably lower 
than for normally distributed sets. Clearly the estimations for c60 are 
much lower. 

According to Fig. 2 the intrinsic dimensionalities of the c60 and 
c80 sets are approximately 14. Also shown in Fig. 3 are the results 
for a 18 dimensional normally distributed set with identity covariance 
matrix. The results are almost equal to the results for c60. Apparently 
the near neighbor algorithm underestimates the intrinsic dimension- 
ality of a set K = 18. The correct value for the intrinsic dimensional- 
ity for c60 may be closer to 18 than 14. 

The local eigenvalue algorithm has been applied to see if the same 
values can be found. The sets are divided in slightly overlapping re- 
gions. An estimation for the global intrinsic dimensionality is com- 
puted from the average of the ordered and normalized eigenvalues 
over all regions, using the procedure described in Section 2. In this 
experiment p = 0.05 and T,, = 0.1 were used. 

Fig. 4 shows that a large number of vectors are needed in each re- 
gion, to find an estimation for the chromosome set that is lower than 
for the corresponding normally distributed set. This is because the 
threshold Ti,N is very low for high i and low N .  A value of 17 or 18 is 
found if N is high enough. These are values that we found using the 
near neighbor estimator. Note, however, that it is not easy to decide 
which value for N yields the correct estimate, if the local eigenvalue 
estimator is used. 

In [ 131 we describe similar experiments on a much smaller chro- 
mosome. In that case we found a value of six for the intrinsic dimen- 
sionality, using both algorithms. We found that the near neighbor al- 
gorithm did not underestimate the intrinsic dimensionality of a six 
dimensional normally distributed set. The results of the experiment 
that we described here are more difficult to interpret. 
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Fig. 3. Knn as a function of the first of five neighbors used to compute it, for 
two normally distributed sets g60 and g80, generated with the covariance 
matrices of the sets c60 and c80. The results for an 18 dimensional normally 
distributed set are also shown. Furthermore the results for c60 (Fig. 2) are re- 
peated here for comparison purposes. 

60 

40 

a0 

0 

Fig. 4. KI, as a function of the number of neighbors in each region for two 
sets, c60 and c80, constructed by sampling chromosome banding profiles at 
different sampling densities and for two normally distributed sets g60 and 
g80. 

VI. CONCLUSIONS. 

Two existing algorithms to compute the intrinsic dimensionality 
have been extended and their behavior has been investigated. The use 
of the local eigenvalue algorithm of Fukunaga and Olsen [lo] has 
been simplified by introducing a method to choose the thresholds that 
are needed to determine the “significance” of an eigenvalue. An esti- 
mator for the global value for the intrinsic dimensionality is defined. 

The near neighbor algorithm as published by Pettis et al. [ 111 has 
been improved by using more than two neighbors in the computation 
of the intrinsic dimensionality. Moreover, the need for an iterative 
solution has been removed. This results in more accurate estimates. 

The near neighbor algorithm is faster than the local eigenvalue es- 
timator. It is also less sensitive to a low density of the vectors and it 
is thereby applicable to smaller data sets. However, its estimation of 
the intrinsic dimensionality will be an underestimate, especially if the 
intrinsic dimensionality is high. This is made worse by the fact that 
the algorithm can suffer from edge effects, if the number of vectors is 
low and the intrinsic dimensionality is high. It is a topic of future re- 
search to find a systematic estimate of the bias of the near neighbor 
technique. 

The local eigenvalue algorithm does not suffer from these prob- 
lems. However, the algorithm requires a higher sampling density, 
making it less suitable for small data sets. This is especially a prob- 
lem for sets with high intrinsic dimensionality. Furthermore the local 
eigenvalue algorithm is more sensitive to noise than the near neigh- 
bor algorithm. 

For both algorithms, the interpretation of the results is not easy. 
Choosing N o r  kmin is difficult because the correct choice depends on 
the nature and the size of the data set. This is illustrated by the ex- 
periments on chromosome banding profiles. 

These algorithms do not give a final solution for the problem of 
finding intrinsic dimensionality. The use of these algorithms requires 
considerable knowledge of the properties of the algorithms. It is 
helpful to compare the results to those obtained for normally distrib- 
uted sets that have approximately the same covariance matrix as the 
data set. Applying both algorithms and comparing the results can 
clarify the results. 

ACKNOWLEDGMENT 

The authors thank Dr. T. Gerdes, Rigshospitalet, Copenhagen, 
Denmark, for making the chromosome data set, used in Section 5, 
available to us. Prof. I.T. Young is acknowledged for his continuous 
support and for proofreading the paper. 

REFERENCES 

T.J. Sejnowski and C.R. Rosenberg, “NETtalk: a parallel network that 
learns to read aloud,” The John Hopkins Universify Electrical Engineer- 
ing and Comp. Science, Technical Report JHUIEECS-86I01, 1986, Re- 
printed in J.A. Anderson and E. Rosenfeld, Neurocomputing: Founda- 
tions of Research, MIT Press, Cambridge, 1988 
D.A. Pomerleau, “ALVINN: an autonomous land vehicle in a neural 
network,” Advances in neural information processing systems, ed 
Touretzky, Morgan, Kaufman Publishers, San Mateo, pp. 305-331, 
1989 
B.A. Golomb, D.T. Lawrence and T.J. Sejnowski, “Sexnet: a neural 
network identifies sex from human faces,” Advances in neural informa- 
tion processing systems, ed. Lippman, Moody and Touretzky, Morgan, 
Kaufman Publishers, San Mateo, pp. 575-577, 1991 
S.I. Kamata, R.O. Eason, A. Perez and E. Kawaguchi, “A neural net- 
work classifier for LANDSAT image data,” Proceedings l l t h  IAPR In- 
ternational Conference on Pattern Recognition, Volume 11, Conference 
B: Pattern Recognition Methodology and Systems (ICPRI 1, The Hague, 
The Netherlands, August 30 - September 3, 1992), IEEE Computer So- 
ciety Press, Los Alamitos, California, pp. 573-576, 1992 
R.P.W. Duin, “Superlearning capabilities of neural networks?,” Proc. qf 
the 8th Scandinavian Conference on Image Analysis, NOBIM, Nonve- 
gian Society for Image Processing and Pattem Recognition, Tromsh 
Norway, pp. 547-554, 1993 
R.S. Bennet, “The intrinsic dimensionality of signal collections,” lEEE 
Trans. Inform. Theory, vol. IT-IS, pp. 517-525, 1969 
G.V. Trunk, “Statistical estimation of the intrinsic dimensionality of a 
noisy signal collection,” IEEE Trans. Comp., vol. C-25, pp. 165-171, 
1976 
R.C. Dubes and A.K. Jain, Algorithms ,for clustering data, Prentice 
Hall, 1988 
N. Wyse, R. Dubes and A.K. Jain, “A critical evaluation of intrinsic di- 
mensionality algorithms,” Pattern Recognition in Practice, ed Gelsema, 
E.S. and Kanal, L.N., North-Holland Publishing Company, pp. 415- 
425, 1980 
K. Fukunaga and D.R. Olsen, “An algorithm for finding intrinsic di- 
mensionality of data,” IEEE Truns. Comp., vol. C-20, pp. 176-183, 
1971 
K.W. Pettis, T.A. Bailey, A.K. Jain and R.C. Dubes, “An intrinsic di- 
mensionality estimator from near-neighbor information, ” IEEE Trans. 
Part. Anal. Machine Intell., vol. PAMI-I, pp. 25-37, 1979 



[ 121 K. Fukunaga, Introduction to statistical pattern recognition, Academic 
press, 1972 

[I31 P.J. Veneer and R.P.W Duin, “Estimators for the intrinsic dimension- 
ality evaluated and applied,” Delft University of Technology, Faculty of 
Applied Physics, Pattem Recognition Group, Technical Report, 1993 

[14] Ph.A. Emngton and J. Graham, “Application of artificial neural net- 
works to chromosome classification,” Cytometry, vol. 14, pp. 627-639, 
1993 

Automated Evaluation of OCR Zoning 

Junichi Kanai, Stephen V. Rice, 
Thomas A. Nartker and George Nagy 

Abstract- Many current optical character recognition (OCR) sys- 
tems attempt to decompose printed pages into a set of zones, each con- 
taining a single column of text, before converting the characters into 
coded form. We present a methodology for automatically assessing the 
accuracy of such decompositions, and demonstrate its use in evaluating 
six OCR system. 

Index Items-Document image understanding, page segmentation, 
layout analysis, performance evaluation metric. 

I. INTRODUCTION 

The first step in Optical Character Recognition (OCR) is to locate 
and order the text to be recognized. Commercial OCR systems allow 
the user to demarcate the text regions on a page image by drawing 
boundaries around them. The order of these regions, or zones, is 
significant. It normally corresponds to the reading order of the page. 
This process is known as manual zoning. 

Alternatively, the user can let the OCR system automatically 
identify text regions and their order. The system finds columns of text 
and, if they are not part of a table, defines a separate zone for each 
column so that the generated text will be “de-columnized.” This is 
also known as “galley format.” In. addition, the system identifies 
graphic regions in order to exclude them. 

Zone representation schemes are not standardized. The following 
methods are used by commercial OCR systems: bounding rectangles, 
piecewise rectangles, polygons, and nested rectangles (see Fig. 1.). In 
some rare instances, zones may overlap. Moreover, deskewing the 
page alters the zoning. Therefore, geometric comparison of zones is 
not feasible. A recently proposed alternative to our method is the 
comparison of the configuration of black pixel sets, but this method 
precludes testing “black-box’’ commercial systems [ 11. 

In order to evaluate the accuracy of automatic zoning, we intro- 
duce a zoning metric based on the number of edit operations required 
to transform an OCR output to the correct text. The string of charac- 
ters generated by the system under evaluation on an unzoned page 
image is compared to the correct text string. All mismatched sub- 
strings are identified by a divide-and-conquer string matching algo- 
rithm that finds the longest matches first. Then the number of editing 
operations (deletions, insertions, and moves) required to correct the 
system output is computed. Finally, the number of editing operations 
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required to correct the output of the same OCR system operating on a 
manually-zoned version of the page image is subtracted to yield the 
cost of correcting only zoning errors. All of the above operations, 
with the exception of producing the “true” string for each page, are 
performed automatically. 

Section I1 presents the move-counting and string-matching algo- 
rithms in greater detail. Section 111 describes the test data and the ex- 
perimental protocol. The results obtained by processing 460 printed 
pages on six commercial systems are discussed in Section IV. Section 
V points to future research. 

11. Introduction I 11. introduction 1 
first step in Optical 

(a) 

The first step in Optical 
,Character Recognition (OCR) 

Fig. 1. Zone Representation Schemes. (a) bounding rectangle, (b) piecewise 
rectangles, (c) nested rectangles, (d) polygon. 

Text-Line-1 
Text-tine-1 Text-Line-3 Text-Line-2 
Text-Line-2Text-Line4 Text-tine-3 

Text-Line-4 

.......................... 

......................... .......................... 

.......................... 

(4 (b) (c) 
Fig. 2. Example of Zoning Error. (a) incorrectly zoned page, (b) generated 
text, (c) correct text. 

11. ZONING METRIC 

A human editor utilizes three kinds of operations to correct OCR- 
generated text: insertion, deletion, and move. If a zoning algorithm 
misclassifies a text region as a graphic region or does not detect a text 
region, the characters in the text region are not recognized by the 
OCR algorithm, Thus, the editor must insert (type) the missing char- 
acters into the OCR output. 

On the other hand, if a graphic region is misclassified as a text re- 
gion, characters in the graphic region are included in the OCR out- 
put. Furthermore, graphic objects could be converted into a set of 
characters. For example, the vertical axis of a graph might become 
1’s. Such phantom characters must be deleted from the OCR output. 

When a multi-column page is incorrectly zoned as shown in Fig. 
2., Text-Line-3 must be moved between Text-Line-2 and Text-Line- 
4. Therefore, the cost of correcting the reading order of an OCR out- 
put is an important part of measuring the performance of a zoning al- 
gorithm. 

A move operation can be performed by either cut and paste or 
delete and re-type. The human editor will normally make use of a cut 
and paste capability to move a string of n characters to its correct lo- 
cation. But for n less than some threshold T, it is easier (and less 
costly) to perform n deletions and n insertions to make the correction. 
The value of Twill vary depending on the skills of the human editor 
and the editing tools at hand, but is most likely to be in the range of 5 
to loo. 

We propose a two-part algorithm for calculating the cost of cor- 
recting the OCR-generated text. First, the minimum number of edit 
operations is estimated (see Fig. 3.). Next, the total cost is calculated 
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