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Image Representation
Using 2D Gabor Wavelets

Tai Sing Lee

Abstract—This paper extends to two dimensions the frame criterion developed by Daubechies for one-dimensional wavelets, and it
computes the frame bounds for the particular case of 2D Gabor wavelets. Completeness criteria for 2D Gabor image
representations are important because of their increasing role in many computer vision applications and also in modeling biological
vision, since recent neurophysiological evidence from the visual cortex of mammalian brains suggests that the filter response
profiles of the main class of linearly-responding cortical neurons (called simple cells) are best modeled as a family of self-similar 2D
Gabor wavelets. We therefore derive the conditions under which a set of continuous 2D Gabor wavelets will provide a complete
representation of any image, and we also find self-similar wavelet parameterizations which allow stable reconstruction by
summation as though the wavelets formed an orthonormal basis. Approximating a “tight frame” generates redundancy which allows
low-resolution neural responses to represent high-resolution images, as we illustrate by image reconstructions with severely
quantized 2D Gabor coefficients.

Index Terms—Gabor wavelets, coarse coding, image representation, visual cortex, image reconstruction.

——————————   ✦   ——————————

1 INTRODUCTION

INCE Hubel and Wiesel’s [16] discovery of the crystal-
line organization of the primary visual cortex in mam-

malian brains some thirty years ago, an enormous amount
of experimental and theoretical research has greatly ad-
vanced our understanding of this area and the response
properties of its cells. On the theoretical side, an important
insight has been advanced by Marcelja [25] and Daugman
[6], [7] that simple cells in the visual cortex can be modeled
by Gabor functions. The 2D Gabor functions proposed by
Daugman are local spatial bandpass filters that achieve the
theoretical limit for conjoint resolution of information in the
2D spatial and 2D Fourier domains.

Gabor [13] showed that there exists a “quantum princi-
ple” for information: the conjoint time-frequency domain
for 1D signals must necessarily be quantized so that no sig-
nal or filter can occupy less than a certain minimal area in
it. This minimal area, which reflects the inevitable trade-off
between time resolution and frequency resolution, has a
lower bound in their product, analogous to Heisenberg’s
uncertainty principle in physics. He discovered that Gaus-
sian-modulated complex exponentials provide the best
trade-off. The original Gabor elementary functions, in the
form proposed by Gabor [13], are generated with a fixed
Gaussian while the frequency of the modulating wave var-
ies. These are equivalent to a family of “canonical” coherent
states generated by the Weyl-Heisenberg group. Examples
of a set of these coherent states or elementary functions are
presented in Fig. 1. A signal can be encoded by its projec-

tion onto these elementary functions. This decomposition is
equivalent to the Gaussian-windowed Fourier transform.

Fig. 1. An ensemble of odd (a) and even (b) Gabor filters or Weyl-
Heisenberg coherent states.

Daugman [6], [7] generalized the Gabor function to the
following 2D form to model the receptive fields of the ori-
entation-selective simple cells:
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where (xo, yo) is the center of the receptive field in the spa-
tial domain and ([o, Qo) is the optimal spatial frequency of
the filter in the frequency domain. V and E are the standard
deviations of the elliptical Gaussian along x and y. The 2D
Gabor function is thus a product of an elliptical Gaussian
and a complex plane wave. The careful mapping of the re-
ceptive fields of the simple cells by Jones and Palmer [17]
confirmed the validity of this model. Mathematically, the
2D Gabor function achieves the resolution limit in the con-
joint space only in its complex form. Since a complex-
valued 2D Gabor function contains in quadrature projection
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an even-symmetric cosine component and an odd-
symmetric sine component, Pollen and Ronner’s [33] find-
ing that simple cells exist in quadrature-phase pairs there-
fore showed that the design of the cells might indeed be
optimal. The fact that the visual cortical cell has evolved to
an optimal design for information encoding has caused a
considerable amount of excitement not only in the neuro-
science community but in the computer science community
as well. Gabor filters, rediscovered and generalized to 2D,
are now being used extensively in various computer vision
applications [3], [20].

Recent neurophysiological evidence [11] suggests that
the spatial structure of the receptive fields of simple cells
having different sizes is virtually invariant. Daugman [8]
and others [3], [34] have proposed that an ensemble of sim-
ple cells is best modeled as a family of 2D Gabor wavelets
sampling the frequency domain in a log-polar manner. This
class is equivalent to a family of affine coherent states gen-
erated by the affine group. The decomposition of an image f
into these states is called the wavelet transform of the image:
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where a is the dilation parameter, related to V and E, xo, and yo

the spatial translation parameters, T the orientation parameter

of the wavelet. y yq q( , , , , ) ,a x y x y ao o
x x

a
y y

a
o o= - - -1 e j  is the

2D wavelet elementary function, rotated by T. A particular
Gabor elementary function can be used as the mother
wavelet to generate a whole family of Gabor wavelets. Ex-
amples of a particular class of 2D Gabor wavelets, to be
derived in the next section, are presented in Fig. 2.

Fig. 2. An ensemble of Gabor wavelets (1.5 octave bandwidth) (a) and
their coverage of the spatial frequency plane (b). Each ellipse shows
the half-amplitude bandwidth contour dilated by a factor of 2, covering
almost the complete support of a wavelet.

Despite this recognition, many questions, originally
posed by Daugman [7], about how the degrees-of-freedom
which create the “ coding budget”  in the visual cortex are
allocated and constrained, such as the trade-off between
orientation sampling and spatial sampling, have remained
unanswered. We here address and propose answers to
those questions.

In this paper, we first derive a class of 2D Gabor
wavelets, with their parameters properly constrained by

neurophysiological data on simple cells and by the wavelet
theory. We extend Daubechies’ completeness criteria on 1D
wavelets to 2D and apply such criteria to study the
physiologically relevant family of 2D Gabor wavelets. By
numerically computing the frame bounds for this family of
wavelets in different phase space sampling schemes, we
elucidate the conditions under which they form a tight
frame. We find that the phase space sampling density pro-
vided by the simple cells in the primary visual cortex is
sufficient to form an almost tight frame that allows stable
reconstruction of the image by linear superposition of the
Gabor wavelets with their own projection coefficients, and
provides representation of high resolution images using
coarse neuronal responses. Finally, we demonstrate these
theoretical insights with results from image reconstruction
experiments.

2 DERIVATION OF THE 2D GABOR WAVELETS

In this section, we will derive the following family of 2D
Gabor wavelets that satisfies the wavelet theory and the
neurophysiological constraints for simple cells,
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where Zo is the radial frequency in radians per unit length
and T is the wavelet orientation in radians. The Gabor
wavelet is centered at (x = 0, y = 0) and the normalization
factor is such that <\, \> = 1, i.e., normalized by L2 norm. N
is a constant, with N < S for a frequency bandwidth of one
octave and N < 2.5 for a frequency bandwidth of 1.5 oc-
taves. A discrete ensemble of the 1.5 octave bandwidth
family of Gabor wavelets is shown in Fig. 2.

Each member of this family of Gabor wavelets models
the spatial receptive field structure of a simple cell. The re-
sponse of a simple cell is the projection of an image onto a
Gabor wavelet, which is the inner product of the image f
with the receptive field centered at (xo, yo),

R x y fs o o o o= < >y w q, , , ,c h
= - -zz y w qx x y y f x y dxdyo o o oyx

, : , ,c h b g          (4)

where < , > denotes the inner product. Because the response
of a simple cell is half-wave rectified, each projection is in
fact represented by the responses of two simple cells, the
response of an on-center cell (Rs+) and the response of an
off-center cell (Rs−), where

Rs+(xo, yo, Zo, To) = [<\(xo, yo, Zo, To), f>]+          (5)

and

Rs−(xo, yo, Zo, To) = [<\(xo, yo, Zo, To), f>]−          (6)

respectively, and [D]+ = {D if D � 0}, [D]+ = {0 if D < 0}, [D]− =
{−D  if D � 0} and [D]− = {0 if D > 0} are the half-wave rectifi-
cations of the function D.
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Let us start our derivation with the most general 2D
complex Gabor function, normalized so that its L2 norm
<\, \> = 1.
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The filter is centered at (x = xo, y = yo) in the spatial domain,
and at (

�
= [o, � = Qo) in the spatial frequency domain. V and

E are the standard deviations of an elliptical Gaussian along
the x and y axes. T is the orientation of the filter, rotated
counter-clockwise around the origin. U is the absolute phase
of an individual filter. There are, therefore, eight degrees of
freedom in the general Gabor function: [o, Qo, T, U, V, E, xo,
and yo.

Simple cells are often not strictly even or odd symmetric,
but the quadrature-phase relationship between a pair of
simple cells is generally preserved, whatever the absolute
phase may be [33], [7], [9]. Since only the power-modulus
enters into our later calculation, we can simplify the Gabor
filter by setting the spatial location of the filter’s center
(xo = 0, yo = 0) and the absolute phase U of the filter to 0. The
Fourier Transform of the simplified complex-valued Gabor
function is
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where [ and Q are the spatial frequencies in radians per unit
length along x and y.1

We can further reduce the number of degrees of freedom
of the filter by noting that V, E, and T are constrained by [o
and Qo according to the following physiological findings [7].
The spatial frequency bandwidths of the simple and com-
plex cells have been found to range from 0.5 to 2.5 octaves,
clustering around 1.2 octaves [10], [18], and 1.5 octaves [38].
The Gaussian envelope is usually elliptical, with an aspect
ratio of 1.5-2.0 [38], [7] and with the plane wave’s propa-
gating direction along the short axis of the elliptical Gaus-
sian (Fig. 2).

CONSTRAINT #1. The aspect ratio b
s  of the elliptical Gaussian

envelope is 2:1 [7].

CONSTRAINT #2. The plane wave with frequency ([o, Qo) tends to
have its “propagating direction” along the short axis of the
elliptical Gaussian.

When the plane wave rotates, the elliptical Gaussian ro-
tates correspondingly. This implies the center frequency

1. In this paper, the convention of the Fourier transform is,
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([o, Qo) of the filter is related to the rotation angle T of the

modulating Gaussian by [o = Zo cosT and Qo = Zo sinT,

where the radial frequency w x no o o= +2 2 .
With these two constraints, the Gabor filter becomes
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The orientation of the filter is aligned with the long axis of
the elliptical Gaussian.

CONSTRAINT #3. The half-amplitude bandwidth of the frequency
response is about 1 to 1.5 octaves along the optimal orienta-
tion [18], [38], [7].

The relationship between V and Zo can be derived to be,
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where I is the bandwidth in octaves. For I = 1 octave, V <
S/Zo = O/2 . For I = 1.5 octave, V < 2.5/Zo.

Imposing this constraint, we obtain the following family
of self-similar Gabor filters depending on four continuous
variables,
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where q n
x= arctan o

o
, and N is fixed for Gabor wavelets of a

particular bandwidth. The whole family can be translated
to any spatial position (xo, yo). In order to make the Gabor
filters into admissible wavelets, we need to introduce the
following constraint.

CONSTRAINT #4. Admissible wavelets are functions having zero
mean.

Why is this important? Consider a map \(f) : L2(R2) �
L2(R4), the Gabor wavelet is admissible only if its norm is
finite, i.e.,
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This implies $ (y w = =0 0  is a necessary condition; other-

wise the norm will become infinite in the measure of dw
w  as

Z � 0.
The sine component of the complex-valued Gabor filter

has zero mean, but its cosine component has nonzero mean
(d.c. response). The d.c. response can be computed from its
Fourier transform, with 

�
= 0 and � = 0,
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A family of admissible 2D Gabor wavelets can be obtained
by subtracting this d.c. response from the Gabor filter,
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with its Fourier transform equal to
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where

[[o + QQo = 0            (16)

specifies the line of zeroes ( $ ( , , , )y x n x no o = 0) on the fre-
quency plane.

Each of these two families of Gabor wavelets can be gen-
erated by rotation and dilation (affine group) from the fol-
lowing mother Gabor wavelet,
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whose Fourier transform is
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3 NONORTHOGONAL WAVELETS AND FRAMES

Now we have obtained the properly parameterized Gabor
wavelet equation, we can address the issue of complete
representation. A transform is said to provide a complete
representation if we can reconstruct f in a numerically sta-
ble way from the transform of f, or alternatively, if any
function f can be written as a superposition of the trans-
form’s elementary functions.

Recall that the continuous wavelet transform is given by
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where a is the dilation parameter, xo and yo the spatial
translation parameters, T the orientation parameter of the

wavelet. y yq q( , , , , ) ( , )a x y x y ao o
x x

a
y y

a
o o= - - -1  is the 2D

wavelet elementary function, rotated by T.
A function can always be reconstructed from its con-

tinuous wavelet transform by means of the following resolu-
tion of identity formula, provided that the wavelets are ad-
missible [5],
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where w x n= +2 2 , and \ ° L1(R), $y  is continuous and

C\ < � only if $ ( , )y 0 0 0= . This is because it can be shown
that [5]
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When a, x, y, T take on discrete values (i.e., a ao
m= , ao > 1, T

= Tl = lTo, x nb ao o
m= , and y kb ao o

m= , and m, n, l, k are inte-
gers ranging over Z), the resulting transform
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is called the discrete wavelet transform. y q l
 is a rotated ver-

sion of the mother wavelet \(x, y). ao > 1, To > 0, and bo > 0
are fixed. In this scheme, a spatially narrower wavelet
translates by finer steps, and a wider wavelet translated by
larger steps. As a result, the discretized wavelets at
each m level “ cover”  the spatial domain in the same
way as \(x − nbo, y − kbo) at the m = 0 level.

The wavelets are given by
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Note that although the parameterization is discrete, each
wavelet elementary function is a function of the continuous
variables x and y.

Certain discrete 1D wavelets, for examples, the one-
dimensional Harr bases, Meyer wavelets, and Battle-
Lemarie wavelets, form orthonormal bases. In this case, the
function can be reconstructed by a linear superposition of
the bases weighed by the wavelet coefficients,

f f m n m n
m n

= < >Â , , ,
,

y y      (25)

where <D1, D2> denotes the inner product of D1 and D2.
However, 1D or 2D Gabor wavelets do not form or-

thonormal bases. They are called nonorthogonal wavelets. In
this case, we are interested in knowing whether a discrete set
of the nonorthogonal wavelets form a frame. If the wavelets
form a frame, then one can completely characterize a func-
tion f by knowing Twav(f) and can reconstruct f in a numeri-

cally stable way from Twav(f) with the dual frame ~y  [5],

f f fm n k l m n k l
m n k l

m n k l m n k l
m n k l

= < > = < >Â Â, ~ , ~
, , , , , ,

, , ,
, , , , , ,

, , ,
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The concept of frames was first introduced by Duffin and
Schaeffer [12] in the context of non-harmonic Fourier series.
Their definition is as follows:

DEFINITION. A family of functions {\m,n; m, n ° Z} in a Hilbert
Space H is called a frame if there exist A > 0, B < � so
that, for all f in H,
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where f f x y dxdy=
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•
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• zz ( , )
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. A and B are called

frame bounds.

When a discrete family of wavelet forms a frame, they
provide a complete representation of the input functions
[2], [5].

When 0 < A � B < 2, the family of wavelets can be treated
as if it were an orthonormal basis, and the function can be
recovered with good approximation using the following
inversion formula [26],

f A B fm n k l m n k l
m n k l

ª + < >Â2
y y, , , , , ,

, , ,

, (28)

(A + B)/2 is a measure of the redundancy of the frame
whereas B/A is a measure of the tightness of the frame.
When B = A , the frame is called a tight frame and the re-
construction by linear superposition using the above inver-
sion formula is exact, analogous to the resolution of identity
equation [5]. Therefore, a reasonably tight frame behaves in
a way similar to the continuous wavelet transform and can
be treated as though it were an orthonormal basis in image
decomposition and reconstruction.

Readers should consult [5], [26], and [15] for a careful
mathematical elucidation and review of frames. The frame
bounds can be simply interpreted as the bounds on the gain
of the wavelet transform, with i f i2 as the total power of the

input function and < >Â f m nm n
, ,,
y

2
 the total output

power of the transform. Therefore A > 0 means that the
output will not be null if the input signal is nonzero and B < �
means that given an input of finite power, the output
power of the transform has to be finite also. A tight frame
provides a uniform gain for the frequency response of the
input functions.

4 2D GENERALIZATION OF DAUBECHIES’S FRAME
CRITERION

How dense should the phase space or the conjoint spa-
tial/spatial frequency domain be sampled so that the 2D
Gabor wavelets will provide a complete representation of
any image? To answer this question, we need to generalize
to 2D the following frame criterion for 1D wavelets of
Daubechies [5]:

Daubechies’s Frame Criterion: Let \ ° L1(R) be a function
of zero mean. It defines a sequence E(k), k ° Z, by the
formula,
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the collection 2j/2
\(2jx − k), j, k ° Z, forms a frame for

L2(R).

At the outset, it is important to note that here we are
studying the frame formed by a discrete set of continuous
wavelets, i.e., the discretization is in the phase space sam-
pling but not in the description of the wavelet function.

Let us consider the following 2D admissible wavelet
family
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\ is the mother wavelet as defined in (17); To denotes the
step size of each angular rotation, l the index of rotation
steps, bo the unit spatial interval, and ao

m  the dilation in
scale. The (x, y) domain is sampled by each wavelet in a
scale-dependent spatial lattice with horizontal and vertical
translation intervals given by a bo

m
o  at each m level.

The Fourier transform of the 2D wavelet is given by,

$ , $ ,, , ,y x n y x nq
x n

m n k l o
m

o
m

o
m ia b n ia b ka a a e e

l

o
m

o o
m

ob g e j= - - ,     (34)

where

$ ( , ) $ ( cos( ) sin( ), sin( ) cos( ))y x n y x q n q x q n qq l
l l l lo o o= + - + 0 ,

and $y  is the Fourier transform of the mother wavelet as
defined in (18).

To evaluate the frame bounds A and B as in

0
2 2

< £ < >
-•

•

-•

• zz ÂA f d d f x y x ym n k l
m n k l

$ , , , ,, , ,
, , ,

x n x n yb g b g b g

£ < •
-•

•

-•

• zzB f d d$ ,x n x nb g 2
,   (35)

the basic idea is to sum up the power of all the wavelet re-
sponses to an image. This can be done in the spectral do-
main using Parseval’s theorem:

f x y dxdy f d d, $ ,b g b g2

2

21

4-•

•

-•

•

-•

•

-•

•zz zz=
p

x n x n       (36)

Let ao be the scaling step and bo be the unit translation step,
then Daubechies’s derivation of frame bounds for 1D
wavelets [5] can be generalized for 2D wavelets as follows:
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where the set Q = {0, 1, 2, 3 ... K − 1} and K is the number of
sampling orientations, y  is the complex conjugate of \.

The first principal term P (i.e., the power for (p = 0, q = 0))
is the product between the power of the input function and
the sum of the spectral powers of all the wavelets.

P
b

d d f a a
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x n x n x n$ , ,b g b g          (39)

Because of the self-similarity of the wavelets in both the
spectral and spatial domains, the spectral power of

F a a
l o

m
o
m

m Z l Q

x n y x nq, $ ,
,

b g e j=
Œ Œ
Â

2

is also self-similar, i.e.,

F a a Fo
m

o
mx n x n, ,e j b g=   (40)

and

F([ cos To + Q sin To, −[ sin To + Q cos To) = F([, Q).   (41)

Therefore, the infimum and supremum of F over the
whole frequency domain is equivalent to the infimum and
supremum of F over a fundamental sector S (see Figs. 3 and

4). S is defined by 1 2 2< + <x n ao  and 0 < <tan( )n
x

p
K ,

where K is the number of sampling orientations, and ao is
the dilation scaling factor. As a result, the product of the
infimum and supremum of F over S with the spectral
power of the input function provides the lower and upper
bounds of the first term, respectively,

inf $ , $ ,
,x n qx n x n y x n

Œ -•

•

-•
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F
HG

I
KJ £ zz ÂÂS o
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m Zl Q

F f d d f a a
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2 2 2b g e j

<
F
HG

I
KJŒ

sup
,x n S

F f
2

            (42)

Fig. 3. The principal power F([) of 1D Gabor wavelets of 0.65 octave
bandwidth (a) and 1.0 octave bandwidth (b) are shown to illustrate its
self-similarity in the frequency spectrum. The principal term becomes
smoother as the number of voices (N) increases, corresponding to the
increase in the tightness of the frame. The progression to tightness is
faster for the wavelets with broader bandwidths (e.g., 1.0 octave
bandwidth).

Fig. 4. (a) The principal power F([, Q) for the 2D Gabor wavelet. It is
periodic along the orientation axis, and exhibits dilating oscillation
along the radial frequency axis. The fundamental sector S (enclosed by
the black rectangle) is repeated in its dilated and translated versions to
cover the whole frequency domain. (b) Three examples of F([, Q) with
different sampling densities are shown. The gray level indicates the
value of the spectral power. Higher value is shown with lighter color.
Generally, as the number of orientations and voices (i.e., frequency
steps per octave) increases, the power spectrum becomes more uni-
form in absolute term.

The second residue term R captures the interference ef-
fect between the wavelets in a family due to their nonor-
thogonality. It is computed by summing all the cross prod-
ucts of each wavelet transform and the transform of its
spectrally displaced (scaled and rotated) version, for all
(p, q) ° Z2 except at (p = 0, q = 0),
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(use Cauchy-Schwarz on the sum over m and l)
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where
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and s p
bo

= 2p  and t q
bo

= 2p .

Since the “ cross-product”  term,

$ , $ ,
,

y x n y x nq ql l
a a a s a to

m
o
m

o
m

o
m

m Z l Q
e j e j+ +

Œ Œ
Â ,     (48)

is also self-similar. Its supremum and infimum over the
whole spectrum are also equal to its supremum and in-
fimum over the fundamental sector S. Therefore, we can
write,
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Thus, the infimum and supremum of the power output is
given by
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and the frame bounds A and B for 2D wavelets are given by,
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The Gabor wavelet is a complex-valued function. If only
real signals f are represented and reconstructed by means of
Gabor wavelet responses <\m,n,k,l, f>, then the complex
wavelet really consists of two wavelets, Re(\) and Im(\).
Therefore, the frame bounds for 2D Gabor wavelets are
given as follows,
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When the frame bounds A > 0 and B < � for a discrete fam-
ily of Gabor wavelets, this family of wavelets is said to pro-
vide a complete representation.

5 FRAME BOUNDS FOR FRACTIONALLY DILATED 2D
WAVELETS

In the above derivation, ao = 2, the frequency space is sam-
pled every octave. However, it is known that in the visual
cortex, the frequency space is sampled every half or every
third of an octave [32], [36]. What is the advantage of
suboctave sampling? Grossmann, Kronland-Martinet, and
Morlet [14] have found that when the frequency space is
sampled suboctavely, the frame will become tighter, i.e.,
A � B. They proposed to construct a frame based on
“ fractionally”  dilated versions of a single 1D wavelet \:

\
K(x) = 2−K/N

\(2−K/Nx) (58)

N is the number of sampling frequency steps per octave
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and K is the index of the frequency step per octave. Within
each octave, the scale of the wavelet is changed without the
corresponding change in its spatial sampling intervals.
Daubechies [1989] remarked that the \K, constructed this way,
do not have the same L2-normalization, i \K i2 = 2−K/2N i � i2.
This change in normalization compensates for the fact that
the phase space lattice, which is a superposition of N lat-
tices, is “ denser”  than the lattice whose translation interval
is strictly proportional to the scale of the wavelet.

The 2D version of the fractionally dilated wavelets can
be generalized to be

y y hq
h h

q
h h

l l
x y x y NN N N, , , ,/ / /b g e j= = -- - -2 2 2 0 12 K , (59)

with its Fourier transform equal to

$ , $ , , ,/ /y x n y x n hq
h

q
h n

l l

N N Nb g e j= = -2 2 0 1K ,   (60)

The general frame conditions for the fractionally dilated 2D
wavelets are given below.

Define
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where To = S/K, K is the number of sampling orientations,
Q = {0, 1, 2 ... K − 1}; N is the number of voices or frequency
steps per octave (i.e., N = 4 implies sampling at 2−1/4 inter-
vals). S is the fundamental sector defined earlier.

Choose bo and To such that
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then
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constitute a frame with the following frame bounds,
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The proof is a simple variant of the proof for the one-octave
sampling case (see [5]).

When A > 0 and B < �, \m,n,k,l constitute a frame. This is
valid only if the following conditions are true, with the
definitions in (61), (62), and (63),

For bo sufficiently small, m(\; ao, To, N) > 0, M(\; ao, To, N)
< � , EK(s, t) decays at least as fast as (1 + s2+t2)−(1+H),

with e > 0, or put in another way,
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where s and t are defined as in EK(s, t).

The condition on EK and the bounds are satisfied if $ ( , )y x nh

decays exponentially as in our case and that $ ( , )y x nq l
a ao

m
o
m

= 0 when ( � = 0, � = 0), for all m, l.
For 2D multivoice Gabor wavelets, the frame bounds are

as follows,
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These frame bound equations for Gabor wavelets with
suboctave, multi-orientation phase space sampling allow us
to study the implications of the cortical sampling strategies.

6 FRAME BOUNDS FOR VARIOUS SAMPLING
SCHEMES

Given \ is admissible, i.e., it has reasonable decay in space
and spatial frequency domains, with zero d.c. response
( $ ( , )y 0 0 0= ), then there exists a range of ao, To, bo for which
a family of \  constitute a frame. The lower bounds for
these parameters are ao > 1, bo > 0, To > 0 and the upper
bounds are given by the critical values ao
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Because there is a line of zeroes in the frequency plane for
each 2D Gabor wavelet (16),

[[o + QQo = 0  (75)

at least two sampling orientations are required to cover the
frequency domain, except at ([ = 0, � = 0). This is because
wavelets of the same orientation have the same line of ze-
roes, since Qo/[o is fixed for each orientation. Therefore, the
upper bound of the rotation step size q o

c , cannot exceed S/2.
The upper bound of the unit spatial interval bo is 1 for

the single voice wavelets. This can be deduced from the
Nyquist sampling theorem: the maximum sampling inter-
vals (max nx) before aliasing occurs is O/2, where O is the
wavelength of the filter. Since nx = aobo, where ao = V =
O/2, the upper bound of bo is 1 for the one-octave sampling
scheme. However, for fractionally dilated wavelets, the
upper bound of bo could be pushed above 1 because
wavelets of the fractional scales are imposed on denser
lattices.

To determine whether the 2D Gabor wavelets form a
frame and how tight that frame is, we computed their
frame bounds using the frame bound (68) and (69), the
mother wavelet (18), and the fractional wavelet scaling
(60). The frame bounds for two families of the 2D Gabor
wavelets with bandwidths of 1.0 octave and 1.5 octaves

respectively were computed for different chosen sampling
densities. The results are shown in Tables 1 to 5.

We also computed the frame bounds for a set of K and bo
for N = 1 to 4. Fig. 5 shows the frame regions of different
degrees of tightness for each N. The tightness of the frame
is measured by the ratio B/A and is classified into five de-
grees, each indicated by a different gray level in the figure.
It is found that when N = 1, there is no tight frame. As N
increases, the frame region expands and the frame becomes
tighter and tighter.

Several general observations can be made from these re-
sults. First, the frame becomes tighter with the increase in
the number of orientation, frequency and spatial sampling
steps. Second, at each phase space sampling density, the 1.5
octave bandwidth Gabor wavelets provide a tighter frame
than the 1.0 octave bandwidth Gabor wavelets.

Finally, with a phase space sampling density of 20 ori-

TABLE 1
FRAME BOUNDS FOR THE 2D GABOR WAVELETS WITH
1.5 OCTAVE BANDWIDTH FOR DIFFERENT NUMBERS OF

SAMPLING ORIENTATIONS (K), WITH THE NUMBER OF FRE-
QUENCY STEPS PER OCTAVE N = 1 AND N = 3,

AND THE UNIT SPATIAL SAMPLING INTERVAL bo = 'X/ao = 0.8
N = 1

K A B B/A
4 2.502 54.388 21.739
6 17.131 56.965 3.325
8 32.107 62.141 1.935
12 57.150 81.810 1.432
16 78.494 107.516 1.370
20 98.499 134.178 1.362

N = 3
K A B B/A
4 19.273 136.424 7.079
6 67.908 144.066 2.122
8 118.664 161.044 1.357
12 201.665 217.529 1.079
16 272.766 286.155 1.049
20 341.454 357.199 1.046

TABLE 2
FRAME BOUNDS FOR THE 2D GABOR WAVELETS WITH
1.5 OCTAVE BANDWIDTH FOR DIFFERENT NUMBERS OF
SAMPLING ORIENTATIONS (K), WITH THE NUMBER OF

FREQUENCY STEPS PER OCTAVE N = 1 AND 3,
AND THE UNIT SPATIAL SAMPLING INTERVAL bo = 1

N = 1
K A B B/A
4 - - -
6 - - -
8 5.114 55.205 10.795
12 18.168 70.766 3.895
16 26.255 92.792 3.534
20 33.033 115.880 3.508

N = 3
K A B B/A
4 - - -
6 25.440 110.223 4.333
8 57.460 121.554 2.115
12 107.492 160.792 1.496
16 146.924 210.786 1.435
20 184.056 263.082 1.429

The notation ‘-’ implies not guaranteed to form a frame.

Fig. 5. The figures depict regions of tightness in the parametric space
of sampling density. The frames become tighter with the increase in
phase space sampling density.



10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  18,  NO.  10,  OCTOBER  1996

\\CA_NET1\SYS\LIBRARY\SHARE\TRANS\PAMI\2-INPROD\P96072\P96072_1.DOC trans-96.dot KSM    19,968 09/20/96 10:37 AM 10 / 13

entations per cycle and 3 scale steps per octave, the 1.5 oc-
tave bandwidth Gabor wavelets family forms a tight frame
when nx = 0.4O, (bo = 0.8). There is physiological evidence
suggesting that the phase space sampling density of the
cortical cells in the brain’s primary visual cortex is close to
this tight frame sampling density. Hubel and Wiesel’s [16]
data suggested that at least 16 to 20 orientations are being
sampled per hypercolumn, and the receptive fields of the
cortical cells in one hypercolumn overlap half of the recep-
tive fields of the cells in the adjacent hypercolumns. Camp-
bell and Robson [4], De Valois et al. [11], [10], found that at
each eccentricity the human visual system is sensitive to a
spatial frequency range of three to five octaves. Pollen and
Feldon [32] found that frequency is sampled at 1/2 octave
intervals at cat visual cortex, while the data of Silverman et
al. [36] suggested the sampling interval in spatial frequency
is about 1/3 octave in monkeys.

TABLE 5
FRAME BOUNDS FOR 2D GABOR WAVELETS OF

1.0 OCTAVE BANDWIDTH FOR DIFFERENT UNIT SPATIAL
SAMPLING INTERVALS BO, WITH THE NUMBER OF SAMPLING

ORIENTATIONS K = 20 AND THE NUMBER OF
FREQUENCY STEPS PER OCTAVE N = 1 AND 3

N = 1

bo A B B/A
0.25 543.289 844.349 1.554
0.50 135.817 211.093 1.554
0.75 39.490 114.692 2.904
0.80 21.067 114.444 5.432
1.00 - - -
1.25 - - -

N = 3

bo A B B/A
0.25 2087.619 2090.410 1.001
0.50 521.899 522.608 1.001
0.75 210.553 253.672 1.205
0.80 170.087 237.924 1.399
1.00 57.254 203.873 3.561
1.25 1.550 165.572 106.846

These findings suggest that the cortical cells in the primary
visual cortex not only provide a complete representation of the
image within a three to five octave frequency band at each
eccentricity, but also provide an almost tight frame represen-
tation through oversampling. In the next section, we will ex-
plore the implications of such a representation.

7 ILLUSTRATIVE EXPERIMENTAL RESULTS

The numerical results of the last section indicate that at the
phase space sampling density of K = 20, N = 3, bo < 0.8, the
Gabor wavelets can form a very tight frame. In fact, even at
K = 8, N = 1, bo = 0.8, the frame is reasonably tight (B/A = 2)
so that any image can be reconstructed approximately by a
linear superposition of the Gabor wavelet elementary func-
tions, as follows,

f A B fm n k l m n k l
m n k l

approx = + < >Â2
y y, , , , , ,

, , ,

,        (76)

without the use of a dual frame [5]. This is because as the
redundancy increases, the frame becomes tighter. Both the
lower and upper bounds of the spectral power of the trans-
form (A, B in (68) and (69)) will increase and converge to-
ward each other, rendering insignificant the interference
due to the nonorthogonality of the Gabor wavelets (R in
(70)). On the other hand, if the frame is not tight, the resi-
dues due to the nonorthogonality of the Gabor wavelets
will introduce spurious effect to the reconstructed image as
shown in Fig. 7a. In this case, coefficients from the projec-
tion onto the dual frame {~ }, , ,y m n k l  are needed if f is to be
reconstructed by a linear superposition of the wavelet ele-
mentary functions as in (26). Dual frames are often difficult
to obtain. But the projection coefficients to the dual frame
can be obtained numerically by an iterative error minimi-
zation procedure [8].

In this iterative method, which we will use to evaluate
empirically the completeness of a frame, the set of projec-

TABLE 3
FRAME BOUNDS FOR THE 2D GABOR WAVELETS WITH

1.5 OCTAVE BANDWIDTH FOR DIFFERENT UNIT SPATIAL
SAMPLING INTERVALS BO, WITH THE NUMBER OF

SAMPLING ORIENTATIONS K = 20 AND THE NUMBER OF
FREQUENCY STEPS PER OCTAVE N = 1 AND N = 3

N = 1

bo A B B/A
0.25 1087.822 1294.789 1.190
0.50 271.955 323.697 1.190
0.75 117.261 147.473 1.258
0.80 98.499 134.178 1.362
1.00 33.033 115.880 3.508
1.25 - - -

N = 3

bo A B B/A
0.25 3576.876 3577.334 1.000
0.50 894.219 894.333 1.000
0.75 393.801 401.112 1.019
0.80 341.454 357.200 1.046
1.00 184.056 263.082 1.429
1.25 65.683 220.456 3.357

TABLE 4
FRAME BOUNDS FOR THE 2D GABOR WAVELETS WITH
1.0 OCTAVE BANDWIDTH FOR DIFFERENT NUMBERS OF
SAMPLING ORIENTATIONS (K), WITH THE NUMBER OF

FREQUENCY STEPS PER OCTAVE N = 1 AND 3, AND THE
UNIT SPATIAL SAMPLING INTERVAL bo = 0.8

N = 1
K A B B/A
4 - - -
6 - - -
8 - - -
12 7.266 74.224 10.215
16 15.765 92.388 5.860
20 21.068 114.444 5.432

N = 3
K A B B/A
4 - - -
6 2.727 125.798 46.137
8 34.536 129.686 3.755
12 92.217 152.605 1.655
16 134.362 192.045 1.429
20 170.087 237.924 1.398
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tion coefficients to the dual frame c fm n k l m n k l, , , , , ,, ~=< >y  can
be obtained by minimizing the following cost function,

E f cm n k l m n k l
m n k l

= - ◊Â , , , , , ,
, , ,

y
2

           (77)

where f is the original image, and \ is a family of 2D Gabor
filters as specified in (33). Then the image can be recon-
structed by

f cm n k l m n k l
m n k l

= ◊Â , , , , , ,
, , ,

y       (78)

However, the cortical sampling rate approximates a tight
frame. Therefore, we should be able to reconstruct the im-
age using the following linear summation formula,

f x y A B f x y x y x ym n k l m n k l
n m k l

, , , , ,, , , , , ,
, , ,

b g b g b g b g= + < >Â2
y y  (79)

This reconstruction formula implies the use of a pyramid
sampling scheme, with spatial sampling interval Dx a bo

m
o=

at each m level. We conducted a set of experiments to test
these theoretical insights.

Fig. 6 presents the reconstruction results using both the
linear summation method as well as the iterative method.
In this reconstruction, only eight orientations and seven
scales (one octave apart) are used (K = 8, N = 1, bo = 0.8).
The reasonable reconstruction result using the iterative
method shows the completeness of the reconstruction
(Fig. 6c), establishing that the wavelets indeed form a
frame. The result using the linear summation method pro-
vides a good approximation for the original image also
(Fig. 6b), suggesting that, even at this relatively coarse
sampling density, the frame is reasonably tight. As the
number of orientations and the number of voices increase
toward the sampling rate of the visual cortex, the frame will
theoretically become tighter, and the result using this linear
summation method should be a better approximation of the
original image.

Fig. 6. Reconstruction of image ‘Lena’ (a) using the linear summation
method (b) and the iterative error minimization method (c). The exam-
ple is computed with a relatively tight frame (K = 8, N = 1, bo = 0.8).
Wavelets with seven scales are used in a pyramid scheme. Even at
this coarse sampling density, the approximation to the original image is
reasonable.

Fig. 7 presents the reconstruction results obtained when
only three orientations are used (K = 3, N = 1, bo = 0.8). The
linear summation results indicate that the frame is very
loose, and therefore linear summation is not a good ap-
proximation (Fig. 7a). The iterative method, however, dem-
onstrates that even three orientations can provide a com-

plete representation of the image (Fig. 7b). On the other
hand, when bo = 3.0, the reconstruction (K = 8, N = 1, bo = 3.0),
even with the iterative method, is no longer complete be-
cause this family of Gabor wavelets no longer forms a
frame (Fig. 7c).

Fig. 7. (a) Reconstruction of image ‘Lena’ using a complete by loose
frame (k = 3, N = 1, bo = 0.8) with the linear summation method shows
that this method will introduce spurious results when the frame is not
tight. However, the iterative error minimization method yields a reason-
able reconstruction (b), indicating that the frame is complete. When a
frame is not complete, even the iterative method cannot eliminate the
spurious effect due to incompleteness. (c) shows an example of the
reconstruction using an incomplete frame (K = 8, N = 1, bo = 3).

The results above show that two or three orientations are
sufficient for complete representation of the image. Why,
then, does the brain construct a tight frame? Is there any
advantage for sampling at such a large number of orienta-
tion and frequency steps?

Grossman et al. [14] have proposed that the continuous
wavelet transform, through its redundancy, might provide
a robust representation in the sense that the wavelet coeffi-
cients for a function can be computed and stored with low
precision and still can be used to reconstruct or represent
the original function with much higher precision. Could the
redundancy provided by a tight frame reduce the
“ resolution burden”  of the cortical cells? Suppose a neu-
ron’s firing rate is limited in resolution, probably to three
bits or four bits. Can an eight bit resolution image be repre-
sented, for example, using cells with four bits in resolution?

To test this idea, we conducted another set of experi-
ments in which the coefficients of the Gabor wavelets (i.e.,
the responses of the simple cells) are severely quantized.
The phase space sampling density is the same as in the pre-
vious experiment, i.e., K = 8, N = 1, bo = 0.8. Fig. 8 shows the
reconstruction of an image from the 2D Gabor wavelet
transform with its coefficients quantized to four bits, three
bits, and two bits, respectively. The quantization is done
independently on each scale, and the range of the response
at each scale is stored and used subsequently in the recon-
struction. We observe that even at such a coarse sampling
density, the original image can be reasonably represented
when the resolution of the coefficients or neuronal re-
sponses is reduced to four bits or even three bits (Fig. 8b).
The degradation of the image representation is graceful
with the decrease in the resolution of the representational
elements (Fig. 8c).

8 CONCLUSION

In this paper, we have derived, based on physiological con-
straints and the wavelet theory, a family of 2D Gabor
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wavelets which model the receptive fields of the simple
cells in the brain’s primary visual cortex. By generalizing
Daubechies’s [5] frame criteria to 2D, we established the
conditions under which a discrete class of continuous Ga-
bor wavelets will provide complete representation of any
image. We computed the frame bounds for the 2D Gabor
wavelet families with 1.0 octave frequency bandwidth and
1.5 octave frequency bandwidth, and found that the latter
family provides a tighter frame at identical phase space
sampling densities. For the 1.5 octave family, the frame is
tightened significantly when the number of voices (i.e., the
number of wavelet frequencies per octave) is increased
from one to two, but not much more with further increase
in the number of voices (see Fig. 5). Even at one voice and
eight orientations, the family forms a reasonably tight
frame at bo = 0.8 (i.e., spatial sampling interval nx = 0.4O).
Hence, image reconstruction can be achieved by linear su-
perposition of the Gabor wavelets using the wavelet pro-
jection coefficients. This finding suggests that such a parsi-
monious sampling of the phase space is sufficient for an
approximation of the continuous wavelet transform— an
insight that is important for computer vision applications
and brain modeling which involve continuous wavelet
transform formulations [20].

Physiological data suggest that the cortical sampling
density is far greater than the parsimonious sampling den-
sity required for complete representation. In fact, it is dense
enough to form a tight frame within a three to five octaves
frequency band at each eccentricity, providing an over-
complete and redundant representation of the retinal image
within that frequency band. We have demonstrated there
are at least two advantages to such a redundant represen-
tation: first, an image can be represented and easily recon-
structed as a linear superposition of the receptive field
structures of the simple cells weighed by their firing rates;
second, high precision information can be computed and
stored by a population of low-precision neurons. It has
been suggested by information theoretic analysis that indi-
vidual neurons can signal at most three to four bits of in-
formation in their instantaneous responses [39], [31], [37].
Earlier work on Gabor wavelets focused on the issues in
image compression and compact representation [8]. Our
work suggests that precision in resolution achieved
through redundancy may be a more relevant issue in brain
modeling. Furthermore, the high orientation and frequency
sampling densities allow orientation and scale variables to
be represented precisely and explicitly in the primary visual

cortex. As a result, only a small number of cells need to be
activated at a time to signal precisely the structures in natu-
ral images [30]. Finally, the visual cortex is primarily con-
cerned with extracting and computing perceptual informa-
tion such as segmenting a scene [19], [22], [23], rather than
re-presenting simply the retinal image. The simple cells,
modeled by Gabor wavelets, with the redundancy provided
by a tight frame, facilitate these computations by providing
an ideal medium for representing surface texture and sur-
face boundary with high resolution.
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