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Abstract-We use a statistical framework for finding boundaries and 
for partitioning scenes into homogeneous regions. The model is a joint 
probability distribution for the a r ray  of pixel gray levels and an a r ray  
of “labels.” In boundary finding, the labels a re  binary, zero, or one, 
representing the absence o r  presence of boundary elements. In parti- 
tioning, the label values a r e  generic: two labels a re  the same when the 
corresponding scene locations a r e  considered to belong to the same re- 
gion. The distribution incorporates a measure of disparity between cer- 
tain spatial features of pairs of blocks of pixel gray levels, using the 
Kolmogorov-Smirnov nonparametric measure of difference between 
the distributions of these features. Large disparities encourage inter- 
vening boundaries and distinct partition labels. The number of model 
parameters is minimized by forbidding label configurations that a r e  in- 
consistent with prior beliefs, such as those defining very small regions, 
o r  redundant or  blindly ending boundary placements. Forbidden con- 
figurations a re  assigned probability zero. We examine the MAP (mar- 
imum a posterion’) estimator of boundary placements and partition- 
ings. The forbidden states introduce constraints into the calculation of 
these configurations. Stochastic relaxation methods a re  extended to ac- 
commodate constrained optimization, and experiments are  performed 
on some texture collages and some natural  scenes. 

i Zndex Terms-Annealing, Bayesian inference, boundary finding, 
constrained optimization, Gibbs distribution, MAP estimate, Markov 
random field, segmentation, stochastic relaxation, texture discrimina- 
tion. 

I .  INTRODUCTION 
ANY problems in image analysis, from signal res- M toration to object recognition, involve representa- 

tions of the observed data, usually radiant energy or range 
measurements, in terms of unobserved attributes or label 
variables. These representations may be conclusive, or 
serve as intermediate data structures for further analysis, 
perhaps involving additional data, assorted “sketches,” 
or stored models. This work concems two such represen- 
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tations related to image segmentation: partition and 
boundary labels. These, in tum, are special cases of a 
general “label model” in the form of an “energy func- 
tional’’ involving two components, one of which ex- 
presses the interactions between the labels and the (inten- 
sity) data, and the other encodes constraints derived from 
general information or expectations about label patterns. 
The labeling we seek is, by definition, the minimum of 
this energy. 

The partition labels do not classify. Instead they are 
generic and are assigned to blocks of pixels; the size of 
the blocks (or label resolution) is variable, and depends 
on the resolution of the data and the intended interpreta- 
tions. The boundary labels are just “on”/“off ,” and are 
also of variable resolution, associated with an interpixel 
sublattice. In both cases, the interaction term incorporates 
a measure of disparity between certain spatial features of 
pairs of blocks of pixel gray levels, using the Kolmogo- 
rov-Smirnov nonparametric measure of difference be- 
tween the distributions of these features. Large disparities 
encourage intervening boundaries and distinct partition 
labels. The number of model parameters is reduced by 
forbidding label configurations that are inconsistent with 
prior expectations, such as those defining very small re- 
gions, or redundant or blindly ending boundary place- 
ments. These forbidden states introduce constraints into 
the calculation of the optimal label configuration. 

Both models are applied mainly to the problem of tex- 
ture segmentation. The data is a gray-level image con- 
sisting of textured regions, such as a mosaic of microtex- 
tures from the Brodatz album [6], a patch of rug inside 
plastic, or radar-imaged ice floes in water. It is well- 
known that humans perceive “textural” boundaries be- 
tween regions of approximately the same average bright- 
ness because the regions themselves, although containing 
sharp intensity changes, are perceived as “homogene- 
ous” based on other properties, namely those involving 
the spatial distribution of intensity values. The goal, then, 
is to find the (visually) distinct texture regions, either by 
assigning categorical labels to the pixels, or by construct- 
ing a boundary map. Obviously, the problem is more dif- 
ficult than texture classification, in which we are pre- 
sented with only one texture from a given list; 
segmentation may be complicated by an absence of infor- 
mation about the number of textures, or about the size, 
shape, or number of regions. 

There is no “model” for the individual textures, and 
hence no capacity for texture synthesis. Our approach is 
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therefore different from those for classification and seg- 
mentation in which textures are discriminated based on 
model parameters which are estimated from specific tex- 
ture samples. Partitionings and boundary placements are 
driven by the observed spatial statistics as summarized by 
selected features. Still, the labeling is not unsupervised 
because in some cases we use “training samples” to de- 
termine feature thresholds for the disparity measures; see 
Sections I1 and 111. 

Since many visually distinct textures have nearly iden- 
tical histograms, segmentation must rely on features, or 
transformations, which go beyond the raw gray levels, 
involving various spatial statistics. We experimented with 
several conventional classes of features, in particular the 
well-known ones based on cooccurrence matrices [ 161, 
[3 13, but finally adopted a new class based mainly on “di- 
rectional residuals” and involving third and higher order 
distributions. However, our viewpoint is exactly that ex- 
pressed by Zobrist and Thompson [62], Triendl and Hen- 
dersen [59], and others: instead of trying to find exactly 
the “right” features to convert texture to tone differences, 
one should find a mechanism for integrating multiple, 
even redundant, ‘‘cues.’’ The label model provides a co- 
herent method for integrating such information and, 
simultaneously, organizing the label patterns. 

Whereas texture discrimination may be regarded as the 
detection of discontinuities in surface composition, we 
also apply the boundary model to the problem of locating 
sudden changes in depth (occluding boundaries) or shape 
(surface creases, etc.). The idea is to define contours 
which are faithful to the 3-D scene but avoid the “non- 
physical” edges due to noise, digitization, texture, light- 
ing, etc. In particular, the boundaries should be con- 
nected, unique, and reasonably smooth, unlike the typical 
output of a pure edge detector. Indeed, we formulate 
boundary detection as a single optimization problem, fus- 
ing the detection of edges with their pruning, linking, 
smoothing, and so on. Obviously, there are discontinu- 
ities, such as shadows, which are essentially impossible 
to distinguish from the occluding and shape boundaries, 
at least without information from multiple sensors or a 
rich knowledge base, in which case boundary classifica- 
tion becomes possible. 

Our model enjoys some invariance properties. In par- 
ticular, due to the use of the Kolmogorov-Smirnov dis- 
tance, the detected labels are unaffected by linear changes 
in illumination, and in some cases by all monotone data 
transformations. Such distortions often result from sensor 
nonlinearities, digitizers, and film properties. In regard to 
rotation invariance, the estimated labeling will be inde- 
pendent of the relative orientation of the training samples 
with the image data to the extent that the features are ro- 
tation invariant. The pixel lattice precludes true invari- 
ance. However, since our collection of features is basi- 
cally isotropic, our results are approximately invariant. 
See [38] for an approach to rotation-invariant classijica- 
tion. 

Apparently, some of these ideas have been around for 
a while. For example, the Kolmogorov-Smirnov statistic 
is recommended in [51], and reference is made to still 
earlier papers; more recently, see [60]. Moreover, the dis- 
tributional properties of residuals (from surface-fitting) 
are advocated in [29], [48] for detecting discontinuities. 
It is certainly our contention that the statistical warehouse 
is full of useful tools for computer vision. 

Finally, our model may be interpreted in a Bayesian 
framework as a “prior” joint probability distribution for 
the array of pixel gray levels and the array of labels. For- 
bidden configurations are assigned probability zero, and 
the label estimate is then associated with the MAP (max- 
imum a posteriori) estimate. We shall discuss this inter- 
pretation in more detail later on. Suffice to say that, 
whereas our formulation of the problem and definition of 
the “best” labeling are formally independent of the sto- 
chastic outlook, our optimization procedures are in fact 
strongly motivated by this viewpoint. In fact, in order to 
deal with the more difficult textures, the deterministic 
(‘ ‘zero-temperature”) relaxation algorithm we use for 
most of our experiments must be replaced by a version of 
stochastic relaxation extended to accommodate con- 
strained sampling and optimization. 

A. Applications 
Texture is a dominant feature in remotely sensed im- 

ages and regions cannot be distinguished by methods 
based solely on shading, such as edge detectors or clus- 
tering algorithms. Specifically, for example, one might 
wish to determine the concentration of ice in synthetic 
aperture radar images of the ocean, or analyze multispec- 
tral satellite data for land use classification. Another ap- 
plication is to wafer inspection: low magnification views 
of memory arrays appear as highly structured textures, 
and other geometries have a characteristic, but random, 
graining. In addition, the use of boundary maps as the 
input to further processing is ubiquitous in computer vi- 
sion; for example, algorithms for stereopsis, optical flow, 
and simple object recognition are often based on matching 
boundary segments. Other applications include the anal- 
ysis of medical images, automated navigation, and the de- 
tection of roads, faults, field boundaries, etc. in remotely 
sensed images. (Obviously no generic algorithm provides 
“off-the-shelf” solutions to real problems; genuine ap- 
plications require substantial adaptations.) 

B. Label Model 
Let x = { xs, s E S } and y = { yij, 1 5 i ,  j I N ] 

denote, respectively, the labels and the data; thus x, is the 
label at “site” s E S and yQ is the gray-level at pixel ( i ,  
j ) .  The set S of label sites is a regular lattice, distinct 
from that of the pixels, and typically more sparse; the 
coarseness depends on the label resolution o. For parti- 
tioning, we associate each site s E S with a block of pix- 
els, “sitting below it,” if we were to stack the label lat- 
tice on top of the pixel lattice. In the boundary model, 
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Y; = 

. pairs of nearby sites in S define boundary segments, and 
these are associated with pairs of pixel blocks, sitting 
“across from each other,” with respect to the segments 

4 (see Fig. 6). Later, we will define a neighborhood system 
for S such that the bonding is nearest-neighbor (relative 
to a )  in the boundary model, whereas in the region model 
there are interactions at all scales. This has important con- 
sequences for the distribution of local minima in the “en- 
ergy landscape”; see Section 11. Other energy functionals 
with global interactions can be found in [22], [26], and 
[471. 

The “interaction” between x and y is defined in terms 
of an enerw function 

Y, - 

“ 4  

The summation extends over all “neighboring pairs” (or 
“bonds”) ( s, t ), s, t E S ;  9,,t( y)  is a measure of the 
disparity between the two blocks of pixel data associated 
with the label sites s, t E S .  *,,,(x) depends only on the 
labels x, and x,. In fact, we simply take *,,,(x) = 1 - 
x,x, in the boundary model and *,,,(x) = SXs=,, in the 
partition model. In this way, in the “low energy states,” 
large disparities (a > 0)  will typically be coupled with 
an active boundary (x, = x, = 1 ) or with dissimilar region 
labels (x, # x,) and small disparities (9 < 0) will be 
coupled with an inactive boundary (x, = 0 or x, = 0) or 
with equal region labels (x, = x,). 

The interaction between the labels and the data is based 
on various disparity measures for comparing two (possi- 
bly distant) blocks of image data. These measures derive 
from the raw data as well as from various transforma- 
tions. We experiment with several transformations y -+ 

y ’ for texture analysis, for example transformations of the 
form 

where Eai = 1 and { tj } are pixels nearby to pixel t in the 
same row, column, or diagonal. We call these “direc- 
tional residuals,” regarding Eaj y,, as a “predictor” of y,. 
We have also investigated raw gray levels ( y ‘  = y) ,  other 
features based on local measures of gray-level range, and 
isotropic versions of ( 1 . 1 ) .  In any case, disparity is mea- 
sured by the Kolmogorov-Smirnov statistic (or distance), 
a common tool in nonparametric statistics which has de- 
sirable invariance properties. (In particular, using the di- 
rectional residuals, the disparity measure is invariant to 
linear distortions ( y o  -, ayi/ + b )  of the raw data, and 
using the raw data itself for comparisons, the disparity 
measure is invariant to all monotone (data) transforma- 
tions.) The general form of the 9 term is then 

where 4 is monotone increasing, p denotes a distance 
based on the Kolmogorov-Smirnov statistic (see Section 

11), and yif;, yiij) are the data in the two blocks associated 
with ( s, t ) for the ith transform. Often, we simply take 
m = 1 a n d y ( ”  = y. 

The other component in the model is a penalty function 
V(x) which counts the number of “taboo patterns” in x; 
states x for which V ( x )  > 0 are “forbidden.” For ex- 
ample, boundary maps are penalized for dead-ends, 
“clutter,” density, etc. whereas partitions are penalized 
for too many transitions or regions which are “too small. ” 

Given the observed image y, our estimate i? = a (  y )  is 
then any solution to the constrained optimization problem 

minimize,: v ( x )  = U ( x ,  y)  . (1 .2)  
We seek to minimize the energy of the data-label inter- 
action over all possible nonforbidden label states x. 

The rationale for constrained optimization is that our 
expectations about certain types of labels are quite precise 
and rigid. For example, most “physical boundaries” are 
smooth, persistent, and well-localized; consequently it is 
reasonable to impose these assumptions on image bound- 
aries, and corresponding restrictions on partition geome- 
tries. Contrast this with other inference problems, for ex- 
ample restoring an image degraded by blur and noise. 
Aside from contraints derived from scene-specific knowl- 
edge, the only reasonable generic constraints might be 
‘‘piecewise continuity, ” and generally the degree of am- 
biguity favors more flexible constraints, such as those in 
U ,  or in the energy functions used in [20] and [22]. 

There are no multiplicative parameters in the model, 
such as the “smoothing” or “weighting” parameters in 
[3], [17], [19], [20], and [22]; in effect, the energy is U 
+ X V with X = 00. Thresholds must be selected for the 
disparity measures; this may be done “in the blind,” but 
the performance of the algorithm is certainly increased if 
these choices are data-driven, either from prior experi- 
ence with the types of textures, or by extracting training 
samples, as we have done here (see Section V). Fortu- 
nately, the algorithm is not unduly sensitive to these 
choices within a certain range of values. Other inputs in- 
clude the label resolution, block sizes, and penalty pat- 
terns. The algorithm is robust against these choices pro- 
vided that modest information is available about the pixel 
resolution. The selection of penalty patterns is nearly self- 
evident: as already noted, our expectations about the ge- 
ometry of regions and boundaries are very concrete and 
easily encoded in local constraints. 

C.  Constrained Stochastic Relaxation 
The search for i ,  the optimal labeling, is based on a 

version of stochastic relaxation which incorporates hard 
constraints. The theoretical foundations are laid out in 
[ 181, although there is enough information provided here 
(see Section IV) to keep this paper self-contained. (See 
also Grenander [28] and Linsker [41] for similar modifi- 
cations of stochastic relaxation.) We employ two algo- 
rithms, both of which are approximations to precise com- 
putational procedures, in which convergence is at least 
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theoretically guaranteed, if not always realized in prac- 
tice. 

Introduce a control parameter t corresponding to “tem- 
perature” and another control parameter X, corresponding 
to a Lagrange multiplier for the constraint V = 0. Let 

where y (the data) is fixed, tk L 0, and X k  7 03. One 

Monte Carlo sampling from the Gibbs measures with en- 
ergy functions U,. If tk is fixed, then under suitable con- 
ditions on the growth of X k ,  the sequence xk converges to 
a sample from the Gibbs distribution with energy U ,  but 
restricted to V = 0, i.e., constrained to assign probability 
zero to the forbidden configurations. We refer to this as 
“constrained stochastic relaxation. ” On the other hand, 
if X k  7 03 and tk L 0, both at suitably (coupled) rates 
(see Section IV), then the sequence converges to a solu- 
tion of (1.2); this is “constrained simulated annealing. ” 

The first algorithm we use is deterministic, with the 
temperature fixed at zero, and is essentially the ICM (“it- 
erated conditional mode”) algorithm of Besag [2], al- 
though X = hk 7 a. The convergence is rapid and the 
performance is sufficient for all but the most difficult im- 
ages. The second algorithm is constrained stochastic re- 
laxation with the temperature fixed at some “small” value 
(but, again, X = hk 7 03); the idea is simply that the 
very likely states of the constrained Gibbs distribution 
should be “close” to the mode, i.e., f. This “low tem- 
perature sampling’ ’ is more computationally demanding 
than ICM, but invariably arrives at a better labeling; see 
Section V on experiments. 

D. Related Work 
The subject of edge detection is very active; however, 

as we have already mentioned, the raw output of standard 
edge detectors, for example those based on differential 
operators, would generally require considerable “pro- 
cessing” to produce unique, smooth, persistent bound- 
aries. The work in “regularization theory” [44], [49], as 
well as our earlier paper [20], is different in that “edge” 
or “line” process is employed there as a device for sus- 
pending continuity constraints in the context of recon- 
structing an image from sparse data, restoring an image 
corrupted by blur and noise, and similar tasks not aimed 
at boundary detection per se. 

In contrast, there is much related work in the area of 
texture segmentation. In Triendl [58]  and Triendl and 
Thompson [59], local property values referred to as “tex- 
ture parameters” are computed in a neighborhood of each 
pixel and edge maps are computed for several principal 
components of these feature images. These maps are in- 
tegrated across components, and then spatially, resulting 
in a final boundary map. Similarly, in Thompson [57] (see 
also Zobrist and Thompson [62]), the idea is to integrate 
multiple cues into a single “distance function” which is 
a linear combination of elementary measures, and which 

generates a sequence of states fk ,  k = 1 ,  2, * - - 3 by 

is intended to measure the overall similarity between two 
regions. Edges are then detected using the Robert’s cross 
gradient applied to this distance; there is no effort to or- 
ganize the responses. Our experiments compare favorably 
to those in [57] and [59], both of which utilize collages 
of natural textures similar to ours. Local filtering is also 
the focus of Laws’ approach [40], although the mecha- 
nism for combining cues is entirely different from ours. 

Among the statistical approaches to texture segmenta- 
tion are those in which the image data is regarded as a 
realization of a two-dimensional stochastic process, or 
random field. In Simchony and Chellappa [53] and in 
Derin and Cole [12], the image is modeled as a two-lay- 
ered Markov random field: the “upper level” is the re- 
gion process, a simple Ising-type process, and the “bot- 
tom level” is the observed intensity process, with some 
distribution (e.g., Gaussian) conditional on the regions. 
Both papers employ stochastic relaxation to search for the 
MAP and related estimators. Modestino et a l .  [45] use 
random tessellations for the upper level and maximum 
likelihood estimation based on cooccurrence data for the 
labeling. In each case, the random field parameters are 
assumed known in advance or are estimated from training 
samples. The image data in [12] is generated from the 
model, and simpler than the actual texture collages in [53] 
and [45]. Again, our results compare favorably. 

Finally, Kashyap and Eom [37] employ a “long cor- 
relation” random field model and statistical hypothesis 
testing to obtain a boundary map. Boundary placements 
are estimated in each small strip of the image based on 
least-squares estimates of the model parameters. There is 
no training data and the results are good, although, nat- 
urally, the boundaries are somewhat disorganized. 

E. Stochastic Formulation 
This work is an extension, incorporating hard con- 

straints, of a Bayesian paradigm in which prior probabil- 
ity models are constructed for both the observed and 
unobserved scene attributes. The degradation process is 
modeled as a conditional probability distribution, and the 
estimates are obtained by a form of Monte Carlo sam- 
pling. This framework has been applied by numerous re- 
searchers, including applications to image restoration 
[20], [2], [9], [24], [28], image synthesis [28], computed 
tomography [22], texture and boundary analysis [ 171, 
[53], [ 191 , [2 11 , [25], scene segmentation based on opti- 
cal flow [47] or shading and texture [ 111, [ 131, frame-to- 
frame matching for computing optical flow and stereo dis- 
parity [36], and surface reconstruction [43], [44]. 

To facilitate placing our model in the general frame- 
work, let us write x = ( x L ,  x p ) ,  where x L  is the vector of 
boundary or region labels, and x p  is the vector of pixel 
gray levels. These are the relevant image attributes for the 
problem at hand. The prior distribution ll is a probability 
for x: 0 I n(x)  I 1 ,  C , I I ( x )  = 1 ,  where C, is the 
summation over all configurations of x (all assignments of 
gray levels and boundary placements, for example). 
Adopting the Gibbs representation in the unconstrained 
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case we would represent II as 

1 
I 

n(x )  = - exp { - i = C e x p { -  
X 

The real-valued function U is called the energy, and evi- 
dently determines II. In our case we separate the prior 
energy into a pixel-label interaction term and a pure label 
contribution. The former, U ( x L ,  x p  ), promotes place- 
ments of boundaries, or assignments of distinct labels, be- 
tween regions in the image that demonstrate distinct spa- 
tial patterns. The pure label contribution is to inhibit 
“blind” endings of boundaries, redundant boundary rep- 
resentations, excessively small or thin regions, and other 
unexpected label configurations. Rather than inhibiting 
these configurations with high energy via large parame- 
ters, we have found it convenient, especially when work- 
ing with boundaries and partitionings, to extend this 
framework, by allowing ‘‘infinite energies” (zero prob- 
abilities) in the prior distribution. (See Moussouris [46] 
for an analysis of Gibbs measures with “forbidden 
states. ”) We forbid these configurations by introducing V 
= V ( x L )  2 0 and concentrating on { x :  V ( x L )  = O } .  
The prior, then, is of the form 

The constraint, V ( x L )  = 0, amounts to a placement of 
infinite energy barriers in the “energy landscape. ” These 
inhibit the free flow that is essential to the good perfor- 
mance of stochastic relaxation; indeed the theory will1 in 
general break down, and convergence is no longer guar- 
anteed. As indicated above, a simple and effective solu- 
tion is to introduce the barriers gradually during the re- 
laxation process. Again, the supporting convergence 
theory is spelled out in [ 181. 

There is usually a problem-specific degradation that 
precludes directly observing x. It may be the blur and 
noise introduced by the camera and recording devices, the 
attenuated Radon transform that figures into emission 
tomography, or, as in this case, an “occlusion”: we as- 
sume the gray levels x p  are observed (uncorrupted) 
whereas the labels x L  are of course unobserved. Thus the 
data is y = x p  and our only interest is in estimating the 
unobserved label process xL. II ( y I x )  is singular, and the 
posterior distribution for x L  given the data is 

There is skepticism about the MAP estimator: see, e.g., 
[2], [15], [44]. It has sometimes been found to be too 
“global,” leading to gross mislabeling in certain classi- 
fication problems and “over-smoothing” in surface re- 
construction and image restoration. (See [7] for a different 
view.) The discussion paper of Besag [2] has shed much 
light on the subject; see especially the remarks of Silver- 
man [52] on MAP versus simulations from the posterior 
n(x I y) ,  and the remarkable comparisons between the 
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exact MAP estimate and approximations derived from 
simulated annealing in the commentary of Greig, Por- 
teous, and Seheult [27]. However, pixel-based error 
measures are too local for boundary analysis. In particu- 
lar, the Bayes rule based on misclassification error rate, 
namely the marginal (individual component) modes of 
n(x I y ) ,  is unsuitable because this estimator lacks the fine 
structure we expect of boundary maps; placement deci- 
sions cannot be based on the data alone-pending labels 
(i.e., context) must be considered. See [44], [50], and 
[61] for discussions of alternative loss functions and per- 
formance criteria. 

11. PARTITION MODEL 
A .  Partitionings 

Denote the pixel (image) lattice { ( i ,  j ): 1 I i, j I N } 
by SI and let S, (formally S in Section I) be the label lat- 
tice, just a copy of SI in the case of the partition model. 
For each experiment, a resolution o is chosen, which de- 
termines a sublattice Sfp’ C s,, and the coarseness of the 
partitioning. Larger 0’s will correspond to coarser parti- 
tionings and give more reliable results (see Section V), 
but they lose boundary detail. Specifically, let 

Recall that the observation process, or data, consists of 
gray levels y,, s E SI. With the usual gray-level discreti- 
zation, the state, or configuration, space for the data is 

a,= { { y s } : s ~ S r , 0 _ ( y , ~ 2 5 5 )  

The configuration space for the partitioning x is deter- 
mined by U and by a maximum number of allowed regions 
P :  

a y ’  = { { x , ] :  s E sp, 0 5 x, I P - 1 ) .  

Recall that the labels are generic: x defines a partitioning 
by identifying sites with a given label (0 ,  1, * . , p -  
1)  as belonging to the same region. Only the sublattice 
Sfp) is labeled, and a maximum number of labels (regions) 
is fixed a priori. A prior estimate of the number of distinct 
(but not necessarily connected) regions must be available, 
since the model often subdivides homogeneous regions 
when P is too large (see Section V). The boundary model 
(Section 111) is more robust in this regard. 

Each label site s E S,  is associated with a square block 
D, E SI of pixel sites centered at s. (Recall that S,  is just 
a copy of S,; we sometimes use “s” ambiguously to ref- 
erence a site in S,  und the corresponding site in s/.) x, 
labels the pixels in 0,: { { yr  }: r E D, } . As we will see 
shortly, the partitioning is based on the spatial statistics 
of these (overlapping) subimages. The size of D, is there- 
fore important. We have experimented only with textures 
(the boundary model has been applied more generally), 
and is obvious that for these the pixel blocks { D, ) seSy  
must be large enough to capture the characteristic pattern 
of the texture, at least in comparison to the other textures 
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present. Of course, “large enough” is with respect to the 
features used, but in the absence of a multiscale analysis, 
an a priori choice of scale is unavoidable. In all of our 
experiments, 1 D, 1 = 441, a 21 x 21 square block of pix- 
els. There is again a resolution issue: larger blocks char- 
acterize the textures more reliably, having less within-re- 
gion variation, but boundary detail is sacrificed. 

B. Label-Data Interaction 
We establish a neighborhood system on the label lattice 

Sp’: each s E Sp’ is associated with a set of neighbors N ,  
C Sp’. The system is symmetric, meaning that s E N ,  e 
r E N , .  As we shall see, the neighborhood system largely 
determines the computational burden. For now we will 
proceed as though the neighborhood system is given, but 
we will have much more to say about it shortly. 

Let ( s ,  t ) ,  denote a neighbor pair, meaning s, t E 
Sfp’, s E N,. We will introduce a disparity measure a,,, = 
a,,,( y )  for each neighbor pair ( s, t ),. Roughly speak- 
ing, +,,, measures the similarity between the pixel gray 
levels in the two pixel blocks associated with s, t E Sp’. 
For the partition model, + , , t  is simply - 1 (“similar”) or 
+ 1 (“dissimilar”); it is more complicated for the bound- 
ary model. The interaction energy is then 

where 6{,,,,) = 1 if x, = x,, and 0 otherwise. In the low 
energy states, similar (resp. dissimilar) pairs, a,,, = - 1 
(resp. a,,, = + l ) ,  are associated with identical (resp. 
distinct) labels: x, = x, (resp. x, # x,). Although U ( x ,  
y )  is conceived of as the interaction term in a prior dis- 
tribution that is jointly on x and y, only the posterior dis- 
tribution is actually used, and y is fixed by observation. 
It would be interesting, and perhaps instructive (see [35] ) ,  
to sample from the joint distribution, but computationally 
very expensive. 

C. Neighborhood System 
A simple example will serve to highlight the issues. 

Suppose y has R constant gray-level (untextured) regions 
( y ,  E ( 0 ,  1 ,  . . * R - l}, s E S I ) ,  and u = 1 (full reso- 
lution). Of course, in this case y is a labeling, so there is 
no point in bringing in the partition process x; but this is 
just an illustrative example. The obvious disparity mea- 
sure is simply @,,, = - l if y ,  = y, ,  and + l otherwise: 

Entertain, for the time being, a nearest neighbor system 
on S,, which is the natural choice. To be concrete, take 
N ,  to be the four (two horizontal and two vertical) nearest 
neighbors of s. There are three essential difficulties with 
this choice of neighborhood system. Two can be readily 
appreciated: 

(See Fig. 1 . )  If R = 2 and P = 3 ,  and if region “0” 
(i.e., { s E SI:  y ,  = 0} ) is split into two disjoint pieces 
by region “1” (i.e.,  {s E SI:  y ,  = l } ) ,  then (2.1) has 

0 0 0 1 1 0 0  1 1 1 2 2 1 1  2 2 2 1 1 0 0  
0 0 0 1 1 0 0  1 1 1 2 2 1 1  2 2 2 1 1 0 0  
0 0 1 1 1 0 0  1 1 2 2 2 1 1  2 2 1 1 1 0 0  
0 0 1 1 0 0 0  1 1 2 2 1 1 1  2 2 1 1 0 0 0  
0 1 1 0 0 0 0  1 2 2 1 1 1 1  2 1 1 0 0 0 0  
0 1 1 0 0 0 0  1 2 2 1 1 1 1  2 1 1 0 0 0 0  
1 1 1 0 0 0 0  2 2 2 1 1 1 1  1 1 1 0 0 0 0  

Fig. 1 .  Left: original “image” and a correct labeling. Middle: a correct 
labeling. Right: spurious labeling. 

0 0 0 1 1 2 2  1 1 1 2 2 0 0  0 0 0 1 1 0 0  
0 0 0 1 1 2 2  1 1 1 2 2 0 0  0 0 0 1 1 0 0  
0 0 1 1 1 2 2  1 1 2 2 2 0 0  0 0 1 1 1 0 0  
0 0 1 1 2 2 2  1 1 2 2 0 0 0  0 0 1 1 0 0 0  
0 1 1 2 2 2 2  1 2 2 0 0 0 0  0 1 1 0 0 0 0  
0 1 1 2 2 2 2  1 2 2 0 0 0 0  0 1 1 0 0 0 0  
1 1 1 2 2 2 2  2 2 2 0 0 0 0  1 1 1 0 0 0 0  

Fig. 2.  Left: original “image” and a correct labeling. Middle: a correct 
labeling. Right: spurious labeling. 

two kinds of global minima: correct labelings, in which 
there are two populations of labels corresponding to the 
two gray-level regions; and spurious labelings, in which 
the three regions (two of type “0” and one of type “1”) 
are given three distinct labels. 

(See Fig. 2.) If R = 3, and region “0” does not 
neighbor region “2”, then there are again two kinds of 
global minima: correct labelings have three labels; spu- 
rious labelings have only two, incorrectly identifying re- 
gions “0” and “2”. 

Quite obviously, the model requires more global inter- 
actions. In particular, just a few long range interactions 
would distinguish the correct from the spurious labelings. 
Only a correct labeling would achieve the global mini- 
mum of U in these two examples. 

The third difficulty with local neighborhoods is com- 
putational, and is already apparent when R = 1 and P = 
2. This time there are only two global minima, and each 
is a desirable labeling ( { x, = 0 V, E S, } or { x, = 1 Vs E 
S, } ) . But, with N = 5 12, for example, consider the label 
configuration in which xu = 0 whenever 1 I i I 256 and 
xu = 1 whenever 257 I i I 512, a half “black” and 
half “white” picture. This is a local minimum, and rather 
severe in that it would take very many “uphill” or “flat” 
moves (single site changes) to arrive at either of the global 
minima. SR is a local relaxation algorithm, and despite 
the various convergence theorems, the practical fact of 
the matter is that “wide” local minima such as these are 
impossible to cope with. (But, there are some encourag- 
ing results in the direction of multiscale relaxation, see 
[24], [ 5 ] ,  [54].) Many readers will be reminded of the 
Ising model, in the absence of an external field, and the 
notorious difficulty of finding its (two) global minima by 
Monte Carlo relaxation. In fact, the R = 1 ,  P = 2 energy 
landscape is identical to that of the Ising model, as is 
readily demonstrated by a suitable transformation of the 
label variables. (Indeed, the same goes for the R = 2, P 
= 2 case, although this is less obvious. A suitable trans- 
formation identifies the two Ising minima with the two 
acceptable labelings: x, = 0 e y,  = 0 and x, = 1 e y ,  
= 0 . )  
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These local minima can be mostly eliminated by intro- 
ducing long range interactions in the label lattice Sp’; the 
same remedy as for the label ambiguities. We will provide 
a heuristic argument for the important role of long range 
interactions in creating a favorable energy landscape. In 
any case, simulations firmly establish their utility. First 
recall that the distance between two sites in a graph is the 
smallest number of edges that must be crossed in travel- 
ing from one site to the other. Notice that in the four near- 
est neighbor graph (two-dimensional lattice) the average 
distance between sites is large. Correct partitioning re- 
quires all pairs of label sites to resolve their relationships 
(“same” or “different”), as dictated by the statistics of 
their associated pixel blocks. Of course most pairs are not 
neighbors. With a local relaxation, such as SR, the reso- 
lution is achieved by propagating relationships through 
intervening sites. Thus the task is facilitated by minimiz- 
ing the number of intervening sites, and a relatively small 
number of long range connections can drastically reduce 
the typical number of these. 

The largest distance over all pairs of sites is the diam- 
eter of a graph. In an appropriate limiting (large graph) 
sense, random graphs have minimum diameter among all 
graphs of fixed degree.’ In light of our heuristics, this 
suggests a random neighborhood system for Sp’. Indeed, 
random neighborhoods have a remarkable effect on the 
structure of local minima for these systems. In a series of 
experiments, with “perfect” disparity data (such as the (T 

= 1 gray-level problems discussed above) we could al- 
ways achieve the global minimum by single-site iterative 
improvement when adopting a random graph neighbor- 
hood configuration, using rather modest degrees for large 
graphs. We conjecture, but have been unable to prove, 
that even with the degree a vanishingly small fraction of 
the graph size, random graphs (in the “large graph 
limit”) have no local minima, under the Ising potential 
or the potential U ( x ,  y )  with perfect disparity data (2. I ) .  

Of course the disparity data is not usually perfect. In 
challenging texture discrimination tasks there will be pixel 
blocks from the same texture that are measured as dissim- 
ilar (a,, = 1 ) and others from distinct textures that are 
measured as similar ( = - 1 ). Under these circum- 
stances it helps to also have near neighbor interactions, 
since these tend to bond neighboring label sites and 
thereby increase the effective number of long range inter- 
actions per site. Although near neighbors were not always 
needed to get the best results, we settled on using four 
near neighbors, and sixteen random neighbors per site, in 
each of our experiments (see Section V). By “near neigh- 
bors” we mean the closest two horizontal and two vertical 
neighbors whose associated pixel blocks do not overlap. 
For example, with 0 = 7, and using 21 x 21 blocks, the 
near neighbors have two intervening sites in Sp).  Details 
on the generation of the (pseudo) random neighbors can 
be found in [25]. Overall, perhaps the most effective 

‘ A  graph hasfired degree if each site has the same number of neighbors. 
The degree is then the number of neighbors per site. 

neighborhood system would have a gradual fall-off of in- 
teraction densities with distance, a system with an equal 
number of neighbors at each Manhattan distance, for ex- 
ample. 

D. Kolmogorov-Smirnov Statistic 
At the heart of the partitioning and boundary algorithms 

is a disparity measure ay,,. Recall that i f s ,  tare  neighbors 
in Sp’( (s, t ) , )  then a,,/ is a measure of disparity be- 
tween two corresponding blocks of pixel data, { { y , } :  r 
E D,} and { { y r } :  r E D , }  in the case of the partition 
model. We base as,, on the Kolmogorov-Smirnov dis- 
tance, a measure of separation between two probability 
distributions, well-known in statistics. When applied to 
the sample distributions (i.e., histograms) for two sets of 
data, say U ( ’ )  = { U \ ’ ) ,  v i ’ ) ,  , v i : ) }  and d 2 )  = 
{ vi2’, vi2’, - * , U ( * ) }  it provides a test statistics for the 
hypothesis that v(Irand d 2 )  are samples from the same 
underlying probability distribution, meaning that Fl = F2 
where, for i = 1, 2, U ( ’ )  = { v y ) ,  dj’), * * , U : ’ }  are 
independent and identically distributed with F, ( t )  = 

P(25(‘’ 5 t ) .  The test is designed for continuous distri- 
butions and has a powerful invariance property which will 
be discussed below. 

The sample distribution function of a data set { vl, v2, 

- 

9 U ,  1 is . . .  

Thus, P is a step function, with jumps occurring at the 
points { vk } . It characterizes the histogram. Now consider 
two se;s of data U ( ’ ) ,  d 2 )  with sample distribution func- 
tions Fl, F2. The Kolmogorov-Smimov distance (or sta- 
tistic) is tke maximum (vertical) distance between the 
graphs of F , ,  F2,  i .e.,  

d(v“’, d2’ )  = max IP , ( t )  - P 2 ( t ) l .  (2.2) 

We write d(v“’,  d 2 ) )  to emphasize the data (which in 
our case consists of blocks of possibly transforme$ pixel 
intensity values); the conventional notation is d(  FI, F 2 ) .  

The invariance property is the following. Suppose U ( ’ ) ,  
d2’  are samples from continuous distributions F , ,  F2. The 
under the (“homogeneity”) hypothesis FI = F2, theprob- 
ability distribution of d (as a random variable) is indepen- 
dent of the (common) underlying distribution. Basically, 
this stems from the fact that d is invariant to strictly 
monotone transformations of the data, i.e., 

-a</< +a 

where qji’ = T( U:”) and T is strictly increasing or decreas- 
ing. Thus, in two sample tests for homogeneity, one re- 
jects the null hypothesis that F ,  = F2 if d(v“’ ,  d 2 ’ )  I 
d*, where d* depends only on n ,  and n2, and on the sig- 
ni$cance level of the test. 

For our purposes, the data U ( ’ )  and d 2 )  consist of either 
the (raw) gray levels, or (in most cases of texture discrim- 
ination) transformations of these, restricted to blocks of 
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pixels; these blocks are adjacent in the boundary model, 
but may be well separated in the partition model (recall 
that we employ a largely random topology). In either case, 
the assumptions made in statistical testing are generally 
violated: it may be unreasonable to assume that the gray 
levels in a block of pixels represent independent and iden- 
tically distributed observations from some underlying 
probability distribution (although this is occasionally 
done). Of course, the size of the blocks relative to the 
image structures is very important. The blocks may con- 
tain hundreds of pixels, but if they are still small relative 
to the image structures, then the formal assumption will 
be more nearly satisfied. At any rate, the formal theory is 
primarily motivational. The distance (2.2) is an effective 
“measure of homogeneity” which is invariant to point- 
wise (monotone) data transformations induced by lighting 
and other factors. 

E. Disparity Measures 
Sometimes, just gray level histograms are enough for 

good partitionings, as with the SAR image of water and 
ice (see Section V). In these cases, disparity is measured 
as follows. Recall that D , ,  s E Sp), is a square block of 
pixel sites (always 21 x 21 in the partitioning experi- 
ments) centered at s. Let y ( D , )  = { yr:  r E D , } .  Given 
(possibly distant) neighbors s, t ESP), we define @ 5 , r  using 
the Kolmogorov-Smimov statistic and a threshold c: 

@s,r = 2 ~ { ~ ~ ~ ( D ~ ~ , ~ ( ~ r ) ) > ~ } ( y )  - 1 .  
In other words, @,,r is 1 or - 1 depending on whether the 
Kolmogorov-Smimov statistic is above threshold or not. 

Of course, many distinct textures have nearly identical 
histograms (see [21] for some experiments with partition- 
ing and classification of such textures, also in the Baye- 
sian framework). In these cases, discrimination will rely 
on features, or transformations, that go beyond raw gray 
levels, involving various spatial statistics. We use several 
of these at once, defining @,,, to be 1 if the Kolmogorov- 
Smimov statistic associated with any of these transfor- 
mations exceeds a transformation-specific threshold, and 
- 1 otherwise. The philosophy is simple: if enough trans- 
formations are employed, then two distinct textures will 
differ significantly in at least one of the aspects repre- 
sented by the transformations. Unfortunately, the imple- 
mentation of this idea is complicated; more transforma- 
tions mean more thresholds to adjust, and more 
possibilities for “false alarms” based on “normal” vari- 
ations within homogeneous regions. 

Proceeding more formally, let A denote one such data 
transformation and put y ’  = A (  y ) ,  the transformed im- 
age. In general, y: is a function of both y ,  and the gray- 
levels in a window centered at t E s,. For example, y: 
might be the mean, range, or variance of y in a neighbor- 
hood of t ,  or a measure of the local “energy” or “en- 
tropy.” Or, y,! might be a directional residual defined in 
(1.1); isotropic residuals, in which the pixels { t , }  sur- 
round t ,  are also effective. Notice that any A given by 
(1.1) is linear in the sense that if y ,  + ay, + b, Vs E SI 
then y: --* 1 a I y: , Vs E S I ,  and recall that the Kolmogorov- 

Smimov statistic is invariant with respect to such changes. 
This invariance is shared by other features, such as the 
mean, variance, and range. It should also be noted that 
these transforms are decidedly multivariate, depending 
(statistically) on the marginal distributions of the data of 
at least dimension three. Many approaches to texture 
analysis are based solely on the one- or two-dimensional 
marginals, i.e., the gray-level histogram and cooccur- 
rence matrices. We were not able to reliably detect some 
of the boundaries between the Brodatz microtextures with 
these standard features. Perhaps the jury is still out. 

Given a family of transformations, A , ,  A*, * - - , A,, 
we define 

@s,r = max [2~(d(yI”(D,),y“)(Dt)) > c , ) ( y ( ’ ) )  - l ]  
1 < i s m  

(2 .3)  
where y‘” = A, ( y ) ,  1 I i 5 m, and y ( ’ ) ( D , )  = {y!’), 
s E D , } ,  r = s, t .  The thresholds c1, * * , c, are chosen 
to limit the percentage of “false alarms” (cases of ex- 
ceeding threshold for pairs of blocks within the same tex- 
ture); see Section V. 

The disparity measure (2.3) inherits the aforementioned 
invariance to linear shifts for many transforms, including 
all “differences of averages. ” More importantly, per- 
haps, imagine we are comparing two pairs of image 
blocks, each pair in a different region of the image. Then, 
roughly speaking, the two distances are automatically cal- 
ibrated, regardless of the differing statistical properties of 
the two regions; i.e., the disparity measure has the same 
interpretation anywhere in the image. 

F, Penalties 
Recall that V(x) counts the total number of “penal- 

ties’’ associated with x E np9‘). There are two kinds of 
“forbidden” configurations that give rise to penalties: 
roughly, these correspond to very small regions and very 
narrow regions. Fix r~ and s E Sp). Let E, be the 5 x 5 
block of sites in Sp) centered at s. A configuration x is 
“small at s E SF)” if fewer than nine labels in { x,: t E 
E,} agree with x,. Notice that a right comer at s is al- 
lowed; there are exactly nine agreements. The total num- 
ber of penalties for “small regions” is 

(2 .4)  

Obviously, the numbers “5” and “9”, as well as other 
penalty parameters below, are quite arbitrary, and could 
reasonably be scale-dependent. 

As for “thin regions,” these are regions that have a 
horizontal or vertical “neck” that is only one label-site 
wide (at resolution a). Let 7 h  be a one-site horizontal 
translation within Sp), and let 7, be the analogous vertical 
translation. Penalties arise when either { xSpr , ,  # x, and x, 
# x, + T,, } or { x, - rl, # x, and x, # x, + r l , } .  The number of 
‘ ‘thin-region’’ penalties is therefore 

(2 .5)  

and V ( x )  is just the sum of (2.4) and (2.5). 



GEMAN er al. : BOUNDARY DETECTION BY CONSTRAINED OPTIMIZATION 617 

G. Summary 0 0 0 

We are given 
I )  a gray-level image y = { yi j  >; 
2) a resolution u = 1 ,2 ,  * * - , and a maximum number 

3) a disparity measure CP,,,( y )  for each pair ( s, t ), in 

4) a collection of penalty patterns. 
The (MAP) partitioning .2 = a( y )  is then any solution 

x E QfP,‘) of the constrained optimization 

of labels P ;  

the sublattice Sfp’; 

where V ( x )  is the number of penalties in x. 

111. BOUNDARY MODEL 
A .  Boundary Maps 

The pixel lattice is again SI .  Let S, denote another reg- 
ular lattice interspersed among the pixels (see Fig. 3) and 
of dimension ( N  - 1 ) X ( N  - 1 ); these are the “bound- 
ary sites.” We will associate s = ( i ,  j ) E S,  with the pixel 
( i ,  j ) E SI to the upper left of s. 

Given y ,  a gray-level image, we wish to assign values 
to the boundary variables x = { x,, s E S , } ,  where x, = 
1 (resp. 0) indicates the presence (resp. absence) of a 
boundary at site s E S,. We have already discussed the 
corresponding interpretation of the boundary map x = 
x ( y ) in terms of physical discontinuities in the underlying 
three-dimensional scene. We establish a boundary reso- 
lution or grid size a 2 1, analogous to the resolution used 
earlier for the partition model. Let Sg)  C SB denote the 
sublattice { ( i u  + 1 , j u  + 1 ) :  1 5 i , j  5 ( N  - 2 ) / u } .  
Only the variables x,, s E Sfp’, interact directly with the 
data; the remaining variables x,, s E S, \ Sg),  are deter- 
mined by those on the “grid” Sfp’. Fig. 4 shows the grids 
Sh2) and Sb3’ for N = 8; the sites off the grid are denoted 
by dots. The selection of a influences the interpretation 
of x, the computational load, the interaction range at the 
pixel level, and is related to the role played by the size of 
the spatial filter in edge detection methods based on dif- 
ferential operators. Finally, let Q I  and Q g )  denote the state 
spaces of intensity arrays and boundary maps respec- 
tively; that is, 

QI = { { y s } :  s € S I ,  0 5 ys 5 2551,  

n p  = { (x,}: s E sp, x, E (0, I } } .  

Sometimes, we simply write Q,  for fig’. 

B. Boundary-Data Interaction 
Let ( s, t ),, s, t E Sfp’ denote a nearest-neighbor pair 

relativetothegrid. Thus,s  = ( i u +  l , j a +  1 ) , t =  ( k a  
+ 1, la + 1 ) is such a (horizontal or vertical) pair if either 
i = k a n d j  = I ? 1, o r j  = I and i = k +_ 1 .  We identify 
( s, t ), with the elementary boundary segment consisting 
of the horizontal or vertical string of u + 1 sites (in S,)  
including s, t and the u - 1 sites “in between.” 

The energy function U ( x ,  y )  should promote boundary 

+ + 
+ + 

0 0 0 

0 0 0 

Fig. 3 .  Pixel sites ( O )  and boundary sites ( + ) for a 3 x 3 lattice 

+ . + ’ + ’ +  + . . + . .  + 
+ . + . + . +  . . . . . . .  + ‘ . + . ’ +  
. . . . . . .  . . . . . . .  

. . . . . . .  

+ . + . + . +  
+ ’ + . + . +  
. . . . . . .  

. . . . . . .  

. . . . . . .  
+ . . + . .  + 

Sp 

Fig. 4.  The boundary grid S‘,.’ at resolutions U = 2 (left) and U = 3 (right). 

maps x which are faithful to the data y in the sense that 
“large” values of As, , (  y )  are associated with “on” seg- 
ments (x,x, = I )  and “small” values with “off” seg- 
ments (x,x, = 0). There are no a priori constraints on x 
at this point; in fact, because of digitization effects, tex- 
tures, and so-on, the energy U will typically favor maps 
x with undesirable deadends, multiple representations, 
high curvature, etc. These will be penalized later on. A 
simple choice for the x / y  interaction is 

u ( x ,  Y >  = ( 1  - xsxr)$(A,. ,(Y)> (3.1) 
(S,f)O 

where the summation extends over all nearest-neighbor 
pairs (s, t ) , ;  the “weighting function” +(x) ,  x 1 0, 
will be described presently. 

The energy in (3. l ) ,  which is similar to a “spin-glass” 
in statistical mechanics, is a variation of the ones we used 
in our previous work [19], [20]; when a = 1 ,  the variable 
xsxr  corresponds directly to the “edge” or “line” vari- 
ables in [20] and [47]. Since y is given, the term 1 - x , ~ ,  
can be replaced by -x ,xr  with no change in the resulting 
boundary interpretation. By contrast, in [20] we were 
concerned with image restoration and regarded both x and 
y as unobservable; the data then consists of some trans- 
formation of y ,  involving for example blur and noise. In 
that case, or in conceiving U as defining a prior distribu- 
tion over both y and x, the bond between the associated 
pixels should be broken when the edge is active, i.e., 1 
- x,x,  = 0. The term 1 - x,xt is exactly analogous to the 
“controlled-continuity functions” in [56]. See also [35] 
for experiments involving simulations from a related Mar- 
kov random field model; the resulting “fantasies” ( y ,  x )  
are generated by stochastic relaxation and yield insight 
into the nature of these layered Markov models. 

Returning to (3.  I ) ,  a little reflection shows that 4 should 
be increasing, with 4 (0)  < 0 < $ ( + m ) ;  otherwise, if 
$ were never negative, the energy would always be min- 
imized with x, 3 1. The intercept d* = $ - ‘ ( O )  is criti- 
cal; values of A above (resp. below) d* will promote 
(resp. inhibit) boundary formation. The influence of this 
threshold is reduced by choosing 4’ ( d ” )  = 0. We employ 
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the simple quadratic 

Notice that if we select (Y = max A,y,, then the maximum 
“penalty” (+ ( 0 )  = - 1 ) and “reward” (+ (a) = 1 ) are 
balanced. 

C. Disparity Measures 
We employ one type of measure for depth and shape 

boundaries and another for the texture experiments. In the 
former case, the disparity measure involves the (raw) 
gray-levels only, whereas for texture discrimination we 
also consider data transforms based on the directional re- 
siduals (1.1). Except when U = 1, the data sets are com- 
pared by the Kolmogorov-Smimov distance. 

The disparity measure should gauge the intensity 
“flux,” As, ,  = A$P,‘(y) 2 0 ,  across ( s ,  t ) , ,  i.e., orthog- 
onal to the associated segment. At the highest resolution 
( U  = l ) ,  the measure 1 ys,  - y,, 1 (where s*, t* are the 
two pixels associated with the boundary sites s, t-see 
Fig. 5) can be effective for simple scenes but necessitates 
a single differential threshold: differences above d* (resp. 
below d* ) promote (resp. inhibit) boundary formation. 
Typically, however, this measure will fluctuate consid- 
erably over the image, complicating the selection of d*.  
(Such is the case, e.g., for the “cart” scene, see Section 
V .) Moreover, this measure lacks any invariance proper- 
ties, as will be explained below. A more effective mea- 
sure is one of the form 

where the sum extends over parallel edges ( s i ,  t i  ) in the 
immediate vicinity of ( s, t ). Thus the difference I ys. - 
y , ,  1 is “modulated” by adjacent, competing differences. 
The result is a spatially varying threshold and the distri- 
bution of As,t (  y )  across the image is less v@able than 
that of 1 ys ,  - y,* I .  Choosing y = const. x A ,  where A 
is the mean (raw) absolute intensity difference over all 
(vertical and horizontal) bonds, renders As, ,  ( y )  invariant 
to linear transformations of the data; that is, As , , (  y )  = 
A s , , ( a y  + 6 )  for any a ,  b.  

At lower resolution, let D,, and D,, denote two adjacent 
blocks of pixels, of equal size and shape. An example is 
illustrated in Fig. 6 for the case of two square blocks of 
size 52 = 25 pixels which straddle a vertical boundary 
segment with U = 3 .  Let y ( D , )  = { ys ,  s E D , } ,  r = s* ,  
t*, be the corresponding gray-levels and set 

As.,(Y> = d ( Y ( D S * ) >  Y(D,*) )3  ( 3 . 4 )  

where d is the Kolmogorov-Smirnov distance discussed 
in Section 11. This is the disparity measure used for the 
House and Ice Floe scenes (see Section V). 

0 + 
+ + 0 0 

0 + 
Fig. 5 .  P i x i  pairs (:>’s) associated with horizontal and vertical boundary 

segments. 

0 0 0 0 0  0 0 0 0 0  

+(SI 
0 0 0 0 0  0 0 0 0 0  

o o o o o D r .  D.. o o o o o 

0 0 0 0 0  0 0 0 0 0  

0 0 0 0 0  
+(t) 

0 0 0 0 0  

Fig. 6.  Pixel blocks D,, and D,, associated with the boundary segment ( S, 

t ) 3 .  

One difficulty with (3.4) is that the distance between 
two nonoverlapping histograms is the maximum value, 
namely 1, regardless of the amount of separation. Thus, 
two constant regions differing by a single gray-level are 
as “far apart” as two differing by 255 levels. Thus, it is 
occasionally necessary to “desensitize” (3.4) for exam- 
ple by “smearing” the data or perhaps adding some noise 
to it; see Section V .  

Raw gray-level data is generally not satisfactory for 
discriminating textures. Instead, as discussed in Section 
11, we base the disparity measure on several data trans- 
formations, involving higher order spatial statistics, such 
as the directional residuals defined in (1.1). Given a fam- 
ily A, ,  A2, * * . , A, of these transforms (see Section II), 
a resolution U, and blocks D,,, D,* as above, define 

A , , , ( y )  = max [ c ; ’ d ( y ‘ ” ( D , . ) ,  Y ( ~ ) ( D ~ * ) ]  ( 3 . 5 )  

where y ( ; )  = Ai ( y ) ,  1 5 i I m ,  and y ( ’ ) ( D , )  = { y: ’ ) ,  
s E D , } ,  exactly as in Section 11. Then A.v,,( y )  > d* 
(and, hence, +(As , , (  y ) )  > 0) if and only if d (  y ( i ) ( D . y * ) ,  
y ( ‘ ) ( D , * ) )  2 d*cj for some transform i .  The thresholds 
c l ,  * - , c, are again chosen to limit “false alarms.” 
Finally, we note that (3.5) has the same desirable invari- 
ance properties as the measure constructed for partition- 
ing (Section 11). 

I s i s m  

D .  Penalties 
V ( x )  again denotes the total number of “penalties” as- 

sociated with x E ap). These penalties are simply local 
binary pattems over subsets of S g ) .  Fig. 7 illustrates a 
family of four such pattems; they can be associated with 
any resolution U by the obvious scaling. These corre- 
spond, respectively, to an isolated or abandoned segment, 
sharp turn, quadruple junction, and “small” structure. 
Depending on U, the pixel resolution, and scene infor- 
mation, we may or may not wish to include the latter 
three. For example, including the last one with U = 6 
would prohibit detection of a square structure of pixel size 
6 x 6. 
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Fig. 7 .  Forbidden boundary patterns. 

1 . 1 . 0  1 1 1 0 0  
0 0 1 0 0  

0 . 1 . 0  0 0 1 0 0  
0 0 1 0 0  

0 ’ 1 . 1  0 0 1 1 1  

(a) (b) 

Fig. 8. (a) A boundary configuration at resolution U = 2.  (b) Completion 
of (a) from U = 2 to U = 1.  

. . . . .  

. . . . .  

Finally, there is a natural extension from Qg) to Q B  

which is useful for display and evaluation. Given x E 
Qg), we define x, = 0 for sites s E SB \ S g )  lying on a row 
or column disjoint from S g ) ,  and x , ~  = xt,xt, if s lies on a 
segment ( t l ,  tz >,. Thus, for example, the state x E Qb2) 
in Fig. 8(a) is identified with the state x E Q B  in 8(b). 

E. Summary 
We are given 
1) a gray-level image y = { y u } ;  
2) a resolution level U = 1, 2, * * . ; 
3) a disparity measure @,,t( y )  = +( As, t (  y ) )  for each 

neighbor pair ( s, t >, in the sublattice S g ) ;  
4) a collection of penalty patterns. 
The (MAP) boundary estimate i = i ( y ) is any solution 

x E Qg) of the constrained optimization 

minimizex:v(x)=o (1  - xsxt>+(As,r<Y>) 
( s , r ) ,  

where V(x) is the number of penalties in x. 

IV. ALGORITHMS 
We begin with an abstract formulation of the optimi- 

zation and sampling problems outlined in Sections 1-111. 
Recall that our search algorithms are motivated by the sto- 
chastic formulation of the problem, in particular the role 
of the posterior distribution n (x I y ). However, y is fixed 
by observation, and can be ignored in this discussion of 
computational issues. Thus, we are given two functions 
U and V on a space of configurations 52 = { (xs,, xs2, 
. . .  , x,,): x,, E A, 1 s i I M } where A is finite, M is 
very large, and S = { sl, s2,  * , sM} is a collection of 
“sites,” typically a 2-D lattice. Write x = (x,,, . . . , 
xsM) for an element of Q, and let 

Q* = {x: ~ ( x )  = U }  v = min ~ ( x )  
X 

exp { -w} I I * ( x )  = &*(x) 
C exp { -~(xj)}. 

X ’ € i 2 *  

We wish to solve the constrained optimization problem 
minimize { U ( x ) :  V ( x )  = U } or to sample from the Gibbs 
distribution IT*. (Recall that sampling at low temperature 
allows us to approximate the global minimum or to enter- 
tain other estimates, for instance the posterior mean.) 

We have studied [20] Monte Carlo site-replacement al- 
gorithms for the unconstrained versions of these prob- 
lems: stochastic relaxation (SR) for sampling, and sto- 
chastic relaxation with simulated annealing (SA) for 
optimization. SA was devised in [8] and [39] for mini- 
mizing a “cost functional” U (e.g., the tour length for 
the traveling salesman problem) by regarding U as the en- 
ergy of a physical system and simulating the dynamics of 
chemical annealing. The effect is to drive the system to- 
wards the “ground states,” i.e.,  the minimizers of U .  
This is accomplished by applying the Metropolis (relax- 
ation) algorithm to the Boltzmann distribution 

(4.1 ) 

at successively lower values of the “temperature” t .  
We presented two theorems in 1201: one for generating 

a sequence { X (  k )  } which converges in distribution to 
(4.1) for t = 1 (SR), and one for generating a sequence 
{ X (  k )  } having asymptotic distribution the uniform mea- 
sure over Q, = (x E Q: U ( x )  = U}, U = minx U ( x ) ,  (SR 
with SA). The essence of the latter algorithm is a “cool- 
ing schedule” t = t , ,  t2 ,  - - * for establishing conver- 
gence. SA has been extensively studied recently [4], [lo], 
[23], 1241, [30], 1321, 1341, [ 5 5 ] ;  see also the comprehen- 
sive review [ l ]  and the references therein. 

Results concerning constrained SR and SA are reported 
in [18], which was motivated by a desire to find a theo- 
retical foundation for the algorithms used here. We have 
deviated from the instructions in 1181, with regard to the 
cooling schedule, but at least we know that the algorithms 
represent approximations to rigorous results. 

Both algorithms produce a Markov chain on Q by sam- 
pling from the low-order, marginal conditional distribu- 
tions of the free Gibbs measures 

exp { - t - ’ ( U ( x )  + A V ( ~ ) ) }  

C X ’  exp { - t - ’ ( U ( x ’ )  + A V ( ~ ’ ) ) ) ‘  
n(x; t ,  A )  = 

It is easy to check that 

lim n(x; 1 ,  A )  = IT*(x) 
X + W  

(4.2) 

and that 

lim n(x; t ,  A )  = (4.3) 
A - 0 ,  otherwise 
t-0 

where 52: = {a E Q*: U(o) = E } ,  ,$ = minx,,* U ( x ) .  
Let IIo denote the uniform measure in (4.3). Sampling 
directly from I I ( x ;  t ,  A )  is impossible due to the size of 
Q; otherwise just use (4.2) and (4.3) to generate a se- 
quence of random variables X ( k ) ,  k = 1 ,  2, * , with 
values in Q ,  and limiting distribution either II* or no. 
However, we can evaluate ratios n ( x ;  t ,  A ) / I I ( z ;  t ,  A ) ,  
x, z E 52, and hence conditional probabilities. The price 
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for indirect sampling is that we must restrict the rate of 
growth of X and the rate of decrease o f t .  

Fix two sequences { t k } ,  { A,}, a “site visitation” 
schedule { A k } ,  Ak C S, and let &(x) = n ( x ;  tk, X k ) .  
The set Ak is the cluster of sites to be updated at “time” 
k; the “centers” of the clusters are addressed in a raster 
scan. In our experiments we take either I Ak 1 = 1 or 1 Ak 1 
= 5,inwhichcasetheAk’sareoftheform { ( i , j ) ,  ( i  + 
1 , j ) ,  ( i  - l , j ) ,  ( i , j  + 11, ( i , j  - I ) } .  

Define a nonhomogeneous Markov chain { X( k) ,  k = 
0, 1, 2, - } on Q as follows. Put X(0)  = q arbitrarily. 
Given X(k)  = (X,,(k), , XsM(k)), define X,(k + 1 )  
= X , ( k ) f o ~ - s $ A ~ + ~ a n d l e t  {X,(k + l ) : s ~ A ~ + ~ } b e  
a (multivariate) sample from the conditional probability 
distribution I&+l(x,, s E A k f l  Ix, = X,(k), s 6 & + I ) .  
Then, under suitable conditions on { tk } and { hk} , either 

lim P(X(k)  = x ( X ( 0 )  = q )  = II*(x) 

or the limit is IIo(x). The condition in the former case 
(constrained SR) is that tk = 1, X k  7 03, and X k  5 const. 

log k. The condition for convergence to no (constrained 
SA) is that tk \1 0, X k  7 03 and tk lXk I const. * log k. 
The algorithm yields a solution to the constrained opti- 
mization problem (1.2) in the sense that the asymptotic 
distribution of X (  k)  is uniform over the solution set: if 
the solution is unique, i.e., Cl,* = {xo}, then X(k)  -+ xo 
in probability. See [ 181 for proofs. 

k + m  

A. Approximations 
The logarithmic rate is certainly slow. Still, we often 

adhere to it for ordinary annealing; others [36] ,  [47] have 
as well. We refer the reader to [35] for some interesting 
comparisons between schedules. It is commonplace to find 
linear ( t k  = to - a k )  and exponential ( tk = ( 1 - ~ ) ~ t ~ ,  
y small) schedules; here k refers to the number of sweeps 
or iterations of S; in our experiments s = sP’ or sP’. 

We now describe several protocols used in our experi- 
ments. One variant we do not use is to fix X k  = X very 
large and do ordinary annealing, which might appear sen- 
sible since the solutions to min { U ( x ) :  V ( x )  = 0} co- 
incide with those of min { U ( x )  + h V ( x ) }  for all X suf- 
ficiently large (due to the fact that Q is finite). However 
this is not practical: unless to is very large and tk is re- 
duced very slowly, the system immediately gets stuck in 
local energy minima of U + AV which are basically in- 
dependent of the data, although faithful to the constraints. 
It is better to begin with states faithjid to the data and 
slowly impose the constraints, a standard technique in 
conventional optimization. 

One variation of constrained SR that has been effective 
is “low-temperature sampling”: fix tk = E (small) and let 
X k  7 03. The idea is to reach a likely state of the posterior 
distribution II (x I y ) .  In practice, we allow X k  to grow lin- 
early; the details are in Section V. 

Another variation is the analog for constrained relaxa- 
tion of “zero-temperature’’ sampling, which has been ex- 
tensively studied by Besag [2] under the name ICM (for 
“iterated conditional modes”); see also [ 1 11, [ 141, and 
[22]. Without constraints, this algorithm, which is deter- 
ministic, results in a sequence of states X(k)  which 
monotonically decrease the global energy, i.e. , increase 
the posterior likelihood. The constrained version operates 
as follows. Recall that when the set of sites Ak + is visited 
for updating, we defined X( k + 1 ) by replacing the co- 
ordinates of X(k)  in Ak+ l by a sample drawn from the 
conditional distribution of I l k  + on { x,, s E Ak + } given 
the values { x, = X, ( k ) ,  s 6 Ak + } . Suppose we replace 
the sample with the mode, i .e.,  the most likely vector { x,, 
s E Ak + } conditional upon { x, = X, ( k ) ,  s g! Ak + I }. In 
essence, we fix tk = 0 .  This generates a deterministic se- 
quenceX(k), k = 0, 1, 2, * - - depending only onX(O), 
nk, and { A k } .  (Notice that the mode is unaffected by t k  
since it corresponds to the minimum of U (  x) + X k  V (  x). ) 
Then, during the kth sweep, with X = X k ,  the energy U 
+ X k  I/ is successively reduced, just as in ICM where hk 
= 0. Of course since there is nojixed (reference) energy, 
the algorithm cannot be conceived as one of iterative im- 
provement. Several experiments were run with both the 
stochastic and deterministic algorithms; see Section V. 

B. Summary 
Each experiment used one of the following two varia- 

tions on constrained relaxation (see Section V for details): 
Choose a label resolution U and an associated pixel 

block size. 
Select features. 
Choose a site visitation schedule { A k } ,  Ak C S k = 

Fix a Zinear growth schedule for { X k  } . 
Choose X(O), arbitrary. 
Set k = 0. 

Deterministic Algorithm: 
0)  Set tk = 1, k = 1, 2, - 
1) Define X,(k + 1 )  = X,(k), s $ A k + l  and define 

{ X, ( k  + 1 ): s E Ak + } to be the (multivariate) mode of 

1 , 2 ,  * . - .  

* . 

nk+l (Xs ,SEAk+l (xs  = X,(k), S $ A k + l ) .  

2) k = k +  1. 
3) Go to 1. 
Stochastic Algorithm: 
0) Set tk = E ,  k = 1, 2, * ( E  “small”). 
1) Define X,y ( k  + 1 ) = X,y ( k ) ,  s 6 Ak + and define 

{ X, ( k  + 1): s E Ak + } to be a (multivariate) sample from 

I I k + I ( x , J E A k + l I ~ ,  = X s ( k ) , s g ! A k + I ) .  

2) k = k +  1. 
3) Go to 1. 
Usually, but not always, the deterministic algorithm 

was sufficient (again, see Section V). 
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v. EXPERIMENTS’ 

A .  Partition Model 
There are three experiments: an L-band synthetic ap- 

erture radar (SAR) image3 of ice floes in the ocean (Fig. 
9), a texture mosaic constructed from the Brodatz album 
[6] (Fig. lo), and another mosaic from pieces of rug, 
plastic, and cloth (Fig. 11). 

Processing: In each experiment the partitioning was 
randomly initiated; the labels, x,s E Sp),  were chosen in- 

Thereafter, label sites were visited and updated one at a 
time, by a “raster scan” sweep through the label array. 
MAP partitionings were approximated by “zero-temper- 
ature” sampling (see Section IV), with X = X k  increasing 
with the number of sweeps. Specifically, X was held at 0 
through the first 10 sweeps, and thereafter was raised by 
1 every 5 sweeps: hk = 0, k = 1, lo ;  Xk = 1, k = 
11, . 15; X k  = 2, k = 16, - 20; etc. Most probably, 
A could have been increased more rapidly, perhaps with 
every sweep, without substantially changing the results, 
but this was not systematically investigated. For the three 
experiments shown in Figs. 9, 10, and 11, between 15 
and 50 sweeps sufficed to bring the changes in labels to a 
halt; see below for more details. Recall that zero-temper- 
ature sampling corresponds to choosing the conditional 
mode. Occasionally there are ties, and these were re- 
solved by choosing randomly, and uniformly, from the 
collection of modes. 

As a general rule, results were less reliable at higher 
resolutions (lower a’s) and when more labels were al- 
lowed (higher values of P ). In these cases, repeated ex- 
periments, with different initializations, often produced 
different results. With P too large, homogeneous regions 
were frequently subdivided, being assigned two or three 
labels. With U too small, the tendency was to mislabel 
small patches within a given texture. It is likely that many 
of these mistakes correspond to local minima; perhaps 
some could be corrected by following a proper annealing 
schedule (see Section IV), and by more careful choices of 
thresholds (see below). Here again, definitive experi- 
ments have not been done. 

Measures of Disparity: Recall that the disparity mea- 
sure is derived from the Kolmogorov-Smirnov distance 
between blocks of pixel data under various transforma- 
tions, as defined in Section 11, equation (2.3). For the SAR 
image, good partitionings were obtained using only the 
raw data: m = 1 and y ( l )  is just y in (2.3). Evidently, 
gray-level distributions are enough to segment the water 
and ice “textures,” at least when supplemented by the 
“prior constraints” embodied in the penalty term V ( x ) .  

dependently and uniformly from 0, 1, - - , P - 1. 

’Fortran code and terminal sessions are available. 
’We are grateful to the Radar Division at ERIM for providing us with 

the SAR image (collected for the U.S.  Geological Survey under Contract 
14-08-0001-21748 and the Office of Naval Research under Contract N- 
00014-81-C-0692 and N-00014-81-C-0295). 

The texture collages in Figs. 10 and 11 are harder. We 
used four data transformations in addition to the raw pixel 
data. Hence, for these experiments m = 5, yc l )  = y, and 
y ( * ) ,  * - y(5) are based on various transforms. In partic- 
ular, 

y;” measures the intensity range in the 7 x 7 pixel 
block V, centered at s: 

maxtevSYr - minteV,Yr; y1*’ = 

yf” is the “residual” (1.1) obtained by comparing y ,  to 
the 24 “boundary pixels” (dV,)  of V, (i.e., all pixels on 
the perimeter of the 7 x 7 block): 

yl” = 

and y‘4’ and y(5) are horizontal and vertical “directional 
residuals” : 

Parameter Selection: The resolution (a )  was 7 for the 
SAR picture (Fig. 9); 15 for the Brodatz collage; and 13 
for the pieces of rug, plastic, and cloth. These numbers 
were chosen more or less ad hoc, but are small enough to 
capture the important detail of the respective pictures 
while not so small as to incur the degraded performance, 
seen at higher resolutions and mentioned earlier. 

The number of allowed labels is also important; recall 
that too many usually results in over-segmentation. This 
was actually used to advantage in the SAR experiment 
(Fig. 9), where there are evidently two varieties of ice. 
The best segmentations were obtained by allowing three 
labels. Invariably, two would be assigned to the ice, and 
one to the water. Using just two labels led to mistakes 
within the ice regions, although there was little experi- 
mentation with the Kolmogorov-Smirnov threshold, and 
no attempt was made with the data transforms ( m  > 1 ) 
used for the collages. In the other experiments, the num- 
ber of labels was set to the number of texture species in 
the scene. 

The most important parameters were the thresholds, 
{ ci} 1 I i I m, associated with the Kolmogorov-Smir- 
nov statistics [see (2.3)]. For the SAR experiment, m = 
1,  and the threshold was guessed, a priori; it was found 
that small changes are reflected only in the lesser details 
of the segmentation. For the collages ( m  = 5 ), the thresh- 
olds were chosen by examining histograms of Kolmogo- 
rov-Smirnov distances for block pairs within homogene- 
ous samples of the textures. Thresholds were set so that 
no more than 3 or 4 % of these intraregion distances would 
be above threshold (a “false alarm”). Of course, we 
would have preferred to find more or less universal 
thresholds, one for each data transform, but this may not 
be possible. Conceivably, with enough of the “right” 
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(b) 
Fir .  9. (a) Synthetic aperture radar image of oceanic ice floes. (b) Evo- 

lution of the label states from random initialization (upper left) to final 
partition (lower right). 

transforms, one could set conservative (high) and nearly 
universal thresholds, and be assured that visibly distinct 
textures would be segmented with respect to at least one 
of the transforms. Recall that the disparity measure (2.3) 
is constructed to signal “different” when the distance be- 
tween blocks, with respect to any of the transforms, ex- 
ceeds threshold. 

Fig. 9 (SAR): As mentioned earlier, three labels were 
used, with the expectation that the ice would segment into 
two regions (basically, dark and light). The resolution was 
U = 7,  and the Kolmogorov-Smimov statistic was com- 
puted only on the raw data, so m = 1 .  The threshold was 
cI = 0.15. The original image is 512 X 512 (the pixel 
resolution is about 4 by 4 m ) ,  but to avoid special treat- 
ment of the boundary, only the 462 X 462 piece shown 
in Fig. 9(a) was processed. The label lattice Sp) is 64 x 
64. Fig. 9(b) shows the evolution of the partitioning dur- 
ing the relaxation. For display. gray levels were arbitrar- 
ily assigned to the labels. The upper left panel is the ran- 
dom starting configuration. In successive panels are the 
states of the labels after each five iterations (full sweeps). 
In the bottom right panel, the two labels associated with 
ice are combined, “by hand.” 
Fig. 10 (Brodurz Textures): The Kolmogorov-Smirnov 

thresholds were c I  = 0.40, c2 = 0.53, c3 = 0.26. c4 = 
0.28, and cs = 0.19, corresponding to the transforms 4.‘ I ,  

* y”) discussed above. A 246 X 246 piece of the orig- 

(b) 
Fig. 10. (a)  Collage of five Brodatz textures. (b)  Evolution of the labels. 

upper left to lower right. 

inal 256 X 256 image was processed, and is shown in 
Fig. 10(a). Leather and water are on top, grass and wood 
on the bottom, and sand is in the middle. The resolution 
was CJ = 15, which resulted in a 16 x 16 label lattice 
SP). Fig. 10(b) shows the random starting configuration 
(upper left panel), the configuration after 5 iterations (up- 
per right panel), after 10 iterations (lower left panel), and 
after 15 iterations (lower right panel), by which point the 
labels had stopped changing. 

Fig. 11 (Rug, Plastic, Cloth): The 216 X 216 image 
in Fig. 1 I(a) was partitioned at resolution CJ = 13, with a 
16 x 16 label lattice. The Kolmogorov-Smirnov thresh- 
olds were c ,  = 0.90, c2 = 0.49, ci = 0.20, c4 = 0.11, 
and c5 = 0.12, corresponding to the same data transforms 
used for the Brodatz textures (Fig. 10). The experiment 
makes apparent a huzurd of long range bonds: the gradual 
but marked lighting variation across the top of the image 
produces a large Kolmogorov-Smimov distance when raw 
pixel blocks from the left and right sides are compared. 
This makes it necessary to essentially ignore the raw data 
Kolmogorov-Smirnov statistic, and base the partitioning 
on the four data transformations; hence the threshold cI 
= 0.9. The transformed data are far less sensitive to light- 
ing gradients. Fig. 1 l(b) displays the evolution of the par- 
titioning during relaxation. The layout is the same one 
used in the previous figures, showing every 5 iterations. 
except that there are 10 iterations between the final two 
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(b) 

bels. upper left to lower right. 
Fig. 1 1 .  (a)  Texture collage: rug, plastic. cloth. (h )  Evolution of the la- 

panels. The lower right panel is the partitioning after the 
30th sweep, by which time the pattern was “frozen.” 

B. Bounday Model 
There are five test images: one made indoors from tin- 

ker toys (“cart”), an outdoor scene of a house, another 
of ice floes in the ocean (the same SAR image used 
above), and two texture mosaics constructed from the 
Brodatz album. 

Processing: All the experiments were performed with 
the same site-visitation schedule. Given the resolution U. 

which varies among experiments, the sites of the sublat- 
tice Sf’  were addressed in a raster-scan andjive sites were 
simultaneously updated. Specifically, at each visit to the 
site (io + 1 ,  j o  + 1 ), the values of the boundary process 
at this site and its four nearest neighbors, { ( (  i 1 ) U  + 
1 ,  ( j k 1 ) U + 1 ) }, were replaced based on the condi- 
tional distribution of these five boundary variables given 
the variables at the other sites and the data J. Of course 
this distribution is concentrated on the 2s = 32 possible 
configurations for these five variables. 

Two update mechanisms were employed: stochastic re- 
laxation and the “zero-temperature,” deterministic vari- 
ation discussed earlier. In the former case, the updated 
binary quintuple is a sample from the aforementioned 
conditional distribution, which varies depending on the 
penalty weight AL for the kth sweep of the lattice SF ’ .  Of 
course “O-temperature” refers to replacing the sample by 

the conditional model. In both cases we let Ak grow line- 
arly. 

Stochastic relaxation at low temperature is more effec- 
tive than at zero temperature (essentially iterative im- 
provement). However, deterministic relaxation sufficed 
for all but two scenes, the ice floes and the four texture 
collage; these results could not be duplicated with deter- 
ministic relaxation. In one case, we present both results 
for comparison. 

Generally, deterministic relaxation stabilizes in 5- 10 
sweeps whereas stochastic relaxation requires more 
sweeps, perhaps 20-60. We provide several pictures 
showing the evolution of the algorithm. 

Penalties: All the experiments were conducted with the 
same forbidden patterns, namely those in Fig. 12, with 
the exception of the house scene, for which the last pat- 
tern was omitted. (At the resolution used for the house, 
namely U = 3, the inclusion of that pattern would inhibit 
the formation of structures at the scale of six pixels; many 
such nontrivial structures appear in that scene.) Thus, the 
penalty function V ( x )  records a unit penalty for each oc- 
currence in the boundary map x = { xI ,  s E S g ) }  of any 
of the five patterns depicted in Fig. 12. It is interesting to 
note that in no case was the final labeling completely free 
of penalties, i .e.,  V (  a )  = 0. Perhaps this could be 
achieved with a proper annealing schedule, or with up- 
dates of more than five sites. 

Measures of Disparity: All the experiments are based 
on instances of the measures (3.3)-(3.5) described in Sec- 
tion 111. 

1 )  For the first experiment, the cart scene, the bound- 
ary resolution is U = 1 and we employed the measure 
given in (3.3) with y = l O A  and the raw difference 1 y,,. 
- y,*l  modulated by the four nearest differences of the 
same orientation as ( s*, t* ) .  Thus, for the horizontal 
pair ( s, t ) of adjacent boundary sites, 

where s* = ( i ,  j ) ,  t* = ( i  + 1 ,  j ) ,  and is the mean 
absolute intensity difference over the image. The utility 
seems largely impervious to the choice of the scaling con- 
stant (here = 10) for the mean as well as to the range of 
the modulation. 

2) We used the Kolmogorov-Smirnov measure (3.4) 
for both the house and ice floes scenes. For the house, we 
chose U = 3 and blocks of size 25: the setup is depicted 
in Fig. 6. Due to the uniform character of the background 
(e.g., the sky) the distance (3.4) was computed based on 
the transformed data yIi = j I ,  + qr,, where { q r J }  are in- 
dependent variables, and distributed with a triangular 
density, specifically that of 1O(u ,  + U ? ) ,  u l ,  U ?  uniform 
(and independent) on [ 0, 1 1.  

The boundary resolution for the radar experiment is U 

= 8. reflecting the larger important structures there; the 
image is 512 x 512. The dynamic range is very narrow 
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1 1  
1 1  

1 1 1 
1 0 1  1 1 1  

1 1 1 

0 
0 1 0  

Fig. 12. Forbidden patterns for the boundary experiments. 

and the difference between the dark water and somewhat 
less dark ice is essentially one of texture, due in part to 
the customary speckle noise. In particular, the ice cannot 
be well-differentiated from the water based on shading 
alone. The disparity measure is (3.4), applied to the raw 
image data over 24 x 24 blocks. The problem encoun- 
tered in the house scene is actually alleviated by the spec- 
kle. 

3) The texture mosaic experiments are based on the 
measure (3.5) for a particular family A I ,  * , A5 of five 
data transformations or “features.” In each case, the res- 
olution is U = 5 and block size is 21 X 21. Recall that 
these five features are combined into a single measure of 
change according to the formula in (3.5). The transfor- 
mations used are the range 

maxtc V, Yt - mints V, Yt Zjl’ = 

over a 7 x 7 window Vs centered at pixel s, and the four 
directional residuals 

These residuals were then uniformly averaged over V,, 
yielding the final features y ( ’ ) ,  

It is instructive to compare the Kolmogorov-Smimov 
differences for the raw and transformed data over these 
texture mosaics. Typically, if one looks at the resulting 
two histograms of differences for a give transform, on 
finds that, whereas the raw (Kolmogorov-Smimov) dif- 
ferences are actually larger at the texture borders, the 
transitions between the borders and interiors are sharper 
for the transformed data. Detecting the boundaries with 
the raw data necessitates an unacceptable number of 
“false alarms” in the sense of interior “microedges.” 

Finally, the values of the constants c I ,  . . * , c5 used in 
the construction of As,, [see (3.5)] are selected by restrict- 
ing the percentage of false alarms. The details are given 
in the following section. 

Parameter Selection: Recall that the total change across 
the boundary segment ( s ,  t )  is measured by 4 (  As,r( y ) ) ,  
where 4 is given in (3.2). Given A, there are two param- 
eters to choose: a normalizing constant a and the intercept 
d* = 4-’(0). 

For the object boundary experiments, namely the cart, 

* * Y ‘ ~ ) .  

house, and ice floes, the parameters a and d* were chosen 
as follows. Find the mean disparity over all (vertical and 
horizontal) values of As,, for relevant bonds ( s, t ); take 
a equal to the 99th percentile of those above the mean 
and d* equal to the 70th percentile of those above the 
mean. This yields the values cy = 150, d* = 42 for the 
cart scene; recall that for this experiment, both the grid 
and block sizes are unity. For the house scene ( (T = 3 )  
the Kolmogorov-Smimov statistics were computed over 
5 X 5 blocks, and the resulting parameters are then a = 
1 and d* = 0.7. (The number of distances at (the maxi- 
mum) value A = 1 was considerable. ) Finally, for the ice 
floes, the recipe above yielded a = 0.33, d* = 0.13. 

Tuming to the experiments with texture mosaics, let 
C ; , k  denote the normalizing constant in (3.5) for feature i ,  
1 I i 5 5 ,  and texture k ,  1 I k c: K ,  where K is the 
number of textures in the mosaic. For each feature i and 
texture type k ,  we computed the histogram of the (com- 
bined vertical and horizontal) Kolmogorov-Smimov dis- 
tances and selected Ci ,k  = loo( 1 - y )  percentile of that 
histogram. Specifically, we took y = 0.01 for the two 
Brodatz collages. (Other experiments indicated that any 
(small) value of y will suffice, say 0 5 y I 0.03. ) Thus, 
100( 1 - y )  % of the distances d (  y ( i ) ( D l ) ,  y ( ; ) (D2))  
are below c ; , ~  within each texture type k .  Now set c; = 
maxl s k s  K ~ i , k ,  ensuring that at most k y (  lO0)X of the 
interior differences As,f ( y )  within the entire collage will 
exceed the threshold d* = 1. Finally, we put a = 2. 

Fig. 13 (Cart Scene): Sixty sweeps of stochastic relax- 
ation were run with t k  * 0.05 and X p  7 3. Actually, all 
the boundaries were “in place” after about 10 sweeps, as 
illustrated in Fig. 13(b), which shows every third sweep 
up to the 46th. The image is 110 X 110. Not shown is a 
run with the deterministic algorithm; the results are vir- 
tually indistinguishable. 

Fig. 14 (House Scene): This 256 X 256 monochrome 
image was supplied to us by the Visions group at the Uni- 
versity of Massachusetts. The update is by deterministic 
relaxation with X k  increasing linearly from ho = 0 to X l o  
= 2. 

Fig. 15 (Ice Floes): The image in Fig. 15(a) is 512 X 
512. We did 60 sweeps of stochastic relaxation with t k  
= 0.1 and hk 7 2. Fig. 15(b) shows 16 “snapshots”- 
every third sweep as in Fig. 13, as well as the final (60th) 
sweep. 

Fig. 16 (Brodatz Collage 1): The collage is composed 
of nine Brodatz textures [Fig. 16(a)]: leather, grass, and 
pigskin (top row), raffia, wool, and straw (middle row), 
and water, wood, and sand (bottom row). Two of the tex- 
tures, leather and water, are repeated in the two circles. 
The image size is 384 x 384, the individual textures all 
being 128 X 128. We show the results [Fig. 16(b)] of 
both the deterministic (left) and stochastic (right) algo- 
rithms; they are roughly comparable. Other false alarm 
rates ( y  = 0.005, 0.02, and 0.03) yield the same overall 
quality. 

Fig. 17 (Brodatz Collage 2): There are four textures 



GOMAN CI (11.: BOUNDARY I ~ I T I I K T I O N  BY CONSTKAINEU OVIIML%AIION 

(b) 

Fig. 13. (a) Irnage a i  il tinker toy c a r t  (b) Evolution or the boundaries 
(upper lcfl to lowcr right) with moltiplc-sitc stochastic relaxation 
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(b) 

Fig. 15. (a) Ice flocs imagc [sec Fig. 9(a)]. (h) Evalotinn of the boundaries 
(a t  resolution LT = 8 )  during stochastic relaxiitinn. 

Fig. 14 
(b) 

= 3 with deterministic relaxation. 
(a) House scenc. (h) Final boundary placcmenls at resolution c 

(b) 

Pig. 16. (a) Collage of nine Brodetz texturces. (b) Final boundary place- 
mcnts with deterministic relaxalion (Mi) and stochastic relaxatiun (right). 
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(b) 
Fig. 17. (a)  Col lage  of four Brodatz tex tures .  (b) T w o  runs of stochastic 

relaxation showing every third s w e e p .  

[Fig. 17(a)]: raffia (upper left), sand (upper right), wool 
(bottom), and pigskin (center). Two runs (diRerent seeds) 
are shown [Fig. 17(b)] individual frames representing 
every third sweep. 

VI. GENERALIZATIONS 
These models may be extended in many directions, or 

combined into a single model. What follows is a brief 
description of three such generalizations. 

A .  Other Boundary Primitives 
The elementary boundary unit or primitive is a horizon- 

tal or vertical segment whose length is resolution-depen- 
dent, namely 0 + 1 in pixel units. As a result, a discon- 
tinuity running at 45” is detected and localized with less 
reliability than one at 0” or 90”, where the disparity mea- 
sure has maximum sensitivity. An obvious remedy is to 
replace the pairs (s, r ) ,  by other “primitives,” e.g. ,  a 
distinguished family of triples, such as the six represented 
(up to translates) in Fig. 18. 

More generally, for any such family a consider the in- 
teraction term 

where A,(  y )  is a measure of the disparity in the “A-di- 
rection.” In Fig. 18, these directions are, respectively, 
w / 4 ,  7r/4, -w/4, - -w/4 ,  w / 2 ,  and 0. One can imagine 
a variety of ways to situate two appropriately shaped sets 
of pixels to straddle (and abut) segments such as these. 

B. Multivariate Datu 
Data may be available from several sensors, e.g. ,  mul- 

tispectral satellite data, or an optical camera and laser ra- 

+ 
+ + I  + + +  + + + +  + +  

+ +  + +  
Fig .  18. Family  of possible boundary primitives 

dar. One might integrate these with a composite disparity 
measure of the type used in the texture studies, viz. A = 
max A ( k ) ,  in order to improve discrimination. 

Another possibility is to attempt to classify boundaries, 
especially if range data is also available. Let y‘” and y‘” 
be range and brightness values, and let x, assume three 
values, say 0, 1, 2,  corresponding to “off ,” “occluding 
( =  depth) boundary” and “other boundary” (for in- 
stance a crease or shadow). Now rig the energy function 
to couple A ( y ( ’ ) )  with 4 = { 4, }, 5, = 6, } ( x , )  and 
A (  $’)) with q = ( q s } ,  qs = 6i l ,2}(xs) ;  for example, 
just add the two corresponding terms to form U .  The pen- 
alty patterns are the usual ones regarding dead-ends etc. 
(with 0’s and 2’s  as well as 0’s and l’s), and mixtures of 
0, 1, 2 corresponding to physically implausible (or im- 
possible) transitions. 

C. Region-Boundary Model 
Put the boundary and region labels into a single model, 

for example of the form U , ( X ’ ,  y )  + U 2 ( x ‘ ,  y ) .  Now 
penalize improper local configurations in the pair (x’, x‘), 
for example “type 1 ”  errors (a boundary “between” like 
region labels) and “type 2” errors (no boundary “be- 
tween” unlike labels). The problem may be that there are 
deep local minima which are unfaithful to the data but 
difficult to escape from, at least without updating many 
sites. 

VII. SUMMARY 
We have developed algorithms for partitioning an im- 

age, possibly textured, into homogeneous regions and for 
locating boundaries at significant transitions. Both are 
based on a scale-dependent notion of disparity, or gra- 
dient. and both incorporate prior expectations about reg- 
ular boundary or region configurations. 

The disparity measure scores the difference between the 
statistical structures of two scale-dependent blocks of pix- 
els. We have experimented with several measures. Ide- 
ally, the disparity will be large when there is an apparent 
difference, either in gray-level or in texture, between the 
blocks. Usually, it was necessary to tune the measure to 
the particular textures or structures involved; a more uni- 
versal measure may require both better preprocessing 
(e.g., first extracting reflectance from intensity [33]) and 
better use of “high-level” information about expected 
macrostructures and shapes. For texture discrimination, 
by either partitions or boundary placement, we introduce 
a class of features, or transformations, that are decidedly 
multivariate, depending on the spatial distribution of large 
numbers of pixel gray levels. Our disparity measure is 
then a composite of measures of differences in the histo- 
grams of the block data, under the various transforma- 
tions. Low-order features, such as those derived solely 
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from raw gray-level histograms and cooccurrence mat- 
rices, were not as effective i n  our framework. 

Disparity measures between pairs of pixel blocks drive 
the segmentations or boundary placements through a "la- 
bel model, " that specifies likely label configurations con- 
ditional on disparity data. For partitioning, labels are ge- 
neric and associated with local blocks of the image. Two 
labels are the same if their respective regions are judged 
to be instances of the same texture. For boundary place- 
ment, the labels are zero or one, and interpreted as indi- 
cating, respectively, the absence or presence of boundary 
elements. A priori knowledge about acceptable label con- 
figurations, which, for example, may preclude very small 
or thin regions, or cluttered boundary elements, is applied 
by restricting labels to an appropriate subset of all possi- 
ble configurations. The result of modeling disparity-label 
interactions and of defining restricted configurations can 
be regarded as a Gibbs distribution jointly on pixel gray 
levels and label configurations, with the marginal label 
distribution supported on a subset of the configuration 
space. 

Partitioning and boundary finding is accomplished by 
approximating the maximum a posreriori (MAP) label 
configuration, conditioned on observed pixel data. Be- 
cause certain configurations are forbidden, MAP estima- 
tion amounts to constrained optimization. Stochastic re- 
laxation and simulated annealing are extended to 
accommodate constraints by introducing a nonnegative 
constraint function that is zero only for allowed label con- 
figurations. The constraint function, with a multiplicative 
constant, is added to the posterior energy, and the con- 
stant is slowly increased during relaxation. Straightfor- 
ward calculations establish an upper bound on the rate of 
increase of this multiplicative constant that ensures con- 
vergence of the relaxation and annealing algorithms to the 
desired limits. In a series of partitioning and boundary- 
finding experiments, deterministic and other fast varia- 
tions of the constrained relaxation algorithm are found to 
be effective. 

The partitioning model is appropriate when a small 
number of homogeneous regions are present. Disjoint in- 
stances of a common texture are automatically identified. 
The boundary model can be effective in complex, multi- 
textured, scenes. Both models sometimes require prior 
training to adjust parameters. 
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