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nerative Models for 
andwritten Digit Recognition 

Michael Revow, Christopher K.I. Williams, and Geoffrey E. Hinton 

Abstract-We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B- 
splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic 
matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating 
the data. This approach has many advantages. 1) After identifying the model most likely to have generated the data, the system not 
only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such 
as the writing style. 2) During the process of explaining the image, generative models can perform recognition driven segmentation. 
3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. 4) Unlike many other 
recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, 
translations and a limited degree of image rotation. We have demonstrated our method of fitting models to images does not get 
trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR 
techniques. 

Index Terms-Deformable model, elastic net, optical character recognition, generative model, probabilistic model, mixture model 

+ 
1 INTRODUCTION 

HE conventional statistical approach to performing clas- T sification is to use a discriminant classifier that con- 
structs boundaries which discriminate between objects of 
different categories. An alternative approach is to use gen- 
erative models. This paper explores the use of generative 
models for recognizing handwritten digits. In the simplest 
version there is one model for each digit. Given an image of 
an unidentified digit the idea is to search for the model that 
is most likely to have generated that image. This approach 
has the attractive property that, in addition to providing a 
label, it can also say something about the particular way in 
which the digit is instantiated. So, in some sense, it explains 
the image rather than just labeling it. This is important 
when the recognizer forms part of a larger computer vision 
system since there may be interest in more than just the 
labels. For example, given a roughly segmented image of a 
single digit we may want to know which parts of the image 
represent the digit and which parts are caused by noise or 
by some incorrectly segmented neighboring digit. We may 
also want to know the pose of the digit (i.e., its position, 
size, orientation, shear, and elongation) so that we can 
check for consistency with its neighbors. 
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We chose unconstrained handwritten digit recognition 
because it is a task of great practical importance for which 
there are standard databases that allow different ap- 
proaches to be compared. It also has the attractive property 
that there are only ten different classes so it is feasible to 
explore all ten different ways of generating each unidenti- 
fied digit image. Although handwritten digit recognition is 
an easier task than general three-dimensional object recog- 
nition, it retains, albeit in reduced form, many of the prob- 
lems associated with general computer vision such as vari- 
ability in shape and pose, overlapping objects and both 
structured and unstructured noise. 

The paper is organized as follows: Following a brief re- 
view of some past approaches to optical character recogni- 
tion, we discuss elastic models which have been used for at 
least two decades to deal with signal and image variability. 
In Section 3, we introduce our basic elastic model for 
handwritten digits. We use the probabilistic interpretation 
of elastic models introduced in an analysis of the elastic net 
algorithm [l]. In Section 4, we show how the underlying 
parameters of the models may be learned. Section 5 dis- 
cusses refinements of the basic ideas. Section 6 describes the 
performance of our system on a realistic database of hand- 
written digits. The final two sections discuss some implica- 
tions of the approach and present conclusions. 

2 REVIEW OF PAST WORK 
We will not attempt to review here the voluminous work 
on optical character recognition that has spanned more 
than three decades (useful reviews can be found in [Z], [3]) .  
However, it is helpful to summarize the trends. Most re- 
searchers have adopted the classical pattern recognition 
approach in which image pre-processing is followed by 
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feature extraction and classification. There have been many 
variations, but these may be roughly described using two 
dimensions: statistical/structural and global/local.' As an 
example of a global, statistical approach, [4] extracts eight 
central and two raw moments as features. On the other 
hand the recognizer used by Lam and Suen [5] uses local 
features. They extract local geometric primitives consisting 
of line segments and convex polygons and use these as in- 
put to a structural classifier. Others extract topological fea- 
tures which depend on the global properties of the data. 
For example, Shridhar and Badreldin [6] use features de- 
rived from the character profiles in the image. They then 
feed these features into a tree classifier. More recently there 
have been a number [7], [SI, [9] of successful attempts to 
automatically learn appropriate local features using feed 
forward neural networks. Some researchers [lo], [3], [11] 
have boosted performance using combinations of classifiers. 

Significant progress has been made in OCR. On a stan- 
dard database of lightly constrained pre-segmented hand- 
written digits the very best systems achieve error rates of 
about 1.5% with no rejections [12]. But more work is re- 
quired to match human performance, especially on unseg- 
mented strings of digits. We hypothesize that in order to 
achieve human performance without astronomically large 
training sets, recognizers must embed some form of prior 
knowledge about the objects they expect to find in images. 
This is common in structural systems but rarer in statistical 
systems. There have been some statistical systems that al- 
low for typical digit transformations [13], but discriminant 
classifiers generally do not address the issue of explicitly 
"explaining the data". This leads to a number of weak- 
nesses that may limit the achievable performance: 

1) Conventionally, a recognizer does not help to guide 
segmentation by dividing the image into significant 
and irrelevant parts. So a system typically [14] tries 
many candidate segmentations and all the recognizer 
can indicate is whether a particular segmentation 
leads to confident recognition. In general, this type of 
hypothesize-and-test search procedure is much less 
efficient than a procedure that can use information 
from the recognition to refine the segmentation hy- 
pothesis. 

2) Statistical recognizers can occasionally confidently 
classify images that do not look anything like a char- 
acter [15]. This can be ameliorated by training the 
system to reject junk images [16], but it is hard to get a 
good sample of rare types of junk. 

3) Systems that do not incorporate any prior knowledge 
about the shapes of characters must learn all their 
knowledge from the training examples. We already 
know that digits are composed of one-dimensional 
strokes and so it seems wasteful to use up training 
data to learn this. 

4) A recognizer that "understands" an image should be 
able to not only label it with the correct class, but 
should also be able to return the instantiation pa- 

l. These are broad terms applied to the object recognizer as a complete 
entity. Obviously, feature selection and classifier design may be independ- 
ently described. 

rameters such as the position, size, orientation, shear 
and elongation. For handwritten digits we may also 
want information on the writing style since this is oc- 
casionally crucial in disambiguating other digits in 
the same string. 

Motivated by the success of model-based shape recogni- 
tion in overcoming some of these shortcomings [17], we 
have investigated the use of deformable elastic models for 
handwritten digit recognition [181. Models of this general 
type have been used in computer vision since the early 
1970s. Ullmann [19] discusses the idea of finding a distor- 
tion mapping from a test image to a stored template such 
that there is correspondence between like features rather than 
exact matches. Widrow [20] also suggests the idea of using 
rubber templates to achieve fuzzy matches to a variety of 
natural objects and waveforms. 

Burr presents an iterative framework for computing 
elastic matches in dot and grey-scale images [21] and line 
drawings [22]. Using a coarse-to-fine matching strategy he 
shows how an image can be progressively deformed under 
the influence of misalignment force fields to fit another im- 
age. In a later version 1231, global size and rotation adjust- 
ments were included. The method has been adapted to 
match tomographic [24] and thermographic images [25]. 
One weakness with the approach is that it does not allow 
the amount of deformation to be traded off against the fi- 
delity of the data match. It also has no principled way of 
handling noise or missing data. 

Bajcsy and co-workers [26], [27[ integrate the notion of a 
trade-off between data fit and d(2formation in their mul- 
tiresolution elastic matching scheme for registering an im- 
age with respect to a template. They consider a test image 
to be drawn on an elastic membrane. The membrane is 
subjected to external forces which are proportional to the 
gradient of the similarity measure. The system iterates until 
an equilibrium exists between the forces trying to increase 
the similarity measure (a measur'e of cross-correlation be- 
tween the two images) and the restraining forces arising 
from the elastic properties of the membrane. The mul- 
tiresolution approach is attractive as it initially concentrates 
on achieving large-scale registration between the images 
with fine-scale matching coming later in the process. 

Early work by Fischler and Elschlager [28] described a 
model with local (data fit) and global (model deformation) 
energy terms. Their model is composed of (rigid) features 
whose spatial arrangement is constrained by springs and 
hence the deformation is related Ito the energy required to 
stretch or compress these spr ing  Their matching proce- 
dure works on a coarse scale, but it is scale dependent and 
degrades in the presence of noise [29]. The facial feature 
model example they used has bee:n extended by Yuille [29], 
who constructs a more detailed descriptions of the feature 
shapes and global matching criteria in terms of peak, valley 
and edge intensities. In addition, the original dynamic pro- 
gramming search was replaced .with a gradient method. 
From an image explanation point of view this type of 
matching scheme is deficient as it does not account for the 
entire image. Instead of ensuring that every part of the im- 
age is explained by the model (or explicitly attributed to 
some additional noise process) the matching process tries to 
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ensure that every part of the model is supported by some 
part of the image and a match may be good even though it 
leaves large parts of the image unaccounted for. "Snakes" 
1301 use different shape constraints, but also attempt to 
match each part of the model to some part of the image 
rather than vice versa. Point distribution models [31], rec- 
ognize the importance of doing both types of matching, i.e., 
the model must be supported by the data and the model 
should explain the data. 

The digit models we propose have a sound generative 
probabilistic basis and explicitly incorporate much prior 
knowledge of handwritten digits, for example, that they are 
made up of strokes and that they are globally invariant to 
affine transformations, unlike other implementations [ 131 
which attempt to achieve only local invariance. 

ATCHING ELASTIC SPLINE MODELS TO IMAGES 

3.1 Qverview 
Each of the ten digits has its own elastic model.* A digit- 
image is recognized by choosing the elastic model which 
best matches the image. During the matching process, the 
model is deformed in an attempt to ensure that every piece 
of ink in the image is close to some part of the model. The 
fidelity of the final match depends on the amount of de- 
formation of the model, the amount of ink that is attributed 
to noise, and the distance of the remaining ink from the 
deformed model. 

Unlike the approach taken in many OCR systems, we do 
not pre-process images in order to remove the effects of 
translation, scale, rotations, shear, etc. Instead we handle 
arbitrary global affine transformations of the image by de- 
fining the model in an "object-based frame which is 
mapped through an affine transformation into the "image- 
frame." The affine transformation is refined during the 
matching process so that knowledge about the shape of the 
digit can influence the choice of affine transformation. This 
is not possible if normalization precedes recognition. Affine 
transformations are not penalized during the matching 
process, so deformations are only used to handle true 
variations in shape that cannot be accommodated by global 
affine transformations. 

Similarly, we do not assume that the image has been per- 
fectly segmented. The matching process decides which 
pieces of the model correspond to which pieces of the im- 
age and it can explicitly reject some parts of the image as 
noise. Thus knowledge about the shape can be used to re- 
fine the segmentation. 

What we have just described is an instantiation of the 
general framework of generative or latent variable models 
[32]. The key idea is that the manifest variables are attrib- 
utable to a smaller number of underlying hidden or latent 
variables. In our case, the manifest variables are the pixels 
and the hidden variables are the positions of the elastic 
model's control points in the image-frame. Section 3.2 
describes the elastic model. Section 3.3 gives the under- 
lying probabilistic interpretation of how the model gener- 
ates an image from the hidden variables (required for com- 

2. C-code implementing the model is available from 
http:/ /www.cs.toronto.edu/-revow. 

puting the log-likelihood of the image given a model in- 
stantiation). An algorithm for the more difficult problem 
of inferring the hidden variables from the manifest vari- 
ables is presented in Section 3.4. 

3.2 Elastic Spline Models 
We model each digit with a uniform, cubic B-spline [33]. 
Each model has at most 8 control  point^.^ Let X = (xl, x,, . . ., x,} 
= {x,, x2, . . ., x2,-,, xZn} denote an instantiation of the model 
in terms of its n control points. The ith control point is lo- 

cated at (x*~-,, xZi) .  Similarly, H = { h,, ..., h,} indicates the 
home or undeformed control point locations and Y the affine 
transformation with its six degrees of freedom. The location 
of any point,' s(b),  on the spline can be written as a linear 
function [33] of the control points locations.' 

Because of the local control feature of B-splines some of 
the coefficients, yl(b), will be zero. For future convenience, 
we also write (1) as: 

To generate an ideal example of a digit we put the con- 
trol points at their home locations. To deform the digit we 
move the control points away from their home locations. 
Assuming a Gaussian distribution for these deformations, 
the probability of the n control points lying within a small 
hypervolume 6 Vis approximately: 

where C is the covariance matrix of the distribution. Thus, a 
single deformable model defines an entire probability dis- 
tribution across shape instances. 

Following [l] and [34] we define the deformation energy, 
Ed+ to be the negative log probability of the deformation. 

1 1 
(3) E~,(x) = (x - H ) ~  c-'(x - H) + ioglCl+ const 

Splines are a convenient method for modeling hand- 
written digits as it is easy to incorporate topological 
variations. For example, small changes in the relative 
locations of the control points can turn the loop of a 2 
into a cusp or an open bend (Fig. 1). This advantage of 
spline models is pointed out in [35] where a different 
kind of spline is used to fit on-line character data by di- 
rectly locating candidate control points on strokes in the 
image. It is lost (as pointed out in [36])  when models 
based more directly on Durbin and Willshaw's elastic net 
are employed [37]. 

3. The model of a one needs only three control points while the seven- 

4. The spline is a one-dimensional continuous curve parameterized by b. 

5. We treat the first and last control points as if they are doubled. 

model uses five. 

In the development, we consider a discrete version. 
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0 Either (with probability a) adcl a randomly positioned 
noise pixel to the image-Or pick a bead at random and 
generate an inked pixel from the Gaussian distribution de- 
fined by the bead. 

This is not a good generative model of the way in which 
handwritten digits are actually produced. If, for example, 
the beads have large variances the inked pixels in the image 0 (3 

L 8 
Fig. 1. Illustrates the flexibility of spline models to capture topological 
variations. The large loop of the 2 can smoothly decrease in size and 
eventually become a cusp. The control points are labelled 1 through 8. 

will have the correct overall shape but will be disconnected 
and much too scattered. However, the generative model is 
useful for recognizing digits as explained in the following 
sections. 

3.4 Fitting a Model to an Image 
In this section, a Bayesian interpretation of the fitting process 
is adopted and we demonstrate how using a maximum 
posterior framework (see, for example [38]) yields a practi- 
cal algorithm. First we need to refine the notation; A super- 
script ' or ' is used to qualify if a quantity is in the object or 
image frame respectively. so x" represents control points 
locations in the object frame. We can parameterize a model 
instantiation in the image frame by a = (X) ,Y. 

To classify an image, I, specified as a vector of locations 
of its NI inked pixels {zl, ..., zNJ, each of m models is fitted 
to the data and the model that best "explains" the image is 
chosen. Using a uniform prior over all digits, the posterior 
probability, P(m I I), for each model is proportional to the 
evidence, P(I1 m): 

0 

@ 

3.3 Generative Models 
Although we use our digit models for recognition, it is 
helpful to consider how we would use them for generating 
images. The generative model is an elaboration of the prob- 
abilistic interpretation of the elastic net given in [l]. To gen- 
erate a noisy image of a particular digit class, run the fol- 
lowing procedure: 

1) Pick a deformation of the model (i.e., move the con- 
trol points away from their home locations) to give a 
particular realization X. This defines the spline in ob- 
ject-based coordinates. The log probability of picking 
a deformation is proportional to the quadratic term in 
(3). It is important that the deformation is measured 
in object-based coordinates. 

2) Pick an affine transformation6 from the model's in- 
trinsic reference frame to the image frame (i.e., pick a 
size, position, orientation, slant and elongation for the 
digit). 

3) Map the spline into image coordinates and place 
beads uniformly along its length. Each bead is a cir- 
cular Gaussian ink generator. The number of beads 
and their variance can easily be changed without 
changing the spline itself. Typically the variance is 
chosen so that the bead centers are two standard de- 
viations apart. 

4) Repeat many times: 

6. Using our prior knowledge that ones tend to be stroke-like, we used a 
similarity transformation for the one-model. 

P(Ilm) = j P(Ila, m)P(alm)da (4) 
Performing the integration over instantiation parameter 

space is infeasible, so instead we compute the most prob- 
able parameter values (a').' The evidence is approximated 
by the height of the posterior peak (P(IIa*, m) P(a Im)), 
multiplied by the volume of the parameter space under the 
peak. The negative logarithm of the evidence is then: 

(5) 
where K is the logarithm of the volume term. When the 
posterior is well modelled by a Gaussian, then 
K = 5 log 2z - *log)3fl, with 3f= - V V log P(a I I, m) the 

Hessian evaluated at as. In the sequel we treat K as a con- 
stant, but we allow it to be a different constant for each 
model (see Section 6). The second term is just € d e i  (3). The 
first term is the log-likelihood o'f the image given a par- 
ticular instantiated model. We refer to this as the data f i t  
( E f t ) .  This leads to a convenient (objective function consist- 
ing of just two energy terms: 

- log P(1 I m) -- - log P(1 I a*, m) - log P(a" I m) - K 

If each inked pixel zk in the image is generated inde- 
pendently from a distribution defined by B circularly sym- 
metric Gaussian beads, each withL a mean s(b) and variance 
o;, and a uniform noise field, then the data fit term is the 
sum of log probabilities of each inked pixel. 

7. This i s  reasonable for this problem because there will usually only be 
one setting of the control points and affine transformation that will provide 
a good fit. 
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k = l  

where P, is the probability of inking pixel k:  

(7) 

(9) 

with N the number of pixels which the uniform noise field 
is distributed over (normally the whole image) and zn the 
mixing proportion of a uniform noise field. Using (7) to 
compute Efit has the undesirable property that it depends 
on the number of inked pixels in the image. For example, a 
simple resizing of the image, will change Efit whereas Edqfi  
being defined in object based frame, is invariant to scale 
changes. In order to mitigate this, we allow each pixel to 
have its own weight Wk. Thus, we compute Efit using: 

N, 

Normally we set W, = A /  NI where A is a constant. This has 
the desired effect of ensuring that all images have the same 
total weight of ink and therefore about the same tradeoff be- 
tween E), and Ed$ regardless of the number of inked pixels. 
However, it is also possible that a bottom up processor could 
assign different weights to pixels based on other knowledge. 

We assume that the deformations and affine are independ- 
ent (for example, the size of a digit or its location in the image 
is d k e l y  to be correlated with its style), so the second term in 
(5) can be factorized into the sum of Ed$ and a term involving 
the affine parameters. During the fitting procedure, we treat 
the affine parameters as if they have a uniform prior. How- 
ever, in Section 6, we show how solutions with unusual affines 
may be penalized after the fitting procedure is complete. 

The objective in fitting a model to an image is to find the a 
which minimizes Et,:. We start with zero deformations and 
an initial guess for the affine parameters which ensure that 
the control points are mapped within an upright rectangular 
box around the inked pixels in the image. A small number of 
beads with equal, large variance are placed along the spline. 
These large variance beads form a broad, smooth ridge of 
high ink-probability along the spline. Because of the high 
variance, the beads are attracted to inked pixels even if they 
are fairly far away so the spline is quickly pulled towards the 
data. During the fitting process the variance of the beads will 
generally decrease and the number of beads increase as the 
model gets closer to the data and begins to explain its finer 
structure. The fitting technique resembles the elastic net algo- 
rithm of Durbin and Willshaw 1391 except that our elastic 
energy function is much more complex and we are also fit- 
ting an affine transformation. 

In early experiments, we used a conjugate gradient method 
to optimize Etot. Unfortunately this method is slow because 
each conjugate gradient step may require a few evaluations of 
E,,, each of which is of the order of E x N operations. Our pre- 
ferred method is based upon the Expectation Maximization 
(EM) algorithm [40]. This involves the repeated application of 

a two step procedure which will not increase Etot as a is 
adjusted at each application. 

During the expectation (E) step, the beads are frozen at 
their current locations and the responsibility that each bead 
has for each inked pixel is computed. This is just the prob- 
ability of generating the pixel under the Gaussian distribu- 
tion for the bead normalized by the total probability of gen- 

erating the pixel (rkb = %%). Because the negative log 
P!i 

likelihood (energy) under a Gaussian distribution is quad- 
ratic in the distance from the mean, it is sometimes con- 
venient to think of minimizing Eiot as analogous to finding 
the minimum energy configuration of a system of springs. 
For a fixed bead variance, consider a system in which each 
fixed pixel is attached to mobile beads by springs whose 
stiffkess is proportional to the responsibility of the bead for 
the pixel. As we show shortly the EM method finds the 
minimum energy configuration of the system of springs. 

In the second (M) step, the responsibilities are fixed, and 
new values of a computed to minimize Etof .  In the conven- 
tional application of EM, the beads would be uncon- 
strained, and hence a bead would move to the center of 
gravity of the data (pixels), weighted by the responsibilities 
that the bead has for each pixel: 

‘ k  ‘kb wk s‘(b) = xk ‘kb wk 

However in our system the beads are constrained to lie on 
the spline defined by the control points; the free variables are 
really the control point locations and the affine parameters. 
Directly minimizing Etot results in a set of non-linear equations. 
We circumvent the expensive step of solving a set of non- 
linear equations using a two stage procedure. In the first stage, 
the affine transformation Y is held constant.* This means we 
can do the minimization exclusively in the image frame. To do 
this we first need to define the deformation energy there. This 
involves mapping the control point covariance matrix, C , 
through the affine (see below). Setting dE,’,, / dx’ = 0 and 
with the help of (6), (l), (3), (lo), and (11) we update the con- 
trol point locations by solving the set of linear equations: 

0 

BX’ = d 

with Rb = & w k r k b .  In (12), we have used the shorthand; yr 
to denote y: ( y i )  and s’ the x (y) component of s’ for m odd 
(even). 

In the spring system analogy, this stage corresponds to 
finding the minimum energy equilibrium point where the 
forces pulling the beads towards the nearby pixels are balanced 
by the forces pulling the beads towards their home locations.’ 

8. This is an example of Expectation/Conditional Maximization [41]. 
9. More precisely, the pixel forces on the beads can be transferred onto 

the control points and at equilibrium there is a balance between these forces 
and those pulling the control points towards their home locations. 
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In the second stage of the M-step, the control point loca- 
tions in the image are kept constant and the deformations (as 
measured in the object based frame) and affine parameters 
are adjusted so as minimize the deformation energy. In effect, 
we are absorbing as much of the deformation as possible into 
the global affine transformation. This cannot increase Ej t  be- 
cause this energy depends only upon the image locations of 
the beads and their variances and these are unchanged dur- 
ing this stage. The minimization is achieved by considering 
the deformation energy in the image basedframe: 

0 where (AH + T) is the vector of control point home locations 
when transformed into the image frame through the affine 
transform, represented in (13) by (A, T). Since all control points 
undergo the same global affine transform, matrix A is a block 
diagonal matrix formed by repeating the 2 x 2 affine along the 
main diagonal and T is the concatenation of the (same) trans- 
lations for each control point. Notice that A has only 4 degrees 
of freedom while T has 2. C' is the covariance matrix referred 

to the image reference frame ([XI)' = A-TICo)lA-l). The 

minimization of (13) with respect to the affine parameters is a 
non-linear problem, but we have found that satisfactory re- 
sults are obtained when we treat as a constant during the 
minimization, that is we ignore the fact that the contour lines 
of equal deformation energy change as the affine varies. The 
deformation energy is then a quadratic form of the affine pa- 
rameters and the minimization is straightforward.'" 

After each complete iteration of the algorithm, the bead 
variances (all beads are constrained to have equal variance) are 
set to the variance that maximizes the log hkelihood of the NI mked 
pixels given the current positions of the beads using the update: 

1 N, K 

In order to ensure that bead centers remain approxi- 
mately two standard deviations apart, the number of beads 
along the spline is periodically adjusted. The fitting algo- 
rithm is summarized in Fig. 2. 

1. Map tlir t,hr riirrrnt control point locations from thc ohjert, frame into the image fralr 

xi = AXO + T 

2. Construct the spline (1) and place the Gaussian heads 2irb apart 

3. Evaluatc probabilities of inking pixels (9) 

4 Cmnriute new control point and bead locations (12) and (1) 

5 Givrii i.hcsc new locat,ions choose the new affine and X o  t,o minimize (13) .  

6. Upciatr the head variance (14) and the new BLot using (6 ) ,  (10) and (3).  

Fig. 2. The fitting algorithm iterates over steps 1-6 until Eiot converges. 

Some stages in fitting models to data are shown in Fig. 3. In 
this example the best data fit energy was achieved by the three 

model, but the five model managed to provide a creative ex- 
planation of the data. However, in doing so it had to pay a 
high deformation cost. For this image, none of the other eight 
models had better fits and so if the model with the lowest E,, 
(6) is chosen, then the conclusion is that the data is most likely 
to have been generated by the threemodel. 

The search technique almost always avoids local minima 
when fitting models to isolated digits. In the few cases where 
local minima are encountered they can usually be overcome 
by starting with a different guess for the initial affine trans- 
formation. If the image is not recognized with sufficient confi- 
dence as explained in Section 6, we try four other initial 
guesses corresponding to positions translated right, above, left 
and below the original one and choose the fit with the lowest Efop 

*-- ,"-- ,, \ 

Fig. 3. Some stages of fitting models to an image of a 3. The image is dis- 
played in the top row. In subsequent rows, the circles represent the beads. 
Thle radius has been set to one standard deviation of the circular Gaussian 
distribution. Because the bead variance shrinks to approximate the stroke 
thickness during the fitting process, the beads would become invisible 
towards the end of the search. Consequently in this and subsequent fig- 
ures, we thin the data along its center line. We emphasize that this is done 
only for display purposes in order to make the beads visible. The middle 
row show the three-model being fitted while the bottom row illustrates the 
process for the five-model. The left column shows the initial configuration, 
wiith eight beads equally spaced along the :spline. The second column is an 
intermediate fit as the model rotates and deforms in order to improve the 
log likelihood of the data. The final fit is shown in right column. 

Our generative models also include a noise model. Each 
inked pixel may be generated either by the digit-model or a 
noise process. We have chosen the most simple type, a uni- 
form noise process (see equation (8)). The addition of this 
noise model improves the performance of the system, even 
though a uniform distribution is a poor model of the highly 
correlated, structured noise typically found in digit images. 
Fig. 4 illustrates how the addition of the noise model improves 
the ability of the digit models to correctly segment out the data 
from the noise in the image; in effect the system is performing 
model-driven image segmentation. The fit without the noise 
model (q = 0.0) is totally unacceptable. 

10. If we had performed the nonlinear minimization then Etoi would be 
guaranteed not to increase during the second stage of the M-step. 
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Fig. 4. Illustration of how the noise model helps in model driven seg- 
mentation. The top row shows an image of a nine with a poriion of its 
left neighbor. The initial configuration of the nine-model is also shown. 
The remaining rows show the configurations of the model part way in 
the settling (second row) and the final settled configuration. The three 
columns show different mixing proportions of the noise. (a) E,, = 0.0, 
(b) 7-cn = 0.2, (c) 7-cn = 0.45. The final standard deviation of the beads 
from the correct fitting model better approximates the stroke thickness 
than the standard deviation from incorrect fitting models. The data 
have been thinned for the reasons mentioned in Fig. 3. 

4 LEARNING THE MODELS 
Each elastic model is parameterized by a vector of mean or 
home locations and a covariance matrix (see (3)). These model 
parameters can be leamed from training data. Starting with 
hand crafted digit models we adjust the home control point 
locations so that each model maximizes the likelihood of gen- 
erating instances of that digit in a training set. Maximization is 

TERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 6, JUNE 1996 

An alternative to maximizing the likelihood of the image 
given the digit is to maximize the mutual information be- 
tween the correct digit class and the probabilities assigned 
to the various classes by the digit models. The maximum 
mutual information criterion emphasizes correct discrimi- 
nation rather than correct modeling of the image data, and 
it generally leads to better discriminative performance [42], 
although the advantage of discriminative learning vanishes 
if the generative model is correct and the fitting process 
produces the true probability of the data given the model 
[43]. Early experiments showed that, for our generative 
models, maximum likelihood learning was just as effective 
as discriminative learning, perhaps because the generative 
models are a reasonable approximation to the way in which 
the data is generated. Maximum likelihood learning is 
much quicker because there is no need to fit the incorrect 
digit models to each of the training digit images. 

Neglecting the Hessian term in (5), the sample covari- 
ance matrix is estimated from NT training examples using: 

performed iteratively using EM updates- This yields a simple 
algorithm: the updated home location of each control point 
(in the object-based frame) is the average location of that con- 
trol point in the final fits. Learning proceeds rapidly with 
models learning their final configurations after only a few 
passes through the training set (Fig. 5), probably because we 
start off with good models. 

-x3noo , I I I I I 1 I 

1 c = -(x - H)(X - H ) ~  
Ni- 

In our experiments we used 700 training examples for 
each model. Having a limited amount of data requires 
that some precautions be taken to prevent those princi- 
pal modes with small variance from "blowing up" when 
inverting C. It turns out that for all models the principal 
modes tend to group into a significant (large eigenval- 
ues) and an insignificant (small eigenvalue) cluster. The 
modes corresponding to the large eigenvalues are gener- 
ally intuitively obvious. For example, in the two-model 
the largest mode of variation corresponds to open- 
ing/closing of the loop. To prevent the insignificant 
modes from being problematic when inverting C, we 

W 

-asno 
-84000 

-84500 

-8snoo 

-85500 

-86000 

-86500 

m o n o  
0 1 2 3 4 5 6 7  

Iteration Number 

Fig. 5. Training the two-model. The ordinate shows the sum E = xi 
EfOi(I) over all two-images in the training set. The model has essentially 
completed its learning after the second pass through the training set. 

regularized C by clamping all eigenvalues in the insig- 

nificant cluster to lo-* of the largest eigenvalue. Gener- 
ally we had to clamp about one third of the eigenvalues. 

5 REFINING THE MODEL 
5.1 Variants on the Deformation Energy 
An instance of the elastic model in the object frame can be 
specified by giving only the (x, y) locations of n control 
points. Therefore any particular occurrence of the model 
can be thought of as a point in a'" and the population of 
models would form a distribution in a'". In (2) we have 
chosen to describe this distribution as a Gaussian hyper- 
ellipsoid. For a typical model with eight control points 
this characterization requires specification of a 16 x 16 
covariance matrix. It is interesting to investigate different 
simplifications. 

The obvious first approximation is a diagonal covariance 
matrix. We tried the most simple of these and set 

C =  2 1  (16) 
where I is the identity matrix. The control points then all 
have identical, independent radial Gaussian distributions. 
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(h) 

The deformation energy simplifies to: 

This characterization of the distribution by a single generic 
model can result in poor approximations to the true distribu- 
tion. Fig. 6 illustrates a situation in two dimensions. For ex- 
ample, under a single Gaussian approximation to the distri- 
bution, point A would have higher probability than point B, 
which is clearly incorrect. 

An alternate way to approximate a distribution, which 
also has an interesting interpretation for digit recognition, is 
to use a mixture of L local models, each of which is of the 
form (17). Under this approximation the distribution of 
models is given by:" 

where pl is the mixing proportion for the Ith local model in 

the mixture with c' PI = 1. 
r=i 

Fkg. 7. Local models in the mixture for the 2 model. The generic model 
is shown in the bottom right corner. 

The obvious way to use this mixture is to fit each of the 
local models to an image. This has the disadvantage of in- 
creasing the recognition time by ia factor of L. Fortunately 
w'e found that a single generic model nearly always fits 
correctly to the image. So we fit ithe single generic model, 
but after fitting, the deformation energy is evaluated using 
the log probability under the mixture distribution (18) in- 
stead of using Edef as in (17). This strategy is much more 
efficient since the most computation intensive portion, the 
fitting of the model to the data, is done only once. Evaluat- 
ing the distance of the final fit from each of the local models 
in the distribution only involves computing 2n squared 
distances and so is negligible cornpared to the amount of 
computation required for fitting. 

Fig. 8 illustrates the added c1as:sification power obtained 
using the mixture of local models. There is considerable 
overlap between the distributions of Edef for correct and 
incorrect classification when only a single generic model is 
used. Much better separation is achieved with a mixture 
distribution. 

Fig. 6. An arbitrary two-dimensional distribution represented by the 
shaded region could be modeled by a a single Gaussian with large 
variance as illustrated by the large circle. A better approximation would 
be to use a mixture of Gaussians each with a smaller variance. Under 
the single Gaussian approximation point A would be incorrectly con- 
sidered to be more likely than point B. 

The centers H, and variances (s2) are computed using 
EM to maximize the log likelihood of a training set under 
the mixture distribution (18). Fig. 7 shows the 10 local 
models that were automatically extracted from the 
training data of images of 2s. The mixture has been 
able to capture dominant styles. For example, varia- 
tions in the presence and size of the loop have been 
well represented. 

Ficg. 8. The solid line is the Ed,,, distribution of models when fitted to 
example images containing the correct digit (e.g., a three model fitted 
to an image of a 3). The dotted curve is the Edef distribution of the 
models when fitted to incorrect data. (a) Using a single generic model. 
(b;i Using a mixture of local models. (Many instances of fitting to incor- 
rect data in panel (b) had very large Ed+ For display purposes, all 
these were assigned the value 50, accounting for the "spike" at the 
right edge of panel (b)). 

11. We have experimented with more complex variations such as allow- 
ing each mixture component to have its own adaptive variance, or kernel 
density estimation, but found no improvement in performance over the 
simpler characterization. 

There is an interesting interpretation to these local mod- 
els. One may think of each local rnodel as capturing a spe- 
cific writing style in the population. A particular instantia- 
tion of the digit can then be classified in terms of style. This 
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may prove to be useful in strings of digits, where we would 
expect different instances of the same digit to have similar 
styles (see Section 7). There may even be mutual informa- 
tion between the pairings of local models for different digits 
(e.g., between a 4 and a 6) [44]. 

5.2 Generating Both the Inked and Uninked Pixels 
A significant drawback of our generative model is that it 
does not treat the uninked pixels as evidence. It maximizes 
the likelihood of generating the inked pixels, but it does not 
pay a sufficiently severe penalty for assigning high prob- 
abilities of ink to uninked pixels.” As a result, a model can 
fit the data well even if some of its beads are a long way 
from the nearest inked pixel. For example in Fig. 3, the five 
model has accounted for all the inked pixels, but the final fit 
has left its center bar far from any inked pixels. We call this 
the ”beads in white space” problem. A computationally 
simpler approach to this problem is discussed in Section 6. 

We assume that the image is generated from the spline 
by a two-stage stochastic process. The first stage computes 
the probability Pk(p = 0) that each pixel in the image would 
not be inked if multiple samples were taken from the prob- 
ability distribution defined by the beads and the uniform 
noise process (see (8)). We take Nmi3 samples from this dis- 
tribution. The probability that none of these samples landed 
within a particular pixel is: 

Fk(p = 0) = P(not inked by model) 

The predicted probability of a pixel being inked, Pk(p = 1) 
is simply the complement. 

& = 1) = 1 - l i , ( p  = 0) 

Given these predicted probabilities, the second stage 
computes the probability of generating all the pixels in im- 
age I. This can also be viewed as the cost of encoding the 
actual image data using the predicted probabilities to do 
the encoding. 

log P(1lm) = c log F k ( p  = 1) + c logf)(p = 0) 
k t inked I E uninked 

(20) pixels p i i e l s  

In Fig. 9 we show a model of a four settled on the image 
of a seven using the generative model of Section 3. The 
right most panel figure shows the probabilities generated 
by (20). Areas of low probability are shaded dark. The por- 
tion of the center bar of the four spanning white space be- 
comes expensive under the full generative model. The dark 
fringes around the edges of the model arise because the 
beads have a standard deviation approximately equal to the 
stroke thickness and hence it predicts fuzzier edges than are 
present in the image. (The image was originally binary but 
has been shrunk to a quarter of it original area and so still 
retains its abrupt edges.) 

12. There is a small implicit penalty in that beads far from inked pixels 
are not available for accounting for inked pixels. 

13. To maximize the likelihood of generating the image we should ideally 
take more samples than there are inked pixels because several samples may 
fall on the same pixel. However, the penalty incurred by using the wrong 
number of samples is unlikely to affect the relative goodness of fit of different 
models. 

Fig. 9. The left panel shows an image of a 7. The fit of a four using the 
generative model which produces only inked pixels is shown in the 
center panel. Under this formulation the center bar of the four model 
would not be penalized for lying in white space. The right most panel 
shows the image weighted by the probabilities of the full generative 
model with areas of low probability shaded dark. For display purposes, 
the noise model was set to zero when evaluating the full generative 
model so to prevent the background from turning grey. 

It is interesting to examine how this model behaves 
when the beads have high variance. Assuming a relatively 
low noise level, all pixels will have a low predicted prob- 
ability of being inked and hence (20) will be dominated by 
the cost of generating inked pixels. Using (1 + 6 ~ ) ~  = 1 + n 6x, 
we see that at high variance: 

log P(1lm) = c log fjk(P = 1) 
k t inked 

pixels 

= c log (1 - (1 - QNffl) 

k B inked 
pixels 

log(Pk) + N, log N, 
k e inked 
pixels 

Note that the second term involving N, will be the same for 
all models, and hence at high variance this generative 
model is approximately the same as the one described in 
Section 3 (see 10). 

At low variance, the two generative models are very dif- 
ferent in the way they penalize different fits. In particular, the 
second generative model makes it much more expensive for 
parts of an instantiated digit model to lie in white space. One 
might therefore consider using this model to escape from a 
local minimum, in which parts of the model span white 
space, obtained using the simpler model of Section 3. How- 
ever, this would fail because at low variance the model is 
unable to substantially change its configuration because the 
beads cannot “see” data more than a few standard deviations 
away. The model would therefore probably be most useful at 
intermediate bead variances. Unfortunately this is also the 
most computationally expensive situation and so we have 
not used it during the fitting process. We have used (20) to 
evaluate the data-fit of the settled configurations obtained by 
running the simpler model of Section 3 and found no im- 
provement over the approach of Section 4. 

5.3 Speeding Up the Search 
In order to classify an image of a single digit, 10 modeW4 
must be allowed to settle on the image. Each iteration of the 
settling of a model involves a computational burden pro- 
portional to the product of the number of beads and number 

14. If multiple models are contemplated per digit the computation bur- 
den becomes more acute. For example, we may choose to have a separate 
model for the “crossed seven” or the ”two circles eight.” 
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of pixels. As the model settles onto the image the bead vari- 
ance generally decreases with a concomitant rise in the 
number of beads (Section 3.4) and so the number of floating 
point operations per iteration of the EM search increases 
towards the end of the search. However, at low variance, 
there will only be a few beads that have significant prob- 
ability of generating each pixel. It is clear that one way to 
dramatically speed up the search is to eliminate all compu- 
tations that are used to update the responsibilities of beads 
that are many standard deviations from a pixel. We could 
simply freeze these responsibilities at their current low val- 
ues. In other words, during the E-step of the settling algo- 
rithm (step 3 of Fig. 2), we only update the relative respon- 
sibilities of those beads that have a significant probability of 
generating the pixel. After performing a number of EM it- 
erations with the responsibilities frozen for distant bead- 
pixel pairs, they are unfrozen and a few full EM iterations 
are be performed. In this way we would hope to achieve 
the same maximization of (6) with much less computation. 

Conventionally, the EM algorithm is seen as a way of 
maximizing the log likelihood, L(a) = log P(1 I a), of a model 
parameterized by a, for some observed data, I. Usually not 
all the data necessary to do the maximization is directly 
observed and so the first (E) step estimates a "unobserved" 
variable p and maximization is achieved with the help of p. 
With this view of the EM algorithm, it is not immediately 
obvious that partial implementation of the expectation step 
is justified. However in an alternative interpretation of the 
EM algorithm [45], the EM algorithm can be viewed as 
maximizing a joint function, F(P(p),  a)  of the distribution of 
the unobserved data and model parameters. If p is chosen 
to be the optimal distribution, p i ,  that maximizes F for the 

current value of a, then F = L(a). At the tth iteration, the 
first step of the standard EM algorithm chooses P*(p) to 
maximize F(P, a)  and the second sets a to maximize F(Pt, a). 
However, it is not necessary to compute the optimal distri- 
bution of p in the E step. Any change in p that reduces the 
Kullback-Liebler distance between p and pZ, is guaranteed 
to improve F .  In the elastic model the unobserved variables, 
p, are bead responsibilities. Our method of freezing a subset 
of the responsibilities and recomputing the optimal distri- 
bution of relative responsibilities for the remaining beads is 
guaranteed to improve F. 

6 RESULTS ON ISOLATED DIGITS 
The performance of the elastic net in recognizing isolated 
digits has been evaluated on data from the CEDAR 
CDROM 1 database of Cities, States, ZIP Codes, Digits, 
and Alphabetic Characters [46]. The br training set of 
binary segmented digits was subdivided into three 
training sets of size 2,000, 7,000, and 2,000, respectively. 
A validation set of 2,000 examples was also generated 
from the b y  training set to allow us to investigate differ- 
ent configurations of the post-processing neural net- 
work. The sets were constructed by drawing images in 
the order presented in the database so as to ensure equal 

representation of all digits in each set. The elastic models 
were trained (Section 6) on the first set, the mixture of 
local models on the second and the post-processing net 
on the third set. The CEDAR database also includes two 
test sets. The goodbs (2,213 images) set is a subset of the 
bs (2,711 images) set containing only well segmented 
digits. It is interesting to note that br training data were 
segmented with the same diligence as the goodbs test data 
[46]. 

After fitting all the models to a particular image, we 
wish to evaluate which of the models best "explains" the 
data. The natural measure is the sum of Efii and Edd that is 
minimized during the fitting process. However, we found 
that performance is improved by including five additional 
terms which are easily obtained from the final fits of the 
model to the image. 

Motivated by research on "snakes" [30], a simple ap- 
proach to the beads in white space problem (Section 5.2), 
is to define another energy ter.m, E ,  to penalize beads 
spanning white space. This term is similar to the 
":;upport measure" 1311 or the symmetric matching used 
in [Zl] and [ZZ]. 

b = l  k = l  

A bead only makes a large contribution to this cost when 
all inked pixels are far from the bead. This energy term 
could be easily incorporated into the fitting procedure, but 
in the present system we simply use it as an additional term 
when evaluating the final fits. The model presented in 
Section 5.2 is a more principled approach to the uninked 
pixels, but is computationally much more demanding. 

While fitting to an image, a model can adopt any affine 
transformation without penalty. After fitting, the final 
affine transformation may contain some information 
which is relevant in evaluating the fit. For example we 
may want to reject an explanation which requires a 
model to be highly rotated, sheared or elongated. An 
arbitrary affine transformation matrix may be written in 
the form: 

2 2 We included {sin ey, sin (0, - OY), S,/S,) as measures of 
rotation, shear and elongation of the affine transformation 
as additional information into the final determination of 
cllass membership. 

The last term used is the final variance of the beads in 
e,ach model. This term is included because it has an effect 
on E+i (see (9)). Also, when a model correctly explains the 
strokes in an image, the standard deviation of the beads is 
about half the stroke thickness, while for incorrect fit it 
tends to be larger (see Figs. 4 and 11). 

It is hard to decide in a principled way on the correct 
weightings for all of these terms nn the evaluation function, 
and it is not even clear that the relative weightings should 
be the same for the different digit models. So we estimate 
the weightings from the data by training a simple post- 
processing neural network. It should be emphasized that 
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this network is simply a convenient method for linearly 
weighting the different measures; it is unlike conventional 
neural net classifiers because it does not build internal rep- 
resentations of the input. 

If 10 models are fitted to an image then there are 70 
inputs to the net. These types of networks are much eas- 
ier to train if all inputs are approximately of the same 
magnitude, i.e., it is good practice to subtract out any 
constant offsets and scale the input data. The Efif term 
has a large offset, so we used the difference 
E"k j l t  - - Ek  f i t  -ET as the data fit term for the kth model, 

where E;;'iin is the minimum data fit obtained by any of 

the models for the current image. A similar transforma- 
tion is used for the final bead variance, while the re- 
maining inputs are simply scaled. 

Each of the seven input terms for a model is directly 
connected to the output unit for that model. The output 
units compete using the "softmax" function [47] which 
guarantees that the 10 output values form a probability 
distribution. Including biases on the output units,'' the 
network has 80 weights and is trained using conjugate 
gradient to minimize a cross-entropy error function. Af- 
ter training we classify an image according to which of 
the output units has the largest activation. We reject clas- 
sifications in which the maximum output activation is 
below some threshold T. 

We tried a variety of architectures for this "post- 
processing" network. For example, a digit recognition 
system developed by Hastie and Tibshirani [48] suggested 
that discrimination would be much better if the net was 
totally connected so that the output unit that represents 
one digit receives detailed information about the way in 
which other digit models fit the data. However, we found 
that discrimination was just as good if each output unit 
only received connections from the six inputs represent- 
ing terms describing the fit of that digit model. Including 
a hidden layer did not improve performance. Incorporat- 
ing a local approximation to the Hessian (5) also did not 
improve performance. 

To summarize, recognition of a single image consists of 
the following steps: 

1) The image is down sampled to reduce the number of 
pixels to one quarter (i.e., the number of rows and col- 
umns were both halved). This was done primarily to 
reduce the number of operations required per image. 

2) For each of the 10 models, an initial affine is com- 
puted so as to position the model over the enclosing 
rectangle of all the inked pixels in the image. 

3) The models are allowed to settle with the iterative al- 
gorithm summarized in Fig. 2. The fractional change 
in Etut is monitored and when it falls below 0,001, the 
number of beads are adjusted (Section 3.4). This is re- 
peated about six times for each model. 

4) Energies and affine transformation values are fed into 
the neural network to produce a classification of the 
image. 

15. The bias on each output unit can be thought of as the volume factor 
for each model in (5). 

5) The winning output is tested against a threshold 
and if not sufficiently large all models are resettled 
from four other initial positions. After all positions 
have been tried, the best settled state for each 
model is selected as input to the post-processing 
network. About 6% of the validation set images and 
8% of the bs test set images invoked this restart 
procedure. 

Table 1 shows the performance of the elastic net when 
the rejection threshold was set to zero. The first line in 

the table shows results when C-l (see (3)) was estimated 
from the data. The second row shows results obtained 
when all models had the same diagonal covariance ma- 
trix & I with o2 = 0.01. The final line is the performance 

when the models were settled with the same diagonal 
covariance matrix as in line 2, but EdeJ was evaluated us- 
ing the mixture of local models discussed in Section 5. As a 
simple comparison, if all images are normalized to 16 x 16, 
then k-nearest neighboP has a raw error rate of 4.7% on 
the validation set and 7.08 % on the bs test set. An in 
depth study by Lee and Srihari [lo]" evaluated eight al- 
gorithms and five combination schemes on the bs test set. 
The results in Table 1 are better than seven out the eight 
individual classifiers they used. Their best single algo- 
rithm has a raw error rate of 2.99% while the best combi- 
nation scheme has a 2.51% error rate. Ha and Bunke [49] 
report error rates of 0.9 - 2.3 % on the goodbs data set 
using five schemes. Unfortunately it is not clear which data 
was used to finesse the many empirical constants involved. 

TABLE 1 
PERCENTAGE OF IMAGES INCORRECTLY CLASSIFIED 

BY THE ELASTIC NET WITH NO REJECTIONS 

Full Covariance 
Matrix 

Diagonal Covariance 
Matrix 

Mixture of 
local models 

Validation goodbs bs 
Set test set test set 

2.00 i .a5 3.58 

1.75 1.53 3.43 

1 .oo 1.50 3.14 

In comparing our error rates with others published for the same data, it is 
important to alloio for the fact that some studies looked at the images in the 
test set or even used the test set to determine some parameters of their system. 
We  have been very careful to avoid this and have never looked at the test set or 
at the specific errors we make on it. The poorly segmented digits in the bs test 
set are not characteristic of the training data, so big improvements in per- 
formance should be obtained by tuning systems on it. 

The confusion matrix of errors for the bs set is shown 
in Table 2. The most striking feature is the confusion of a 
7 as a 9-mainly cases of crossed 7s (Fig. 9). Varying the 
rejection threshold in the post-processing neural network 
allows us to trade off errors against rejects. Fig. 10 shows 
error-rejection curves obtained on the validation and test 

16. K = 2 chosen on the basis of the validation set. 
17. Also available from ftp:/ /mirach.cs.buffalo.edu/pub/cdroml/ 

bs-digit-results /README. 
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0 1 2 3 4 5 6 7 8 9  
0 0 0 0 1 2 2 3 1 1 1  
1 1  0 1 0  0 0 2 2  0 0  
2 2  0 0 1 0 2  1 1  2 3  
3 2  0 3 0 0 1 0  2 0 0  
4 0  1 1  0 0 3  1 2  0 1  

1 0  0 5  0 0 1 0  0 0  
6 0 0 1 2 0 2 0 1 1 0  
7 0  1 3 2 4 0  0 0 0 5  

1 0  1 0  0 0 2  0 0 1  
9 0 0  0 0 2  1 0 2  0 0  

covar - 14 
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0 0.5 1 1.5 2 2.5 3 3.5 4 
Error (%) 
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Fig. IO. Error-rejection relationships. Full covariance matrix-solid 
curve. Diagonal covariance matrix4otted curve. Mixture rnodel- 
dashed curve. 

7 DISCUSSION 
We have described a generative model approach to hand- 
written digit recognition. The major motivation for building 
this system was to investigate potential advantages of using 
stochastic generative models for object recognition .in a re- 

alistic domain. While its classification performance is 
comparable to other state-of-the-art classifiers [lo], [50] it 
is significantly more computationally intensive. With our 
siinulation code running on a R4000 based workstation, a 
model settles on a typical image in about 1.1 seconds, re- 
sulting in a classification rate of aibout 5.5 images/minute. 
This is about two orders of magnitude slower than current 
practical classifiers. We have not investigated speedup 
methods in detail, but there are a number of simple ap- 
proaches which could achieve dramatic improvements. 
Parallelizing the search across digit models is the simplest 
approach. Using total elapsed time to test the set of 2,000 
validation digits on a six-processor workstation resulted in 
a speedup of 5.1. More elaborate schemes could involve 
computing the probabilities (9) in parallel. Also, we have 
observed that for most images it is apparent early in the 
search that some models do not explain the image well. For 
example a 9-model has to undergo, unusual deformations to 
fit to an image of a 2. So this suggests another simple 
method; detect these poor performing models and termi- 
nate their searches after just a few iterations. Providing a 
good starting point for the search can also speedup the 
search. For example, a doubling of processing speed was 
achieved [51] using the multi-layered backpropagation 
network described below. 

An examination of the errors made on the validation 
set reveals that almost all misclassifications can be at- 
tributed to two problems: locall minima in the search 
space and modeling difficulties. When the beads have 
low variance, the search space has many local minima. 
By annealing the variance our search method manages to 
avoid nearly all of these, but occasionally (about 1% of 
cases) becomes trapped. The obvious solution is to start 
the search closer to the global minimum. In the current 
system, very little information from the image is used to 
pick initial model instantiation parameters. The defor- 
mations, are set to zero and the affine parameters are 
chosen to simply position an upright rectangle over the 
entire inked portion of the image. Any method which 
picks better initial instantiation parameters should im- 
prove the search. The restart procedure described in 
Section 6 is a very simple attempt to do this, but still 
does not use any more information from the image. 

Using the rich set of instantiation parameters supplied by 
the correct elastic model after it has been fitted, we can train a 
conventional supervised multi-layer neural network to pre- 
dict model instantiation parameters from the image [51]. 
Given an input image,’” the network predicts the locations of 
the control points in image space for each of the 10 digit 
models. Running the second stage of the M-step of our fitting 
procedure gives the control point locations in the object 
frame. We would expect this type of network to be less sus- 
ceptible to over-fitting than conventional neural network 
recognizers [A, [8], [52]. In conventional networks, each 
training example only provides log210 bits of constraint on 

18. In this scheme, images would have to be normalized to fit into the 
fixed length input space of the network. 
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the weights of the network because that is the number of bits 
required to specify the largest output. A network trained to 
predict instantiation parameters provides much more con- 
straint per training example. 

The other difficulty that elastic models experience is 
caused by a special kind of variability present in hand- 
written digits. Although spline models are good at cap- 
turing most common variations (see Fig. 1) they cannot 
easily model large embellishments to the basic shape. 
Fig. 11 illustrates an extreme example. The 3-model 
(middle panel) has correctly modeled the main body of 
the image but does not have sufficient flexibility to ex- 
plain the flourish portion. On the other hand, the 2- 
model has successfully modeled the flourish but has 
missed the perceptually important cusp portion. In- 
creasing the flexibility of the models is not a solution 
since they are then able to model other digits. One possi- 
bility is to examine the residual image, i.e., the portion of 
the image left unexplained by the model. Currently the 
residual image is accounted for by a simple uniform 
noise process (8). An improvement would be to use a 
more structured noise model. Another possibility is to 
model the residual images using ”flourish models” [36].  
Before leaving this topic, it should be noted that some 
regional stylistic peculiarities, for example the middle 
bar on ”crossed” sevens or the top and bottom of Euro- 
pean style ones, may be modeled in this manner. We did 
not try this as in our study as we used a North American 
database in which the frequency of these styles was very 
low. 

Fig. 11. The difficulty of flourishes. The middle panel show the fit of the 
three model while the right panel shows how the model of a two cap- 
tured the entire flourish. Notice how the three model did not shrink its 
variance to the same degree as the two-model because it used the 
large variance to compensate for its inability to model the flourish portion. 
The data has been thinned in the last two panels for the same reasons 
explained in Fig. 3. 

Our study of generative models as applied to handwrit- 
ten digit recognition has highlighted a number of benefits. 
These relate to the search space and the type of information 
that can be extracted. 

The images we have used vary in size from many 
hundred to tens of thousands of pixels. Thus the search 
space is high-dimensional and therefore requires an effi- 
cient search strategy. The search method we have devel- 
oped has two advantages. Firstly, as an EM method it is 
faster than a gradient following technique. Secondly, it 
implements a coarse to fine search strategy (see Fig. 3). It 
starts with a few large beads which has the effect of 
viewing the data at a very coarse scale, and so the models 
can concentrate on adjusting the affine parameters, par- 
ticularly translations and orientations. Only later in the 

search do they begin to model the details, for example 
the middle cusp in Fig. 3. A related benefit of the ap- 
proach is the model driven segmentation illustrated in 
Fig. 4. 

It is interesting to consider the intrinsic dimensionality 
of the manifold, in pixel space, that contains all the dif- 
ferent instances of the same handwritten digit. Clearly 
the manifold has lower dimensionality than the number 
of pixels. For example, simply increasing the size of an 
image should not increase the dimensionality of the 
manifold. Almost all OCR approaches recognize the ex- 
istence of a lower dimensional manifold by extracting a 
small feature vector from the high dimensional pixel 
space. The generative models are especially frugal, using 
at  most 22 degrees of freedom (8 control points plus 6 
degrees of freedom for the affine). While making no 
claim that this is the appropriate dimension, the models 
appear to make good use of the available degrees of 
freedom and because of the relatively low dimension and 
prior information available they are quickly and easily 
trained (see Fig. 5). This is in contrast to the thousands of 
free parameters and multiple passes over the training 
data required by a typical neural net recognizer [7].  

We have claimed that one advantage of generative models 
for handwritten character recognition is that instantiation 
information from one character should be useful for other 
characters written by the same author. For example know- 
ing that a writer draws a 2 with a large loop should assist in 
recognizing other examples from the same author. The 
mixture of local models presented in Section 5 can be 
thought of as quantizing the style space for digits. 

One natural way of quantifying the amount of infor- 
mation from style is to use the mutual information 
measure. For two random variables x and y, the mutual 
information I (x ,  y) conveys the uncertainty in one of the 
variables that can be accounted for by the other. Using 
repeated digits within a zip code, the mutual informa- 
tion present in say 2 sixes written by the same author can 
be computed. To check if this quantity is significant, we 
used the same set of images but randomly assigned 
pairs, i.e., so that it is very unlikely that paired digits 
came from the same author. This was repeated 100 times 
for each digit to give a mean and standard deviation. The 
results are shown in Fig. 12. 

Except for ones, there is a significant amount of mutual 
information (0.15-0.85 bit?) in this simple style measure. It 
is interesting that for digits having obvious style attributes, 
for example the size of loops in twos and sixes, the mutual 
information is larger than for digits which do not have 
much style variability, for example ones. The latter were 
modeled using only three control points and generally the 
images were a simple stroke: which does not allow for 
much style variation. One simple way to incorporate this 
type of a style information in the task of recognizing strings 
of digits (e.g., zip codes) is to modify the mixing propor- 
tions, f l l ,  in (18) for each digit using the styles of previously 
recognized instances of that digit in the string. 

19. The task of classifying a digit as one out of 10 takes about 3.3 bits. 
20. The similarity transformation could account for slope variation and so this 

could not be considered a style under our present method of measurement. 
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Fig. 12. Mutual information computed for pairs of digits from the same 
zip code. Also shown are means and error bars of mutual information 
computed when images are randomly paired. 

8 CONCLUSION 
We have explored generative models as a technique for 
object recognition. Unconstrained handwritten digit recog- 
nition was chosen as the test domain because it is an im- 
portant two-dimensional problem which shares some of the 
complications found in three-dimensional object recognition. 
Although we achieved recognition rates comparable to cur- 
rent well tuned state of the art recognizers, we do not pro- 
pose this method as a replacement for such methods, 
mainly because of its high computational demands. It may 
however be considered as a verification stage for faster rec- 
ognizers. Because our method is so different from these 
other methods, we expect to have a low correlation between 
the errors made by the two types of recognizers and so it 
may be possible to obtain enhanced performance by com- 
bining it with other recognizers. 

The study has shown that relatively complicated gen- 
erative models can be fitted to real data using a method that 
almost always avoids poor local minima. We also demon- 
strated that generative models can extract extra information 
from images that can be useful for model-driven segmenta- 
tion and for capturing the constraints between the styles of 
the digits within one zip code. 
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