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AbstractWe present a technique for constructing random �elds from a set of training samples. Thelearning paradigm builds increasingly complex �elds by allowing potential functions, orfeatures, that are supported by increasingly large subgraphs. Each feature has a weightthat is trained by minimizing the Kullback-Leibler divergence between the model and theempirical distribution of the training data. A greedy algorithm determines how featuresare incrementally added to the �eld and an iterative scaling algorithm is used to estimatethe optimal values of the weights.The random �eld models and techniques introduced in this paper di�er from those commonto much of the computer vision literature in that the underlying random �elds are non-Markovian and have a large number of parameters that must be estimated. Relations toother learning approaches including decision trees and Boltzmann machines are given. Asa demonstration of the method, we describe its application to the problem of automaticword classi�cation in natural language processing.





1. IntroductionIn this paper we present a method for incrementally constructing random �elds. Ourmethod builds increasingly complex �elds to approximate the empirical distribution of aset of training examples by allowing potential functions, or features, that are supportedby increasingly large subgraphs. Each feature is assigned a weight, and the weights aretrained to minimize the Kullback-Leibler divergence between the �eld and the empiricaldistribution of the training data. Features are incrementally added to a �eld using atop-down greedy algorithm.To illustrate the nature of our approach, suppose that we have a set of images wewish to characterize by a statistical model. Each image is represented by an assignment ofone of the colors red, blue, or green to the vertices of a square, 2-dimensional grid. Howshould the statistical model be constructed?To begin, suppose we observe that vertices of the images are 50% red, 30% blue and20% green. This leads us to characterize the statistical model in terms of the averagenumber of vertices of each color, in a distribution of the formp(!) = 1Z ePi �r�(!i;red)+�b�(!i;blue)+�g�(!i;green) (1.1)where !i is the color of vertex i in the image !. The weights �r; �b; �g are chosen to re
ectour observations of the frequencies of colors of individual vertices in the set of images. Themore detailed observation that a red vertex is only rarely adjacent to a green vertex mightthen be included as a re�nement to the model, leading to a distribution of the formp0(!) = 1Z 0 ePi�j �r;g�(!i;red)�(!j;green)+Pi �r�(!i;red)+�b�(!i;blue)+�g�(!i;green) (1.2)where the weight �r;g is adjusted to re
ect our speci�c observations on the colors of adjacentvertices, and any necessary readjustments are made to the weights �r; �b; �g to respect ourearlier observations. At the expense of an increasing number of parameters that need tobe adjusted, an increasingly detailed set of features of the images can be characterizedby the distribution. But which features should the model characterize, and how shouldthe weights be chosen? In this paper we present a general framework for addressing thesequestions.As another illustration, suppose we wish to automatically characterize spellings ofwords according to a statistical model; this is the application we develop in Section 5. A�eld with no features is simply a uniform distribution on ASCII strings (where we take thedistribution of string lengths as given). The most conspicuous feature of English spellings1



is that they are most commonly comprised of lower-case letters. The induction algorithmmakes this observation by �rst constructing the �eldp(!) = 1Z ePi �[a�z] �[a�z](!i)where � is an indicator function and the weight �[a�z] associated with the feature that acharacter is lower-case is chosen to be approximately 1:944. This means that a string witha lowercase letter in some position is about 7 � e1:944 times more likely than the samestring without a lowercase letter in that position. The following collection of strings wasgenerated from the resulting �eld by Gibbs sampling:m, r, xevo, ijjiir, b, to, jz, gsr, wq, vf, x, ga, msmGh,pcp, d, oziVlal, hzagh, yzop, io, advzmxnv, ijv_bolft, x,emx, kayerf, mlj, rawzyb, jp, ag, ctdnnnbg, wgdw, t, kguv,cy, spxcq, uzflbbf, dxtkkn, cxwx, jpd, ztzh, lv, zhpkvnu,l^, r, qee, nynrx, atze4n, ik, se, w, lrh, hp+, yrqyka'h,zcngotcnx, igcump, zjcjs, lqpWiqu, cefmfhc, o, lb, fdcY, tzby,yopxmvk, by, fz,, t, govyccm, ijyiduwfzo, 6xr, duh, ejv, pk,pjw, l, fl, wThe second most important feature, according to the algorithm, is that two adjacent lower-case characters are extremely common. Accordingly, the second-order �eld becomesp0(!) = 1Z 0 ePi�j �[a�z][a�z]�[a�z](!i)�[a�z](!j)+Pi �[a�z] �[a�z](!i)where the weight �[a�z][a�z] associated with adjacent lower-case letters is approximately1:80.The �rst 1000 features that the algorithm induces include the strings s>, <re, ly>,and ing>, where the character \<" denotes beginning-of-string and the character \>" de-notes end-of-string. In addition, the �rst 1000 features include the regular expressions[0-9][0-9] (with weight 9:15) and [a-z][A-Z] (with weight �5:81) in addition to the�rst two features [a-z] and [a-z][a-z]. A set of strings obtained by Gibbs samplingfrom the resulting �eld is shown below: 2



was, reaser, in, there, to, will, ,, was, by, homes, thing,be, reloverated, ther, which, conists, at, fores, anditing, with,Mr., proveral, the, ,, ***, on't, prolling, prothere, ,, mento,at, yaou, 1, chestraing, for, have, to, intrally, of, qut, .,best, compers, ***, cluseliment, uster, of, is, deveral, this,thise, of, offect, inatever, thifer, constranded, stater, vill,in, thase, in, youse, menttering, and, ., of, in, verate, of, toThese examples are discussed in detail in Section 5.The induction algorithm that we present has two parts: feature selection and param-eter estimation. The greediness of the algorithm arises in feature selection. In this stepeach feature in a pool of candidate features is evaluated by estimating the reduction in theKullback-Leibler divergence that would result from adding the feature to the �eld. Thisreduction is approximated as a function of a single parameter, and the largest value of thisfunction is called the gain of the candidate. The candidate with the largest gain is addedto the �eld. In the parameter estimation step, the parameters of the �eld are estimatedusing an iterative scaling algorithm. The algorithm we use is a new statistical estimationalgorithm that we call Improved Iterative Scaling. It is an improvement of the GeneralizedIterative Scaling algorithm of Darroch and Ratcli� [19] in that it does not require thatthe features sum to a constant. The improved algorithm is easier to implement than theDarroch and Ratcli� algorithm, and can lead to an increase in the rate of convergence byincreasing the size of the step taken toward the maximum at each iteration. In Section 4we give a simple, self-contained proof of the convergence of the improved algorithm thatdoes not make use of the Kuhn-Tucker theorem or other machinery of constrained opti-mization. Moreover, our proof does not rely on the convergence of alternating I-projectionas in Csisz�ar's proof [16] of the Darroch-Ratcli� procedure.Both the feature selection step and the parameter estimation step require the solutionof certain algebraic equations whose coe�cients are determined as expectation values withrespect to the �eld. In many applications these expectations cannot be computed exactlybecause they involve a sum over an exponentially large number of con�gurations. Thisis true of the application that we develop in Section 5. In such cases it is possible toapproximate the equations that must be solved using Monte Carlo techniques to computeexpectations of random variables. The application that we present uses Gibbs sampling tocompute expectations, and the resulting equations are then solved using Newton's method.3



Our method can be viewed in terms of the principle of maximum entropy [26], whichinstructs us to assume an exponential form for our distributions, with the parametersviewed as Lagrange multipliers. The techniques that we develop in this paper apply toexponential models in general. We formulate our approach in terms of random �eldsbecause this provides a convenient framework within which to work, and because our mainapplication is naturally cast in these terms.Our method di�ers from the most common applications of statistical techniques incomputer vision and natural language processing. In contrast to many applications incomputer vision, which involve only a few free parameters, the typical application of ourmethod involves the estimation of thousands of free parameters. In addition, our methodsapply to general exponential models and random �elds{there is no underlying Markovassumption made. In contrast to the statistical techniques common to natural languageprocessing, in typical applications of our method there is no probabilistic �nite-state orpush-down automaton on which the statistical model is built.In the following section we describe the form of the random �eld models considered inthis paper and the general learning algorithm. In Section 3 we discuss the feature selectionstep of the algorithm and brie
y address cases when the equations need to be estimatedusing Monte Carlo methods. In Section 4 we present the Improved Iterative Scaling al-gorithm for estimating the parameters, and prove the convergence of this algorithm. InSection 5 we present the application of inducing features of spellings, and �nally in Sec-tion 6 we discuss the relation between our methods and other learning approaches, as wellas possible extensions of our method.2. The Learning ParadigmIn this section we present the basic algorithm for building up a random �eld from elemen-tary features. The basic idea is to incrementally construct an increasingly detailed �eldto approximate a reference distribution ~p. Typically the distribution ~p is obtained as theempirical distribution of a set of training examples. After establishing our notation andde�ning the form of the random �eld models we consider, we present the training problemas a statement of two equivalent optimization problems. We then discuss the notions of acandidate feature and the gain of a candidate. Finally, we give a statement of the inductionalgorithm.2.1 Form of the random �eld models. Let G = (E;V ) be a �nite graph with vertex set V4



and edge set E, and let A be a �nite alphabet. The con�guration space 
 is the set ofall labelings of the vertices in V by letters in A. If C � V and ! 2 
 is a con�guration,then !C denotes the con�guration restricted to C. A random �eld on G is a probabilitydistribution on 
. The set of all random �elds is nothing more than the simplex � of allprobability distributions on 
. If f : 
! R then the support of f , written supp(f), is thesmallest vertex subset C � V having the property that whenever !;!0 2 
 with !C = !0Cthen f(!) = f(!0).We consider random �elds that are given by Gibbs distributions of the formp(!) = 1Z ePC VC(!) (2.1)for ! 2 
, where VC : 
 ! R are functions with supp(VC) = C. The �eld is Markov ifwhenever VC 6= 0 then C is a clique, or totally connected subset of V . This property isexpressed in terms of conditional probabilities asp(!u j!v; v 6= u) = p(!u j!v; (u; v) 2 E) (2.2)where u and v are arbitrary vertices. We assume that each C is a path-connected subsetof V and that VC(!) = X1�i�nC �Ci fCi (!) = �C � fC(!) (2.3)where �Ci 2 R and fCi (!) 2 f0; 1g. We say that the values �Ci are the parameters of the�eld and that the functions fCi are the features of the �eld. In the following, it will often beconvenient to use notation that disregards the dependence of the features and parameterson a vertex subset C, expressing the �eld in the formp(!) = 1Z ePi �i fi(!) = 1Z e ��f(!) : (2.4)For every random �eld (E;V; f�i; fig) of the above form, there is a �eld (E0; V; f�i; fig)that is Markovian, obtained by completing the edge set E to ensure that for each i, thesubgraph generated by the vertex subset C = supp(fi) is totally connected.If we impose the constraint �i = �j on two parameters �i and �j , then we say thatthese parameters are tied. If �i and �j are tied, then we can write�ifi(!) + �jfj(!) = �g(!) (2.5)where g = fi + fj is a non-binary feature. In general, we can collapse any number oftied parameters onto a single parameter associated with a non-binary feature. Having5



tied parameters is often natural for a particular problem, but the presence of non-binaryfeatures generally makes the estimation of parameters more di�cult.A random �eld (E;V; f�i; fig) is said to have homogeneous features if for each fea-ture fi and automorphism � of the graph G = (E;V ), there is a feature fj such thatfj(�!) = fi(!) for ! 2 
. If in addition �j = �i, then the �eld is said to be homogeneous.Homogeneous features arise naturally in the application of Section 5.The methods that we describe in this paper apply to exponential models in general;that is, it is not essential that there is an underlying graph structure. However, it will beconvenient to express our approach in terms of the random �eld models described above.2.2 Two optimization problems. Suppose that we are given an initial model q0 2 �, areference distribution ~p, and a set of features f = (f0; f1; : : : ; fn). In practice, it is oftenthe case that ~p is the empirical distribution of a set of training samples !(1); !(2) : : : !(N),and is thus given by ~p(!) = c(!)N (2.6)where c(!) = P1�i�N �(!;!(i)) is the number of times that con�guration ! appearsamong the training samples.We wish to construct a probability distribution q? 2 � that accounts for these data, inthe sense that it approximates ~p but does not deviate too far from q0. We measure distancebetween probability distributions p and q in � using the Kullback-Leibler divergenceD(~p k p) =X!2
 ~p(!) log ~p(!)p(!) : (2.7)Throughout this paper we use the notationp[g] =X!2
 g(!) p(!)for the expectation of a function g : 
! R with respect to the probability distribution p.For a function h : 
 ! R and a distribution q, we use both the notation h � q and qh todenote the generalized Gibbs distribution given byqh(!) = (h � q)(!) = 1Zq(h) e h(!) q(!) :Note that Zq(h) is not the usual partition function. It is a normalization constant de-termined by the requirement that (h � q)(!) sums to 1 over !, and can be written as anexpectation: Zq(h) = q[e h] :6



There are two natural sets of probability distributions determined by the data ~p, q0,and f . The �rst is the set P(f; ~p) of all distributions that agree with ~p as to the expectedvalue of the feature function f :P(f; ~p) = fp 2 � : p[f ] = ~p[f ] g :The second is the set Q(f; q0) of generalized Gibbs distributions based on q0 with featurefunction f : Q(f; q0) = f(� � f) � q0 : � 2 Rn g :We let �Q(f; q0) denote the closure of Q(f; q0) in � (with respect to the topology it inheritsas a subset of Euclidean space).There are two natural criteria for choosing q?:� Maximum Likelihood Gibbs Distribution. Choose q? to be a distribution in �Q(f; q0)with maximum likelihood with respect to ~p:q? = argminq2 �Q(f;q0)D(~p k q)� Maximum Entropy Constrained Distribution. Choose q? to be a distribution in P(f; ~p)that has maximum entropy relative to q0:q? = argminp2P(f;~p)D(p k q0)Although these criteria are di�erent, they determine the same distribution. In fact, thefollowing is true, as we prove in Section 4.Proposition. Suppose that D(~p k q0) <1. Then there exists a unique q? 2 � satisfying(1) q? 2 P(f; ~p) \ �Q(f; q0)(2) D(p k q) = D(p k q?) +D(q? k q) for any p 2 P(f; ~p) and q 2 �Q(f; q0)(3) q? = argminq2 �Q(f;q0) D(~p k q)(4) q? = argminp2P(f;~p) D(p k q0).Moreover, any of these four properties determines q? uniquely.When ~p is the empirical distribution of a set of training examples !(1); !(2) : : : !(N),minimizing D(~p k p) is equivalent to maximizing the probability that the �eld p assigns tothe training data, given byY1�i�N p(!(i)) = Y!2
 p(!) c(!) / e�ND(~pk p) : (2.8)7



With su�ciently many parameters it is a simple matter to construct a �eld for whichD(~p k p) is arbitrarily small. In fact, we can construct a �eld with N+1 features and smallKullback-Leibler divergence with respect to ~p by takingfi(!) = �(!;!(i)) ; �i = log c(!(i)) (2.9)for 1 � i � N and fN+1(!) = Y1�i�N(1 � fi(!)) ; �N+1 ��1 : (2.10)While such a model has small divergence with respect to the empirical distribution of thesamples !(i), it does not generalize to other, previously unseen con�gurations. This is theclassic problem of over-training. To avoid this problem we seek to incrementally constructa �eld that captures the salient properties of ~p by incorporating an increasingly detailedcollection of features. This motivates the random �eld induction paradigm that we nowpresent.2.3 Inducing �eld interactions. We begin by supposing that we have a set of atomic featuresFatomic � fg : 
 �! f0; 1g; supp(g) = vg 2 V geach of which is supported by a single vertex. We use atomic features to incrementallybuild up more complicated features. The following de�nition speci�es how we shall allowa �eld to be incrementally constructed, or induced.De�nition 2.1. Suppose that the �eld q is given by q = (� � f) � q0. The features fi arecalled the active features of q. A feature g is a candidate for q if either g 2 Fatomic, or ifg is of the form g(!) = a(!)fi(!) for an atomic feature a and an active feature fi withsupp(g)	 supp(fi) 2 E. The set of candidate features of q is denoted C(q).In other words, candidate features are obtained by conjoining atomic features with existingfeatures. The condition on supports ensures that each feature is supported by a path-connected subset of G. As an illustration, the �gure below shows a situation in which theunderlying graph G is a grid, and a feature is supported by �ve vertices. The dashed lines8



indicate edges that would need to be present for the underlying �eld to be Markovian.
Figure 1If g 2 C(q) is a candidate feature of q, then we call the 1-parameter family of random�elds q�g = (�g) � q the induction of q by g. We also de�neGq(�; g) = D(~p k q) �D(~p k q�g) : (2.11)We think of Gq(�; g) as the improvement that feature g brings to the model when it hasweight �. As we show in the following section, Gq(�; g) is \-convex in �. We de�ne Gq(g)to be the greatest improvement that feature g can give to the model while keeping all ofthe other features' parameters �xed:Gq(g) = sup� Gq(�; g) : (2.12)We refer to Gq(g) as the gain of the candidate g.2.4 Incremental construction of random �elds. We can now describe our algorithm forincrementally constructing �elds.Field Induction Algorithm.Initial Data:A reference distribution ~p and an initial model q0.Output:A �eld q? with active features f0; : : : ; fN such that q? = argminq2 �Q(f;q0)D(~p k q).9



Algorithm:(0) Set q(0) = q0.(1) For each candidate g 2 C(q(n)) compute the gain Gq(n) (g).(2) Let fn = argmaxg2C(q(n)) Gq(n) (g) be the feature with the largest gain.(3) Compute q? = argminq2 �Q(f;q0) D(~p k q), where f = (f0; f1; : : : ; fn).(4) Set q(n+1) = q? and n n+ 1, and go to step (1).This induction algorithm has two parts: feature selection and parameter estimation.Feature selection is carried out in steps (1) and (2), where the feature yielding the largestgain is incorporated into the model. Parameter estimation is carried out in step (3),where the parameters are adjusted to best represent the reference distribution. These twocomputations are discussed in more detail in the following two sections.3. Feature SelectionThe feature selection step of our induction algorithm is based upon an approximation. Weassume that we can estimate the improvement due to adding a single feature, measured bythe reduction in Kullback-Leibler divergence, by adjusting only the weight of the featureand keeping all of the other parameters of the �eld �xed. In general this is only an estimate,and it may well be that adding a feature will require signi�cant adjustments to all ofthe parameters in the new model. From a computational perspective, approximating theimprovement in this way can enable the simultaneous evaluation of thousands of candidatefeatures, and makes the algorithm practical. In this section we present further detail onthe feature selection step.Proposition 3.1. Let Gq(�; g), de�ned in (2.11), be the approximate improvement ob-tained by adding feature g with parameter � to the �eld q. Then if g is not constant,Gq(�; g) is strictly \-convex in � and attains its maximum at the unique point �̂ satisfy-ing ~p[g] = q�̂g[g] : (3.1)10



Proof. Using the de�nition (2.7) of the Kullback-Leibler divergence we can writeGq(�; g) = X!2
 ~p(!) log Z�1q (�g) e�g(!)q(!)q(!)= X!2
 ~p(!) (�g(!)� log q [e�g])= �~p[ g ]� log q [e�g ] : (3.2)Thus @@�Gq(�; g) = ~p[g]� q[ge�g]q[e�g]= ~p[g]� q�g [g] :Moreover, @2@�2Gq(�; g) = q[ge�g]2q[e�g]2 � q[g2e�g]q[e�g]= �q�g[(g � q�g [g])2]Hence, @2@�2Gq(�; g) � 0, so that Gq(�; g) is \-convex in �. If g is not constant, then@2@�2Gq(�; g), which is minus the variance of g with respect to q�g , is strictly negative, sothat Gq(�; g) is strictly convex.When g is binary-valued, its gain can be expressed in a particularly nice form. Thisis stated in the following proposition, whose proof is a simple calculation.Proposition 3.2. Suppose that the candidate g is binary-valued. Then Gq(�; g) is max-imized at �̂ = log� ~p[ g ](1� q[ g ])q[ g ](1� ~p[ g ])� (3.3)and at this value, Gq(g) = Gq(�̂; g) = D(Bp kBq) (3.4)where Bp and Bq are Bernoulli random variables given byBp(1) = ~p[ g ] Bp(0) = 1� ~p[ g ]Bq(1) = q[ g ] Bq(0) = 1� q[ g ] : (3.5)For features that are not binary-valued, but instead take values in the positive integers,the parameter �̂ that solves (3.1) and thus maximizes Gq(�; g) cannot, in general, bedetermined in closed form. This is the case for tied binary features, and it applies to11



the application we describe in Section 5. For these cases it is convenient to rewrite (3.1)slightly. Let � = e� so that @=@� = �@=@�. Letgk =X! q(!) �(k; g(!)) (3.6)be the total probabilty assigned to the event that the feature g takes the value k. Then(3.1) becomes � @@� Gq(log �; g) = ~p[g]� PNk=0 k gk�kPNk=0 gk�k = 0 (3.7)This equation lends itself well to numerical solution. The general shape of the curve� 7! �@=@� Gq(log �; g) is shown in the �gure below.
Figure 2The limiting value of �@Gq(log �; g)=@� as � !1 is N � ~p[g]. If N � ~p[g] < 0 then thereis no solution to equation (3.7). Otherwise, the solution can be found using Newton'smethod, which in practice converges rapidly for such functions.When the con�guration space 
 is large, so that the coe�cients gk cannot be calculatedby summing over all con�gurations, Monte Carlo techniques may be used to estimate them.It is important to emphasize that the same set of random con�gurations can be used toestimate the coe�cients gk for each candidate g simultaneously. Rather than discuss thedetails of Monte Carlo techniques for this problem we refer to the extensive literature onthis topic. We have obtained good results using the standard technique of Gibbs sampling[25] for the problem we describe in Section 5.4. Parameter EstimationIn this section we present an algorithm for selecting the parameters associated with thefeatures of a random �eld. The algorithm is closely related to the Generalized Iterative12



Scaling algorithm of Darroch and Ratcli� [19]. Like the Darroch and Ratcli� procedure,the algorithm requires that the features fi are non-negative: fi(!) � 0 for all ! 2 
.Unlike the Darroch and Ratcli� procedure, however, our method does not require thefeatures to be normalized to sum to a constant.Throughout this section we hold the set of features f = (f0; f1; : : : ; fn), the initialmodel q0 and the reference distribution ~p �xed, and we simplify the notation accordingly.In particular, we write 
 � q instead of (
 � f) � q for 
 2 Rn. We assume that q0(!) = 0whenever ~p(!) = 0. This condition is commonly written ~p � q0, and it is equivalent toD(~p k q0) <1.A description of the algorithm requires an additional piece of notation. Letf#(!) = nXi=0 fi(!) : (4.1)If the features are binary, then f#(!) is the total number of features that are \on" for thecon�guration !.Improved Iterative Scaling.Initial Data:A reference distribution ~p and an initial model q0, with ~p � q0, andnon-negative features f0; f1; : : : ; fn.Output:The distribution q? = argminq2 �Q(f;q0)D(~p k q)Algorithm:(0) Set q(0) = q0.(1) For each i let 
(k)i 2 [�1;1) be the unique solution ofq(k)[ fi e 
(k)i f# ] = ~p[ fi ] : (4.2)(2) Set q(k+1) = 
(k) � q(k) and k  k + 1.(3) If q(k) has converged, set q? = q(k) and terminate. Otherwise go tostep (1).In other words, this algorithm constructs a distribution q? = limn!1 
n � q0 where 
n =Pnk=0 
(k)i and 
(k)i is determined as the solution to the equationX! q(k)(!) fi(!) e 
(k)i f#(!) =X! ~p(!) fi(!) : (4.3)13



When used in the n-th iteration of the �eld induction algorithm, where a candidate featureg = fn is added to the �eld q = qn, we choose the initial distribution q0 to be q0 = q�̂g,where �̂ is the parameter that maximizes the gain of g. In practice, this provides a goodstarting point from which to begin iterative scaling. In fact, we can view this distributionas the result of applying one iteration of an Iterative Proportional Fitting Procedure [8,15]to project q�g onto the linear family of distributions with g-marginals constrained to ~p[g].Our main result in this section isProposition 4.1. Suppose q(k) is the sequence in� determined by the Improved IterativeScaling algorithm. ThenD(~p k q(k)) decreases monotonically toD(~p k q?) and q(k) convergesto q? = argminq2 �Q D(~p k q) = argminp2P D(p k q0).In the remainder of this section we present a self-contained proof of the convergence ofthe algorithm. The key idea of the proof is to express the incremental step of the algorithmin terms of an auxiliary function which bounds from below the likelihood objective function.This technique is the standard means of analyzing the EM algorithm [21], but it has notpreviously been applied to iterative scaling. Our analysis of iterative scaling is di�erentand simpler than previous treatments. In particular, in contrast to Csisz�ar's proof of theDarroch-Ratcli� procedure [16], our proof does not rely upon the convergence of alternatingI-projection [15].We begin by proving the basic duality theorem which states that the maximum like-lihood problem for a Gibbs distribution and the maximum entropy problem subject tolinear constraints have the same solution. We then turn to the task of computing thissolution. After introducing auxiliary functions in a general setting, we apply this methodto prove convergence of the Improved Iterative Scaling algorithm. We �nish the sectionby discussing Monte Carlo methods for estimating the equations when the size of thecon�guration space prevents the explicit calculation of feature expectations.4.1 Duality. In this section we proveProposition 4.2. Suppose that ~p� q0. Then there exists a unique q? 2 � satisfying(1) q? 2 P \ �Q(2) D(p k q) = D(p k q?) +D(q? k q) for any p 2 P and q 2 �Q(3) q? = argminq2 �Q D(~p k q)(4) q? = argminp2P D(p k q0).Moreover, any of these four properties determines q? uniquely.14



This result is well known, although perhaps not quite in this packaging. In the lan-guage of constrained optimization, it expresses the fact that the maximum likelihood prob-lem for Gibbs distributions is the convex dual to the maximum entropy problem for linearconstraints. We include a proof here to make this paper self-contained and also to carefullyaddress the technical issues arising from the fact that Q is not closed. The propositionwould not be true if we replaced �Q withQ. In fact, P\Qmight be empty. Our proof is ele-mentary and does not rely on the Kuhn-Tucker theorem or other machinery of constrainedoptimization.Our proof of the proposition will use a few lemmas. The �rst two lemmas we statewithout proof.Lemma 4.3.(1) D(p k q) is a non-negative, extended real-valued function on ���.(2) D(p k q) = 0 if and only if p = q.(3) D(p k q) is strictly convex in p and q separately.(4) D(p k q) is C1 in q.Lemma 4.4.(1) The map (
; p) 7! 
 �p is smooth in (
; p) 2 Rn ��.(2) The derivative of D(p k � � q) with respect to � isddt j t=0 D(p k (t�) � q) = � � (p[f ]� q[f ]) :Lemma 4.5. If ~p� q0 then P \ �Q is nonempty.Proof. De�ne q? by property (3) of Proposition 4.2; that is, q? = argminq2 �QD(~p; q). Tosee that this makes sense, note that since ~p� q0, D(~p; q) is not identically 1 on �Q. Also,D(p k q) is continuous and strictly convex as a function of q. Thus, since �Q is closed,D(~p; q) attains its minimum at a unique point q? 2 �Q. We will show that q? is also in P.Since �Q is closed under the action of Rn, � � q? is in �Q for any �. Thus by the de�nition ofq?, � = 0 is a minimum of the function � ! D(~p; � � q?). Taking derivatives with respectto � and using Lemma 4.4 we conclude q?[f ] = ~p[f ]. Thus q? 2 P.Lemma 4.6. If q? 2 P \ �Q then for any p 2 P and q 2 �QD(p k q) = D(p k q?) +D(q? k q) :This is called the Pythagorean property since it resembles the Pythagorean theorem if weimagine that D(p k q) is the square of Euclidean distance and (p; q?; q) are the vertices ofa right triangle. 15



Proof. A straightforward calculation shows thatD(p1 k q1) �D(p1 k q2)�D(p2 k q1) +D(p2 k q2) = � � (p1[f ]� p2[f ])for any p1; p2; q1; q2 2 � with q2 = � � q1. It follows from this identity and the continuityof D that D(p1 k q1)�D(p1 k q2)�D(p2 k q1) +D(p2 k q2) = 0if p1; p2 2 P and q1; q2 2 �Q. The lemma follows by taking p1 = q1 = q?.Proof of Proposition 4.2. Choose q? to be any point in P \ �Q. Such a q? exists by Lemma4.5. It satis�es property (1) by de�nition, and it satis�es property (2) by Lemma 4.6. Asa consequence of property (2), it also satis�es properties (3) and (4). To check property(3), for instance, note that if q is any point in �Q, then D(~p k q) = D(~p k q?) +D(q? k q) �D(q? k q).It remains to prove that each of the four properties (1){(4) determines q? uniquely.In other words, we need to show that if m is any point in � satisfying any of the fourproperties (1){(4), then m = q?. Suppose that m satis�es property (1). Then by property(2) for q? with p = q =m, D(m;m) = D(m; q?)+D(q? ;m). Since D(m;m) = 0, it followsthat D(m; q?) = 0 so m = q?. If m satis�es property (2), then the same argument with q?and m reversed again proves that m = q?. Suppose that m satis�es property (3). ThenD(~p k q?) � D(~p km) = D(~p k q?) +D(q? km)where the second equality follows from property (2) for q?. Thus D(q?;m) � 0 so m = q?.If m satis�es property (4), then a similar proof shows that once again m = q?.4.2 Auxiliary functions. In the previous section we proved the existence of a unique prob-ability distribution q? that is both a maximum likelihood Gibbs distributions and a maxi-mum entropy constrained distribution. We now turn to the task of computing q?.Fix ~p and let L : �! R be the log-likelihood objective functionL(q) = �D(~p k q) :De�nition 4.7. A function A : Rn ��! R is an auxiliary function for L if(1) For all q 2 � and 
 2 Rn L(
 � q) � L(q) +A(
; q)16



(2) A(
; q) is continuous in q 2 � and C1 in 
 2 Rn withA(0; q) = 0 and ddt j t=0 A(t
; q) = ddt j t=0 L((t
) � q) :We can use an auxiliary function A to construct an iterative algorithm for maximizingL. We start with q(k) = q0 and recursively de�ne q(k+1) byq(k+1) = 
(k) � q(k) with 
(k) = argmax
 A(
; q(k)) :It is clear from property (1) of the de�nition that each step of this procedure increases L.The following proposition implies that in fact the sequence q(k) will reach the maximumof L.Proposition 4.8. Suppose q(k) is any sequence in � withq(0) = q0 and q(k+1) = 
(k) � q(k)where 
(k) 2 Rn satis�es A(
(k); q(k)) = sup
 A(
; q(k)) : (4.4)Then L(q(k)) increases monotonically tomaxq2 �Q L(q) and q(k) converges to q? = argmaxq2 �Q L(q).Equation (4.4) assumes that the supremum sup
 A(
; q(k)) is achieved at �nite 
. In thenext section, under slightly stronger assumptions, we present a extension of Proposition4.8 that allows some components of 
(k) to take the value �1.To use the proposition to construct a practical algorithm we must determine an aux-iliary function A(
; q) for which 
(k) satisfying the required condition can be determinede�ciently. In the Section 4.3 we present a choice of auxiliary function which yields theImproved Iterative Scaling updates.To prove Proposition 4.8 we �rst prove three lemmas.Lemma 4.9. If m is a cluster point of q(k), then A(
;m) � 0 for all 
 2 Rn.Proof. Let q(kl) be a sub-sequence converging to m. Then for any 
A(
; q(kl)) � A(
(kl); q(kl)) � L(q(kl+1))� L(q(kl)) � L(q(kl+1)) � L(q(kl)) :The �rst inequality follows from property (4.4) of 
(nk). The second and third inequalitiesare a consequence of the monotonicity of L(q(k)). The lemma follows by taking limits andusing the fact that L and A are continuous.17



Lemma 4.10. If m is a cluster point of q(k), then ddt j t=0 L((t
) �m) = 0 for any 
 2 Rn.Proof. By the previous lemma, A(
;m) � 0 for all 
. Since A(0;m) = 0, this means that
 = 0 is a maximum of A(
;m) so that0 = ddt j t=0 A(t
;m) = ddt j t=0 L((t
) �m) :Lemma 4.11. Suppose fq(k)g is any sequence with only one cluster point q�. Then q(k)converges to q�.Proof. Suppose not. Then there exists an open set B containing q� and a subsequenceq(nk) 62 B. Since � is compact, q(nk) has a cluster point q0� 62 B. This contradicts theassumption that fq(k)g has a unique cluster point.Proof of Proposition 4.8. Suppose that m is a cluster point of q(k). It follows fromLemma 4.10 that ddt j t=0 L((t
) � q) = 0, and so m 2 P \ �Q by Proposition 4.4. But q? isthe only point in P\ �Q by Proposition 4.2. It follows from Lemma 4.11 that q(k) convergesto q?.4.3 Dealing with 1. In order to prove the convergence of the Improved Iterative Scalingalgorithm, we need an extension of Proposition 4.8 that allows the components of 
 toequal �1. For this extension, we assume that all the components of the feature functionf are non-negative: fi(!) � 0 for all i and all !. (4.5)Let R [ �1 denote the partially extended real numbers with the usual topology. Theoperations of addition and exponentiation extend continuously to R [ �1. Let S be theopen subset of (R [ �1)n �� de�ned byS = f (
; q) 2 (R [ �1)n �� : q(!)e
�f(!) > 0 for some ! gObserve that Rn � � is a dense subset of S. The map (
; q) 7! 
 �p, which up to thispoint we de�ned only for �nite 
, extends uniquely to a continuous map from all of S to�. (The condition on (
; q) 2 S ensures that the normalization in the de�nition of 
 �p iswell de�ned, even if 
 is not �nite.) 18



De�nition 4.12. We call a function A : S ! R [ �1 an extended auxiliary function forL if when restricted to Rn�� it is an ordinary auxiliary function in the sense of De�nition4.7, and if, in addition, it satis�es property (1) of De�nition 4.7 for any (q; 
) 2 S, even if
 is not �nite.Note that if an ordinary auxiliary function extends to a continuous function on S, thenthe extension is an extended auxiliary function.We have the following extension of Proposition 4.8:Proposition 4.80. Suppose the feature function f satis�es the non-negativity condition(4.5) and suppose A is an extended auxiliary function for L. Then the conclusion ofProposition 4.8 continues to hold if the condition on 
(k) is replaced by:(
(k); q(k)) 2 S and A(
(k); q(k)) � A(
; q(k)) for any (
; q(k)) 2 S :Proof. Lemma 4.9 is valid under the altered condition on 
(k) since A(
; q) satis�es prop-erty (1) of De�nition 4.7 for all (
; q) 2 S. As a consequence, Lemma 4.10 also is valid,and the proof of Proposition 4.8 goes through without change.4.4 Improved Iterative Scaling. We now prove the monotonicity and convergence of theImproved Iterative Scaling algorithm by applying Proposition 4.8 to a particular choice ofauxiliary function. We continue to assume, as in the previous section, that each componentof the feature function f is non-negative.For q 2 � and 
 2 Rn, de�neA(
; q) = 1 + 
 � ~p[f ] �X! q(!)Xi f(i j!) e 
if#(!)where f(i j!) = fi(!)f#(!) . It is easy to check that A extends to a continuous function on(R [ �1)n ��.Lemma 4.13. A(
; q) is an extended auxiliary function for L(q).The key ingredient in the proof of the lemma is the \-convexity of the logarithm and the[-convexity of the exponential, as expressed in the inequalitiesePi ti�i �Xi ti e�i if ti � 0 with Xi ti = 1 (4.6)log x � x � 1 for all x > 0 : (4.7)19



Proof of Lemma 4.13. Because A extends to a continuous function on (R [ �1)n��, itsu�ces to prove that it satis�es properties (1) and (2) of De�nition 4.7. To prove property(1) note that L(
 � q) �L(q) = 
 � ~p[f ] � logX! q(!) e
�f(!) (4.8)� 
 � ~p[f ] + 1�X! q(!) e
�f(!) (4.9)� 
 � ~p[f ] + 1�X! q(!)Xi f(i j!) e
i f#(!) (4.10)= A(
; q) :Equality (4.8) is a simple calculation. Inequality (4.9) follows from inequality (4.7). In-equality (4.10) follows from the de�nition of f# and Jensen's inequality (4.6). Property(2) of De�nition 4.7 is straightforward to verify.Proposition 4.1 follows immediately from the above lemma and the extended Propo-sition 4.8. Indeed, it is easy to check that 
(k) de�ned in Proposition 4.1 achieves themaximum of A(
; q(k)), so that it satis�es the condition of Proposition 4.80.4.5 Monte Carlo methods. The Improved Iterative Scaling algorithm described above iswell-suited to numerical techniques since all of the features take non-negative values. Ineach iteration of this algorithm it is necessary to solve a polynomial equation for eachfeature fi. That is, we can express equation (4.2) in the formMXm=0 a(k)m;i �mi = 0where M is the largest value of f#(!) =Pi fi(!) anda(k)m;i = 8<: P! q(k)(!) fi(!) �(m; f#(!)) n > 0�~p[ fi ] m = 0 (4.11)where q(k) is the �eld for the k-th iteration and �i = e
(k)i . This equation has no solutionprecisely when a(k)m;i = 0 for m > 0. Otherwise, it can be e�ciently solved using Newton'smethod since all of the coe�cients a(k)m;i, m > 0, are non-negative. When Monte Carlomethods are to be used because the con�guration space 
 is large, the coe�cients a(k)m;ican be simultaneously estimated for all i and m by generating a single set of samples fromthe distribution q(k). 20



5. Application: Word MorphologyWord clustering algorithms are useful for many natural language processing tasks. Onesuch algorithm [10], called mutual information clustering, is based upon the constructionof simple bigram language models using the maximum likelihood criterion. The algorithmgives a hierarchical binary classi�cation of words that has been used for a variety of pur-poses, including the construction of decision tree language and parsing models [28], andsense disambiguation for machine translation [11].A fundamental shortcoming of the mutual information word clustering algorithm givenin [10] is that it takes as fundamental the word spellings themselves. This increasesthe severity of the problem of small counts that is present in virtually every statisticallearning algorithm. For example, the word \Hamiltonianism" appears only once in the365,893,263-word corpus used to collect bigrams for the clustering experiments describedin [10]. Clearly this is insu�cient evidence on which to base a statistical clustering decision.The basic motivation behind the feature-based approach is that by querying features ofspellings, a clustering algorithm could notice that such a word begins with a capital letter,ends in \ism" or contains \ian," and pro�t from how these features are used for otherwords in similar contexts.In this section we describe how we applied the random �eld induction algorithm todiscover morphological features of words, and we present sample results. This techniquewas used in [27] to improve mutual information clustering. In Section 5.1 we formlatethe problem in terms of the notation and results of Sections 2, 3, and 4. In Section 5.2we describe how the �eld induction algorithm is actually carried out in this application.In Section 5.3 we explain the results of the induction algorithm by presenting a series ofexamples.5.1 Problem formulation. To discover features of spellings we take as con�guration space
 = A� where A is the ASCII alphabet. We construct a probability distribution p(!) on
 by �rst predicting the length j! j, and then predicting the actual spelling; thus, p(!) =pl(j! j)ps(! j j! j) where pl is the length distribution and ps is the spelling distribution.We take the length distribution as given. We model the spelling distribution ps(� j l) overstrings of length l as a random �eld. Let 
l be the con�guration space of all ASCII stringsof length l. Then j
l j = O(102l) since each !i is an ASCII character.To reduce the number of parameters, we tie features so that a feature has the sameweight independent of where it appears in the string. Because of this it is natural to viewthe graph underlying 
l as a regular l-gon. The group of automorphisms of this graph is21



the set of all rotations, and the resulting �eld is homogeneous as de�ned in Section 2.Not only is each �eld pl homogeneous, but in addition, we tie features across �elds fordi�erent values of l. Thus, the weight �f of a feature is independent of l. To introduce adependence on the length, as well as on whether or not a feature applies at the beginningor end of a string, we adopt the following arti�cial construction. We take as the graphof 
l an (l + 1)-gon rather than an l-gon, and label a distinguished vertex by the length,keeping this label held �xed. The graph for a 7-letter word is depicted in Figure 3. Thedashed lines indicate edges that would need to be present for the �eld to be Markovian ifeach feature is supported by no more than three vertices.
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mFigure 3To complete the description of the �elds that are induced, we need to specify the setof atomic features. The atomic features that we allow fall into three types. The �rst typeis the class of features of the formfv;c(!) = n 1 if !v = c0 otherwise.where c is any ASCII character. The second type of atomic features involve the specialvertex <l> that carries the length of the string. These are the featuresfv;l(!) = n 1 if !v = <l>0 otherwisefv;<>(!) = n 1 if !v = <l> for some l0 otherwiseThe atomic feature fv;<> introduces a dependence on whether a string of characters liesat the beginning or end of the string, and the atomic features fv;l introduce a dependence22



on the length of the string. To tie together the length dependence for long strings, we alsointroduce an atomic feature fv;7+ for strings of length 7 or greater.The �nal type of atomic feature asks whether a character lies in one of three sets,[a-z], [A-Z], [0-9], [@-&], denoting arbitrary lowercase letters, uppercase letters, digits,and punctuation. For example, the atomic featurefv;[a-z](!) = n 1 if !v 2 [a-z]0 otherwisetests whether or not a character is lowercase.To illustrate the notation that we use, let us suppose that the the following featuresare active for a �eld: \ends in ism," \a string of at least 7 characters beginning with acapital letter" and \contains ian." Then the probability of the word \Hamiltonianism"would be given asPl(14) ps(Hamiltonianism j j! j = 14) = Pl(14) 1Z14 e�7+<[A-Z]+�ian+�ism> :Here the �'s are the parameters of the appropriate features, and we use the characters <and > to denote the beginning and ending of a string (more common regular expressionnotation would be ^ and $). The notation 7+<[A-Z] thus means \a string of at least 7characters that begins with a capital letter," corresponding to the featurefv;7+ fv;[A-Z] :Similarly, ism> means \ends in -ism" and corresponds to the featurefv;i fv;s fv;m fv;<>and ian means \contains ian," corresponding to the featurefv;i fv;a fv;n :5.2 Description of the algorithm. We begin the random �eld induction algorithm with amodel that assigns uniform probability to all word strings. We then incrementally addfeatures to a random �eld model in order to minimize the Kullback-Leibler divergencebetween the �eld and the unigram distribution of the vocabulary obtained from a trainingcorpus. The length distribution is taken according to the lengths of words in the empiricaldistribution of the training data. The improvement to the model made by a candidate23



feature is evaluated by the reduction in relative entropy, with respect to the unigramdistribution, that adding the new feature yields, keeping the other parameters of the model�xed. Our learning algorithm incrementally constructs a random �eld to describe thosefeatures of spellings that are most informative.At each stage in the induction algorithm, a set of candidate features is constructed.Because the �elds are homogeneous, the set of candidate features can be viewed as follows.Each active feature can be expressed in the formfs(!) = n 1 substring s appears in !0 otherwisewhere s is a string in the extended alphabet A of ASCII characters together with themacros [a-z], [A-Z], [0-9], [@-&], and the length labels <l> and <>. If ffsgs2S is theset of active features, (including s = �) using this representation, then the set of candidatefeatures is precisely the set ffa�s; fs�aga2A;s2Swhere a � s denotes concatenation of strings. As required by De�nition 2, each such candi-date increases the support of an active feature by a single adjacent vertex.Since the model assigns probability to arbitrary word strings, the partition functionZl can be computed exactly for only the smallest string lengths l. We therefore computefeature expectations using a random sampling algorithm. Speci�cally, we use the Gibbssampler [25] to generate 10,000 spellings of random lengths. When computing the gainGq(g) of a candidate feature, we use these spellings to estimate the probability gk that thecandidate feature g occurs k times in a spelling (see equation (3.7){for example, the featurefv;[a-z] occurs 2 times in the string The), and then solve for the corresponding � usingNewton's method for each candidate feature. It should be emphasized that only a singleset of random spellings needs to be generated; the same set can be used to estimate gk foreach candidate g. After adding the best candidate to the �eld, all of the feature weights arereadjusted using the Improved Iterative Scaling algorithm. To carry out this algorithm,random spellings are again generated, this time incorporating the new feature, yieldingMonte Carlo estimates of the coe�cients a(k)m;i. Recall that a(k)m;i is the expected number oftimes that feature i appears (under the substring representation for homogeneous features)in a string for which there is a total of m active features (see equation (4.11)). Givenestimates for these coe�cients, Newton's method is again used to solve equation (4.11),to complete a single iteration of the iterative scaling algorithm. After convergence of theKullback-Leibler divergence, the inductive step is complete, and a new set of candidatefeatures is considered. 24



5.3 Sample results. We began with a uniform �eld, that is, a �eld with no features at all.For this �eld, all ASCII strings of a given length are equally likely, and the lengths aredrawn from a �xed distribution. Here is a sample of strings drawn from this distribution:~, mo, _!ZP*@, m/TLL, ks;cm_3, *LQdR, D, aW{, 5&TL|4, tc, ?!@,sNeiO+, wHo8zBr", pQlV, m, H!&, h9, #Os, :, Ky}FM?, LW, ",8},89Lj, -P, A, !, H, `, Y^:Du:, 1xCl, 1!'J#F*u., w=idHnM), ~, 2,2leW2, I,bw~tk1, 3", ], ], b, +JEmj6, +E*, \qjqe"-7f, |al2, T,~(sOc1+2ADe, &, \p9oH, i;, $6, q}O+[, xEv, #U, O)[83COF,=|B|7%cR, Mqq, ?!mv, n=7G, $i9GAJ\, D, 5, ,=, +u6@I9:, +, =D,2E#vz@3-, ~nu;.+s, 3xJ, GDWeqL, R,3R, !7v, FX,@y, 4p_cY2hU, ~It comes as no surprise that the �rst feature the induction algorithm chooses is [a-z];it simply observes that characters should be lowercase. The maximum likelihood (maxi-mum entropy) weight for this feature is � = e� � 6:99. This means that a string with alowercase letter in some position is about 7 times more likely than the same string withouta lowercase letter in that position.When we now draw strings from the new distribution (using annealing to concentratethe distribution on the more probable strings), we obtain spellings that are primarily madeup of lowercase letters, but that certainly do not resemble English words:m, r, xevo, ijjiir, b, to, jz, gsr, wq, vf, x, ga, msmGh,pcp, d, oziVlal, hzagh, yzop, io, advzmxnv, ijv_bolft, x,emx, kayerf, mlj, rawzyb, jp, ag, ctdnnnbg, wgdw, t, kguv,cy, spxcq, uzflbbf, dxtkkn, cxwx, jpd, ztzh, lv, zhpkvnu,l^, r, qee, nynrx, atze4n, ik, se, w, lrh, hp+, yrqyka'h,zcngotcnx, igcump, zjcjs, lqpWiqu, cefmfhc, o, lb, fdcY, tzby,yopxmvk, by, fz,, t, govyccm, ijyiduwfzo, 6xr, duh, ejv, pk,pjw, l, fl, wIn the following table we show the �rst 10 features that the algorithm induced, togetherwith their associated parameters. Several things are worth noticing. The second featurechosen was [a-z][a-z], which denotes adjacent lowercase characters. The third featureadded was the letter e, which is the most common letter. The weight for this feature is25



� = e� = 3:47. The next feature introduces the �rst dependence on the length of thestring: [a-z]>1 denotes the feature \a one character word ending with a lowercase letter."Notice that this feature has a small weight of 0.04, corresponding to our intuition thatsuch words are uncommon. Similarly, the features z, q, j, and x are uncommon, andthus receive small weights. The appearance of the feature * is explained by the fact thatthe vocabulary for our corpus is restricted to the most frequent 100,000 spellings, andall other words receive the \unknown word" spelling ***, which is rather frequent. (The\end-of-sentence" marker, which makes its appearance later, is given the spelling |.)feature [a-z] [a-z][a-z] e [a-z]>1 t * z q j x� 6.64 6.07 3.47 0.04 2.75 17.25 0.02 0.03 0.02 0.06Shown below is a collection of spellings obtained by Gibbs sampling from the resultingcollection �elds.frk, et, egeit, edet, eutdmeeet, ppge, A, dtgd, falawe, etci,eese, ye, epemtbn, tegoeed, ee, *mp, temou, enrteunt, ore,erveelew, heyu, rht, *, lkaeu, lutoee, tee, mmo, eobwtit,weethtw, 7, ee, teet, gre, /, *, eeeteetue, hgtte, om, he, *,stmenu, ec, ter, eedgtue, iu, ec, reett, *, ivtcmeee, vt, eets,tidpt, lttv, *, etttvti, ecte, X, see, *, pi, rlet, tt, *, eot,leef, ke, *, *, tet, iwteeiwbeie, yeee, et, etf, *, ovAfter inducing 100 features, the model �nally begins to be concentrated on spellingsthat resemble actual spellings to some extent, particularly for short words. At this pointthe algorithm has discovered, for example, that the is a very common 3-letter word, thatmany words end in ed, and that long words often end in ion. A sample of 10 of the �rst100 features induced, with their appropriate weights is shown in the table below.feature . ,>1 3<the tion 4<th y> ed> ion>7+ ent 7+<c� 22.36 31.30 11.05 5.89 4.78 5.35 4.20 4.83 5.17 5.3726



thed, and, thed, toftion, |, ieention, cention, |, ceetion,ant, is, seieeet, cinention, and, ., tloned, uointe, feredten,iined, sonention, inathed, other, the, id, and, ,, of, is, of,of, ,, lcers, ,, ceeecion, ,, roferented, |, ioner, ,, |, the,the, the, centention, ionent, asers, ,, ctention, |, of, thed,of, uentie, of, and, ttentt, in, rerey, and, |, sotth, cheent,is, and, of, thed, rontion, that, seoftrA sample of the �rst 1000 features induced is shown in the table below, together withrandomly generated spellings. Notice, for example, that the feature [0-9][0-9] appearswith a surprisingly high weight of 9382.93. This is due to the fact that if a string containsone digit, then it's very likely to contain two digits. But since digits are relatively rarein general, the feature [0-9] must have a small weight of 0.038. Also, according to themodel, a lowercase letter followed by an uppercase letter is rare.feature s> <re ght> 3<[A-Z] ly> al>7+ ing>� 7.25 4.05 3.71 2.27 5.30 94.19 16.18feature [a-z][A-Z] 't> ed>7+ er>7+ ity ent>7+ [0-9][0-9]� 0.003 138.56 12.58 8.11 4.34 6.12 9382.93feature qu ex ae ment ies <wh ate� 526.42 5.265 0.001 10.83 4.37 5.26 9.79was, reaser, in, there, to, will, ,, was, by, homes, thing,be, reloverated, ther, which, conists, at, fores, anditing, with,Mr., proveral, the, ,, ***, on't, prolling, prothere, ,, mento,at, yaou, 1, chestraing, for, have, to, intrally, of, qut, .,best, compers, ***, cluseliment, uster, of, is, deveral, this,thise, of, offect, inatever, thifer, constranded, stater, vill,in, thase, in, youse, menttering, and, ., of, in, verate, of, toFinally, we visit the state of the model after growing 1500 features to describe words.At this point the model is making more re�ned judgements regarding what is to be consid-ered a word and what is not. The appearance of the features {}> and \[@-&]{, is explained27



by the fact that in preparing our corpus, certain characters were assigned special \macro"strings. For example, the punctuation characters $, _, %, and & are represented in ourcorpus as \${}, \_{}, \%{}, and \&{}. As the following sampled spellings demonstrate,the model has at this point recognized the existence of macros, but has not yet discernedtheir proper use.feature 7+<inte prov <der <wh 19 ons>7+ ugh ic>� 4.23 5.08 0.03 2.05 2.59 4.49 5.84 7.76feature sys ally 7+<con ide nal {}> qui \[@-&]{� 4.78 6.10 5.25 4.39 2.91 120.56 18.18 913.22feature iz IB <inc <im iong $ ive>7+ <un� 10.73 10.85 4.91 5.01 0.001 16.49 2.83 9.08the, you, to, by, conthing, the, ., not, have, devened, been,of, |, F., ., in, have, -, ,, intering, ***, ation, said,prouned, ***, suparthere, in, mentter, prement, intever, you,., and, B., gover, producits, alase, not, conting, comment,but, |, that, of, is, are, by, from, here{}, incements, contive,., evined, agents, and, be, \.{}, thent, distements, all, --,has, will, said, resting, had, this, was, intevent, IBM,whree, acalinate, herned, are, ***, O., |, 1980, but, will,***, is, ., to, becoment, ., with, recall, has, |, nother,ments, was, the, to, of, stounicallity, with, camanfined,in, this, intations, it, conanament, out, they, youWhile clearly the model still has much to learn, it has at this point compiled a signi�cantcollection of morphological observations, and has traveled a long way toward its goal ofstatistically characterizing English spellings.6. Extensions and Relations to Other ApproachesIn this section we brie
y discuss some relations between our incremental feature inductionalgorithm for random �elds and other statistical learning paradigms. We also present somepossible extensions and improvements of our method.28



6.1 Boltzmann machines. There is an immediate resemblence between the parameter es-timation problem for the random �elds that we have considered and the learning problemfor Boltzmann machines [1]. The classical Boltzmann machine is considered to be a ran-dom �eld on a graph G = (E;V ) with con�guration space 
 = f0; 1gV consisting of alllabelings of the vertices by either a zero or a one. The machine is speci�ed by a probabilitydistribution on this con�guration space of the formp(!) = 1Z ePi;j �i;j!i !jand the learning problem is to determine the set of weights �i;j that best characterize a setof training samples. Typically only a subset of the vertices are labeled in the training set;the remaining vertices are considered to comprise the hidden units. Treated as a maximumlikelihood problem, the training problem for Boltzmann machines becomes an instance ofthe general problem addressed by the EM algorithm [21], where iterative scaling is carriedout in the M-step [12].Most often the architecture of a Boltzmann machine is prescribed, and the learningproblem is then solved by applying the EM algorithm (which typically involves randomsampling and annealing). To cast Boltzmann machines into our framework, we can simplytake binary-valued features of the form fi;j(!) = !i!j . More generally, by allowing binary-valued features of the form fv(!) = !v1!v2 � � �!vnfor v = (v1; : : : ; vn) a path in G = (E;V ), we construct models that are essentially \higher-order" Boltzmann machines [32]. With candidate features of this form our algorithmincrementally constructs a Boltzmann machine with no hidden units. If only a subsetof the vertices are labelled in the training samples, then our Improved Iterative Scalingalgorithm becomes an instance of the EM algorithm.6.2 Decision trees. Our feature induction method also bears some resemblence to variousmethods for growing decision trees. Like decision trees, our method builds a top-downclassi�cation that re�nes features. However, decision trees correspond to constructingfeatures that have disjoint support. For example, binary decision trees are grown bysplitting a mode n into two nodes by asking a binary question qn of the data at that node.Questions can be evaluated by the amount by which they reduce the entropy of the dataat that node. This corresponds to our criterion of maximizing the reduction in entropyGq(g) over all candidate features g for a �eld q. When the decision tree has been grownto completion, each leaf l corresponds to a sequence of binary featuresfl; fl"; fl""; : : : ; froot29



where n" denotes the parent of node n, and with each feature fn being either the question qnor its negation :qn. Thus, each leaf l is characterized by the conjunction of these features,and di�erent leaves correspond to conjunctions with disjoint support. In contrast, ourfeature induction algorithm generally results in features that have overlapping support.By modifying our induction algorithm in the following way, we obtain a direct gener-alization of binary decision trees. Instead of considering the 1-parameter family of �eldsq�;g to determine the best candidate g = a^f , we consider the 2-parameter family of �eldsgiven by q�;�0;g = 1Z�;�0;g e�a^f+�0(:a)^f :Since the features a ^ f and (:a) ^ f have disjoint support, the improvement obtained byadding both of them is given by Gq(a ^ f) + Gq((:a) ^ f). This procedure generalizesdecision trees since the resulting features in the �eld can be overlapping.6.3 Dynamic Markov coding. Another technique that is similar in some aspects to random�eld induction is the dynamic Markov coding technique for text compression [14,5]. Toincrementally build a �nite state machine for generating strings in some output alphabet,dynamic Markov coding is based on the heuristic that the relative entropy of the �nite-state machine might be lowered by giving a unique destination state to arcs that havehigh count. At each stage in the algorithm a state in the machine is split, or \cloned,"into two states. The arc with the highest count coming into the original state is attachedto one of the new states, and all of the remaining input arcs are attached to the othernew state. As shown in [5], this technique is equivalent to incrementally building a �nite-context model, adding a single output symbol s to a valid pre�x � to form a new validpre�x s � �. In this way it is similar to our �eld induction algorithm which at each stagegenerates a new feature of the form a^f for some active feature f . However, because of the\on-line" nature of dynamic Markov coding, the technique is unable to precisely calculatethe reduction in entropy due to splitting a state, and must instead rely on more primitiveheuristics. A closely related technique is given in [31]. In [33] a method for building hiddenMarkov models is presented which is in some sense the opposite approach, in that it startswith a maximally detailed �nite-state model and proceeds by incrementally generalizingby merging states according to a greedy algorithm.6.4 Conditional exponential models. Almost all of what we have presented here carries overto the more general setting of conditional exponential models, including the Improved Iter-ative Scaling algorithm presented here. For general conditional distributions p(y jx) there30



may be no underlying random �eld, but with features de�ned as binary functions f(x; y),the same general approach is applicable. The feature induction method for conditionalexponential models is demonstrated for several problems in statistical machine translationin [6], where it is presented in terms of the principle of maximum entropy.6.5 Extensions. The random �eld induction method presented in this paper is not de�ni-tive; there are many possible variations on the basic theme, which is to incrementallyconstruct an increasingly detailed �eld to approximate the reference distribution ~p. Be-cause the basic technique is based on a greedy algorithm, there are of course many waysfor improving the search for a good set of features. The algorithm presented in Section 2is in some respects the most simple possible within the general framework. But it alsocomputationally intensive. A natural modi�cation would be to add several of the topcandidates at each stage. While this should increase the overall speed of the inductionalgorithm, it would also potentially result in more redundancy among the features, sincethe top candidates could be correlated. Another modi�cation of the algorithm would be toadd only the best candidate at each step, but then to carry out parameter estimation onlyafter several new features had been added to the �eld. It would also be natural to establisha more Bayesian framework in which a prior distribution on features and parameters isincorporated. This could enable a principled approach for deciding when the feature in-duction is complete, by evaluating the posterior distribution of the �eld given the trainingsamples.As mentioned above, the method presented here does not explicitly learn any hiddenstructure, and thus does not generalize as much as would be desirable for many appli-cations. One possibility would be to combine our method with a merging technique forcombining features in order to generalize from a more detailed set of observations. Whilein principle our learning method can be carried out in the presence of incomplete data (inwhich case iterative scaling of the parameters can be viewed as an EM algorithm), we havenot investigated searching methods for revealing hidden structure. This is a promisingdirection for future research.
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