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Linear Object Classes and Image Synthesis from a

Single Example Image
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Abstract

The need to generate new views of a 3D object from a single real image arises in several �elds,

including graphics and object recognition. While the traditional approach relies on the use

of 3D models, we have recently introduced techniques that are applicable under restricted

conditions but simpler. The approach exploits image transformations that are speci�c to

the relevant object class and learnable from example views of other \prototypical" objects

of the same class.

In this paper, we introduce such a new technique by extending the notion of linear class �rst

proposed by Poggio and Vetter. For linear object classes it is shown that linear transforma-

tions can be learned exactly from a basis set of 2D prototypical views. We demonstrate the

approach on arti�cial objects and then show preliminary evidence that the technique can

e�ectively "rotate" high-resolution face images from a single 2D view.

This document is available as /pub/mpi-memos/TR-16.ps.Z via anonymous ftp from ftp.mpik-tueb.mpg.de or

by writing to the Max{Planck{Institut f�ur biologische Kybernetik, Spemannstr. 38, 72076 T�ubingen, Germany.





1 Introduction

View-based approaches to 3D object recognition

and graphics may avoid the explicit use of 3Dmod-

els by exploiting the memory of several views of

the object and the ability to interpolate or gener-

alize among them. In many situations however a

su�cient number of views may not be available.

In an extreme case we may have to do with only

one real view. Consider for instance the problem of

recognizing a speci�c human face under a di�erent

pose or expression when only one example picture

is given. Our visual system is certainly able to

perform this task { even if at performance levels

that are likely to be lower than expected from our

introspection [9, 14]. The obvious explanation is

that we exploit prior information about how face

images transform, learned through extensive ex-

perience with other faces. Thus the key idea (see

[11]), is to learn class-speci�c image-plane trans-

formations from examples of objects of the same

class and then to apply them to the real image

of the new object in order to synthesize virtual

views that can be used as additional examples in

a view-based object recognition or graphic system.

Prior knowledge about a class of objects may be

known in terms of invariance properties. Poggio

and Vetter [11] examined in particular the case of

bilateral symmetry of certain 3D objects, such as

faces. Prior information about bilateral symme-

try allows the synthesis of new virtual views from a

single real one, thereby simplifying the task of gen-

eralization in recognition of the new object under

di�erent poses. Bilateral symmetry has been used

in face recognition systems [5] and psychophysi-

cal evidence supports its use by the human visual

system [12, 14, 17].

A more 
exible way to acquire information

about how images of objects of a certain class

change under pose, illumination and other trans-

formations, is to learn the possible pattern of

variabilities and class-speci�c deformations from

a representative training set of views of generic

or prototypical objects of the same class { such

as other faces. Although our approach originates

from the proposal of Poggio and Brunelli [10]

and of Poggio and Vetter [11], for countering the

curse-of-dimensionality in applications of super-

vised learning techniques, similar approaches with

di�erent motivations have been used in several dif-

ferent �elds. In computer graphics, actor-based

animation has been used to generate sequences of

views of a character by warping an available se-

quence of a similar character. In computer vision

the approach closest to the �rst part of ours is the

active shape models of Cootes, Taylor, Cooper and

Graham [13]. They build 
exible models of known

rigid objects by linear combination of labeled ex-

amples for the task of image search { recognition

and localization. In all of these approaches the un-

derlying representation of images of the new object

are in terms of linear combinations of the shape of

examples of representative other objects. Beymer,

Shashua and Poggio [6] as well as Beymer [5] have

developed and demonstated a more powerful ver-

sion of this approach based on non-linear learning

networks for generating new grey-level images of

the same object or of objects of a known class. In

this paper, we extend and introduce the technique

of linear classes to generate new views of an object.

The technique is similar to the approach of [5, 6]

but more powerful since it relies less on correspon-

dence between prototypical examples and the new

image.

The work described in this paper is based on the

idea of linear object classes. These are 3D objects

whose 3D shape can be represented as a linear

combination of a su�ciently small number of pro-

totypical objects. Linear object classes have the

properties that new orthographic views of any ob-

ject of the class under uniform a�ne 3D transfor-

mations, and in particular rigid transformations in

3D, can be generated exactly if the corresponding

transformed views are known for the set of proto-

types. Thus if the training set consist of frontal

and rotated views of a set of prototype faces, any

rotated view of a new face can be generated from a

single frontal view { provided that the linear class

assumption holds. In this paper, we show that the

technique, �rst introduced for shape-only objects

can be extended to their grey-level or colour values

as well, which we call texture.

Key to our approach is a representation of an

object view in terms of a shape vector and a texture

vector (see also Jones and Poggio [8] and Beymer

and Poggio [5]). The �rst gives the image-plane

coordinates of feature points of the object surface;

the second provides their colour or grey-level. On

the image plane the shape vector re
ects geometric

transformation in the image due to a change in

view point, whereas the texture vector captures

photometric e�ects, often also due to viewpoint

changes.

For linear object classes the new image of an ob-

ject of the class is analyzed in terms of shape and

texture vectors of prototype objects in the same

pose. This requires correspondence to be estab-

lished between all feature points of the prototype

images { both frontal and rotated { which can be
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done in a o�-line stage and does not need to be au-

tomatic. It also require correspondence between

the new image and one of the prototypes in the

same pose but does not need correspondence be-

tween di�erent poses as in the parallel deformation

technique of Poggio and Brunelli [10] and Beymer

et al.[6].

The paper is organized as follows. The next sec-

tion formally introduces linear object classes, �rst

for objects de�ned only through their shape vec-

tor. Later in the section we extend the technique

to objects with textures and characterize the sur-

face re
ectance models for which our linear class

approach is valid. Section 3 describes an imple-

mentation of the technique for synthetic objects

for which the linear class assumption is satis�ed

by construction. In the last section we address the

key question of whether the assumption is a suf-

�ciently good approximation for real objects. We

consider images of faces and demonstrate promis-

ing results that indirectly support the conjecture

that faces are a linear class at least to a �rst ap-

proximation. The discussion reviews the main fea-

tures of the technique and its future extensions.

2 Linear Object Classes

Three-dimensional objects di�er in shape as well

as in texture. In the following we will derive an

object representation consisting of a separate tex-

ture vector and a 2D-shape vector, each one with

components referring to the same feature points,

usually pixels. Assuming correspondence, we will

represent an image as follows: we code its 2D-

shape as the deformation �eld of selected feature

points { in the limit pixels { from a reference im-

age which serves as the origin of our coordinate

system. The texture is coded as the intensity map

of the image with feature points e.g. pixels set

in correspondence with the reference image. Thus

each component of the shape and the feature vec-

tor refers to the same feature point e.g. pixel. In

this setting 2D-shape and texture can be treated

separately. We will derive the necessary and su�-

cient conditions for a set of objects to be a linear

object class.

2.1 Shape of 3D objects

Consider a 3D view of an three-dimensional ob-

ject, which is de�ned in terms of pointwise fea-

tures [11]. A 3D view can be represented by a

vector X = (x1; y1; z1; x2; :::::; yn; zn)
T , that is by

the x; y; z-coordinates of its n feature points. As-

sume that X 2 <3n is the linear combination of q

3D views Xi of other objects of the same dimen-

sionality, such that:

X =

qX

i=1

�iXi: (1)

X is then the linear combination of q vectors in a

3n dimensional space, each vector representing an

object of n pointwise features. Consider now the

linear operator L associated with a desired uni-

form transformation such as for instance a speci�c

rotation in 3D. Let us de�ne Xr = LX the rotated

3D view of object X. Because of the linearity of

the group of uniform linear transformations L, it
follows that

Xr =

qX

i=1

�iX
r
i (2)

Thus, if a 3D view of an object can be represented

as the weighted sum of views of other objects, its

rotated view is a linear combination of the rotated

views of the other objects with the same weights.

Of course for an arbitrary 2D view that is a projec-

tion of a 3D view, a decomposition like (1) does

not in general imply a decomposition of the ro-

tated 2D views (it is a necessary but not a su�-

cient condition).

2D projections of 3D objects

The question we want to answer here is, \Un-

der which conditions the 2D projections of 3D ob-

jects satisfy equation (1) to (2)?" The answer will

clearly depend on the types of objects we use and

also on the projections we allow. We de�ne:

A set of 3D views (of objects) fXig is a lin-

ear object class under a linear projection P

if dimfXig = dimfPXig with Xi 2 <3n and

PXi 2 <p and p < 3n

This is equivalent to saying that the minimal

number of basis objects necessary to represent a

object is not allowed to change under the projec-

tion. Note that the linear projection P is not re-

stricted to projections from 3D to 2D, but may

also \drop" occluded points. Now assume x = PX

and xi = PXi being the projections of elements

of an linear object class with

x =

qX

i=1

�ixi (3)

then xr = PXr can be constructed without know-

ing Xrusing �i of equation (3) and the given

xri = PXr
i of the other objects.

2
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Figure 1: Learning an image transformation according
to a rotation of three-dimensional cuboids from one
orientation (upper row) to a new orientation (lower
row). The `test' cuboid (upper row right) can be repre-
sented as a linear combination of the two-dimensional
coordinates of the three example cuboids in the up-
per row. The linear combination of the three example
views in the lower row, using the coe�cients evaluated
in the upper row, results in the correct transformed
view of the test cuboid as output (lower row right).
Notice that correspondence between views in the two
di�erent orientations is not needed and di�erent points
of the object may be occluded in the di�erent orienta-
tions.

xr =

qX

i=1

�ix
r
i : (4)

These relations suggest that we can use \prototyp-

ical" 2D views (the projections of a basis of a linear

object class) and their known transformations to

synthesize an operator that will transform a 2D

view into a new 2D view when the object is a lin-

ear combination of the prototypes. In other words

we can compute a new 2D view of such an object

without knowing explicitely its three-dimensional

structure. Notice also, that knowledge of the cor-

respondence between equation (3) and equation

(4) is not necessary (rows in a linear equation sys-

tem can be exchanged freely). Therefore, the tech-

nique does not require to compute the correspon-

dence between views from di�erent viewpoints. In

fact some points may be occluded. Figure 1 shows

a very simple example of a linear object class and

the construction of a new view of an object. Tak-

ing the 8 corners of a cuboid as features, a 3D view

X, as de�ned above, is an element of <24; however,

the dimension of the class of all cuboids is only

3, so any cuboid can be represented as a linear

combination of three cuboids. For any projection,

that preserve these 3 dimensions, we can apply

equations (3) and (4). The projection in �gure 1

projects all non occluded corners orthographically

onto the image-plane ( x = PX 2 <14) preserving

the dimensionality. Notice, that the orthographic

projection of an exactly frontal view of a cuboid,

which would result in a rectangle as image, would

preserve 2 dimensions only, so equation (4) could

not guarantee the correct result.

Before applying this idea to grey-level images, we

would like to introduce a helpful change of coor-

dinate systems in equations (3) and (4). Instead

of using an absolute coordinate system, we repre-

sent the views as the di�erence to the view of a

reference object of the same class, in terms of the

spatial di�erences of corresponding feature points

in the images. Subtracting on both sides of equa-

tions (3) and (4) the projection of a reference ob-

ject gives us

�x =

qX

i=1

�i�xi (5)

and

�xr =

qX

i=1

�i�x
r
i : (6)

After this change in the coordinate system,

equation (6) now evaluates to the new di�erence

vector to the rotated reference view. The new view

of the object can be constructed by adding this dif-

ference to the reference view.

2.2 Texture of 3D objects

In this section we extend our linear space model

from a representation based on feature points to

full images of objects. In the following we assume

that the objects are isolated, that is properly seg-

mented from the background. To apply equations

(5) and (6) to images, the di�erence vectors be-

tween an image of a reference object and the im-

ages of the other objects have to be computed.

Since the di�erence vectors re
ect the spatial dif-

ference of corresponding pixels in images, this cor-

respondence has to be computed �rst. The prob-

lem of �nding correspondence between images in

general is di�cult and outside the scope of this

paper. In the following we assume that the corre-

spondence is given for every pixel in the image. In

our implementation (see next section) we approxi-

mated this correspondence �elds using a standard

optical 
ow technique. For an image of n-by-n
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Figure 2: Grey level images of an arti�cial linear object class are rendered. The correspondence between the
images of a reference object (dashed box) and the other examples are computed separately for each orientation.
The correspondence �eld between the test image and the reference image is computed and linearly decomposed
into the other �elds (upper row). A new correspondence �eld is synthesized applying the coe�cients from this
decomposition to the �elds from the reference image to the examples in the lower row. The output is generated
by forward warping the reference image along this new correspondence �eld. In the di�erence image between the
new image and the image of the true 3D model (lower row, right), the missing parts are marked white whereas the
parts not existing in an image of the model are in black.

pixels �x in equations (5) and (6) are the corre-

spondence �elds of the images to a reference image

with �x 2 <2n2.

The computed correspondence between images

enables a representation of the image that sepa-

rates 2D-shape and texture information. The 2D-

shape of an image is coded as a vector representing

the deformation �eld relative to a reference image.

The texture information is coded in terms of a vec-

tor which holds for each pixel the texture map that

results frommapping the image onto the reference

image through the deformation �eld. In this rep-

resentation, all images { the shape vector and the

texture vector { are vectorized relative to the ref-

erence image. Since the texture or image irradi-

ance of an object is in general a complex function

of albedo, surface orientation and the direction of

illumination, we have to distinguish di�erent situ-

ations.

Let us �rst consider the easy case of objects

all with the same identical texture: correspond-

ing pixels in each image have the same intensity

or color. In this situation a single texture map

(e.g. the reference image) is su�cient. Assum-

ing a linear object class as described earlier, the

shape coe�cients �i can be computed (equation 5)

and result (equation 6) in the correspondence �eld

from the reference image in the second orientation

to the new `virtual' image. To render the `vir-

tual' image, the reference image has to be warped

along this correspondence �eld. In other words the

reference image must be mapped onto the image

locations given through the correspondence �eld.

In Figure 2 the method is applied to grey level im-

ages of three-dimensional computer graphic mod-

els of �ve dog-like objects. The `dogs' are shown in

two orientations and four examples of this trans-

formation from one orientation to the other are

given. Only a single test view of a di�erent dog

is given. In each orientation, the correspondence

from a chosen reference image (dashed box) to the

other images is computed separately (see also sec-

tion `An implementation'). Since the dogs were

created in such a way that the three-dimensional

objects form a linear object class, the correspon-

dence �eld to the test image could be decomposed

exactly into the other �elds (upper row). Apply-

ing the coe�cients of this decomposition to the

4
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Figure 3: Three human example faces are shown, each in two orientations (the three left columns), one of these
faces is used as reference face (dashed box). A synthetic face, a `morph' between the two upper left images, is
used as a test face to ensure the linear combination constraint (upper right). The procedure of decomposing and
synthesizing the correspondences �elds is as described in �gure 2. Additionally all textures, for each orientation
separately, are mapped onto the reference face. Here the test texture is decomposed into the other example textures.
Using the evaluated coe�cients a new texture is synthesized for the second orientation on the reference face.
The �nal output, the transformed test face, is generated by warping this new texture along the new synthesized
correspondence �eld.

correspondence �elds of the second orientation re-

sults in the correspondence of the reference image

to a new image, showing the test object in the sec-

ond orientation. This new image (\output" in the

lower row) was created by simply warping the ref-

erence image along this correspondence �eld, since

all objects had the same texture. Since in this

test a three-dimensional model of the object was

available, the synthesized output could be com-

pared to the model. As shown in the di�erence

image, there is only a small error, which can be

attributed to minor errors in the correspondence

step. This example shows that the method com-

bined with standard image matching algorithms is

able to transform an image in a way that shows an

object from a new viewpoint.

Let us next consider the situation in which the

texture is a function of albedo only, that is in-

dependent of the surface normal. Then a linear

texture class can be formulated in a way equiva-

lent to equations (1) through (4). This is possi-

ble since the textures of all objects were mapped

along the computed deformation �elds onto the

reference image, so all corresponding pixels in the

images are mapped to the same pixel location in

the reference image. The equation

t =

qX

i=1

�iti (7)

with �i (di�erent to �i in equation (3)) implies

tr =

qX

i=1

�it
r
i (8)

assuming that the appearance of the texture is in-

dependent of the surface orientation and the pro-

jection does not change the dimensionality of the

texture space. Here we are in the nice situation

5



of a separate shape and texture space. In an ap-

plication the coe�cients �i for the shape and co-

e�cients �i for the texture can be computed sep-

arately. In face recognition experiments [5] the

coe�cients �i were already used as a representa-

tion for faces. Figure 3 shows a test of this lin-

ear approach for a separated 2D-shape and tex-

ture space in combination with the approximated

correspondence. Three example faces are shown,

each from two di�erent viewpoints accordingly to

a rotation of 22:5�. Since the class of all faces has

more than three dimensions a synthetic face image

is used to test the method. This synthetic face is

generated by a standard morphing technique [1]

between the two upper left images. This ensures

that the necessary requirements for the linear class

assumption hold, that is the test image is a linear

combination of the example images in texture and

2D-shape. In the �rst step for each orientation the

correspondence between a reference face (dashed

box) and the other faces is computed. Using the

same procedure described earlier, the correspon-

dence �eld to the test image is decomposed into

the other �elds evaluating the coe�cients �i. Dif-

ferently from �gure 2, the textures are mapped

onto the reference face. Now the texture of the

test face can be linearly decomposed into the tex-

tures of the example faces. Applying the resulting

coe�cients �i to the textures of the example faces

in the second orientation (lower row of �gure 3),

we generate a new texture mapped onto the refer-

ence face. This new texture is now warped along

the new correspondence �eld. This new �eld is

evaluated applying the coe�cients �i to the cor-

respondence �elds of the examples to the reference

face in the second orientation. The output of this

procedure is shown below the test image. Since

the input is synthetic, this result can not be com-

pared to the true rotated face, so it is up to the

observer to judge the quality of the applied trans-

formation of the test image.

There is a third case to consider. When the

texture is a function of the surface normal ~n at

each point, then the situation is more restricted.

Equation (7) becomes:

t(~n) =

qX

i=1

�iti(~ni): (9)

On the other hand, equation (2) implies ~nr =Pq

i=1 �i~n
r
i : Now equation (8) becomes

tr(

qX

i=1

�i~n
r
i ) =

qX

i=1

�i t
r
i (~n

r
i ) (10)

This condition limits the freedom of the possible

textures. In the case of Lambertian surfaces with

a constant light source the texture is a linear func-

tion of the surface normal ~n and equation (10) can

be solved with �i = �i. In this case equations (5)

and (9) can be solved with �i = �i to ensure the

correct result in equation (10).

3 An Implementation

The implementation of this method for grey-level

pixel images can be divided into three steps. First,

the correspondence between the images of the ob-

jects has to be computed. Second, the correspon-

dence �eld to the new image has to be linearly de-

composed into the correspondence �elds of the ex-

amples. The same decomposition has to be carried

out for the new texture in terms of the example

textures. And �nally we synthesize the new image,

showing the object from the new viewpoint.

3.1 Computation of the Correspondence

To compute the di�erences �x used in equations

(5) and (6), which are the spatial distances be-

tween corresponding points of the objects in the

images, the correspondence of this points has to

be established �rst. That means we have to �nd

for every pixel location in an image, e.g. a pixel

located on the nose, the corresponding pixel loca-

tion on the nose in the other image. This is in

general a hard problem. However, since all ob-

jects compared here are in the same orientation,

we can often assume that the images are quite

similar and that occlusion problems should usu-

ally be negligible. These conditions make it feasi-

ble to compare the images of the di�erent objects

with automatic techniques. Such algorithms are

known from optical 
ow computation, in which

points have to be tracked from one image to the

other. We use a coarse-to-�ne gradient-based gra-

dient method [2] and follow an implementation de-

scribed in [3]. For every point x; y in an image I,

the error term E =
P
(Ix�x+ Iy�y � �I)2 is min-

imized for �x; �y, with Ix; Iy being the spatial im-

age derivatives and �I the di�erence of intensity

of the two compared images. The coarse-to-�ne

strategy re�nes the computed displacements when

�ner levels are processed. The �nal result of this

computation (�x; �y) is used as an approximation

of the spatial displacement (�x in equation (5)and

(6))of a pixel from one image to the other. The

correspondence is computed in the direction to-

wards the reference image from the example and

the test images. As a consequence all vector �elds

have a common origin at the pixel locations of the
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reference image.

3.2 Learning the Linear Transformation

The decomposition of a given correspondence �eld

in equation (5) and the composition of the new

�eld in equation (6) can be understood as a single

linear transformation. First, we compute the co-

e�cients �i for the optimal decomposition (in the

sense of least square). We decompose a\initial"

�eld �x to a new object X into the \initial" �elds

�xi to the q given prototypes by minimizing

jj�x�

qX

i=1

�i�xijj
2: (11)

We rewrite equation (5) as �x = �� where � is

the matrix formed by the q vectors �xi arranged

column-wise and � is the column vector of the �i
coe�cients. Minimizing equation (11) gives

� = (�)+�x: (12)

The observation of the previous section implies

that the operator L that transforms �x into �xr

through �xr = L�x, is given by

�xr = �r
� = �r�+�x as L = �r�+ (13)

and thus can be learned from the 2D example pairs

(�xi;�x
r
i ). In this case, a one-layer, linear net-

work (compare Hurlbert and Poggio, 1988) can be

used to learn the transformation L. L can then

transform a view of a novel object of the same

class. If the q examples are linearly independent

�+ is given by �+ = (�T�)
�1
�T ; in the other

cases equation (11) was solved by an SVD algo-

rithm.

Before decomposing the new texture into the ex-

ample textures, all textures have to be mapped

onto a common basis. Using the correspondence,

we warped all images onto the reference image. In

this representation the decomposition of the tex-

ture can be performed as described above for the

correspondence �elds.

3.3 Synthesis of the New Image.

The �nal step is image rendering. Applying the

computed coe�cients to the examples in the sec-

ond orientation results in a new texture and the

correspondence �elds to the new image. The new

image can be generated combining this texture

and correspondence �eld. This is possible because

both are given in the coordinates of the reference

image. That means that for every pixel in the ref-

erence image the pixel value and the vector point-

ing to the new location are given. The new loca-

tion generally does not coincide with the equally

spaced grid of pixels of the destination image. A

commonly used solution of this problem is known

as forward warping [18]. For every new pixel, we

use the nearest three points to linearly approxi-

mate the pixel intensity.

4 Is the linear class assumption

valid for real objects?

For man made objects, which often consist of

cuboids, cylinders or other geometric primitives,

the assumption of linear object classes seems al-

most natural. However, are there other object

classes which can be linearly represented by a �-

nite set of example objects? In the case of faces

it is not clear how many example faces are neces-

sary to synthesize any other face and in fact, it is

unclear if the assumption of a linear class is ap-

propriate at all. The key test for the linear class

hypothesis in this case is how well the synthesized

rotated face approximates the \true" rotated face.

We tested our approach on a small set of 50 faces,

each given in two orientations (22:5� and 0�). Fig-

ure 4 shows four tests using the same technique as

described in �gure 3. In each case one face was se-

lected as test face and the 49 remaining faces were

used as examples. Each test face is shown on the

upper left and the output image produced by our

technique on the lower right, showing a rotated

test face. The true rotated test face from the data

base is shown on the lower left. We also show

in the upper right the synthesis of the test face

through the 49 example faces in the test orienta-

tion. This reconstruction of the test face should be

understood as the projection of the test face into

the shape and texture space of the other 49 exam-

ple faces. A perfect reconstruction of the test face

would be a necessary (not su�cient!) requirement

that the 50 faces are a linear object class. The

results are not perfect but, considering the small

size of the example set, the reconstruction is quite

good. The similarity of the reconstruction to the

input test face allows to speculate that an example

set size of the order of hundred faces may be su�-

cient to construct a huge variety of di�erent faces.

We conclude that the linear object class approach

may be a satisfactory approximation even for com-

plex objects as faces. On the other hand it is obvi-

ous that the reconstruction of every speci�c mole

or wrinkle in a face requires to an almost in�nite

number of examples. To overcome this problem,

correspondence between images taken from di�er-

ent viewpoints should be used to map the speci�c

texture on the new orientation [8, 5].
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Figure 4: Four examples of arti�cially rotated human faces, using the technique described in �gure 3 are shown.
Each test face (upper left) is \rotated" using 49 di�erent faces (not shown) as examples, the results are marked
as output. Only for comparison the \true" rotated test face is shown on the lower left (this face was not used in
the computation). The di�erence, between synthetic and real rotated face is due to the incomplete example set,
since the same di�erence can already be seen in the reconstruction of the input test face using the 49 example faces
(upper right).
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5 Discussion

Linear combinations of images of a single object

have been already successfully used to create a

new image of that object [15]. Here we created

a new image of an object using linear combina-

tions of images of di�erent objects of the same

class. Given only a single image of an object, we

are able to generate additional synthetic images

of this object under the assumption that the \lin-

ear class" property holds. This is demonstrated

not only for objects purely de�ned through their

shape but also for smooth objects with texture.

This approach based on two-dimensionalmodels

does not need any depth information, so the some-

time di�cult step of generating three-dimensional

models from two-dimensional images is super
u-

ous. Since no correspondence is necessary between

images, representing objects in di�erent orienta-

tions, fully automated algorithms can be applied

for the correspondence �nding step. For object

recognition tasks our approach has several impli-

cations. Our technique can provide additional ar-

ti�cial example images of an object when only a

single image is given. On the other hand the coe�-

cients, which result from a decomposition of shape

and texture into example shapes and textures give

us already a representation of the object which is

invariant under any a�ne transformation.

In an application our approach is confronted

with two types of problems. As in any approach

based on 
exible models, there is the problem of

�nding the correspondence between model and im-

age. In our implementation we used a general

method for �nding this correspondence. How-

ever, if the class of objects is known in advance, a

method speci�c to this object class could be used

[8, 5]. In this case the correspondence �eld is lin-

early modeled by a known set of deformations spe-

ci�c to that class of objects.

A second problem, speci�c to our approach is

the existence of linear object classes and the com-

pleteness of the available examples. This is equiv-

alent to the questions of whether object classes

de�ned in terms of human perception can be mod-

eled through linear object classes. Presently there

is no �nal answer to this question, apart for sim-

ple objects like (e.g. cuboids, cylinders), where the

dimensionality is given through their mathemati-

cal de�nition. The application of the method to

a small example set of human faces, shown here,

provides preliminary promising results at least for

some faces. It is, however, clear that 50 exam-

ple faces are not su�cient to model accurately all

human faces. Since our linear model allows to

test the necessary conditions for an image being

a member of a linear object class, the model can

detect images where a transformation fails. This

test can be done by measuring the di�erence be-

tween the input image and its projection into the

example space, which should ideally vanish.

Our implementation, as described in our exam-

ples, can be improved by applying the linear class

idea to independent parts of the objects. In the

face case, a new input face was linearly approxi-

mated through the complete example faces, that

is for each example face a single coe�cient (for

texture and 2D-shape separately) was computed.

Assume noses, mouths or eyes span separated lin-

ear subspaces, then the dimensionality of the space

spanned by the examples will be multiplied by the

number of subspaces. So in a new image the di�er-

ent parts will be approximated separately by the

examples, that will increase the number of coe�-

cients used as representation and will also improve

the reconstruction.

Several open questions remain for a fully auto-

mated implementation. The separation of parts

of an object to form separated subspaces could

be done by computing the covariance between the

pixels of the example images. However, for images

at high resolution, this may need thousands of ex-

ample images. Our linear object class approach

also assumes that the orientation of an object in

an image is known. The orientation of faces can be

approximated computing the correlation of a new

image to templates of faces in various orientations

[4]. It is not clear how precisely the orientation

should be estimated to yield satisfactory results.

Appendix

A Decomposing objects into parts

In the previous section we considered learning the

appropriate transformation from full views. In

this case, the examples (prototypes) must have

the same dimensionality as a full view. Our argu-

ments above show that dimensionality determines

the number of example pairs needed for a correct

transformation. This section suggests that com-

ponents of an object { i.e. a subset of the full set

of features { that are element of the same object

class may be used to learn a single transforma-

tion with a reduced number of examples, because

of the smaller dimensionality of each component.

We rewrite equation (1) to X = �� where � is

the matrix formed by the q vectors Xi arranged

column-wise and � is the column vector of the �i
coe�cients. The basic components in which a view
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can be decomposed are given by the irreducible

submatrices �(i) of the structure matrix � so that

� = �(1)� ::::��(k). Each submatrix �(i) repre-

sents an isolated object class, formed by a subset

of feature points which we would like to call a part

of an object. As an example, for objects composed

by two cuboids in general six examples would be

necessary since all 3D views of objects composed of

two cuboids span a six-dimensional space (we sup-

pose a �xed angle between the cuboids). However,

this space � is the direct sum � = �(1) � �(2) of

two three-dimensional subspaces, so three exam-

ples are su�cient. Notice the �(1) and �(2) are

only identical when both are in the same orienta-

tion. This shows that the problem of transforming

the 2D view x of the 3D objects X into the trans-

formed 2D views xr , can be treated separately for

each component x(k).
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