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A Lexicon Driven Approach to Handwritten
Word Recognition for Real-Time Applications

Gyeonghwan Kim and Venu Govindaraju

Abstract —A fast method of handwritten word recognition suitable for real time applications is presented in this paper.
Preprocessing, segmentation and feature extraction are implemented using a chain code representation of the word contour.
Dynamic matching between characters of a lexicon entry and segment(s) of the input word image is used to rank the lexicon entries
in order of best match. Variable duration for each character is defined and used during the matching. Experimental results prove that
our approach using the variable duration outperforms the method using fixed duration in terms of both accuracy and speed. Speed
of the entire recognition process is about 200 msec on a single SPARC-10 platform and the recognition accuracy is 96.8 percent are
achieved for lexicon size of 10, on a database of postal words captured at 212 dpi.

Index Terms —Handwritten word recognition, segmentation algorithm, variable duration, chain code representation, dynamic
programming.

——————————   ✦   ——————————

1 INTRODUCTION

NCONSTRAINED handwritten word recognition by a
computer program is a challenging task. It has several

applications such as reading addresses on mail pieces [1],
[2], [3], reading amounts on bank checks [4], [5], extracting
census data on forms [6], [7], reading address blocks on tax
forms [8], and routing FAX messages. The challenge stems
mainly from the wide variety of writing styles. Handwrit-
ten words can be classified into three categories: cursive,
hand-printed and mixed (Fig. 1). Moreover, programs have to
deal with image degradation caused by the transmission me-
dia, inaccurate digitization and lack of temporal information.

Since a word is essentially a sequence of characters, a
natural approach to word recognition is to segment the
word into characters and recognize the individual charac-
ters using optical character recognizers (OCR). In most ap-
plications it is reasonable to assume that a lexicon is pro-
vided. The lexicon can be either static or generated dynami-
cally. The task of address interpretation on a mailpiece is an
example of an application where the lexicon is generated
dynamically. The ZIP code on the address provides all possi-
ble city names or street names as the lexicon. Different ZIP
codes provide different lexicons [2]. An example of an appli-
cation with static lexicon is the reading of amounts on bank
checks. The lexicon is fixed in this case to about 40 words.

Segmentation and recognition of cursive script have
been adequately described in the literature [4], [9], [10],
[11], [12], [13]. The task of segmentation is integrally cou-
pled to the recognition methodology and is analogous to
segmenting continuous speech [14]. In the case of hand-

printed script (Fig. 1a), segmentation is a relatively simple
task. In the case of cursive script (Fig. 1b) and mixed script
(Fig. 1c), however, segmentation is relatively hard. Several
approaches have been explored. Typically, words are first
classified into a category of their type and subsequently dif-
ferent schemes are applied depending on the script type [15].

Fig. 1.  Types of handwriting: (a) Hand-printed, alphanumeric. (b) Cur-
sive. (c) Mixed.

In this paper, we present a method of word recognition
that uses word models (as opposed to character models).
The key concept underlying this approach is the early in-
volvement of lexicon in the recognition process. The word
image is compared with only words present in the lexicon
thus eliminating any need for post processing (an essential
step in traditional segmentation-OCR-post processing para-
digms). Since lexicons are small in a majority of applications
this is an attractive approach.

Also, the concept of variable duration, which is obtained
from character segmentation statistics and used for deter-
mining the size of matching window during the recogni-
tion, is introduced in this paper. The variable duration
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maximizes the efficiency of the lexicon driven approaches
of the handwritten word recognition in terms of both speed
as well as recognition accuracy.

In addition, we present a robust image handling scheme
for all types of script. Chain code representation of contours
of word images is used for efficient image processing.

Section 2 describes the overall methodology of the rec-
ognition system. Section 3 describes the chain code repre-
sentation, and preprocessing operations. Section 4 describes
segmentation strategies for partitioning a word image into
characters. Section 5 describes feature extraction. Section 6
outlines the recognition and training strategies. Section 7 is
about experiments and results. Section 8 provides a sum-
mary of the work presented in this paper.

2 METHODOLOGY

The objective is to develop a fast handwritten word recog-
nition system for real time applications that accepts all
types of script described in Fig. 1. Fig. 2 illustrates the
methodology that has been developed. There are two proc-
essing phases: training and recognition. Input images go
through the steps of chain code generation, preprocessing,
segmentation and feature extraction in both phases.

1) Chain code generation step converts the binary image
input into a chain code representation by coding the
boundary contours of components in the image while
preserving the positional and directional information
of adjacent pixels [16]. An array is defined for efficient
representation and manipulation of data. Single pixel
components (speckle noise) are detected and re-
moved. Subsequent image handling steps work with
chain code data.

2) Preprocessing step includes noise removal, slant cor-
rection and smoothing [9], [17]. Noise introduced by
digitizing devices and transmission media, is elimi-
nated by comparing the size of connected compo-
nents with an estimate of average stroke width. Slant
angle is estimated by averaging orientation angles of
“vertical” strokes and shifting the x-coordinates of
components accordingly. Smoothing removes jagged-
ness of the contours (some introduced during slant
correction).

3) Segmentation step returns the segmentation points to
be used for grouping one or more segment(s) to form
meaningful characters. The segmentation points are
determined using a combination of ligatures and con-
cavity features on the contour. Average stroke width

Fig. 2. Word recognition methodology.

Fig. 3. Matching between a sample image and one lexicon entry “word.” (a) Segmentation points. (b) Confidence of match. (c) Matching
paths and confidences.
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of an image is estimated and used in an adaptive
fashion to determine the features. The number of
segmentation points is kept to a minimum while en-
suring that a segmentation point exists to split
touching characters and the maximum number of
segmentation points per character is four.

4) Feature extraction step generates feature vectors for
combination of segments that are hypothesized to be
characters. Global and local features are defined and
extracted from 3 ¥ 3 subimages of the segment(s) rep-
resented by their chain code.

5) Training phase uses a training set consisting of binary
word images different from the test set. The reference
of character segmentation points in the input image
are determined manually. Segmentation statistics
such as how often a particular character is split into
how many segments (1 … 4) is stored. Feature vectors
are extracted for the manually referenced character
segments and used by a clustering algorithm to find
cluster centroids of characters to be used in recognition.

6) Recognition phase uses segmentation statistics, charac-
ter cluster centroids, a dictionary, and feature vectors
derived from the test image. A dynamic matching
scheme is used to compare features of a segment or a
combination of consecutive segments with the cluster
of centroids of a character in a lexicon entry. This pro-
cedure is used to rank the lexicon entries. Fig. 3 illus-
trates the recognition procedure. A sample word im-
age, “word,” is split by the segmentation algorithm
(Fig. 3a). The example illustrates the matching scheme
between the image of Fig. 3a and one lexicon entry
“word.” In Fig. 3c, arcs between adjacent nodes repre-
sent the possibility of grouping the image segments
(Fig. 3a) between those segmentation points as a char-
acter hypothesis. For example, the arc from node 2 to
node 5 represents the confidence of match between
cluster centroid of “o” (from training) and the feature
vector extracted from the point two to five in the im-
age. The idea of taking the comparison range limiting,
which is based on the statistics obtained during the
training phase, is introduced to avoid unnecessary
computation during the recognition phase.

3 PREPROCESSING

We have adopted the chain code method of image repre-
sentation [18], [19] which allows a compact representation
and reduction of data and hence processing time [20].
Chain code is a linear structure that results from quantiza-
tion of the trajectory traced by the centers of adjacent
boundary elements in an image array. Each data node in
the structure represents one of eight grid nodes that sur-
round the previous data node. Fig. 4a shows the slope con-
vention used.

For efficient manipulation, certain properties of the chain
code contour are stored in an array (Fig. 4b). Data fields in
the array contain positional and slope information of each
component of the traced contour. Properties stored in the
information field are: The coordinates of bounding box of
the contour, number of components in the corresponding
data fields, area of the closed contour, and a flag which in-
dicates whether the contour is interior or exterior. Chain
code representation of an entire image consists of n such
contour arrays cascaded, where n is the number of closed
contours. Properties of a component are defined by assigning
different numbers in the status and mode fields. Selection of
a contour is achieved by searching the information field.

Normalization operations are performed to adjust skew,

Fig. 4. Chain code representation. (a) Slope. (b) Structure.

Fig. 5. Slant normalization using chain code. (a) Original image. (b)
Chain code. (c) and (d) Downward and upward vertical lines, respec-
tively (counterclockwise tracing). (e) Slant correction based on the
angle estimated from lines in (c) and (d). (f) Connecting broken chain
code. (g) Result of smoothing.
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slant, stroke width, and size [10], [11], [17]. Digital capture
of images can introduce noise from scanning devices and
transmission media. Furthermore, script often has slant and
skew which needs to be corrected before segmentation and
recognition can begin. Smoothing operations are used to
eliminate the artifacts introduced during image capture and
slant normalization.

This section describes three preprocessing stages applied
to chain code data:

• slant angle correction,
• smoothing, and
• average stroke width computation.

3.1 Slant Angle Correction
Vertical and near vertical lines are extracted by tracing
chain code components using a pair of one dimensional
filters. Because the chain code has one dimensional structure,
vertical lines having opposite directions are extracted using
the filters. Each filter is a five element array of different
weights as shown in Algorithm 3.1. A convolution operation
between the filter and five consecutive components is applied
iteratively by sliding the filter one component at a time.

Coordinates of the start and end points of each vertical
line extracted provides the slant angle. Global slant angle is
the average of all the angles of the lines, weighted by their
length in the vertical direction since the longer line gives
more accurate angle than the shorter one. Fig. 5c and d rep-
resent upward and downward vertical lines detected by the
algorithm.

Algorithm 3.1.
v_up[8]  = {2, 1, 0, 1, 2, 3, 4, 3}

v_down[8]  = {2, 3, 4, 3, 2, 1, 0, 1}
for  i = strat_component
to  end_component step  1

sum_slope_up  = 0;
sum_slope_down  = 0;
for  j = i  - 2 to  i  + 2 step  1

sum_slope_up  = sum_slope_up
+ v_up[j.slope];
sum_slope_down  = sum_slope_down
+ v_down[j.slope];

end
if  sum_slope_up < THRESH_V
then  i.status = MARK_UP  fi
if  sum_slope_down < THRESH_V
then  i.status = MARK_DN  fi

end

Tangent of the estimated global slant angle (q) is used to
correct for slant. Equation (1) shows the adjustment made
to the x-coordinates.

xn = x – y tan(q)
yn = y (1)

Quantization error incurred during the correction process
introduces “jigs” and broken points in the horizontal direc-
tion (Fig. 5e). An interpolation method is applied to connect
the broken points (Fig. 5f). The slant normalization algo-
rithm assumes that the slant angle is between –45∞ and 45∞.

Fig. 6. (a - g) Types of smoothing operations—for each type, left sequence turns into right sequence after the smoothing operation (¥ represents
elimination of the components and s represents starting point). (h) Shows how the algorithm is working for a sequence of components.
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3.2 Smoothing
Smoothing includes elimination of small blobs on the con-
tour and illegal combinations of chain code slopes. A slid-
ing three-component one dimensional window is applied
over all components. All combinations of three adjacent
chain code slopes are analyzed and classified into only
seven types based on the treatment warranted.

• Type 0: Needs no correction,
• Type 1: Remove first component and adjust slope of

second component,
• Type 2: Remove second component and adjust slope

of third component,
• Type 3: Remove second and third components,
• Type 4: Remove first and second components and

adjust slope of third component,
• Type 5: Remove all three components, and
• Type 6: Adjust slopes of second and third component.

Fig. 6 shows examples of each case. Depending on the
type, components can be removed from the chain code
structure, and coordinates and slopes of components can be
updated to maintain the relation between adjacent pixels.

Fig. 6h shows components and the corresponding slopes of a
sequence of components before (left) and after (right) apply-
ing the algorithm. Table 1 describes steps in the smoothing
process.

TABLE  1
STEPS OF SMOOTHING PROCEDURES FOR FIG. 6h

Box represents window for classification.

3.3 Computation of Average Stroke Width
Stroke width can vary locally depending on writing devices
and paper within a script. It is reasonable, therefore, to talk
of average stroke width and it can be used for the other

Fig. 7. Estimating average stroke width. (a) Measuring y-distances for each x-coordinate. (b) Analyzing occurrences of stroke widths.

Fig. 8. Segmentation. (a) Original test image. (b) Chain code representation after slant normalization. (c) Splitting upper and lower contours.
(d) Ligatures based on the average stroke width. (e) Concavities/convexities. (f) Segmentation points.
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image processing procedures in adaptive manner (e.g., de-
tection of small components as noise). To estimate average
stroke width, chain code contours of a word image are di-
vided horizontally (Fig. 8c). By tracing contours from the
left-most point to the right-most point, following distances
are computed for each x-coordinate (Fig. 7a):

1) distance between upper and lower trace of the outer
contour

2) distance between the upper trace of the inner contour
and upper trace of the outer contour

3) distance between lower trace of the inner contour and
lower trace of the outer contour

The histogram in Fig. 7b shows the number of occur-
rences of each distance value for the image of Fig. 8. The
peak of the histogram gives a good estimate of the average
stroke width (2).

N d

P N
d

d
d

d

=

=

number of occurrences of distance value 

arg maxc h (2)

To account for the fluctuation in pen movement, actual
average stroke width is estimated by analyzing the shape of
the histogram (Algorithm 3.2). For example, if the shape is
dull, then the actual stroke width is greater than Pd by consid-
ering neighbor stroke widths until the condition is satisfied.

Algorithm 3.2.

d = P
d
;

whilewhile (d < MAX_STROKE_WIDTH ` N
d
 > P

d
/2)

d = d + 1;
endend
actual_stroke_width = d + 1;

4 SEGMENTATION

A segmentation algorithm should be general and robust to
handle various styles of writings and thickness of strokes.
We make the following assumptions:

1) the number of segments per character must be at most
four, and

2) all touching characters should be separated.

Handwriting is generated from the movement of a pen
from left to right along an axis in the horizontal direction,
giving rise to what are called ligatures. The ligatures are
strong candidates for segmentation points in cursive
scripts. Ligatures are extracted as follows. If the distance
between y-coordinates of the upper half and lower half of
the outer contour for a x-coordinate is less than or equal to
the average stroke width, then the x-coordinate is marked
as an element of a ligature. This procedure is repeated for
subsequent x-coordinates. Ligatures in the extremities are
eliminated to reduce the number of potential segmentation
points. Fig. 8d shows ligatures obtained for an example
word image.

On the other hand, segmentation points between dis-
cretely written (as opposed to cursive) touching characters
cannot be hypothesized by ligatures alone. Alternatively,
concavity features in the upper contour and convexities in
the lower contour are used in conjunction with ligatures
(Fig. 8e). Heuristics are applied to reduce the number of

potential segmentation points (e.g., if ligatures and concav-
ity features overlap, concavity features are ignored, and if a
concavity and a convexity are overlapped in a x-coordinate,
a segmentation point is assigned in the x-coordinate). The
final segmentation points are stored with the corresponding
segment information which consists of a number of com-
ponents such as indices of related contours and coordinates
of the bounding box of the segment.

Segmentation statistics of each character represent the
possible ways in which a training character image can be
split into segments. Equation (3) gives the computational
form for computing the duration probability (dur(j, i)).

dur j i

j K
K

Ki
i

i

,

Pr

c h

d i c h
c h

=

=
No.  of times that training character  is segmented into j segments

no.  of training characters of 
(3)

where Ki = 0, 1, L,9, A(a), B(b), …, Z(z) , i = 1,
2, …, 36, and j = 1, 2, 3, 4. Table 2 shows the segmentation
statistics which obtained by applying our segmentation
scheme to training word images. It can be seen that almost
82 percent of characters of 0 (zero)  are not split, and
18 percent of them are split into two.

Our assumption allows at most four segments per char-
acter during the segmentation phase. However, statistics
reveal that the upper limit of four segments is valid for only
a few characters (such as “m” and “w”), and that for most
characters it is less than four. In contrast to [21], where the
statistics are used as the transition probability between
character segments, this information is used to advantage
in speeding up the matching step of the recognition phase
and improving recognition accuracy. Confusions are re-
duced by matching within the window size controlled by
the statistics, number of characters in a lexicon entry, and
number of segments of the word image.

5 FEATURES

We have designed a feature extractor that converts chain
code images into feature vectors in a simple and fast man-
ner. The same feature extraction procedure is used in both
the training and recognition phases as shown in Fig. 2. In
the training phase, extracted features are provided to a
clustering procedure so that patterns of similar shapes can
be represented by a code word of the trained code book
[22]. Also segmentation statistics are obtained during the
training phase. In the recognition phase, features of seg-
ment(s) of a test image are compared to the code words to
find the best match.

5.1 Chain Code Features
Seventy-four chain code based features are used. Two
global features—aspect ratio and stroke ratio of the entire
template (a segment or a combined segment)—are used (4).
Each segment is divided into nine subimages (3 ¥ 3) and
local features are collected from each subimage. Distribu-
tion of the eight directional slopes for each sub-image form
the 72 local feature vectors (8 ¥ 3 ¥ 3) as shown in (5).
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• Global Features

F
H V

V ig
i i

ii
=

-F
HG

I
KJ =sigmoid   for 1 2, (4)

where
H1 = Xmax – Xmin,     V1 = Ymax – Ymin  for aspect ratio
H2 = Nhorizontal_stroke,   V2 = Nvertical_stroke  for stroke ratio

• Local Features

F
s

N S i jl
ij

i j
ij

= = =for and 1 2 9 0 1 7, , . . . , , , . . . , (5)

where sij = number of components with slope j from
subimage i,

Ni = number of components from subimage i and

Sj = max
i

ij

i

s
N

F
HG

I
KJ

5.2 Clustering Training Data
To provide reference feature vectors in the matching proce-
dure, we use a clustering method based on character level
data and build a code book. The code words are trained
using 21,054 character images which are extracted from

TABLE  2
SEGMENTATION STATISTICS

Number of Segments Number of Segments

1 2 3 4 1 2 3 4

0 0.81646 0.17655 0.00662 0.00000 i 0.94677 0.05015 0.00307 0.00000

1 0.99882 0.00118 0.00000 0.00000 j 0.54902 0.31372 0.13725 0.00000

2 0.36199 0.58329 0.05080 0.00390 k 0.18085 0.62234 0.17819 0.01861

3 0.62680 0.35355 0.01848 0.00115 l 0.86100 0.12050 0.01800 0.00050

4 0.09486 0.77207 0.12768 0.00477 m 0.00000 0.08317 0.70406 0.21276

5 0.44688 0.43248 0.11035 0.00891 n 0.03304 0.75373 0.20456 0.00865

6 0.07897 0.90418 0.01684 0.00000 o 0.77521 0.20979 0.01498 0.00000

7 0.63985 0.32673 0.03341 0.00000 p 0.42901 0.50925 0.05864 0.00308

8 0.75980 0.23124 0.00825 0.00068 q 0.55555 0.22222 0.22222 0.00000

9 0.75553 0.23855 0.00517 0.00073 r 0.64878 0.31138 0.03577 0.00406

a 0.50623 0.44725 0.04574 0.00075 s 0.66912 0.28571 0.04331 0.00184

b 0.36559 0.44802 0.16845 0.01792 t 0.69116 0.27010 0.03078 0.00794

c 0.83636 0.14965 0.01398 0.00000 u 0.01084 0.95664 0.03116 0.00135

d 0.35555 0.52888 0.10666 0.00888 v 0.05166 0.89298 0.05535 0.00000

e 0.79811 0.17643 0.02378 0.00165 w 0.00000 0.02443 0.86278 0.11278

f 0.61696 0.32432 0.05312 0.00559 x 0.18650 0.61904 0.18650 0.00793

g 0.39736 0.50789 0.08157 0.01315 y 0.08144 0.78733 0.13122 0.00000

h 0.11460 0.68576 0.16081 0.03881 z 0.44444 0.44444 0.11111 0.00000

Fig. 9. Samples of clustering results. (a) Character G/g. (b) Character N/n.
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handwritten images of U.S. city names using the same seg-
mentation method used in recognition. K-means clustering
algorithm with a fixed signal-to-noise ratio and fixed
maximum number of clusters is used. Fig. 9 shows samples
of the clustering results for character G/g and N/n. The
clustering algorithm gathers characters which have similar
shapes in terms of features and feature vectors of the clus-
tered characters form code words to represent the cluster. A
table containing all code words of characters in the code
book is used in the recognition phase.

6 RECOGNITION

The objective is to find the best match between a word in
the lexicon and the image. Depending on the metric used
for classification and the method of lexicon handling, vari-
ous matching schemes are possible. A dynamic matching
approach which has been extensively studied by the speech
recognition community [23], [24], [25] is used. Instead of
passing on combination of segments to a generic OCR, the
lexicon is brought into play early in the process. A combi-
nation of adjacent segments (up to a maximum of four
based on our segmentation criteria) are compared to only
those character choices which are possible at the position in
the lexicon entry being considered.

In the matching procedure, comparisons between feature
vectors of several possible combinations of segments and
reference feature vectors of code words are made to find
the best match. Since code words are trained at the charac-
ter level and a character can be composed of up to four
segments, a segment or a combination of segments is com-
pared to the code words of reference characters within a

permissible window in the first phase of the matching. For
each match, the minimum distance value of each comparison
is retained. In the second phase of the match, a global opti-
mum path is obtained by using dynamic programming based
on the saved minimum distances of the first matching phase.

Let an input word image be denoted as

T s s sSN
= -0 1 1, , . . . ,{ } (6)

in which SN is the number of segments in the input image
and sk represents the kth segment. Let the lexicon entries be
referred to as Ri.

Ri = {ci(0), ci(1), …, ci(CN(i) – 1)}     1 £ i £ LN
(7)

where CN(i) is the number of characters in the ith lexicon
entry, LN is the number of lexicon entries, and ci(j) repre-
sents the jth character of the ith lexicon entry. Let us define
the notion of merged segments as follows:

S b e s s s

s b S e S b e

b b e

v v b

e

N N

, . . .

, ,

b g m r
m r

= ≈ ≈ ≈

= £ < £ < £

+

=

1

0 0for and (8)

where b is a beginning segment and e is an ending segment,
and ≈ is the merging operator (Fig. 10).

From the training data of clusters, code words of all
characters, Cm, can be obtained:

C xm m i

N
i m=

=
a fm r 1

(9)

where m = 0, L, 9, a, L,z , Nm is number of code
words of character m, and xm(i) represents the ith code word

Fig. 10. Splitting and merging of segments. (a) Segmentation result. (b) Examples of splitting and merging and corresponding notations.
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of character m.
Therefore, the basic problem of matching can be de-

scribed as follows: For a given input word image, T, find a
lexicon entry, Ri, which has the minimum distance from T:

D D R T

R D R T

i L i

R i

N

* =

* =

£ £
min ,

arg min ,

1
c h

c h
(10)

First, matching between each character of a given lexicon
entry (ci(j), 0 £ j < CN(i)) and an arbitrary portion of the seg-
ment(s), specified by b and e, of the test input T is performed.

$ , , , ,D v b e d S b e v v N
c j c ji i

b g b gc h a fb g b g= FH IK £ <F x for 0  (11)

where d(◊, ◊) is distance between two feature vector and F(◊)
represents feature extraction operation for segment(s). Equa-
tion (11) gives the distance between each code word of char-
acter ci(j) and all possible pairs of test segments starting at b
and ending at e. The best match for all v is obtained by (12).

D b e D v b e
v N

ci j

, min $ , ,b g b g
b g

=
£ £1

(12)

For meaningful alignment of segment(s) against a character
of a lexicon entry and minimization of computational com-
plexity, we apply constraints on the segmentation criteria,
number of characters in a lexicon entry, and number of
segments in a test image. These factors together determine
the size of the permissible matching window. Accordingly,
the range of ending segments for ci(j) is decided as follows.

e S C i j j M

e S C i j M j j C i

j
N N d

j
N N d N

max

min

= - - + ◊ -

= - - + ◊ - = -

min ,

max , , . . . ,

b gc h c he j
b g c hd ie j b g

1 1

1 1 1 1for (13)

where Md is the maximum number of segments per char-
acter, i.e., four.

The range is determined according to our segmentation
assumptions: A character in Ri consumes at least one seg-
ment and a character can be segmented as many as Md

segments. The interval between e j
min  and e j

max  is used to de-
termine the matching window size for the reference char-
acter ci(j). For a given range of ending segments, a starting
segment, b, is determined based on the notion that b should
be bigger than emin of the previous character and at most Md

segments can be combined for the match. Table 3 shows the
computation results of D b e,b g  in (12) for the example word
image in Fig. 10. The horizontal axis represents the ending
segment number and the vertical axis represents the jth
character of a lexicon entry. Four rows for each character
are shown representing the duration of segments, one to
four, from bottom to top. For example, a component in
third column (ending segment number of two) and second
row (duration of two) of second character (j = 1, y in this
particular example) represents D 1 2 12 41, .c h = . Similarly,
the component with ending segment number of 5, j = 2(r)
and duration of four represents D 2 5 11, .59c h = . Equa-
tions (11) and (12) are computed within the matching window,
thus significantly reducing the computational complexity.

In addition to the limiting matching ranges, early rejec-
tion of some lexicon entries is a big advantage of this lexi-
con driven scheme. If a lexicon entry Ri satisfies one of the
following conditions in (14), Ri is rejected before the first
stage matching is performed.

       SN > Md ◊ CN(i)
      SN < CN(i)

(14)

In contrast to other lexicon reduction schemes, the rejection
does not affect recognition accuracy. Furthermore, if a part
of a word segment has been compared with a particular
character in a specific position in a lexicon entry, future
comparison with the same character in other lexicon entries
is avoided by reusing all the matching results.

In the second stage, the individual matching scores of the
first stage are combined to compute the accumulated cost
(distance) over the entire lexicon entry. This is accomplished
by using dynamic programming. Distance of the best path
ending at segment e for each jth character is computed by (15).

D e D b e D bj b e ja f b g b g= + -
£ £ -min ,

1 1 1 (15)

Based on the recursion of (15), we can formulate the second
stage of this dynamic matching procedure for determining
the overall best path as follows.

• Step 1: Initialization

D e D e e Md0 0 0 1a f a f= £ £ -, (16)

• Step 2: Recursion

D e D b e D b e e e
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min ,

. . .

min ,

min max

min max

min max

min max (17)

• Step 3: Final Minimum Distance

D D SC NN

*- --1 1c h (18)

Table 4 shows the computation results of dynamic pro-
gramming based on the first stage matching shown in Ta-
ble 3.

Further minimization of computational complexity is
achieved by using the statistics of Table 2. We have as-
sumed that a character can be split into at most four seg-
ments. However, according to the segmentation statistics
shown in Table 2, most characters are composed of less
than four segments. Furthermore, the frequently used char-
acters, such as “i” and “l,” are split into less than three
segments 98 percent of the time. Table 5 shows the maxi-
mum number of segments per character used in the system
(Table 2). Md used in (13) is now replaced by the variable
duration shown in Table 5. Because the variable duration of
each character is less than or equal (for only “m” and “w”)
to Md, the matching window size is further limited, hence
increasing speed. Therefore, more lexicon entries are re-
jected by the modified conditions of (14). It should be noted
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that introducing the variable duration results improves rec-
ognition accuracy as well as speed as evidenced by the ex-
perimental results shown in the next section.

To incorporate the notion of duration probability as part
of finding the best match [26], the local distance shown in
(11) is modified as follows:

$ , , , , ,D v b e d S b e v dur e b c j

v N

c j i

c j

i

i

c h b gc h a f b gd ib g

b g

= FH IK - ◊ - +

£ <

F x l 1

for 0 (19)

where dur(◊, ◊) is the duration probability defined in (3) and l
is estimated based on characteristics of the feature set. Ex-
periments show that the incorporation of the duration prob-
ability improves recognition accuracy as well.

As a byproduct of our approach, we can also obtain
character boundaries in a word image from Table 4. Table 6
shows the boundary of each character. While Table 3 shows
the character “s” best matches with the first segment (using
local information) Table 6 shows “s” best matches two seg-
ments (using global information). Locating character
boundaries is useful in automatic generation of character
databases for training and testing.

7 EXPERIMENTS AND RESULTS
7.1 Performance Evaluation
To evaluate the speed and recognition accuracy of the sys-
tem, 3,000 postal words (digitized at 212 dpi), including city
names, firm names, personal names, street names, and state
names are used. Given a test word image, corresponding
dictionaries are randomly generated with size of 10, 100, and
1,000 words. The true word is always present in the lexicon.

In addition to the 74 feature based system described in
Section 5, a 38 feature based system was designed as a
faster system for comparison purpose. The 38 feature set is
a subset of the 74 feature set. It consists of two global fea-
tures (4) and 36 local features (20).

F
s
Sl

ij

jij
= (20)

where

i
j
s j i
S s

ij

j i ij

=

=
=

subimage number (1,  2,  . . . ,  9),
= slope  4,

number of components with ,  from subimage 
mod

,
max

All components are classified into four directional catego-
ries, horizontal, vertical and two diagonal. Table 7 and Ta-
ble 8 show the improvements obtained by using the concept

TABLE  3
FIRST STAGE OF MATCHING PROCEDURE

Ending Segment

j d 0 1 2 3 4 5 6 7 8 9 10 11 12

4 0.00 0.00 0.00 7.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 3 0.00 0.00 8.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(s) 2 0.00 7.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 5.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 9.73 11.59 9.67 0.00 0.00 0.00 0.00 0.00 0.00
1 3 0.00 0.00 0.00 10.99 10.07 9.64 9.30 0.00 0.00 0.00 0.00 0.00 0.00

(y) 2 0.00 0.00 12.41 4.75 10.69 10.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 10.33 10.05 7.51 10.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 10.48 8.52 10.26 0.00 0.00 0.00 0.00 0.00
2 3 0.00 0.00 0.00 0.00 11.41 9.39 8.08 6.94 0.00 0.00 0.00 0.00 0.00
(r) 2 0.00 0.00 0.00 9.29 9.28 7.56 7.40 7.08 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 4.07 6.01 4.96 6.72 3.82 5.62 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 7.55 7.54 6.43 0.00 0.00 0.00 0.00
3 3 0.00 0.00 0.00 0.00 0.00 8.41 5.41 5.78 6.74 0.00 0.00 0.00 0.00

(a) 2 0.00 0.00 0.00 0.00 8.22 7.28 4.65 7.10 5.33 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 6.60 7.17 4.55 4.49 5.03 3.72 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.07 6.43 6.77 0.00 0.00 0.00
4 3 0.00 0.00 0.00 0.00 0.00 0.00 7.11 9.20 9.45 11.12 0.00 0.00 0.00

(c) 2 0.00 0.00 0.00 0.00 0.00 6.44 8.26 8.82 6.89 5.83 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 7.63 4.91 3.88 2.75 2.71 3.34 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.68 5.51 6.77 0.00 0.00
5 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.90 7.32 7.24 5.62 0.00 0.00

(u) 2 0.00 0.00 0.00 0.00 0.00 0.00 4.82 5.56 4.91 2.91 5.85 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 6.86 6.26 5.85 5.89 6.39 7.36 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.57 8.39 11.37 0.00
6 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.55 8.68 9.70 8.17 0.00

(s) 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.18 5.68 5.39 3.63 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.89 5.24 6.98 4.27 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.30
7 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.97

(e) 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.95
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.31

Authorized licensed use limited to: SUNY Buffalo. Downloaded on April 2, 2009 at 13:23 from IEEE Xplore.  Restrictions apply.



376 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  4,  APRIL  1997

TABLE  4
SECOND STAGE OF MATCHING PROCEDURE

Ending Segment

j 0 1 2 3 4 5 6 7 8 9 10 11 12

0(s) 5.10 7.33 8.15 7.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1(y) 0.00 15.43 17.38 12.07 14.83 17.79 17.02 0.00 0.00 0.00 0.00 0.00 0.00
2(r) 0.00 0.00 19.50 23.39 17.03 19.63 20.16 21.77 0.00 0.00 0.00 0.00 0.00
3(a) 0.00 0.00 0.00 26.10 27.72 21.58 21.68 22.81 23.46 0.00 0.00 0.00 0.00
4(c) 0.00 0.00 0.00 0.00 33.73 32.54 25.45 24.43 25.52 26.80 0.00 0.00 0.00
5(u) 0.00 0.00 0.00 0.00 0.00 40.59 38.56 31.30 30.32 27.34 30.05 0.00 0.00
6(s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.19 35.56 34.33 30.97 0.00
7(e) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34.28

TABLE  5
VARIABLE DURATION

char 0 1 2 3 4 5 6 7 8 9 a b

no. of segments 2 1 3 3 3 3 3 3 2 2 3 3

char c d e f g h i j k l m n

no. of segments 3 3 3 3 3 3 2 3 3 2 4 3

char o p q r s t u v w x y z

no. of segments 3 3 3 3 3 3 3 3 4 3 3 3

TABLE  6
BOUNDARY OF EACH CHARACTER

j 0 1 2 3 4 5 6 7 8 9 10 11 12

0(s) 0 1 2 3 - - - - - - - - -
1(y) - 0 1 1 0 2 3 - - - - - -
2(r) - - 1 2 3 3 3 4 - - - - -
3(a) - - - 2 2 4 4 4 4 - - - -
4(c) - - - - 3 3 5 6 7 8 - - -
5(u) - - - - - 4 4 6 7 7 7 - -
6(s) - - - - - - - - 7 8 9 9 -
7(e) - - - - - - - - - - - - 11

^^^^^^^^^ ^^^^^^^^^ ^ ^^^^^^^^^ ^ ^^^^^^^^^ ^^^^^^^^^ ^
s y r a c u s e

TABLE  7
TIMING PROFILE IN MSEC ON SPARC 10

10 100 1,000

ftr Module var d = 4 d = 3 var d = 4 d = 3 var d = 4 d = 3
Chain Gen. 22 21 21 22 22 22 27 26 26
Slant Norm. 10 10 9 10 10 9 11 10 10

74 Segmentation 15 15 15 15 15 15 15 16 16
Feature Ext. 34 34 24 34 34 25 37 37 26
Recognition 145 172 136 324 379 308 633 720 610

Total 226 252 205 405 460 379 723 809 688

Chain Gen. 22 22 22 22 22 22 27 26 26
Slant Norm. 10 9 9 10 10 10 11 11 10

38 Segmentation 15 15 15 15 15 15 15 15 15
Feature Ext. 32 31 22 32 32 22 35 34 24
Recognition 67 80 63 147 175 226 387 439 383

Total 146 157 131 226 254 295 475 525 458
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TABLE  8
RECOGNITION ACCURACY (IN  PERCENT)

10 100 1,000

ftr var d = 4 d = 3 var d = 4 d = 3 var d = 4 d = 3
Top 1 96.80 96.63 95.83 88.23 86.83 86.83 73.80 71.90 72.40

74 Top 2 98.63 98.76 98.30 93.36 92.86 92.36 83.20 81.40 82.20
Top 20 98.93 99.00 98.40
Top 50 98.70 98.50 97.60

Top 1 95.80 95.40 95.10 85.86 84.63 84.96 68.70 65.20 67.90
38 Top 2 98.26 98.23 97.80 91.93 91.20 90.80 80.20 78.20 78.90

Top 20 98.96 99.03 98.76
Top 50 97.90 97.50 97.10

TABLE  9
FAILURE ANALYSIS

Type Recognition Segmentation Image quality
No. of images 51 (53.1 percent) 35 (36.5 percent) 10 (10.4 percent)

Fig. 11. Performance and speed comparison. (a) Performance—the system with variable duration is represented by the solid line and gives the
best recognition accuracy for all lexicon sizes. (b) Speed of the system with variable duration is between the two other systems.

Fig. 12. Error analysis. (a) Background noise. (b) Noise introduced by scanning device. (c) Oversegmentation. (d) Unable to segment. (e) Recog-
nition error (confused with a similar entry in lexicon). (f) Recognition error (due to tough edge).
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of variable duration described in the previous section. In
Table 7 and Table 8, the first column (var) of each lexicon
size represents the results with the variable matching win-
dow size. The second column (d = 4) and the third column
(d = 3) represent results with fixed matching window sizes.

Table 7 shows time taken by each module (Fig. 2) using
the two feature sets. As matching window size decreases,
feature extraction time also decreases. Time taken for rec-
ognition is determined by both the lexicon size and match-
ing window size. Recognition time increases at the rate of
log(LN) as lexicon size LN increases because of the variable
duration and the early rejection during matching.

Table 8 shows the recognition performance of both con-
figurations. When the matching window size is fixed at four,
performance is not as good as when the window size is kept
adaptive. Fig. 11 provides a graphical illustration of the re-
sults for the 74 feature based system. More than 20 percent of
characters “m” and more than 10 percent of characters “w”
split into four segments (Table 2). Both “m” and “w” charac-
ters are frequent in English. Table 8 and Fig. 11a reflect the
drop in performance mainly on images with “m”s and “w”s
when the window size is three. The fast system with simpli-
fied 38 feature set produces compatible accuracy against the
other system for small size lexicon entries.

7.2 Failure Analysis
We examined 96 images classified as failures (74 feature
based system and lexicon size of 10). Four main sources of
error have been identified:

1) Image quality: Fig. 12a shows an example of acute
background noise and Fig. 12b shows typical scan-
ning noise not handled by the preprocessing routine.

2) Segmentation: Fig. 12c shows character “O” split into
four segments. The matching window size of charac-
ter “O” is three (Table 5) hence the matching proce-
dure ignores the last segment of the character reduc-
ing the matching confidence. This type of error is
closely related to fragmentation of strokes caused by
binarization. Fig. 12d shows the stroke of “L” touch-
ing “e” leading to a segmentation problem.

3) If the lexicon has very “similar” entries (Fig. 12e),
Chuck in the lexicon is selected as the first choice and
crooks (truth) is selected as the second choice.

4) Jagged chain code contour also reduces recognition
confidence (Fig. 12f).

Table 9 shows the different causes of failure.

7.3 Comparison
Chen and Kundu [27] report results on the same data set
and with the same lexicons as we have used. They report
top choice recognition performances of 93.2 percent,
85.2 percent, and 64.6 percent for lexicons of sizes 10, 100,
and 1,000, respectively. This compares with the perform-
ance numbers reported in this paper: 96.8 percent,
88.23 percent, and 73.8 percent, respectively. Also, the top
choice recognition accuracy of 88.29 percent obtained by us
compares with 72.3 percent reported in [21], where 271-
word lexicon and 94 test images were used. Chen, Kundu,
and Srihari [28] report the same performance on the small
size lexicons (96.8 percent). But, 78.7 percent and
59.6 percent were reported for lexicon sizes of 100 and
1,000.

7.4 Applications
The recognition algorithm described in this paper has been
integrated into several real-time systems by CEDAR. One of
the systems is for handwritten address interpretation on
mail pieces [2]. The system employs fast processors to meet
the USPS speed requirement of processing over 10,000 mail
pieces per hour. Same extent of accuracy has been obtained
for images having digit strings, such as street names (e.g.,
7th Ave in Fig. 1a), by providing the corresponding lexicons.

8 CONCLUSION

A fast chain code based handwritten word recognition
system has been implemented. The speed is 100 ~ 200 msec
on a single Sparc-10 platform with a 10 word dictionary.
The corresponding top choice performance is 96.8 percent.
Development of efficient methods for the preprocessing,
segmentation, and feature extraction resulted in speed im-
provements. Use of variable duration in the recognition
procedure improved performance as well as speed. The size
of the feature set, type of features, and the concept of re-
stricted matching window size based on the variable dura-
tion all contribute to improvements in speed.
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