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On View Likelihood and Stability

Daphna Weinshall and Michael Merman

Abstract—

We define two measures on views: view likelihood and
view stability. View likelihood measures the probability
that a certain view of a given 3D object is observed; it
may be used to identify typical, or ‘“characteristic”, views.
View stability measures how little the image changes as the
viewpoint is slightly perturbed; it may be used to identify
“generic” views. Both definitions are shown to be identi-
cal up to the prior probability of camera orientations, and
determined by the 2D metric used to compare images. We
analytically derive the stability and likelihood measures for
two feature-based 2D metrics, where the most stable and
most likely view is shown to be the flattest view of the 3D
shape.

Incorporating view likelihood or stability in 3D object
recognition and 3D reconstruction increases the chance of
robust performance. In particular, we propose to use these
measures to enhance 3D object recognition and 3D recon-
struction algorithms, by adding a second step where the
most likely solution is selected among all feasible solutions.
These applications are demonstrated using simulated and
real images.

Keywords— generic views, characteristic views, canonical
views, view likelihood, view stability, object recognition, 3D
reconstruction, Bayesian vision

1 Introduction

In this paper we address in a systematic way the loose
notions of “characteristic” views and “generic” views, by
precisely defining and computing view likelihood and view
stability. Incorporating these measures in object recogni-
tion and 3D reconstruction, we argue, increases the chance
of robust and predictable performance. To illustrate this
point, we start with an intuitive example:

Consider the three images shown in the top row of Fig. 1.
Given three objects in the database (illustrated in the bot-
tom row of Fig. 1): a cube, a flat box and an elongated
box, a recognition system is asked to match an object to
each image. The images were produced in such a way that
the left image is actually a picture of the cube, the middle
image is a picture of the flat box, and the right image is
the elongated box. A typical (good) computer vision recog-
nition system would correctly produce this output, shown
in Fig. 1 with white arrows. However, a human looking
at those images would prefer the following interpretation:
left image = flat box, middle image = elongated box, and
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right image = cube, as shown in Fig. 1 with thin black
arrows. Why would humans make this “mistake”? The
answer seems to be: for a good computational reason!
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Figure 1: Three polyhedral objects: (a) a cube of dimensions 1 X 1 x 1
cm., (b) a flat box of dimensions 5 X 5 X 1 ¢cm., (c) an elongated box of di-
mensions 5 X 1 X 1 cm. Top: three images of these objects, obtained from
special viewpoints; the extracted features are shown with dark circles.
Bottom: the same polyhedral objects viewed from a more typical view-
point. A geometry-based recognition system would “correctly” recognize
each image in the top row as an instance of the object illustrated in the
bottom row (this matching is shown by thick white arrows). A maximum
likelihood recognition system would recognize the images in the top row
as: left = flat box, middle = elongated box, right = cube (this matching
is shown by thin black arrows.)

Thus we motivate our work by a paradoxical example:
although wrong, the black arrows in Fig. 1 give the statis-
tically optimal answer in this example. In other words, a
system which gives the wrong answer in this example be-
haves better overall, and will not be mislead by solutions
which imply very special viewing positions.

The problem illustrated in Fig. 1 is not limited to simple
artificial objects, but generally applies to many complex
natural objects whose images may be ambiguous. Take
Fig. 2 for example. Based on matching alone, a recognition
system that has in its database the models of water bottles,
Frisbees, and glass saucers cannot determine which object
is depicted in the image. An enhanced recognition system
will examine all three solutions and choose the most likely
one, either Frisbee or a glass saucer. It will reject the
correct but less generic water-bottle solution (unless given
a good reason to favor the existence of water bottles in the
scene).

Thus the problem with which we are dealing here is gen-



IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 2, February, 1997 98

Figure 2: A non generic (unlikely) image of a water-bottle viewed from
above, most often interpreted as the image of a glass saucer or Frisbee.

eral, and would plague any recognition system that deals
with large databases. The problem arises because most
3D object recognition and 3D reconstruction algorithms
address only the geometrical matching issue: which 3D in-
terpretation, or which object, is described in a given 2D
image. In many cases a good matching algorithm should
correctly provide a list of feasible solutions (objects or re-
constructed scenes), all consistent with the image up to
some uncertainty value arising from measurement errors.
To select among these solutions it is necessary to enhance
the algorithm with disambiguation criteria, similar to those
used by humans in interpreting the images in Fig. 1.

Below we propose to use for disambiguation measures of
view likelihood and stability, and choose the more typical
or generic solution. View likelihood measures the prob-
ability that a certain view of a given object is observed - it
characterizes how typical a view is. View stability char-
acterizes how generic a view is - it measures how little the
image changes as the viewpoint is slightly perturbed. We
show that both measures are identical up to the prior prob-
ability of camera orientations, and we show how to obtain
view stability and view likelihood from the 2D metric used
to compare images.

The rest of this paper is organized as follows: after re-
viewing related work in Section 2, we define the concepts
of stability and likelihood for images of general objects in
Section 3. For the general case we provide fairly simple ex-
pressions describing the likelihood and stability of views.
One only needs to plug in the particular 2D metric which
tells images apart. In Section 4 we develop explicit ana-
lytical expressions for the stability and likelihood of views
of objects with feature points, which depend only on the
three principal second moments of the object. The most
stable and most likely view is shown to be the flattest view
of the object. In Section 5 we demonstrate the usefulness
of this theory to 3D reconstruction and object recogni-
tion. Using examples of simulated and real objects, we
show how the measures of view likelihood and stability
are: (1) easy to use, and (2) enhance performance when
incorporated into existing 3D reconstruction and object
recognition techniques.

2 Previous work: review and comparison

A few recent studies attempted to approach in a formal
way issues related to the ones discussed in this paper:

Bayesian image understanding: Freeman [10, 11] sug-

gested to use a measure of view stability in the inter-
pretation of ambiguous scenes (see also [21]). In his
Bayesian scheme, an interpretation which involves the
more stable, or more generic, viewpoint is preferred.
Freeman’s approach is the closest to ours, with the
following differences:
On the one hand Freeman uses a more complete prob-
abilistic framework, where image errors (due to the
fact that an image is not an instance of the object) are
transformed into probabilities and taken into account;
prior on models are also taken into account. On the
other hand, Freeman computes image likelihood using
the Jacobian of the transformation between the view-
ing parameters and the image measurements. This is
the true view likelihood only when the image measure-
ments (normalized by their uncertainty) form a Eu-
clidean space, which is rarely the case (see section 3.5).
Our definition of view likelihood is therefore more gen-
eral, and allows the computation of view likelihood
given only the 2D metric that is used to compare im-
ages. Using this observation, our likelihood measure
can be incorporated into Freeman’s Bayesian proba-
bilistic scheme by taking the role of conditional image
probability.

Measuring likelihood: View likelihood of angles was com-
puted using numerical simulations by Ben-Arie [3] and
Burns et al. [6]. Dickinson et al. [8] empirically found
the more likely views of particular objects decomposed
into geons. In this earlier work, the analysis of likeli-
hood was carried out for simple image measurements:
either discrete (qualitative) or 1-dimensional (angles).
Note, however, that the general problem requires the
numerical estimation of likelihood when the image mea-
surements change continuously with the viewing pa-
rameters; this computation is harder, as it requires
the numerical estimation of limits. Thus the simula-
tion work described in [3, 6, 8] cannot be readily gen-
eralized to compute view likelihood of general objects.
Below we provide a simple expression which can be
used to numerically estimate the stability and likeli-
hood profiles of general objects, and identify the most
likely and stable views of any object.

Measuring stability: Binford & Levitt [4] defined the
concept of quasi-invariants, or the local minima of the
change in the image when changing the viewing pa-
rameters. Other studies proposed to measure stability
via the Lie derivatives of the group of transformations
describing the motion of the camera [15]. In most of
this earlier work, the analysis of stability rarely went
beyond the basic definitions (which were different from
our definition).
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Another line of work, that may superficially appear sim-
ilar to ours, addresses a very different question. Practically
all the probabilistic approaches to image understanding do
not take into account image likelihood as defined here (with
the exception of [10]). Rather, their goal is to transform
an optimization problem to a maximum likelihood prob-
lem. This is achieved by defining a probability function
which is large when the error is small, and vice versa (see,
e.g., [17]); thus the most likely solution, which is selected at
the end, is the solution which minimizes the measurement
error.

Using the terminology introduced in the introduction,
such probabilistic schemes still try to accomplish the first
step of recognition: they seek the solution which mini-
mizes the error between the predicted image and the ob-
served image. They do not address the problem of how to
choose among all equally plausible solutions, namely, how
to choose among those solutions which achieve roughly the
same error. Thus these approaches to object recognition
can be readily enhanced by our view likelihood measure,
using it to fine-tune their probability space to take into
account both error minimization and high plausibility (or
genericity).

The qualitative analysis presented here identifies the most
stable and most likely views of objects, which are the most
suitable images to be used as the object’s characteristic
views. The concept of characteristic views appears in viewer-
centered approaches to 3D shape representation, where
three dimensional information is not represented explicitly.
Rather, the shape of object is represented implicitly by a
list of 2D characteristic views (e.g., [7]). Our study is the
first to give a computational analysis of what makes images
characteristic.

3 Stability and likelihood of views:
general

We define measures of view likelihood and stability, as-
signed to a general 3D object denoted O and its projection
along a specific viewing direction. These measures depend
on the variability of the images of object O; thus they
depend on the 2D metric used to compare those images
(e.g., feature-based or intensity-based). In this section the
general problem, where the 2D metric is not yet fixed, is
addressed. We assume general three dimensional objects,
including opaque objects with self occlusions.

3.1 Images and the viewing sphere

We first describe how to parameterize all the possible dif-
ferent views, or 2D images, of 3D objects. This is obtained
from the parameterization of all the different viewpoints,
or camera orientations, from which a 3D object can be
observed.

The viewing sphere is an imaginary sphere around the
centroid of the object. We assume weak perspective pro-
jection, and therefore the viewing sphere describes all the
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possible different orientations of the camera with respect
to the object. Since each camera orientation corresponds
to a point on the viewing sphere, all the object’s images
are completely parameterized by two angles. In the follow-
ing, ¢ denotes the azimuth (longitude) and ¥ denotes the
elevation (colatitude). The range ¥ € [0,5], ¢ € [0,27]
parameterizes half the viewing sphere. Let Vy , denote a
viewpoint on the viewing sphere with elevation ¥ and az-
imuth ¢. Let Iy 0 denote the 2D image (or view) of
object O obtained from viewpoint Vy .

Figure 3: Two views on the viewing sphere, Vis,p and Vs 4.

We now define a second parameterization of the viewing
sphere. This parameterization is relative with respect to
a given viewpoint Vy . In this relative parameterization, §
denotes the azimuth and v denotes the elevation, but this
time they are both measured with respect to viewpoint
Vi, which serves as the pole (see Fig. 3). At the danger of
notation abuse, we denote viewpoints such parameterized
by Vs,. Let I5 4.0 denote the 2D image (or view) of object
O obtained from viewpoint V .

3.2 How images differ

The stability and likelihood of a view fundamentally de-
pend on how similar it is to other views of the same ob-
ject. Intuitively, a typical (or generic) view is one that is
similar to many other views of the object, and vice versa.
We therefore need to be able to measure the similarity be-
tween views. Henceforth we assume that the lack of sim-
ilarity is measured by some distance measure d(), which
takes two views as arguments and returns the distance be-
tween them. This distance measure can be any. In the
present discussion (Section 3) we develop the dependence
of the view likelihood and stability on the distance func-
tion, whichever it may be. Later on (Section 4) we compute
view likelihood and stability for specific cases, substituting
specific distance measures.

How does the view likelihood and stability of image Iy .0
can be measured? To answer this question, assume that
the optical axis of the camera is initially oriented along
viewpoint Vy,,; then the camera is rotated by & to ob-
serve the object from viewpoint V. Depending on the
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initial camera orientation Vy,,, the difference between the
initial and final images Iy, ;0 and Is 4,0 may be large or
small. In other words, having rotated the camera by a fixed
amount 4, the image of the object may change only slightly
(Fig. 4a,b), or the change may be large (Fig. 4d,e). Intu-
itively, view Iy, is stable if the difference between Iy 4,0
and I5 y;0 is small (Fig. 4a,b); Iy, is un-stable if the dif-
ference is large (Fig. 4d,e).

ee e
Qe
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Figure 4: Top: (a) a stable view of a cube, (b) the view obtained when
the camera is rotated by 10° from (a), (c¢) the view obtained when the
camera is rotated by 20° from (a). Bottom: (d) a less stable view of a
cube, (e) the view obtained when the camera is rotated by 10° from (d),
(f) the view obtained when the camera is rotated by 20° from (d).

Rotating the camera away from the original viewpoint
Vs, by, say, 6 = 20° is likely to cause a much larger change
than rotating it by 6 = 10° (Fig. 4a-c). Clearly this should
not affect the magnitude of view likelihood or stability. We
will therefore use the normalized distance dT(), at the limit
where § vanishes.

Let d(9, ¢, d,1; O) denote the 2D distance between the
2 views Iy o0 and I5y.0. Intuitively, a good indicator
of view likelihood and stability can be obtained from the
normalized distance w, at the limit § = 0; we
denote this function by D(¥,¢,1;0). Note that, since
d(¥,¢,0,9;0) = 0 at 6 = 0 (since when ¢ vanishes Vy ,
and Vs are the same viewpoint), the following holds:

d(¥, ,8,9;0) = D(¥, ¢, 4; 0)d + 0(5”) 1)

This discussion of view stability and likelihood will now
be made precise.

3.3 Stability of views:

The view stability of image Iy, ;0 measures how much the
image changes as the viewpoint Vy ,, is slightly perturbed.
This quantity takes on larger values when the image does
not change much as the camera’s position is changed.
More specifically, m measures the normalized
similarity between 2 images obtained from 2 camera ori-
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entations separated by d. The view stability s(¢,p; O) is
defined as the average normalized similarity over a small
neighborhood of viewpoints, in the limit where the area of
the neighborhood vanishes. More precisely:

27 €

s(9,¢; O) = lim
e—0
sin(6)dddy

oy
O —an

Since d(ﬂ,wg,w;o) = D(ﬂ,;,w;o) + O(6) near 6 = 0 , and
assuming D(d, ¢, 1; 0) #0 Vi:

27 £
g" DI T0) Of(sm((S) + O(62))dédyp

s(9,;0) = lim

e—0

sin(6)ddédy

oy
O

2

1 1

o / D20, 0,0, 0) Y
0

3.4 Likelihood of views:

View likelihood is the probability induced on the images of
object O by the projection process: for a given prior distri-
bution of camera orientations (or viewpoints), a different
probability is induced on the views of O by the projection
process. This implies, for example, that even when all the
different camera orientations are equally likely, the images
are not equally likely: the induced probability depends on
the 3D structure of the object O and is almost never uni-
form.

More specifically, we denote the prior distribution of the
camera orientations f(Vy,,) = f(¥,¢). This distribution
induces - via the projection process - a different distribu-
tion on the images Iy, ,.0 of O, which we denote (4, ¢; O).
1(9,p; O) is the conditional probability to see the partic-
ular image Iy ,;0, given that the image is known to be of
object O; by our definition, therefore, Iy ,,0 is the view
likelihood of O.

First, note that [(d, ¢; O) is a density function. In or-
der to compute the value of a density function /() at some
point x, one can proceed by computing the cumulative dis-
tribution of the appropriate random variable, and then dif-
ferentiate it to obtain the density of the random variable.
The cumulative distribution is typically easier to compute,
because it measures the probability of a real (rather than
infinitesimal) event: the probability that a random vari-
able obtains a value in some interval [x —,x +¢]. In our
case the event is | d(¢, ¢, d,9; O) |< g, namely, we compute
the probability that the camera obtains a viewpoint from
which the object O appears different from Iy ,,0 by less
than €. Denoting by x, the function which returns 1 when
b is true and 0 otherwise, we have:

Prob(| d(9,¢,6,1;0) |< &) = (2)
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From (1) it follows that near § =0
e+ 0(g?)

d 197 767 ; n/a . .
|49, 46,9 D(d,¢,9;0)
Substituting this into (2), and assuming D(9, ¢, v; O) #
0 Vi, we get:
Prob(| d(d, 9, 6,4; 0

e+0(e?)
27 D(9,9,%;0)

(f(9, ) + 0(8) (8 + O(6%))dddy

0)|<e <= 6<

)I<e) =

3)

0 0

(3) measures the cumulative distribution, corresponding
to an area on the viewing sphere. The corresponding den-
sity function is proportional to the rate of increase in this
area. More precisely!:

19, ¢; 0) = (4)
i £rob(| d(9,¢,6,4;0) [< )
e—0 7'['52

Substituting (3) into (4) and computing the value at the
limit e — 0, we get the following expression for the view
likelihood of object O:

19 [ s

(Recall that f(1,¢) denotes the prior distribution of cam-
era orientations.)

1(8,;0) = A Y (5)

3.5 View likelihood: numerical evaluation

In the rest of this paper we primarily use (5) to obtain an-
alytical expressions of view likelihood and stability. How-
ever, when the distance between images is complex and
only numerical estimation of view likelihood is possible, the
integral in (5) may be hard to evaluate. Thus we derive be-
low another expression for view likelihood, which depends
only on the derivatives of the 2D image distance with re-
spect to the viewpoint parameters 9, . To keep the focus
of this paper, the derivations are only briefly described.

Thinking about the projection from 3D space to a 2D
image as transformation of coordinates, [(¥, p; Q) can be
obtained from f(1,¢) using the Jacobian of the transfor-
mation: in Euclidean spaces, the Jacobian measures how
an area element in one coordinate system (on the viewing
sphere) changes in another coordinate system (in the image
space).

More specifically, if an image is represented by some vec-
tor X € R™, the transformation is:

9 n
0= ((p) y x={zi}ic, = Ing0

T : 60— x,

INote that in (4) the cumulative probability is divided by me2, not
by e. This is because the parameter space is 2-dimensional, and thus
differentiation is obtained by dividing by an infinitesimal area element,
not length.
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If the image space R™ is Euclidean, that is - when the
distance between 2 images x,y is the Lo norm ||x — y||,
an area element on the viewing sphere sin ddddy locally
deforms by

Ba:j

90;

In the general metric case, when the distance between
the 2 images x,y is some arbitrary “good” metric? d(x,y),
the local area deformation can be shown to be
1 9%d*(x,y)
5 33],6.733

det (MMT), Mij =

Vdet (MGx)MT), G(x); = (6)

ly==

where elements of the matrix MG (x)M7T

(MGMT);j =3 MyGuM; =
k.,

10%d*(x(0),y)

2 61‘];,6.22[ ly=

are:

Gre 0z _ 18°0(x(6),y)
00,00, 2 06,06

ly=

Substituting 8 = [J,¢] into (6), the area deformation
becomes

k,l

02d*(x(0),y)  9°d*(x(6),y)
592 590

det (MGM™) = 4 || p2i2(x(0)y)  0°d(x(6).y)
890y B2

2

ly=x

The image likelihood corresponds to the area deforma-
tion caused by the inverse mapping from the image space
to the viewing sphere; therefore

F(9,0)sind _

1(9,0;0) = 7
00 0) = R G ()
2f (9, @) sindd
/PR AN PGl (FEEAR)
502 592 998y lyes

3.6 View likelihood and stability: summary
Let

d(¥,¢,6,1;0) = D(¥,9,9)5 + O(8°), D@, p,9) #0

denote the 2D distance between 2 images Iy ,,0 and I ;0.
The view likelihood I(¥, p; O) and view stability s(¢J, ; O)
of image Iy 0 are the following:

5(9,;0) dy (8)

1
2 0/ D29, ,9)
1(9,9;0) prior (9, p)s(9, p; O) 9)

View stability and likelihood can also be computed from
the following expression:

s(8,¢;0) = (10)
2 sin 2
92d2(9,9,0,%;0) 8%2d2(9,9,8,4;0) _ (32‘12(19:%571/1;@))2
992 92 9909 lszo

2A“good” metric can be locally approximated to first order by the
Euclidean distance.
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We are also interested in 2 qualitative characterizations
of views:

Most likely view: Ij ;. which satisfies

19, ; 0) = maxI(¥, ¢; 0) (11)
e
Most stable view: I ;. » which satisfies
5(9,¢; 0) = max s(9,¢; 0) (12)
3P

It follows from (9):

Result 1: If the prior distribution of camera orientations
of a given object is uniform, namely, all viewpoints are
equally likely, then:

1. The view stability and likelihood functions are the
same.

2. The most stable and most likely views are the same
image.

With this result we are able to restrict the discussion
henceforth to view stability. In order to obtain the view
likelihood, each expression should be multiplied by the
prior distribution of camera orientations.

4 Stability and likelihood of views:
feature-based metrics

In the previous section we derived the dependence of the
view stability and likelihood on the 2D metric used to
compare images. To show the usefulness of this general
approach, we now derive explicit forms for the view like-
lihood and stability given two specific feature-based 2D
matching metrics.

Given objects composed of feature points, there exist
natural 2D metrics to compare the images of such objects
[20]:

affine metric d,ss: the two images are first aligned with
each other with the best 2D affine transformation, and
then the sum of the squared distances between each
pair of matching feature points is taken.

similarity metric dg;,: the two images are first aligned
with each other with the best 2D similarity transfor-
mation, and then the sum of the squared distances
between each pair of matching feature points is taken.

Simplified expressions for these metrics are derived next,
using a coordinate system rotated such that Vy—g, ,—o is the
flattest view of the object. The flattest view is the view
where the image achieves maximal spread: it is obtained
from the viewing direction along which the three dimen-
sional object has its minimal spread.

4.1 Image representation

Let {p; = (Z:,9i, 2:) }?_, denote the coordinates of the ob-
ject features in the initial camera coordinate system in R>.
A three dimensional representation of the object is the 3xn
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matrix f’, whose i-th column is p; - the vector describing
the world coordinates of the i-th feature of the object.

An image of the object is approximated by a rigid trans-
formation (of the object or the camera), followed by weak
perspective (or scaled orthographic) projection from three
dimensional space to the two dimensional image. An im-
age of the object is therefore the set of n image points
{pi = (z;,¥:) }*_,. An equivalent representation of the im-
age is the 2 x n matrix P, whose i-th column is p; - the
vector of image coordinates of the i-th feature of the object.

4.2 2D image comparison

Given two images, or the two matrices P and Q, the ques-
tion of comparing them is equivalent to matrix comparison.
We are using the usual metric, which is the Frobenius norm
of the difference matrix, and which is the same as the Eu-
clidean distance between points in the images:

IP - QI =Y (Pli,j] - Qli,5)? = tr[(P - Q) - (P — Q)]

2%}

(tr denotes the trace of a matrix). Henceforth we shall omit
the subscript F', and a matrix norm will be the Frobenius
norm by default.

Before taking the norm of the difference between the
images, we want to remove differences which are due to
irrelevant effects, such as the size of the image (which is
arbitrary under scaled orthography) or the exact location
of the object (e.g., due to an arbitrary translation and rota-
tion of the object in the image). In particular, we consider
as equivalent all images obtained from each other by one
of the following two groups of two dimensional transforma-
tions: the similarity group, which includes 2D rotations,
translations, and scale, or the affine group, which includes
2D linear transformations and translations.

It can be readily shown that the optimal translation
when measuring the distance by the sum of square dif-
ferences, under both the similarity and affine equivalence,
puts the centroid of the object at the origin of the image.
We therefore assume w.l.o.g. that the images are centered
at the centroid of the object, so that the first moment of
each image is 0. In [20] we defined image metrics, which
compare the images P and Q while taking into account the
desired image equivalences discussed above. We get the
following expressions for the similarity-equivalence metric
dsim (P, Q) and the affine-equivalence metric dq s ¢ (P, Q):

2 poy _ 1 lQPTI? + 2det(@PT)
vim (P> Q) HECE

&;;(P,Q) = 2—-tr(P*P-Q'Q)

where AT = (AT A)~' AT denotes the pseudo-inverse of a
matrix A.

(13)

4.3 The flattest view

Any image P is obtained from some viewpoint Vy ., of the
object by the weak perspective projection of Vy ,P, where
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V., is a 3D orthogonal matrix. Let Sy, denote the 3 x 3
symmetric autocorrelation scatter matrix of the object at
viewpoint Vy .

S9.p =V, P-(Vy,P)T

Definition 1: [The flattest view Iy ,.0:] is the view ob-
tained by parallel projection of the object O from viewpoint
Vs,, whose scatter matrix Sy, is diagonal, and where the
eigenvalues (the diagonal elements) are ordered in decreas-
ing order. Let Sy denote the scatter matrix at the flattest
view, then:

a 0 O
S;=10 b 0
0 0 ¢

where a > b > ¢ > 0 (a,b,c are the 3 principal second
moments of the object).

Recall that a symmetric matrix can always be diago-
nalized by a similarity transformation with an orthogo-
nal matrix. Such a diagonalization of the initial scatter
matrix Sy—o,,=0 is equivalent to a rotation of the coor-
dinate system defining the object shape matrix P. Thus
it is easy to compute the rotation of the object from its
initial representation, so that the flattest view will corre-
spond to Vy—og ,=0. This rotation is the orthogonal matrix
which diagonalizes the original scatter matrix of the object
S¢=0,0=0- It is unique (up to a rotation around the optical
axis of the camera) if b > ¢. Henceforth we will assume
w.l.o.g. that the viewing sphere is initially parameterized
so that Vy—¢,,=0 is the flattest view.

As an example, consider a three dimensional straight cor-
ner, an object composed of the points: {(0,0,0), (1,0,0),
(0,1,0), (0,0,1)}. After centering this object, its three
principal second moments are a =1, b =1, ¢ = 0.25 (note
that they are not all 1!). The flattest view of this object is
shown in Fig. 5.

Figure 5: The flattest view of a straight corner.

4.4 The distance between two views

As defined in Section 3.1, let Vy, , and V; 4 denote 2 view-

points on the viewing sphere of a given object. Let

d(9, ¢, d,1; O) denote the image distance between the cor-

responding images Iy, 4,0 and Is y;0, where d(9, ¢, d,v; O)

is one of the two distance metrics defined in (13).
Simplified expressions for the affine distance:

daff (19; @ 6; ¢7 O) = Daff(ﬁa @, ¢7 O)5+O(62)7 and for the
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0(4?), are given in Appendix A. From the general expres-
sions given in (16) and (17), derived for an object whose
3 principal moments (the 3 eigenvalues of the autocorre-
lation matrix of the feature points) are a > b > ¢ > 0, it
follows that:

Daff(ﬁa @, ¢7 O) =
Vabc
abcos2 9 + ac cos? g sin® ¥ 4 besin® psin® ¥

v/ asy + bsy + cs3

where
s1 = (cost)cosyp — sin cosdsin p)?
sy = (cossing + sint cosd cosp)?
s3 = sin®¢sin?¥

and

Dgim (197 @, ’lp: O) =
\/bc(l — sin” psin® ) + ac(1 — cos? psin® ¥) + absin® I
a(1 — sin? psin® 9) + b(1 — cos? psin® ¥) + csin® 9

Clearly Dgim (9, ¢,1%;0) > 0 and Dgyss(9,9,9;0) > 0,

VY, 0, 9.
It immediately follows that:

Result 2: For both the similarity and affine metrics,
d(9, ¢, 6,1; O) depends only on the 3 principal second mo-
ments (a, b, c) of the object O, regardless of the number of
features in the object or their distribution in space.

This result shows that the 3 principal second moments of
an object completely characterize the stability and likeli-
hood of each of its views, regardless of the particular shape
of the object. Note that this is a result, and not an assump-
tion, of our analysis.

4.5 View likelihood and stability

Substituting D,z ¢(¥, ¢, 1; O) and Dy, (9, @, 1; O) into the
definition (8) (similar results are obtained by substituting
(13) into (10)), we obtain the view stability of an object
whose 3 principal moments are a > b > ¢. Each image
metric defines a different measure:

2 1
i ®p0) = [ ——— 14
Sff( % 0) /asl+b32+c33 (14)
0
1 (abcos®d + accos® psin®J + besin® psin® )%
27 abc N
(abcos® ¥ + ac cos? psin® ¥ + besin? psin® 9) 3
abc
8sim (9,3 0) = (15)

(a(1 — sin? psin® ) 4 b(1 — cos? psin? ) + ¢sin® §)?
be(1 — sin? psin® ) + ac(1 — cos? @ sin® ¥) + absin® ¢

It follows from these expressions (e.g., by differentiation)
that:

similarity distance: dsim (9,9, 9,1; O) = Dgim (9, ¢,1; O)d+ Result 3: [Characteristic views:]
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e In each aspect, under both the affine and similarity
2D metrics and if a > b > ¢, the most stable view is
unique, and it is the flattest view Vy—o,,=0-

e The stability of the flattest view is “TH’ under the sim-

ilarity metric, and ‘/T‘Tb under the affine metric.

o The stability at viewpoint Vy , decreases monotoni-
cally with its geodesic distance from the flattest view
¥ for both the affine and similarity 2D metrics.

Proof:  The result follows immediately from (14)-(15),
as [0 = 0,9 = 0] is clearly the only maximum point of
both sqr¢(9,¢; O) and sgim (9, ¢; O) for any object O =
[a,b,c]. By differentiating with respect to ¥, it can be
shown that both functions are everywhere monotonically
decreasing with 4.

O

Corollary 4: Given a 2D image, and without any addi-
tional information about its 3D structure, the most likely
interpretation is the flattest view, implying that the image
represents a fronto-parallel flat object.

This corollary justifies the heuristic, which assigns depth
0 to points whose depth is unknown, as the optimal deci-
sion based on the available information in one image. In
fact, this heuristic is typically employed by iterative recon-
struction algorithms which assign depth 0 as the default
value in the first iteration (e.g., [13]).

5 Applications: enhanced object recogni-
tion and reconstruction

The following examples illustrate various applications of
view likelihood in object recognition and 3D reconstruc-
tion. We start by computing some characteristic views in
Section 5.1. In Section 5.2 we demonstrate maximum like-
lihood 3D object recognition using simulated images. In
Section 5.3 we demonstrate maximum likelihood 3D recon-
struction.

These applications take advantage of the dependence of
the view likelihood I(+}, ¢; O) on the object O. Treating
1(9, p; O) as a function of O, we can estimate O using max-
imum likelihood estimation: the object O which maximizes
the view likelihood is chosen among all possible objects.

5.1 Characteristic views

It seems plausible to choose the characteristic view in each
aspect of the object to be the most stable and likely view
in the aspect. From Section 4 we identify the characteristic
view of n features to be the flattest view of the features,
or the fronto-parallel view of 3 features. To illustrate this
result we shall compute the flattest view in each aspect of
specific objects, where an aspect includes all the views of
the object from which the same features are visible.

First, to obtain the representation in the canonical co-
ordinate system assumed in Section 4.3, we: (1) translate
the coordinate system so that the centroid of the visible
feature points (in the aspect) is (0,0,0), (2) rotate the co-
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ordinate system so that the scatter matrix of the visible
feature points is a diagonal matrix, with the diagonal ele-
ments decreasingly ordered.

Given a square (non-transparent) pyramid, whose nodes
are at {(07 07 2)7 (17 07 0)7 (07 17 0)7 (_17 07 0)7 (07 _17 0)}7 we
analyze the aspect where 4 feature points, 3 of the basis
nodes {(1,0,0), (0,1,0), (—1,0,0) } and the top of the pyra-
mid (0,0,2), are visible. The flattest view of this aspect is
shown in Fig. 6. The flattest view of a box, in one of its
aspects, is also shown in Fig. 6. Fig. 5 shows the flattest
view of a straight corner.

Figure 6: The flattest views of two opaque objects: a square pyramid
and a box of dimensions 40 x 30 x 25.

5.2 Maximum likelihood object recognition

We return now to the example discussed in the introduction
and illustrated in Fig. 1. We are given a (large) database,
which includes the 3 polyhedral objects shown at the bot-
tom row of Fig. 1. Each object in the database is rep-
resented by the coordinates of a set of feature points (8
vertices in the case of the 3 polyhedral objects). To rec-
ognize the 3 images shown at the top row of Fig. 1, we
proceed as follows:

Step 1: geometrical object recognition A feature-based
object recognition technique (e.g., alignment [14] or
geometric hashing [16]) is first used to compute a list
of candidate objects which match the given images. In
order to predict which objects each system finds with-
out simulating the actual algorithm, we perform the
following meta-analysis: We compute the model-to-
image distances® described in [2] to evaluate how well
each object fits each image. The objects which achieve
a small model-to-image distance are feasible matches
for these geometrical object recognition methods. We
therefore assume that all objects which achieve a sub-
threshold model-to-image distance are chosen by the
object recognition method of choice. The model-to-
image distances are given in Table 1.

It follows that an affine-based recognition algorithm,
such as geometric hashing or linear combination [18],
will produce the set of all 3 objects as feasible matches
for each image. Assuming an error threshold tolerance

3A model-to-image distance measures the distance between the clos-
est view of the object to the given image, up to some 2D image
transformation.
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left image middle image right image || object/image | left image middle image right image
cube 0 (0) 0.3 (0) 0.006 (0) cube 2.24,1.16 (2.6), 1.36 3.12, 1.6
flat box 0.01 (0)  0(0) 0.11 (0) flat box 13.2,19.4 1.16, 0.36 (1.12), 1.76
elongated box | 0.0005 (0) 0.009 (0) 0 (0) elongated box | 0.09, 0.48 27.6, 6.12 0.15, 0.1

Table 1: The model-to-image distances between each of 3 objects in the
database: a cube, a flat box, and an elongated box, to the 3 images shown
in the top row of Fig. 1. The distances up to 2D similarity transformation
are given, whereas the distances up to 2D affine transformations are given
in parentheses. Whenever the numbers are small, it means that there
exists a viewpoint from which the object appears similar to the image up
to 2D rotation and scale.

of about 0.05, a similarity-based algorithm, such as
alignment, will produce shorter lists:

o left image => {cube, flat box, elongated box}
e middle image = {flat box, elongated box}
e right image = {elongated box, cube}

The first object in each list matches the image ex-
actly, and corresponds to the matching shown with
thick white arrows in Fig. 1. The second object in
each list predicts the image quite well (the difference
is illustrated in Fig. 7), and corresponds to the match-
ing shown with thin black arrows in Fig. 1.

(a) (b) (c)

Figure 7: When the images in the top row of Fig. 1 are matched to
the most likely object (illustrated by thin black arrows in Fig. 1), the
matching is not precise. For each image, the difference between the closest
view of the recognized object and the image is shown.

Step 2: maximum likelihood object recognition The
view likelihood is used to select the best interpreta-
tion from the list produced by the geometrical object
recognition algorithm. We assume a uniform prior, so
that (3, ¢;0) = s(¢,¢;0). 1(9,p;0) is computed
for each pair [object=0, image] obtained as a possible
solution in step 1: it is the likelihood of the closest
view of the object O to the image. (The computation
of 5(13,p; O) for one feasible [object,image] pair is de-
scribed in detail in appendix B.) Table 2 contains the
view likelihood values.

Thus the most-likely and most-stable interpretation for
each image, based on either the affine or the similarity
metrics, is:

left image: the flat box (at least 6 times as likely as any
other object)

middle image: the elongated box (an order of magnitude
more likely than the other object suggested by the
alignment method)

Table 2: Each entry in the table corresponds to a pair [object,image].
Two numbers are given in each entry: the similarity stability defined in
(15), and the affine stability defined in (14), of the closest view of the
object O to the image. Non-feasible solutions (from the lists produced in
step 1 of the algorithm) are given in parentheses.

right image: the cube according to the similarity metric;
the affine metric cannot decide between the cube and
the flat box, and should return both as likely solutions

Reading Table 2 by rows, we see that the likelihood of
the images of the cube, the most symmetrical object, vary
much less than the likelihood of the images of the flat box
or the elongated box. This is because the eigenvalues of
the cube differ much less (note that in the limit where
a = b= c =1, all the images of such an object are equally
likely).

5.3 Maximum likelihood reconstruction:

When there exist cues for 3D structure, but many recon-
structions are feasible, the view likelihood may be used to
select the best among the solutions under consideration (cf.
[10]). We will describe below 2 examples of such a process:
one with an object with fiducial points, the other with a
shaded smooth object. In these examples once again, we
assume that the prior on the viewing sphere is uniform
and thus view stability and view likelihood are identical
and can be used interchangeably.

5.3.1 Object matching using fiducial points

Figure 8 A battery charger. Its real dimensions are: depth - 22.5,
length - 28, and height - 19 (all in cm.). When normalized by length, the
maximum likelihood estimation of these dimensions gives: depth - 19.5,
height - 21.

Consider the battery charger picture shown in Fig. 8.
From the text on the object we know that the object is
a battery charger, and we presumably know that battery
chargers are box-like in shape. Our task is to compute
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the dimensions (up to scale) of the charger from the im-
age coordinates of the 7 visible vertices of the charger’s
enveloping box. It follows from the computation described
in Appendix C that the most likely interpretation of the
picture is a box of dimensions 19.5 x 21 x 28, whereas the
actual dimensions of the charger are 22.6 x 19.1 x 28 cm.
Thus the picture is interpreted as a bit flatter and shorter
than it really is.

5.3.2 Matching smooth objects using grey levels

In order to compute the stability and likelihood of gray
level images, we assume a fixed lighting source and the
knowledge of the reflectance map of the object. The dis-
tance between similarity normalized gray level pictures (pic-
tures that are normalized so that their scale is, say, 1, and
their main axis is aligned along the X-axis, for example) is
taken to be the sum of squared differences of gray levels.
We have computed the stability of this distance function
numerically for Lambertian ellipsoids.

Consider the ellipsoids in Fig. 9: the length of the first
two axes of the ellipsoid to the left are immediately measur-
able from the picture, but the height (depth) can only be
derived from the gray levels. If we want to select the best
interpretation for the height of the ellipsoid given that the
picture is noisy, we pick the most likely height such that
the distance between rendered pictures is small (less than
5 gray level values per pixel on the average). This results
in choosing a flatter ellipsoid with parameters 1,2,3.2 in-
stead of 1,2,5. This flattening effect is consistent with
psychological evidence in humans [5]. (Note that human
judgment takes into account many other priors and heuris-
tics on the kind of shapes one is likely to encounter; thus we
only expect to see correspondence between human perfor-
mance and the most stable views under rather simple and
impoverished conditions, such as the images of Lambertian
ellipsoids.)

Figure 9: Left: the rendering of an ellipsoid with principal axes of
length 1,2,5. Right: the rendering of the most likely reconstruction of
the left picture, an ellipsoid with principal axes of length 1,2, 3.2.

6 Summary

We described how to obtain characteristic views: one can
use the view likelihood which measures how typical an im-
age is, or the view stability which measures how generic
an image is. Both measures are identical when the prior
distribution of camera orientations is uniform. We showed
how to compute these measures in the general case, given
only the 2D metric that tells images apart. We then elabo-
rated on two examples of feature-based image metrics. The
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incorporation of these measures in 3D object recognition
and 3D reconstruction is likely to increase the robustness
of the system.

A Affine and similarity distances

Using Maple(©, we simplified d(¢3, ¢, d,1; O) for the two
metrics defined in (13). For the similarity metric we get:

(1 — cosé) (abuy + acvs + bevs)
u(awy + bws + cws)

dzim (7-97 ¥, 67 ¢; O) =

where

vi = 1—2cos>¥cosd + 2 cos?sindsinddcost) + cosd

vs = 1—2cosdcos®psin®® + cosd —

2 cos ) cos? psin d sindd cos ¥ +

2 sin 9 sin § sin  cos @ sin ¥

1+ 2 cosd cos? ¢ + 2 cosésin® ¢ cos® ¢ —
2 sin ) sin § sin p cos p sin ¥ —

2 cos v sin® @ sin § sin ¥ cos ¥ — cos &

—2 ¢0s § cos 1 sin & cos ¥ sin 9 sin ¢ —
2 cos  sin ¢ cos ¥ sin? § cos 1) sin ¢ —
cos? ¥sin? § cos? i sin® p + 1 —

2 cosy cos g sin ) sin d sin ¥ sin ¢ —
sin? ¥ cos? § sin? ¢ — cos? psin? § sin? ¢
2 cos psin @ cos ¥ sin’ § cos ¢ siny +
sin? psin § cos® 1 + cos® psin? § +
cos? 9 cos® § cos® ¢ + cos® §sin? ¢ +

2 cos @ cos d sin 1) sin d sin ¥ sin ¢ —

2 cos d cos 1 sin § cos ¥ sin ¥ cos? ¢ —
cos? ¥sin? § cos? ¢ cos® ¢

14 2 cos¥sin dsin cosd cos) —
cos? ¥ cos? § — sin? ¥ sin? 6 cos? ¢

For the affine metric we get:

w3y =

sin? § (av1 + buy + cvs3)

dgff (0,9,0,4;0) = abcu(abwl + acws + bews) (17)
where
vi = (costcosyp — sint cosdsin )’
vy = (costsing + singcosdcosp)’
vs = sinZesin?
u = abcos® ¥ + accos® psin® ¥ + besin? psin? ¥
w; = (sindcosysind — cosdcosdy)’
wy = (cosdsind cosp — sindsinsinp)® +
sin? § cos? ¢ cos? ¥ cos® ¢ —
2 cos 1 sin 1 cos ¥ cos @ sin” §sin ¢ +
2 cos § cos 1) cos? psin & sin 9 cos
w3 = 2 cosdsindsincospsinysing +

a (1 —sin® psin®9) + b (1 — cos® psin®¥) + csin® I
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2 cos d cos ¢ sin? psin 6 sin ) cos ) +
sin? § (cos 1) cos ¥ sin ¢ + sin 1 cos @)? +

cos? §sin? ¥sin?

B Calculating view likelihood and
stability:

Below we go through the details of the computation of
1(9,¢; O) and s(d,p; O) for one [object,image] pair: the
flat box and the left image in Fig. 1.

1. We take the stored 3D coordinates of the set of 7
matching vertices of the flat box, and translate and
rotate them (as described in Appendix 4.3) so that
Vio=0,0=0 is the flattest view. Let P denote the 3 x 7
matrix representing the model of the flat box, whose
3 principal eigenvalues are: a = 8,b = 5.7,¢ = 0.25.
The 7 visible vertices of the flat box, before and after
the transformation to a canonical system, are:

02 -02 -02 02 02 02 -0.2
1 1 -1 -1 -1 1 1 =
1 1 1 1 -1 -1 -1
0 0 1.4 1.4 0 —1.4 —1.4
P = —1.2 —1.2 0.19 0.21 1.6 0.21 0.19
024 —-0.16 —0.24 0.16 0.076 0.16 —0.24

2. Using the algorithm described in [2], we compute the
view (up to similarity transformation) of the flat box
closest to the left image. Let p denote the 2 x 7 matrix
representing this image:

0.35 0.47 1.4 1.3 —0.59 —-1.5 —1.4

pP=

—0.99 —-1.2 0.70 0.87 1.5 —0.37 —0.54

The difference between this view of the flat box and
the left image is 0.01 (see Table 1). Fig. 7a shows
the closest view of flat box superimposed on the left

image.
3. We compute the angles [}, ¢] such that:
cosp  sinpg O 1 0 0

IIs | —sinpg cosp O 0 cos? sind
0 0 1 0 —sind cos?

cosp —singp O

sing cosep O |-P=p
0 0 1

where II is the orthographic projection matrix
(1 0 0), s a scalar, and p € [0,27) representing

010
the rotation of the object in the image plane. We

therefore need to solve the following equation:
p- Pt l COS 4 €08 ¢ + sin 1 cos ¥ sin @

lp-P+|| — sin g cos ¢ + cos p cos ¥ sin

—cospsing + sinpcosdcosy  sin(p) sind

sin psin g + cospcosdcosp  cospsind
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where Pt = PT(PPT)~! denotes the pseudo-inverse
of P. This equation has a unique solution in the range
9 € [0, 7], € [0, 2], since we started with a matrix p
which is a real projection after rotation of the matrix
P. The simplest way to compute 9, ¢ is to solve for
the matrix equality above element-by-element. For the
matrices p and P of the flat box we get:

9 =26° ¢=-15° pu=—-37°

We now substitute a = 8,b = 5.7,¢ = 0.25 and ¢ =
0.46, o = —0.25 (the values in radians) into (14)-(15), to
obtain the measures of view likelihood and view stability of
the left image when compared to the flat box.

C Max-likelihood reconstruction:

We denote the dimensions of the charger shown in Fig. 8
by d x h x 28, where d is the depth of the charger, h its
height, and 28 the length of the front face (which scales the
remaining measurements). To find the best reconstruction
of the charger, we search the parameter space (d,h) in 2
stages:

1. We first compute the model-to-image distance between
each model and the picture. This gives us the function
shown in Fig. 10. A picture of the correct model, which
obtains a small image error, is shown in Fig. 11-left.

Figure 10: The model-to-image distances, as a function of the param-
eters d, h, of the picture shown in Fig. 8. The coordinates are drawn in
log scale in the ranges d € [14,86], h € [14.5 — 41].

O

Figure 11: Left: a view of the correct model (which obtains a small
model-to-image distance), super-imposed on the image of the original ver-
tices of the charger. Right: the view of the most likely model, super-
imposed on the original vertices. Clearly, both interpretations match the
data reasonably well.
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2. We estimate an upper bound on the noise in the image
to be 4 times the 3D-affine distance between the model
and the image*. Among all the models, whose model-
to-image distance is smaller than this noise threshold,
we choose the most likely one based on the view like-
lihood of the best view of each model.

Fig. 12 shows the likelihood of all the interpretations for
which the model-to-image distance was smaller than the
noise threshold; this function was computed as described
in the object recognition example in Section 5.2.

Figure 12: The likelihood of the picture shown in Fig. 8, as a function
of the parameters d, h. The coordinates are drawn in log scale, in the
ranges d € [14 — 86], h € [14.5 — 41]. The likelihood is set to 0 for
parameter values for which the model-to-image distance is larger than
the noise threshold. The left image gives lq5s, and the right is lsim.
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