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Conic Reconstruction and Correspondence from
Two Views
Long QUAN

Abstract— Conics are widely accepted as one of
the most fundamental image features together with
points and line segments. The problem of space re-
construction and correspondence of two conics from
two views is addressed in this paper. It is shown
that there are two independent polynomial con-
ditions on the corresponding pair of conics across
two views, given the relative orientation of the two
views. These two correspondence conditions are
derived algebraically and one of them is shown to
be fundamental in establishing the correspondences
of conics. A unified closed-form solution is also de-
veloped for both projective reconstruction of conics
in space from two views for uncalibrated cameras
and metric reconstruction from calibrated cameras.

Experiments are conducted to demonstrate the
discriminality of the correspondence conditions and
the accuracy and stability of the reconstruction
both for simulated and real images.

Keywords— conie, stereo correspondence, recon-
struction.

I. INTRODUCTION

In computer vision, conics are widely accepted
as one of the most fundamental image features
together with points and straight lines. Con-
ics are more compact and more global features
than points and lines. Conics are invariant, as
are points and lines under projective transforma-
tions. In addition, the mathematical properties of
conics or general quadric surfaces have been thor-
oughly studied within algebraic projective geome-
try, which provides strong mathematical support.
Moreover, unlike points and lines, conics contain
sufficient information to impose correspondence
conditions, which is very attractive for applica-
tions. Several authors have remarked the impor-
tance of conics as basic image features and devel-
oped procedures for pose estimation, stereo and
motion based on conics, for instance [1], [2], [3],
[4], [5], [6], [7], [8]. However, there are fewer ar-
ticles dealing with conics than those devoted to
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points and lines.

In this paper, we are interested in the problem of
conic correspondences and that of reconstruction
of conics in space from two views. The importance
of these issues is no doubt evident within the clas-
sical approaches of stereo vision and shape from
motion. Another important motivation for this
study arises from the study of invariants of conics
in space [9], [10], where projective reconstruction
of conics from uncalibrated cameras is essential.

We propose to solve the problems of conic cor-
respondence and conic reconstruction from two
views within a unified framework in this paper for
both calibrated and uncalibrated cameras. The
way we proceed is first to reformulate the prob-
lem using projective geometry based on the pro-
jective properties of quadric surfaces. Then, linear
algebra is used to analyze the eigen system of a
matrix pencil of order four coming from the pen-
cil of quadric surfaces. This analysis in terms of
projective geometry reveals the essential proper-
ties of conic reconstruction from a pair of images.
It turns out a very simple closed form solution for
reconstruction and discriminant polynomial corre-
spondence conditions.

The original contributions of this paper are
twofold:

o It is established that there are two indepen-
dent polynomial conditions which should be
satisfied for a pair of corresponding conics.
These two a priori conditions are algebraically
independent. It is then demonstrated that one
of the two conditions is more important and
can be used in practice for establishing conic
correspondences. An invariant interpretation
of this fundamental condition is also provided.

o A unified simple closed form solution for both
projective and FEuclidean reconstruction of
conics in space is developed. The reconstruc-
tion procedure is essentially linear in that the
two solutions of reconstruction are solved to-
gether with only linear computation. Only the



extraction of the two different solutions may
need to solve a quadratic equation. It is also
clarified that the solutions to conic reconstruc-
tion are generally ambiguous up to two solu-
tions and are unique only for non-transparent
objects.

This work is closely related to those of Ma et.
al [11], [3] and Safaee-Rad et. al [4]. They both
worked on the conic reconstruction problem with
only fully calibrated pair of views and proposed
different solutions to the problem.

Ma et al. in [11], [3] developed an analytical
method which reconstructs directly the position
and orientation of the conic in space, and pro-
posed a criterion for correspondence verification.
The approach was developed and mostly limited
to Euclidean framework, hence some properties re-
garding projective quadrics cannot be exploited in
this framework. The matching criterion is more of
an a posteriori verification procedure, mixed up
with the reconstruction procedure.

In [4], Safaece-Rad et al. observed the projective
property of a pencil of quadrics, then proposed a
procedure to reconstruct the plane on which the
conic in space lies. However, the solution proposed
by Safaee-Rad et al. requires that a high (fourth)
degree polynomial equation be solved. This is
due primarily to lack of further investigation of
the problem. The important properties related to
the special pencil of matrices are not exploited.
The independency of derived equations was not
analyzed, therefore the correspondence conditions
could not be made explicit. The uniqueness issue
of reconstruction was also discussed in [4].

The remaining sections are organized as follows.
In Section II, some preliminaries concerning the
camera model and the description of two views
are provided. Then the problem is formulated in
Section III. Section IV gives the two polynomial
correspondence conditions and some discussion on
their algebraic implications. Next, Section V gives
the analytical method which allows one to extract
two solutions in closed form. Experimental results
are presented in Section VII. Finally, some con-
cluding comments are given in Section VIII.

II. PRELIMINARIES

Some basic concepts related to camera models
and geometric/algebraic description of two views
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are briefly presented in this Section. For more

details, one can refer to [12], [13], [14].

A. Projection matriz of a camera

If we assume a perspective projection for camera
model, then the object space R?® may be consid-
ered as embedded in P? (projective space of di-
mension 3) and the image space R* embedded in
P2 The camera performs the projection between
P? and P?%, and this projection is represented by
a 3 x 4 matrix P of rank 3 whose kernel is the
projection center, P being called the projection
matrix of the camera. The relationship between
an image point in its homogeneous coordinates
u = (u,v,w)’ in P? and a space point in its ho-
mogeneous coordinates x = (z,y,z,t)T in P? are
linearly related by Au’ = Px, where ) is any non-
zero scalar.

The projection matrix may be decomposed into
the following form

P:A(Igog)(% f) (1)

where A, a 3 x3 upper triangular matrix, accounts
for the five intrinsic parameters of the camera, and
R a space rotation matrix, together with t a space
translation vector, account for the six extrinsic pa-
rameters.

B. Realization of projection matrices for two views

When we are dealing with two views taken at
different placements of the camera(s), each view
should be associated with a projection matrix
This re-
alization of projection matrices may be different
according to the knowledge that we have on the
intrinsic/extrinsic parameters of the cameras and

which is consistent with the other one.

the relative orientation of the two views. In what
follows, we will examine some frequent cases.

B.1 Two views from calibration

If the two views are taken by a fully off-line cal-
ibrated stereo system (using calibration objects),
we have the most complete description of the two
views through the two projection matrices P and
P’, each of which has the same form as (1) being,
directly issued from the calibration process. The
resulting 3D reconstruction will be fully metric,
defined in the world coordinate system which was
fixed during the calibration step.
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B.2 Two views from motion

If the two views are taken by a moving calibrated
camera. The motion of the camera is determined
only up to the length of the translation vector.
This is also equivalent to knowing the essential
matrix E (¢f. [15]) of the two views. In this case,
the choice of a particular world coordinate system
is arbitrary, the projection matrices can therefore
be taken for two views as

P = A(L 0;) and P':A'(Igog)(R t/”t”).

ol 1

The motion components R and t can also be ob-
tained by factorizing E as suggested in [16].

The resulting 3D reconstruction with this real-
ization of rojection matrices will be Euclidean up
to a global scaling factor, defined up to a rigid
transformation of the placement of the first cam-
era.

B.3 Two views from epipolar geometry

If the two views are taken by an uncalibrated
moving camera, only the epipolar geometry be-
tween the two views was estimated. This is also
called weakly calibrated views in [17]. The epipo-
lar geometry can be nicely coded by a 3 x 3 rank
2 matrix F, called fundamental matrix [18], [19],
[17]. According to Hartley [13], given a decom-
position of F such that F = [t]xM, where M is a
non singular 3 x3 matrix, [t]« is the antisymmetric
3 x 3 matrix associated to the kernel vector t of F,
one possible choice of projection matrices for two
views consistent with the above decomposition of

F might be

P = (13 03) and P/ = (M t)

In this case, all quantities are purely of projec-
tive nature, the resulting 3D reconstruction could
be no more metric, it will only be projective,
defined up to a projective transformation of the
placement of the first camera.

B.4 Summary

In summary, the key point is that whereever we
are given two views, we obtain two consistent pro-
jection matrices P and P’ for the two views. This
will allow us to reformulate conic reconstruction
and correspondence from two views taken either

by calibrated or uncalibrated cameras in a unified
framework.

It should also be stressed that the metric infor-
mation contained in each realization of projection
matrices is different, from the least metric descrip-
tion with merely fundamental matrix, to the most
metric one with fully calibrated cameras. This dif-
ference of the projection matrix realization only
affects the nature of 3D reconstruction, from pro-
jective to Euclidean reconstruction.

In the remaining part of this article, without
explicit mention, the pair of projection matrices
P and P’ considered is defined up to a projec-
tive transformation. This corresponds to the case
described in Subsection II-B.3. We are therefore
working in projective spaces which allow us to use
some nice projective properties of quadric surfaces
for conic reconstruction and correspondence. The
Euclidean or others cases can be treated in exactly
the same way by using the suitable projection ma-
trices.

III. PROBLEM FORMULATION

Given a corresponding pair of conics from two
views

C=u'Cu=0&C=uC'u =0,

we require to find a conic in space which has
been projected respectively into C and C’. A conic
in space is generally represented as the complete
intersection of a quadric surface and a plane. The
reconstruction is therefore equivalent to finding
the plane in which the conic lies, as we can take
any one of the two cones associated with two con-
ics in images as the quadric surface.

The cone equation associated with a given conic
and a given view is obtained as follows.

Proposition 1: Given the projection matrix P of
a camera, the equation of the cone which joins
the conic u’Cu = 0 in the image plane to the
projection center of the camera is

x'Qx =0, with Q =PTCP.

Proof: This is obtained by substituting
Au” = Px into the conic equation u’Cu = 0.
x'Qx = 0 is effectively a proper cone, for!

'For a quadric surface xT Ax = 0, where A is 4 x 4 symmetric,
the projective classification of quadric surfaces (cf. [20]) based
on the rank of A is given as: a proper quadric surface has full

rank 4, a proper quadric cone rank 3, a pair of distinct planes
rank 2 and a repeated plane rank 1.



rank(Q) = rank(P) = rank(C) = 3 and Ker(Q) =
Ker(P) which means that the vertex of the cone
is the projection center of the camera. [ |

The cones corresponding to the pair of conics
are therefore

Q0=x"Ax =x"PTCPx =0

and

Q' =x"Bx=x"PTC'P'x=0

in P>

Consider the pencil of quadric surfaces Q +
AQ' = 0, for every value of A the equation
Q 4+ AQ" = 0 represents a quadric surface which
passes through all the common points of Q and
Q'. The points common to all quadric surfaces of
the pencil are simply the points which make up the
curve of intersection of @ and Q’, and this curve is
the base curve of the pencil. The base curve of two
quadric surfaces is generally a quartic curve. In
our context, the reconstruction constraints impose
that the corresponding cones intersect in a conic in
space. As this conic in space should be part of the
base curve, thus the base curve of the pencil should
break up and one of the components is a conic in
space! Even more, if one of the components of
the base curve is a conic, the residual component
should also be a conic. As a pair of planes can be
considered as a degenerate quadric surface of rank
2, according to the results of projective geometry
(cf. [20]) on pencils of quadric surfaces, the de-
generate quadric surface composed of the pair of
planes belongs to the pencil of quadric surfaces in
consideration. We are therefore led to examine a
special pencil of quadric surfaces which contains a
degenerated member of rank 2. Based on this ob-
servation, we can reformulate the problem of conic
reconstruction as follows:

Proposition 2: The reconstruction of a conic in
space from two views is equivalent to find a A such
that the A-matrix C(A) = A+ AB has rank 2. The
xTAx = 0 and x’Bx = 0 are the proper cones
corresponding to the two images of the conic in
space.

We can also imagine that we may have the case
where the pair of planes coincident, becoming a re-
peated plane which is a degenerate quadric surface
of rank 1. If this were possible, the reconstruction
would be essentially unique. However, it will be
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shown in the following proposition that this is im-
possible.

Proposition 3: If the conics in images are
proper, there is no A such that C(\) = A + AB
can have rank 1.

This proposition will be proved in the next sec-
tion after other results have been introduced.

IV. POLYNOMIAL CONDITIONS FOR
CORRESPONDENCE

Unlike points and lines, two images of a conic
in space contain sufficient information to impose
correspondence conditions. The number of the in-
dependent conditions which is given by

Proposition 4: There exist only two independent
polynomial conditions for a corresponding pair of
conics.

Proof: ~ From Proposition 2, we need only
count the degrees of freedom of the rank 2 matrix
and those of the matrix pencil. A 4 x 4 symmetric
matrix up to a scaling factor counts for 10—1 =19
degrees of freedom, thus a general pencil counts
for 9 — 1 = 8 degrees of freedom. A rank 2 sym-
metric matrix C' of order 4 counts for 6 degrees of
freedom, so there remain 2 = 8 — 6 independent
conditions. |

We will now derive these two polynomial condi-
tions.

Consider the characteristic polynomial of A-
matrix

C()\) = A + AB,

|C(A)—pl] = ' +ar (M) +as(Mp? +as(A)ptas(A) = 0.

As C(A) is a real 4 x 4 symmetric matrix, for it
to have rank 2 it must have two distinct nonzero
eigenvalues and a double zero eigenvalue. The con-
ditions we are looking for are equivalent to?

as(A) =0,
{ =y @

By definition, a4()) is the determinant of C()),
therefore, it is the characteristic polynomial of the
matrix pencil A + AB, i.e.

Cl4()\) = |C()\)| = |A—|—)\B| = [1)\4—|—[2)\3—|—[3)\2—|—[4)\—|—[5,

2To be complete, we should also have as # 0 and a3 —4as # 0
to guarantee two distinct nonzero eigenvalues.
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where the coefficients [; are polynomials in the
entries of A and B.

Since both A and B have rank 3, then [, =
|A| = 0 and s = |B| = 0. The characteristic

polynomial of the pencil is factorized as
Cl4()\) = )\([2)\2 + [3)\ + [4) =0.

There are generally four singular matrices of
the pencil, each corresponds to one of the four
generalized eigenvalues of the pencil, the roots of
as(A) = 0. Two generalized eigenvalues of the pen-
cil are easily read out as A =0 and A = co which
corresponds respectively to A and B. The two
others are the solutions of the quadratic equation

(3)

Before going ahead, let us recall the following
known result [21]:

Lemma 1: Given symmetric matrices A and B
of order n. If X; is a generalized eigenvalue of
A + AB of multiplicity &;, then k; is at least n —m
for C(\;) = A + A\;B to have rank m.

Proof:  This is a direct consequence of the
fact that the dimension of nullspace of A + \;B
can not exceed k;. [ |

In order to have a rank 2 matrix in the pencil,
we should at least have a generalized eigenvalue
of multiplicity 2, hence the above quadratic equa-
tion (3) must have two equal roots. The condition
for this is

[2)\2 —|— [3)\ —|— [4 - 0

A= Ig —4]2[4 = 0,

which is actually the first condition for correspon-
dence.

It is now straightforward that we cannot have a
rank 1 matrix in this matrix pencil. Thus we must
at least have a triple generalized eigenvalue which
is obviously impossible for we have already two
distinct ones 0 and oco. This proves Proposition 3.

After as(A) = 0 of (2) is examined, we can now
examine asz(A) = 0. The as(A) is a cubic polyno-
mial in A, it can be written as

Clg()\) = Jl)\S —|— JQ)\2 —|— J3)\ —|— J4,

where J; are polynomials in the entries of A and

B.

The second condition is derived by computing
the resultant of as(\) and a4(A) with respect to A.
The explicit form of this resultant, further simpli-
fied by using A = 0, gives the second polynomial
condition

This completes the derivation of two correspon-
dence conditions which are respectively A = () and

0 =0.

A. Remarks on the correspondence conditions
A.1 Algebraic implication of A =0 and © =0

From an algebraic point of view (cf. [22], [21],
[23]), we are dealing with a special kind of ma-
trix pencils C(A) = A + AB which have a double
generalized eigenvalue. It is known that the exis-
tence of multiple eigenvalues (generalized or not)
is generally a complicating factor. Matrix pen-
cils in which multiple generalized eigenvalues oc-
cur may be divided into two classes according to
whether or not the dimensions of the null space
(i.e. its geometric multiplicity®) equal its alge-
braic multiplicity. When the algebraic multiplic-
ity exceeds the geometric multiplicity, the matrix
pencil is defective®. Otherwise, the matrix pencils
are simple, non-defective.

For simple matrix pencils, k; = n —m instead of
k; > n —m in Lemma 1, the condition A = 0 is
therefore becoming necessary and sufficient for C'
to have rank 2 in our problem. The second condi-
tion © = 0 is becoming obselete. It is in fact equiv-
alent to the condition requiring matrix pencils to
have simple structures. Fortunately, the matrix
pencils from the physically significant problems
are almost exclusively of the class having the sim-
ple structure [21]. Therefore from the practical
point of view, we can reasonably assume that the
matrix pencil from two views of the same conic
has a simple structure. In this case, the first con-
dition A = 0 is a necessary and sufficient condition
for conic correspondence. The second condition is
generally implied by A = 0 under the assumption
of simple structure. Another consequence of this
consideration is that the use of the second con-
dition even for other purposes, for instance, mo-

*The number of linearly independent eigenvectors associated

with this multiple eigenvalue.
*Or as being derogatory, they are non-diagonalizable.



tion estimation from conics should be moderated
in practice as well. The algorithms which use this
condition as constraints will no doubt cause nu-
merical instability.

Interestingly, A = 0 admits also a nice invari-
ant interpretation that is given in the following
subsection.

A.2 Invariant interpretation of A

Proposition 5: The condition A = 0 can be in-
terpreted as that the absolute projective invariant
I associated with the pair of cones is a constant.

Proof:  Let us first consider the invariant
algebra® [20], [25], [9] of the pair of the quadratic
forms x” Ax and x"Bx, the determinant of the
pair of the quadratic forms:

|)\A —|—IMB| = [1)\4 + [2)\31u—|— [3)\21u2 + [4)\,&3 + [5,&4.

When x transforms into x’ = Tx by any non sin-
gular space collineation T, [; are transformed into
I' = |T)*1;. I;,j =1,...,5 are relative invariants
of weight 2 of the two quaternary quadratic forms
xAx and x"Bx.

Now consider the invariant algebra of a pair of
quadric surfaces x’ Ax = 0 and x'Bx = 0 which
is associated with a family of quadratic forms
xT(AA)x and xT(uB)x. The relative invariants
are related as follows:

L p) = NI,
LA p) = Nuly,
LA p) = Nu'ls,
LA ) = Ml
(A p) = p'ls.

As we are considering a pair of cones, so [} =
Is = |A| = |B| = 0. We are left with nonzero I,
I3 and 1. While taking into account the power
degrees of A and p, the unique absolute invariant
of a pair of the cones is

o
L1
As A = I — 41,1, therefore
A=0&T=4

5For a more general introduction to invariants, on can refer
to [5], [24].
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V. CLOSED FORM SOLUTION OF
RECONSTRUCTION

In this section, we will be developing a closed
form solution for reconstructing the conic in space
from its two views identified as a corresponding
pair. According to our reformulation of the prob-
lem, we first have to determine the degenerate
quadric surface, then extract the planes from it.

A. Computation of the degenerate quadric surface

Since we must have two equal roots for the
quadratic equation (3), the double generalized
eigenvalue is directly obtained by

I3

R
21,

Then we obtain the matrix C = A + AB of the
degenerate quadric surface. The remaining effort
for conic reconstruction requires only the extrac-
tion of the two planes from C, a rank 2 matrix.

B. FExtraction of the plane pair

The extraction of the plane pair from C consists
of the eigen analysis of C, which can be directly
solved as follows.

Going back to the characteristic polynomial of
the matrix C(A), it is simplified by the second
condition © = 0 as

pAp* + ar(Mp + az(A)) = 0.

The remaining two nonzero eigenvalues iy and
(o are the roots of the quadratic equation:

P+ ar(Mp + az(X) = 0. (4)

As C is a real symmetric matrix, there exists
a non singular transformation T such that C is
diagonalized:

TTCT = diag(u1, f12,0,0).

The quadric surface
x'Cx = 0 is therefore transformed by x = Tx’'
into x'Tdiag(p1, pt2,0,0)x" = 0, i.e.

'’ + pay™® = 0.
1Tt

The pair of planes 7! = pi'x’ =
the transformed reference frame is

0,i = 1,2 in



QUAN: CONIC RECONSTRUCTION AND CORRESPONDENCE FROM TWO VIEWS 7

(\/ M1, j:\/ _M27070)TX/ =V /“le/ + \% —sz/ =0.

It is obvious that to obtain real planes, we must
have®

CLQ()\) = H1H2 < 0.

Let vi and v, be the eigenvectors corresponding
to the eigenvalues py and po of C'. The plane pair
m = pix = 0,7 = 1,2 in the original reference
frame are obtained by

(Tp))"x = (Viavi £ v—p2v2) ' x = 0.

Then the conic in space is defined as the inter-
section of one of the two cones with the plane re-
covered above:

xT'Ax =0,
plx=0.

C. Determination of the unique plane from the
plane pair

At this stage, the reconstruction of conics in
space is ambiguous up to two solutions, defined
by any one of the plane pair. We now show that
this ambiguity may be removed in some special
cases.

Let us first restrict ourself to the Euclidean case,
i.e. the projection matrices are either from calibra-
tion or from motion cases. If we further assume
that the conic in space is a non-transparent ob-
ject (a wired conic in space is a typical example
of transparency), the visibility constraint may be
used to get rid of the surplus solution. To be visi-
ble for a non-transparent object from two different
viewpoints, it is necessary that the two viewpoints
be located on the same side of the plane. Look at
Figure 1 in which one of planes of the pair is in
between the two viewing centers. This plane ap-
parently cannot be the solution of the problem if
the conic in space is not transparent.

In practice, this can be easily checked as fol-
lows. The projection centers of the two views,
given their projection matrices P = (Psy3 p) and
P’ = (Pl 1) ate

o= Ker(P) and o = Ker(P’).

5This inequality condition does not affect the degree of free-
dom of the matrix pencil, so it does not affect the Proposition 4.

Fig. 1. This figure illustrates that one of the planes of the
pair is always between two camera centers, therefore it
is not the solution of the problem if we are considering
non-transparent objects. One side of the plane pl z = 0
is visible for both cameras, however each side of the
plane pf'z = 0 is visible by a different camera.

If (o”p;)(0'"p;) > 0 then o and o lie both on
the same side of the plane px = 0, otherwise
they lie on different sides of the plane. This test
allows us to remove the reconstruction ambiguity
for non-transparent conics.

It can also be noted that this test can be ex-
tended to the projective case if we further assume
that conics contain no real points at infinity (i.e.
only ellipses) because the visibility is still valid for
objects containing no points at infinity in the weak
calibration case [26], [27].

VI. SUMMARY OF THE COMPUTATION

After the conic features have been extracted
from each of two views, the correspondences of
conics through two views are established by the
following procedure.

1. For each pair of conics C; and Cj,

o form the cones A = PT'C,P and B =
P/TC;P/,

o compute [y, I3 and Iy, then A, ;.

2. A potential corresponding pair of conics is se-
lected as the pair that has the smallest abso-
lute value of A;; among all possible pairs of
conics between two views.

3. If |A, | < ¢, it is taken to be a corresponding
pair, otherwise there is no correspondence for

the given (.



For each corresponding pair of conics, the conic
in space is reconstructed by the following proce-
dure.

1. Compute A = —13/215;

2. Compute the degenerate quadric from the A,

C=A+)B;

3. Extract the two planes

(a) If ay > 0, solve the quadratic equation (4)
for py and 9, otherwise no real solution pos-
sible.

(b) Compute the eigenvectors vy and vy asso-
ciated with p; and py by solving the linear
equation

(C — /,LZI)VZ =0.

(c¢) The plane pair is given as

(w//,clvl + \/ —IMQVQ)TX =0.

4. For non-transparent objects, select the plane
for which (oTp,)(0o'Tp;) is positive.

VII. EXPERIMENTAL RESULTS

The theoretical results presented above for cor-
responding conditions and reconstruction of conics
have been implemented. The accuracy, stability of
reconstruction and the discriminality of correspon-
dence conditions are studied both for simulated
and real images.

A. The experiments with simulated images

A.1 Simulation set-up

o« We use the calibration matrices from a real
stereo system. They are given by

1.393757 —0.244708 —14.170794 368.0

P = 10.624195  2.39627H —0.433595  202.0

0.002859 0.011811 —0.003481 1.0

1.374060 —0.612998 —14.189693 371.0

P = 10.979978 —1.621189 —0.469463 207.0

0.007648 0.010572 —0.003449 1.0

o We view with these two cameras two conics in
space described respectively by the intersec-
tion of the quadric surface x? Q,x = 0 and the
plane pT'x = 0 for the first conic in space and
the intersection of x7Q,x = 0 and pix = 0
for the second. The plane plx = 0 is taken
as being parallel to the first image plane and
goes through the center of xTQ,x = 0.

)

)A.Z Reconstruction stability w.r.t. pixel errors
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—0.0013 0471075 —0.00023 0.0058

_ | 0.47107> —0.000078 —0.00034 0.0033
Q= —0.00023 —0.00034 —-0.0014 0.011
0.0058 0.0033 0.011 —0.038

p, = (—0.021,-0.16, —0.092,1.0)"

1.0 00 00 —9.0
{00 10 00 -20
Q=100 00 10 -—100]"
—9.0 —2.0 —100 85.0

py = (—0.196589, —0.812143,0.239359, 1.0)7

o The conic in space is analytically projected
into image planes by the two calibration ma-
trices.

o The projected conics in images are resampled
as a list of points. Fach location of resampled
points is perturbed by varying levels of pixel
noise of a uniform distribution.

o Each list of perturbed points is then fitted to
a conic of form

a:z;2+b:1;y—|—cy2—|—d:1;—|—ey+f20.

With the normalization f = 1, least squares
fitting can be easily implemented as a lin-
ear minimization procedure. Note that using
this normalization directly fails for all conics
through the origin (as in this case f = 0),
but this can be easily overcome by shifting
the data away from the origin if necessary. In
practice, very good results are obtained using
this normalization. More sophisticated fitting
algorithms are only necessary when a small
part of curve data is visible and/or the curve
data is very scattered. A more detailed de-
scription on conic fitting can be found in [2],

28]

Conic reconstruction with respect to different
pixel errors of image points is performed to demon-
strate its stability. Table I and II show the numer-
ical results for the two conics in space. As conic
reconstruction is ambiguous, the solution for the
plane which is closer to the known space plane of
the conic is marked in bold font. Numerically, we
can never have a perfect rank 2 matrix C. It is well
known that numerical rank is nicely characterized
in terms of SVD [22]. In the tables of results, we
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also computed the ratio o3/0; of the second largest
oy and the third largest singular values o3, which
indicates how near C' is to a rank 2 matrix. The
closer to zero o3/0y is, the nearer C is to rank 2.

We notice that for both space conics, the degra-
dation with the increasing pixel noise is extremely
graceful. This is largely due to the fact that con-
ics are global primitives and small pixel errors are
very well corrected by the fitting process.

A.3 Discriminality of correspondence condition

To demonstrate the discriminality of correspon-
dence conditions, a set of very similar conics is
generated by deforming the initial one. The de-
formation is performed by adding different levels
of pixel perturbation to the discreted conic points,
then fitting the disturbed points to get the new
conic. The closeness of the set of the conics gen-
erated in the second image can be deduced from
Figure 2 in which four of them are displayed.

K
2801 &
<
o F
2601 *
K
2401 *,
E
220

200

léD 260 220 ZKU ZéD ZéD 360 320 330 3é0

Fig. 2. The four conics of the set of generated similar
conics. If we look at conics from right to left in the
down-left part of the conics, they correspond to Cu,
Co, 05 and C6~

Table 111 shows the computed A for each pair of
conics. The absolute value of A increases with the
increasing discrepancy of conic pairs. Note that as
C is a slightly deformed version of Cy, and C] of

0, 1t is quite reasonable that C is as close to ()
as to (], as suggested in the table.

B. The experiments with real images
B.1 Wooden house images

We first used a wooden house image sequence
that has been frequently used for self-calibration.
Each camera position is calibrated with respect
to a coordinate frame associated to the objects in
view. Figure 3 illustrates one of the images in
which we can see the calibration coordinate frame
associated with the scene and the three conics used
for experimentation. The stereo pair of images
appear in Figure 4 in which their contour images
are displayed.

Fig. 3. One of the two original images in which the co-
ordinate system for calibration and the conics used in
the experimentation are marked. To have an idea of
the real size of the object, OA and BC' are measured
as 13.75em and 2.5em.

Fig. 4. The contour images of the stereo pair of images.

The pair of images is treated by a Canny-like
edge detector, and then linked into contour chains.
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TABLE 1
RECONSTRUCTION RESULTS FOR THE FIRST SIMULATED CONIC IN SPACE WITH DIFFERENT PIXEL ERRORS FOR IMAGE

POINTS BEFORE FITTING. 02 AND 03 ARE THE SECOND AND THE THIRD LARGEST SINGULAR VALUES OF THE PLANE

PAIR MATRIX. (Sn IS THE DIFFERENCE OF NORMAL DIRECTION n’ OF THE PLANE AND (Sd IS THE DIFFERENCE OF

DISTANCE d OF THE PLANE WITH THAT OF THE KNOWN PLANE.

Noise A C] o3/0 Plane pair (n”, —d) o, dq
i o [ (o] OTTETS s w
o I KT Kl i i i i T
=35 | 051074 | oot |oraiom [ O oot 0.0so. somass) | 2 | 008
o oo | v | v | O e estei Sevor | o

TABLE 11
RECONSTRUCTION RESULTS FOR THE SECOND SIMULATED CONIC IN SPACE WITH DIFFERENT PIXEL ERRORS FOR

IMAGE POINTS BEFORE FITTING.

Noise A C] o3/0 Plane pair (nT, —d) o, dq
£15 || ~09107 | 02010 | o110 | o0, Lo ownowrr s.zoery | AT | 003
£2.5 || ~091077 | 0161071 | 0.301077 (_(()'—202.35947228’9:83384291%?’—8f(?1791908221;:81.6;?1?;2) 0.30 1 0.05
T R R R T e e A
T T e e

TABLE II1
THE COMPUTED A FOR EACH PAIR OF CONICs (; AND (%, (; 18 A CONIC OF THE FIRST IMAGE AND C A CONIC OF

THE SECOND IMAGE.

A cr 7 7 T c cr T
Cy 1 0.2010° 1% | —0621075 | —0.8210~* | —0.47107% | 0.241073 | 0.5010-2 | 0.26 10!
Cy ] -0.46107° | 0.6610° | —04210~* | —0.8110~* ] 0.181073 | 0.5110-2 | 0.26 10~!

The contour chains of the three conics: the paper
conic, the conic of the cup and the conic of the
plastic cup, are selected by hand from the contour
chains. For automatic selection of contour chains
of conics, one may refer to [29]. The selected con-
tour chains are then fitted by the procedure de-
scribed above.

The correspondences of conics through two im-
ages are unambiguously established by comparing

the computed A of Table TV.

The reconstruction results are illustrated in Ta-
ble V. To gain an idea of the reconstruction
results, each plane equation is put in the form
(nT, —d) where nT is the unit normal direction

vector of the plane and d is the distance of the
origin to the plane. The plane which corresponds
to the real solution, checked by applying the visi-
bility test, is marked in bold font in the plane pair.
Recall that the coordinate frame for calibration is
illustrated in Figure 3. The paper conic lies in the
vertical plane y = 0, the conics of the cup and
the plastic cup lie almost in the planes parallel to
the horizontal plane, and the plastic cup is little
higher than the cup. All these facts are confirmed
by the reconstruction results.
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TABLE V
THE RECONSTRUCTION RESULTS OF THE THREE CONICS OF THE WOODEN HOUSE IMAGES.

A o o3/0 Plane pair (nT, —d)

- I (-0.0707, 0.9930, 0.09445, -0.4845)

paper | —0.02 3 —0.5107" | 0.032 (0.9501,0.3115, —0.01362, —5.855)
- U (-0.05645, -0.03286, 0.9979, -9.486)

cup 01 =0.1107% | 0.018 (0.6811, —0.2470, 0.6893, —26.16)
T - ~ (0.02352, -0.04442, 0.9987, -10.78)

plastic | —0.6 | —0.14107% | 0.34 (=0.4283,0.1803, 0.8855, — 18.22)

TABLE IV

RESULTS OF THE COMPUTATION OF A IN ORDER TO

ESTABLISH THE CORRESPONDENCES OF THE CONICS.
THE RAW ENTRIES CORRESPOND TO THE CONICS OF

THE FIRST IMAGE AND THE COLUMN ENTRIES TO THOSE

OF THE SECOND IMAGE.

A paper | cup | plastic
paper | -0.02 | 358. —-0.9

cup 2595. | -0.1 1034.
plastic | —28. | 5214. | -0.6

B.2 Breakfast images

We then used a real stereo system coupled to a
robot, the stereo system is calibrated off-line with
a special calibration objet. The image pair of Fig-
ure 5 is taken by this stereo system. The process
from edge detection to conic fitting is the same as
in the above example. The fitted conics are shown
in Figure 6.

00T
002
00€
007
005

Fig. 6. Fitting of three conics in one of the breakfast
images.

TABLE VI
THE COMPUTATION OF A FOR EACH PAIR OF CONICS OF
TWO IMAGES. THE RAW ENTRIES CORRESPOND TO THE
CONICS OF THE FIRST IMAGE AND THE COLUMN ENTRIES
TO THOSE OF THE SECOND IMAGE.

bowl dish inside | dish outside
bowl -0.001 —15.0 —3.7
dish inside —6.0 -0.0001 0.54
dish outside —-9.4 3.8 -0.0005

Fig. 5. The initial stereo pair of breakfast images.

The correspondences are unambiguously estab-
lished based on the computed As, shown in Ta-
ble VI.

Table VII shows the reconstruction results. To
have a rough idea of the reconstruction quality, the
heights of the conics from the ground, measured
with a ruler, are respectively 8.5¢m for the bowl,
3.0e¢m for the dish outside and 2.3¢m the dish in-

side. That makes a difference of 5.5¢m between
the bowl and the dish outside borders and 0.7¢m
between the inside and outside of the dish. Ob-
viously the planes on which conics lie should all
be parallel to the ground. The computed differ-
ence in the heights are hem for 5.5¢m and 0.8em
for 0.7¢m. The difference of plane orientations are
2.6° between the bowl and the inside and 1.7° be-
tween the inside and the outside border.
Quantitative conclusions can not be drawn from
this due to inaccuracy of camera calibration and
irregularity of objects. Another important factor
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is that the porcelain objects have smoothed bor-
ders and so their image contours have the effect of
a moving tangential contour.

Notice that in this experiment the computed ©
in Table VII are much higher than in the previous
examples. However the ratios of singular values
are small enough to indicate the numerical rank
of the matrix C'. O is related to the scale of the
problems.

VIII. CONCLUSION

We have proposed a solution to conic correspon-
dence and conic reconstruction from two images
within a unified framework for both the projective
and the Euclidean case. We derived two polyno-
mial conditions A = 0 and © = 0 to establish the
correspondences of conics. We have shown alge-
braically that the first condition A = 0 is more
important than the second one from the practical
point of view. We also proposed a simple analyt-
ical method for reconstructing the corresponding
conics in space. It is also shown that the conic
reconstruction is generally ambiguous up to two
solutions, and only unique for non-transparent ob-
jects.

The method shown is simpler and more stable
than existing methods, as the intrinsic properties
of the problem are fully exploited. The experimen-
tal results based on both simulated and real im-
ages confirm that A is a discriminative correspon-
dence criterion and the reconstruction method is
accurate and numerically stable.
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