Deformable Contours: Modeling and Extraction!
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Abstract— This paper considers the problem of modeling and ex-
tracting arbitrary deformable contours from noisy images. We pro-
pose a global contour model based on a stable and regenerative
shape matrix, which is invariant and unique under rigid motions.
Combined with Markov random field to model local deformations,
this yields prior distribution that exerts influence over a global
model while allowing for deformations. We then cast the prob-
lem of extraction into posterior estimation and show its equivalence
to energy minimization of a generalized active contour model. We
discuss pertinent issues in shape training, energy minimization, line
search strategies, minimax regularization and initialization by gen-
eralized Hough transform. Finally, we present experimental results
and compare its performance to rigid template matching.

Keywords— deformable model, rigid template, snake, active con-
tour, boundary extraction.

I Introduction

Without a contour model, contour extraction from noisy image
is an ill-posed problem [1].
tion method to allow the incorporation of global contour models
in its formulation. For generality, the model should be capable of
representing any arbitrary shape.

A well known example is the generalized Hough transform [2]
which combines modeling and extraction for rigid contours. Be-
cause GHT works by accumulating large number of votes, it is rel-
atively insensitive to small vote fluctuation caused by noise and
occlusion. In fact, if the superimposed noise is Gaussian and white,
then GHT is simply an efficient implementation of matched tem-
plate, which is optimum in terms of detection error.

Therefore, it is crucial for an extrac-
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Figure 1: Handwritten characters with deformations.

Rigid templates, however, cannot account for deformationswhich
frequently arise from diversity and irregularity of shape. See Fig-
ure 1 for examples. Since the degree of deformation is unknown in
advance, a rigid template chosen a priori cannot produce satisfac-
tory results for all cases. In fact, we will show that its performance
degrades with deformation.

Deformable templates, in contrast, employ weak models which
deform in conformation to salient image features. Examples include
the active contour model (snake) which uses smoothness constraints
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to restrict its solutions to controlled continuity splines [3]; parame-
terized templates for facial feature extraction [4]; elliptic Fourier de-
composition for objects with shape irregularities [5]; implicit poly-
nomials for curve and surface modeling [6]; movable control points
for hand-printed character recognition [7]; and affine-invariant con-
tour tracking [8].

With the exception of [8], these methods typically consider only
global [4, 5, 6] or local [3, 7] deformations. While global templates
involve large structural interactions and contain less parameters to
be optimized, these global parameters cannot exercise local con-
trol along the contour and their physical meaning are sometimes
obscure. In contrast, local models such as snakes contain more
parameters and exert local control, but they are ill-suited for incor-
poration of global contour model.

This paper considers the problem of modeling and extracting
arbitrary deformable contours from noisy images. Our method is
general and capable of representing any arbitrary shape, accounts
for global changes due to rigid motions, and retains ability for local
control. The contour model is based on a stable and regenerative
shape matrix which is invariant and unique under rigid motions.
Combined with the local characteristics of the Markov random field
to model local deformations, this yields prior distribution that ex-
erts influence over a global model while allowing for deformations.

Our approach differs from [8] which achieves affine invariance by
creating a subspace containing all allowable transformations of a
memorized template. Besides possessing the added advantage of
being unique, affine invariance of shape matrix is implicit. Fur-
thermore, our approach utilizes the Markov random field for local
deformations, thus providing a more realistic and effective model
for highly variable but locally predictable objects.

Under the Bayesian framework, the problem of extracting con-
tours with unknown deformation from noisy images turns into max-
imum a posteriori estimation. This is equivalent to minimizing the
energy of a generalized active contour model (g-snake). We dis-
cuss pertinent issues in shape training, minimax regularization and
initialization by generalized Hough transform, and present some
experimental results.

IT Modeling Deformable Contours

We define a contour as the vector containing an ordered set of
points, V. = [v1,V2,...,V,]. Each v; is defined on the finite grid:
velE={(z,y):2z,y=1,2,...,M}, thus V € IE™.

Denote U € IE™ where each u; = v; — g represents the displace-
ment from an arbitrary reference point g. Each u; can be expressed
as a linear combination of two linearly independent vectors. For
modeling of highly variable but locally predictable contours, the
two neighboring points are suitable as its basis:

u; = o, + B, (1)

where the basis indices are given by:

P 1 —1;
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1 < n. An example of a trivial contour is a straight line. More
generally, the nontrivial condition ensures that u;, and ui, are
linearly independent for all s.
Collecting and rearranging similar equations for all ¢, we obtain
the shape equation
AU =0 (3)
where A is an n X n shape matriz that contains the necessary in-
formation to describe a shape:
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A is regenerative: the complete chain U can be generated from
A by appropriate inversion if any two points on U are given. This
is possible because rank(A) = n — 2, and so an (n — 2) x (n —
2) invertible submatrix exists within A. On the other hand, if a
nontrivial U is given, the shape coefficients can be computed to
generate A.

Furthermore, A is stable for nontrivial contours because «, 3
and U are related by linear equations. Hence small changes in the
contour imply small perturbations of the shape matrix and vice
Stability is extremely crucial when A must be estimated
from sample contours which may be locally deformed.

versa.

To adequately represent objects with shape irregularities, one
must account for both global and local deformations, which are
discussed next.

A Global Deformations

Global deformations correspond to effects of rigid motion such as
scaling, rotation, stretching and dilation, as shown in Figure 2(a).
These operations can be represented by affine transformations on
V. The following theorem states that A is invariant and unique
under such transformations:

Theorem 1 Two nontrivial contours satisfy the same shape equa-
tion if and only if they are related by a linear transformation.

Proof Let T denote a 2 x 2 transformation matrix. First, note
that if AUT = 0 and U = TU, then AUT = AUTTT = 0.

To prove necessity, recall that rank(A) = n — 2. Equivalently,
the dimension of the null space of A is 2. Write UT = [, §], where
X,V are nx1 vectors. Because U is nontrivial, X and ¥ are linearly
independent and thus span the null space of A.

Now, since AUT = A[x,y] = 0, both x and y are also in the null
space of A. Hence they can be expressed as a linear combination
of X and ¥y, i.e.,

K

Finally, note that contour displacement, g = g + d, has no effect

_ 11X + 112y
121X + t22y

]:>U:TU (4)

on the shape equation. This completes the proof. O

The invariance property implies that the shape coefficients of a
contour are unaffected by affine transformations, while the unique-
ness property makes recognition possible. For example, rectangles
and parallograms have the same A, and so are circles and ellipsoids
with A.. However, A, # A, i.e., they are unique, because fam-
ilies of parallograms and ellipsoids cannot be related by an affine
transformation.
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(a) global (b) local

Figure 2: Examples of global and local deformations. (a)
Global deformations described by rotation, stretching and di-
lation of the first contour; (b) local deformations of succes-
sively higher degree.

B Local Deformations

Suppose we are interested in a family of contours U € Q C IE™
which are similar but exhibit small shape irregularities; as shown
in Figure 2(b).
localities, we define an internal energy which is induced by the

To represent these random fluctuations in small

shape matrix A:

‘ _ (AUDHR'(AUT)
where {(U) = %22‘;1 |lwiys — ui||2 is a normalizing constant, and

R = diag{o?,05,...,02} contains the deformation variances o2
that allows assignment of location dependent weightings on defor-
mations.

Now, we may assign probabilities to U as follows :

1
p(U) = — exp(=Ein (U)) (6)
where 7 = ZUGQ exp(—Eint(U)) is a normalizing constant. A
probability measure of the form in (6) is called a Gibbs measure [9].
By equivalence, it also defines a Markov random field, i.e.,

p(ui|u1au2a"'aun) :p(ui|uicx’uiﬂ) (7)

where the conditional probability of u; given the entire chain U is
completely specified by the conditional probability of u; given its
two basis points.

The following theorem on F;,: implies that p(U) is scale and
rotation invariant:

Theorem 2 The internal energy of a contour is scale and rotation

tnvariant.
Proof Let
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W' T (z)T(z)u = zu'u (8)
T T@Ou = u'u (9)

Applying (8) and (9) to numerator and denominator of Fjy,; yields

the appropriate results. This completes the proof. O

In summary, we have combined a stable, invariant and unique
contour model with the local characteristic of Markov random field
to yield prior distributions for any arbitrary contour. We proceed
next to present an image model which allows us to cast contour
extraction from noisy images into posterior estimation.

III Contour Extraction
A Rigid Template

We define image as the vector function F : [E — ID. Depending
on the data type, either ID = IR (intensity image or edge magnitude)
or ID = TR? (2 x 1 intensity gradient vector).

A template of a contour is the image F = By 4:

Bug(r) = th(r —ui —g) (10)

where r = (z,y) € IE, § is the delta function, h; € ID and |h;| = 1.
In other words, a template By g(r) is a special image with values
equal to h; if r = u; 4+ g but zero otherwise. For ID = ]R2, h; can

be adaptively determined by rotating the tangent direction of the

contour by 90°, i.e., let t; represents the tangent vector at u;:
u; — ;-1 W41 — U4

s — ]

t; = 11
il T "
then h; is a unit vector which is normal to t;.

A noisy image F = f containing a contour can be modeled as

follows:

f(r)|U, g = Bug(r) + n(r) (12)
where n(r) : N(O,ail) is Gaussian, I = 1 if ID = IR; otherwise
Iis a 2 x 2 identity matrix. Consequently, p(f|U,g) is Gaussian
distributed and can be simplified to yield:

1 —f7f—n+23 " hif(ui+g)
U8 = oo | ics (13)
7

where C' = (27703])M2/2.
The displacement of a rigid contour can be estimated from the
noisy image using the principle of maximum likelihood:

¢ = arg max thf u; + 14
g = argmax Y W7t + ) (14)

=1

In other words, the estimated reference point is the location that
best correlates with the image. This forms the basis of matched
template operation.

In the same token, contours that may be deterministically de-
formed have the following ML estimates:

’,T = arg max max thf Tu; + 15
{& T} = arg maxma Z (Tui +g) (15)
where the estimated contour U = TU. The correlation can be effi-
ciently implemented using generalized Hough transforms [2]. Note

tial the colmputation cost required 1 {1o) depelids greatly Ol Lie
range and resolution of T. For example, if one expects the con-
tours to be scaled and rotated, then the range of T should span
the two operations. In many instances the range can be restricted
through learning or prior knowledge. Otherwise T will cover all the
transformations, thus increasing the cost of searching.

B Deformable Template

We assert that any rigid template U will perform poorly if the
contours are deformable:

Assertion 1 The expected correlation of a matched template de-
creases with deformation.

Proof Let E[---] denotes mathematical expectation. Observe that

E[Bj,f] = E[E[Bjf|U,g]]
= E[Bg,Bu]

= E[) > &(ni—u)

i=1 j=1

For o; sufficiently small, p(Gi; = u;) ~ 0 if ¢ # 5. Thus

n

E[Bf ]~ E[>_6(a — w)] = p(0)

=1

Now, since Eim(fj) = 0, from (6), we have

p(0) =1/2 =Y exp(Eini(U))

which decreases if o; increases. This completes the proof. O

The problem at hand is equivalent to extracting a contour with
unknown deformation from a noisy image. Using Bayesian frame-
work, this turns into maximum a posterior:i (MAP) estimation. The
estimates Up,qp and gmap are given by:

{Unap; map} = arg ng;thp(U, glf)

= arg ng;tgxp(U)p(fIU, g) (16)

noting that p(U, g) = p(U). While this prior distribution creates
a bias to a global model, it is revised into posterior distribution
after observing the image. In the next section, we will show how
one may formulate and solve these estimation problems using the
generalized active contour models.

IV  Generalized Active Contour Models
A TFormulation

Denote the constituent internal and external energy as follows:

lu: — aiui, — Boug,|?
I(U)
1— hin(ui +g)

Ei(s) = (17)

Fegi(ui,g) = (18)
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in (13). Solving for MAP estimation and ignoring constants, we

have
. [ Eime(w)  Eep(ui, g)
arg it > { 2 T

8 2
e=1

{Umap, gmap} =

o i
= argmin Z {1_—)\1E1nt(uz) + Eeat(u,, g)}
=1

8 2
=

where )

Ty

T "

are the local regularization parameters which control the amount of
local template deformation.

The formulation in (19) is analogous to the active contour models
(snakes) [3]. However, the original E;y; only constrains the solution
to the class of controlled continuity splines. Our formulation gener-
alizes Fin:, allowing for incorporation of prior models to create bias
towards a particular type of contour. We call the resulting model
generalized active contour models, or g-snakes.

From (19), the task of finding Usap and gmap turns into an
energy minimization problem, which is discussed next.

€10,1]

B Minimization Algorithm

While E;n:(U) is a convex function, Fe,+(U) is typically non-
convex as it is derived from intensity or gradient of noisy images.
Consequently, unless the initial U is placed very close to the global
minimum, a gradient-based [3] or point-wise [12] algorithm will per-
form poorly as many local minimum are present. Therefore an
exhaustive search algorithm should be used.

Suppose that for each point 0;, we perform exhaustive search in
its neighborhood of size m. The computation complexity is O(m™)
which 1s prohibitively high for most applications. Fortunately, we
can exploit the local characteristics of the Markov random field to
yield an algorithm with complexity O(nm?).

The basic idea is to decompose the minimization process into n
independent stages, where each stage considers only 3 neighboring
points. This idea is first proposed in [11] under the framework
of dynamic programming. We generalized the idea to include any
distribution with local characteristics and present the algorithm in
the appendix.

C Basic and Stratified Line Search

In order for the minimization algorithm to converge to the global
minima, the search regions must be sufficiently large to include at
least part of the solution. In some cases this renders the algorithm
infeasible as the complexity O(nmg’) increases rather rapidly with
m.

We present here search strategies which encompass large search
regions without drastically increasing m. The basic idea is to con-
centrate the initial search in regions that will more likely yield the
solution U*, instead of spreading them out evenly.

Refer to Figure 3. In the initial stages, we desire to rapidly
inflate or deflate parts of U to locate the neighborhoods of the
global minima. The objective can be achieved by searching in the
normal directions of u;. Note that this differs from [13] that we do
not introduce additional inflation or deflation force; different parts
of U can be inflated or deflated simultaneously.

The basic line search restricts its search in region ©® = UL, 0;
where ©; contains all the points on the normal vector h;:

@i:{ui:ﬁi—l—khi;k:O,:l:l,...,:l:mz_l} (20)

Figure 3: Regions of interest in line search. The gray blob is
the 1image data, the white square is the initial contour, and
the 8 normal vectors are the initial search directions.

assuming that m is odd without loss of generality.

The stratified line search extends this idea to encompass even
larger search regions by breaking ©; into disjoint segments of length
l, 0, = U;nz/llGi] where

@i]:{ui:ﬁi—i—(lj—i—k)hi;k:0,:|:1,...,:|:I_Tl} (21)

assuming that [ is odd. The energies of each segment are then
approximated as follows:

(eij)
(eij)

Eine(ai + l3hy)

J2gy, Fer(08)

Eint
Ee.rt

In other words, the internal energy of a segment is that of its cen-
ter point, while its external energy is the minimum among its mem-
bers. Assuming similar computation cost for internal and external
energies, this yields drastically reduced complexity of O(nm?/?).

The stratified line search is typically performed in the initial
stages of minimization to quickly locate regions which contain the
global minima. This can then be followed by basic line search and
completed by searching in 3 x 3 regions.

D Regularization

The regularization parameters A; in (19) are derived from the
variances o, and o;. In some applications these parameters may be
learned from training samples. In cases where learning is impossible
or unreliable, the minimax principle [14] can be used.

The local minimaz criterion [10] determines the optimal regular-
ization by minimizing the worst case energy. We subject o, and o;
to the constraint 1

=1 24
o (24)

Q=

and seek a solution for

{Uime, ime} = argmin Z max {Eimgui) + Ewt(l;i’ g) }

2 52 2
U,g 4 10'7],0'1 ag; On

1=

= argr[r}l?;lZmax{Eint(ui),Eemt(ui,g)} (25)

=1

The local minimax criterion is pareto optimum, i.e., there does
not exist another solution U* that will simultaneously lower both
the internal and external energy. Moreover, the strategy solves the
problem without requiring prior knowledge or explicit computation
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rated into the proposed minimization algorithm.

In the absence of reliable prior information, this criterion mini-
mizes the penalty of erroneous regularization selection. Extensive
experimentation has verified that it yields robust performance in
various applications (see [10]).

E Initialization

The objective of initialization is to place the g-snake in the prox-
imity of the minima in (19) or (25) so as to facilitate speedy con-
vergence in minimization. In other words, we want to pick ini-
tial {fj,g} that will, on average, converge to U,qp or Ujpne more
rapidly then all other choices.

Such criterion is difficult to specify in precise mathematical
terms. However, we can make a reasonable assumption that a g-
snake of lower energy is located closer to the minima compared to
one of higher energy. Then the objective becomes that of finding a
initial contour that will, on average, begin with lower energy than
all other choices. Let

n

Ai
e(U,A) = Z 1_—)\1E1nt(uz) + Eemt(ui)

=1

(26)

represents the total energy. We assert that

Assertion 2 A contour U that satisfies Eine(U) = 0 will, on av-
erage, begin with the lowest total energy. Moreover, this contour
can be initialized through generalized Hough transform.

Proof Since Eim(fj) =0 and Ein:(U) > 0, it immediately follows

that E[Ein:(0)] < E[Eini(U)]. Also,

E[lF.+(U)] = 1- E[ngf]
= 1-p(U)
:1_%ﬁwwmwn

Eine(U) = 0 implies that p(U) > p(U) and hence E[E..¢(U)] <
E[F.::(U)]. Combining the results for internal and external energy,
we conclude that

E[e(U, A)] < E[e(U, A)]

In other words, U has the lowest total energy on average. One
should therefore initialize the g-snake using a reference contour U
generated from tbe shape matrix, i.e., one can initialize the g-snake

using generalized Hough transform.
O

The next section demonstrates by experiments how one may es-
timate the shape matrix from training samples, and subsequently
apply the trained g-snakes in various applications. We also compare
the matching performance of g-snakes and rigid templates.

V  Applications and Experiments

A Training

Figure 4 shows the sequence of steps taken to train the shape
matrix for key localization. In these examples the 2 x 1 intensity
gradient vectors are computed by fitting planes in 2 x 2 windows
using the method of least squares.

Figure 4: G-snake training. (a) Selected feature points;
(b)(c)(d) U; used to generate A; for j = 1,2 and 3. These
Aj are averaged for A estimation.

Figure 4(a) shows the feature points that form the chain U. The
set generally include locations of high curvature which can be se-
lected either manually or automatically through dominant point
detection [15]. An initial estimate of the shape matrix are com-
puted from U. Using this shape matrix and minimax regulariza-
tion, the total energy of the g-snake is minimized to yield Uy asin
Figure 4(b). The shape matrix is then updated to A,

We repeat the procedure for many key samples to obtain Al,
AQ, e A, Using the principle of maximum likelihood, the esti-
mated shape matrix is given as follows:

A=A
j=1

Similar method is employed to estimate the two reference points
used to generate U from A.

(27)

We may also estimate the local regularization parameters A; by
learning the deformation and noise variance from the training sam-
ples. As insufficient training samples are available for this experi-
ment, minimax regularization is used.

B Initialization and Extraction

We use the generalized Hough transform to initialize the g-
snakes, considering only rotation for T in equation (15). From
the initialized contours, we minimize the energy on the g-snake and
show the results in Figure 5. Beginning from the top left corner,
each example shows the original image, edge magnitude map, final
and initial boundaries in the clockwise order.

As evidenced in the edge maps, these scenes contain considerable
clutter and occlusion. As a consequence, traditional methods based
on edge linking are likely to produce poor results. It can be seen
that the generalized Hough transform successfully approximate the
locations of the keys, but cannot produce precise boundaries. The
g-snakes refined these initial contours to yield accurate reproduction
of the boundaries.

C Affine Invariant Contour Model

Figure 6 shows the invariance of contour model to affine trans-
formations. Similar training steps are used to estimate the shape
matrix for rectangles. The results show that generalized Hough

transform successfully estimated the necessary displacement, scale



Figure 5: Extraction of keys from noisy, occluded and cluttered images. In clockwise direction, each example shows original
image, edge magnitude, final and initial boundary.

change, rotation and dilation to yield good initialization, see Fig-
ure 6(a), (b) and (c) (top row). The g-snake accounts for local de-
formation to produce contours that match the underlying images,
see Figure 6(a), (b) and (c) (bottom).

D Comparison to Snake

Figuer 6(d) shows the results of applying the snake of [3]. As its
internal energy restricts the solution to controlled continuity spline,
the initialized state is a circle. Failing to utilize the appropriate
contour model (i.e., rectangle), it yields suboptimal solution with
smoothed corners. The g-snake, in contrast, utilize the contour
model to yield good solution.

E Handwritten Characters

Figure 7 shows applications of g-snake in extracting the skele-
ton of handwritten characters, using intensity image as the data
type. After undergoing necessary deformations, the g-snake pro-
duces skeletons that represent the underlying characters.

We performed the simulation on a SUN-IPX workstation, using
60 x 50 images and 18 snake points. Combined with stratified line
search with m = 15 and [ = 3, the energy minimization algorithm
consumed 1.13 seconds on average. On the other hand, the gen-
eralize Hough transform required 0.5 second on average when only
5 quantized states of rotation were considered. While the aver-
age time consumed by the generalized Hough transform increased
drastically to 21.5 seconds with 243 quantized states of rigid trans-
formations (include scale change, rotation and stretching), averaged
run time of energy minimization remained stable. Similarly, time
required by the generalized Hough transform also depended greatly
on image size, but run time of energy minimization depended only
on n, the number of snake points, and m, the search region size.

The simulation demonstrates the fact that regardless of the range
of affine transformations and image size, g-snake is capable to re-
fine the initial guess in a constant amount of time. Consequently,

(a) initial

Figure 7: Extraction of handwritten characters.



(a) (b)

(c) (d)

Figure 6: (a)(b)(c): Invariance of contour model to affine transformations. The g-snakes refined the initial guess to account

for local deformations. (d) Results of applying original snake. Failing to incorporate the appropriate contour model (i.e.,

rectangle), it yields suboptimal solution.

g-snake 1s particularly effective and powerful in applications such
as handwritten character extraction. As an alternative, the range
of transformations can be significantly reduced by normalization,
resulting in rapid and reliable initialization.

I Severe Clutter and Deformation

Figure 8 shows an example of the effect of severe cluttering and
deformations on g-snakes. Under such conditions, it has been shown
[16, 17] that the generalized Hough transform has high probability
of generating false peaks, especially when one considers all possible
transformations. This results in a poorly initialized g-snake which
also yields poor final results.

For successful extraction in these scenes, one should either re-
move the clutters through pre-processing or restrict the range of
allowable transformations. Otherwise, alternative strategies for ini-
tialization must be employed.

G Matching Performance

This section compares the matching performance of g-snake to
rigid template under the effect of deformation and image noise.
Matching performance is defined as the degree of correlation be-
tween a template and an image:

o(U) = = 3 bl f(ui+g) (28)

¢(U) takes value between 0 for no correlation and 1 for perfect cor-
relation. Using rigid template (generalized Hough transform) and
g-snake with minimax regularization, we obtain the respective av-
erage correlation E[¢(U)] and plot the results against deformation.

The experiment uses synthesized images containing deformed
rectangles as shown in Figure 9(a). We deform the boundary on
each of the 4 sides independently using a randomly generated cosine

Figure 8: Effects of severe clutter and deformation. Poor ini-
tialization yields poor solution.
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s € [0,1]. The deformed boundary d(s) is given by:

d(s) =b(s) + vcos(rs + ¢) (29)
: N(0,02) is a normally distributed boundary deforma-
tion process and ¢ is a random phase shift uniformly distributed
in [0,27). Large values of o, induce large values of deformation
variance ;, although the exact relationship cannot be determined.

A plot of E[¢(U)] versus o, will therefore illustrate the effect of
deformation on matching performance.

where v

The intensity images are generated by setting the pixel value to 1
if it is enclosed by the boundaries, and 0 otherwise. Image noise is
then introduced using zero-mean Gaussian white noise of variance
On-

Figure 9(a) to (d) show the plots of E[¢(U)] versus deformation
with o, = 0.1 and 0.3. These experiments confirm that match-
ing performance of rigid template degrades with deformation. In
contrast, the g-snake adapts well with deformation to yield high
degree of correlation. Furthermore, by comparing the two plots, we
observe that g-snake exhibits higher robustness to image noise.

VI Conclusions

We considered the problems of modeling and extracting arbitrary
deformable contours from noisy images. Based on a regenerative
shape matrix, our model encompasses both global and local defor-
mations. In addition, it is stable, invariant and unique. Combined
with the Markov random field to model local deformations, this
yields invariant a prior: distribution that exert influence over an
arbitrary global model while allowing for deformation.

Using the Bayesian framework, the problem of extracting an ob-
ject with unknown deformation from noisy images turns into MAP
estimation. We showed that MAP estimation is equivalent to en-
ergy minimization in g-snake. Unlike snake, g-snake is capable of
representing any arbitrary shape. We exploited the minimax princi-
ple to adaptively determine the optimal regularization when train-
ing samples are unavailable or unreliable. Furthermore, we may re-
liably and efficiently initialize the g-snakes using generalized Hough
transform.

Finally, we demonstrated with experiments how one may apply
the proposed g-snake in various applications. Quantitative mea-
sures obtained from the experiments confirm that g-snakes yield
superior matching performance compared to rigid templates.
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Appendix: Minimization Algorithm

To accomplish our goal, we define a state variable e;, where

Eint(ui|uia,uiﬂ) Eemt(ui,g)
2 + 2
7; n

(30)

ei (Wi, Wi, i) =

and let U* be the solution to
n
U = arg mUinZe,'(uia,ui,uiﬂ)

=1

(31)

We begin by computing Si(uz,us), where

(32)

51(112,113) = n1111n {61(113,111,112) =+ 62(111, 112,113)}
1
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Figure 9: (a) Synthetic images used to compare matching performance. Deformation variance o, increases from top to bottom
while image noise variance o, increases from left to right. (b)(c) Plots of average correlation E[¢(U)] versus ¢, with o, = 0.1

and 0.3.

For the next stage, we use S1 and es to obtain

52(113,114) = Hlllln {S1(112,113)-|—63(112,113,114)}
2

3

=  mmin E ei(ui,, ug, uiﬂ)
u,,u; 4 1
=

(33)

Proceeding in the like fashion, we obtain the partial solutions .S5;
for ¢ = 3 through ¢« = n — 3 by successively using e;41 and S;_1:

Si(Wig1,Wiq2) = Hlllin {Sic1(uws, wig1) + eip1 (i, Wig1, wig2)} (34)

We then complete the computation in stage n — 2 to obtain

Sn_2 (lln_1, lln) = 1IlnlIl
n—2

Sn—S (un—2, un—l) + en—l(un—2, Up-—1, un) +

(35)

en(un—l, un, un—2)

Now, we can verify that

n

Sn—2(Up_1,u,) = m&n Z ei(ui,,ug, uiﬂ)

=1

1 36
u, ), (39)
Consequently, we can use backward substitution to yield U*.
Beginning from ¢ = n — 1 and 7 = n, we have
(37)

{up_i,un} = arg min_ Sp_2(Up_1,us)

n—1,4n
We continue to backward substitute for ¢ = n — 2 through : =1
to obtain
(38)

Note from (34) that we only require m?® operations to compute
S;. This yields an algorithm that performs exhaustive search in
the m-neighborhood with complexity O(nm®). We can generalize
this idea to include any distribution with local characteristics: if
the distribution can be decomposed into n-stages, each involving
p neighboring points, then we can derive similar algorithm with
complexity O(nmF).

* 3 *
u; = argmin Si—1 (i, ui4q)

z

To obtain Uj,ap, we iteratively apply the algorithm to yield
UT, U;’ .
in the neighborhood of Uj_;. The algorithm terminates when the

., where each Uj is the solution to (31) by searching

energy cannot be further reduced, ie., Uy = Uj_;. As the energy
decreases monotonically, the algorithm is guaranteed to converge
to a strong local minimum.



