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Use of Fourier and Karhunen-Loeve
Decomposition for Fast Pattern Matching

With a Large Set of Templates
Michihiro Uenohara, Member, IEEE, and Takeo Kanade, Fellow, IEEE

Abstract —We present a fast pattern matching algorithm with a large set of templates. The algorithm is based on the typical
template matching speeded up by the dual decomposition; the Fourier transform and the Karhunen-Loeve transform. The proposed
algorithm is appropriate for the search of an object with unknown distortion within a short period.

Patterns with different distortion differ slightly from each other and are highly correlated. The image vector subspace required for
effective representation can be defined by a small number of eigenvectors derived by the Karhunen-Loeve transform. A vector subspace
spanned by the eigenvectors is generated, and any image vector in the subspace is considered as a pattern to be recognized.

The pattern matching of objects with unknown distortion is formulated as the process to extract the portion of the input image,
find the pattern most similar to the extracted portion in the subspace, compute normalized correlation between them at each location
in the input image, and find the location with the best score. Searching for objects with unknown distortion requires vast
computation. The formulation above makes it possible to decompose highly correlated reference images into eigenvectors, as well
as to decompose images in frequency domain, and to speed up the process significantly.

Index Terms —Template matching, pattern matching, Karhunen-Loeve transform, Fourier transform, eigenvector.

——————————   ✦   ——————————

1 INTRODUCTION

EMPLATE matching has been a useful and familiar tool
to detect an object in an image [1]. Template matching

finds a pattern in the image that is similar to a given refer-
ence image using correlation or normalized correlation as
the measurement of similarity.

The drawback of template matching is its high com-
putation cost. It is not robust for rotation and other dis-
tortion of objects, either. Depending on the particular
point of view, the object can appear as a number of dif-
ferent-looking images. Template matching can be ap-
plied to objects with unknown distortion by doing
matching with many reference images from a number of
points of view. The difficulty lies in its high computation
cost. The more templates used for detecting the object
from a wide range of views precisely, the higher the
computation cost becomes.

A multiresolution image structure can reduce the search
area, and, therefore, the computation cost. In the “coarse-to-
fine” strategy, images and templates at different levels of
resolution are generated, and the templates are searched at
the lower resolution first, and the best-match location is
found. The neighborhood of the best-match location is
searched in an image using increasingly higher resolutions,
up to the original resolution image. The “coarse-to-fine”

strategy works well for an object with significantly low
spatial frequency components which are retained in a low
resolution image. However, it does not work well for clut-
tered scenes and objects whose details need to be checked
in order to distinguish one from another. If an object is
missed in a lower resolution image, it cannot be recovered
at later stages. To implement the “coarse-to-fine” strategy,
it is also necessary to decide how many levels of resolution
are to be used. It depends on the objects and scene. There is
a trade-off between reducing computation and increasing
the risk of missing objects.

Recently, fast template matching for multiple rotated
templates has been proposed [2], [3]. The Karhunen-Loeve
transform is first applied to a set of rotated images, and
eigenvectors are extracted from them. Each template in
this set is approximated by a linear combination of these
eigenvectors. Since rotated templates differ slightly from
each other and are highly correlated, templates can be
approximated reasonably well by a smaller number of
eigenvectors. Normalized correlation between rotated
templates and the input image is efficiently computed by
substituting the approximations for the templates when
computing the normalized correlation. The computation
cost for detecting targets from the whole image is still
high. Multiresolution images are used to reduce compu-
tation cost, which leads to the same difficulty for cluttered
scenes, as described before.

We will present a fast pattern matching algorithm
with a large set of templates without multiresolution
images. The algorithm is based on the typical template
matching, which is the search for the given pattern in the
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image, speeded up by the dual decomposition, the
Fourier transform, and the Karhunen-Loeve transform.
The matching criterion is normalized correlation.

Patterns with different distortion differ slightly from
each other and are highly correlated. The image vector sub-
space required for effective representation can be defined
by a small number of eigenvectors derived by the Kar-
hunen-Loeve transform. Instead of approximating each
template as a linear combination of the eigenvectors, a
vector subspace spanned by the eigenvectors is generated.
The vector subspace involves not only the discrete reference
images with different distortion, but also their interpola-
tion. Any image vector in the vector subspace is considered
to be a pattern to be recognized.

The pattern matching of objects with unknown distor-
tion is now formulated as the process to extract a portion of
the input image, find the pattern most similar to the ex-
tracted portion in the vector subspace, compute the nor-
malized correlation at each location in the whole input im-
age, and find the location with the highest score.

It is well known that the computation of correlation can
be reduced greatly by using the Fourier transform, espe-
cially when the image size is large. The formulation above
makes it possible to apply the Fourier transform in an effi-
cient way and speeds up the process significantly. It should
be noted that the normalized correlation to multiple refer-
ence images represented as linear combinations of the ei-
genvectors is not speeded up by the Fourier transform. The
number of Fourier transforms and inverse Fourier trans-
forms is reduced by representing the reference images as
the linear combinations of the eigenvectors; however, the
computation for the linear combination of the Fourier trans-
form of the eigenvectors is not negligible, and the whole
computation cost is not reduced greatly. The alternative
process is to generate the vector subspace, then find the
most similar pattern in the vector subspace, and to compute
the normalized correlation between them. This eliminates
the computation for the linear combination.

The computation cost of the proposed pattern matching

in an image of size N N¥  is O K N N+ 5 2
2

2a fe jlog , while

the computation cost of the normalized correlation with the

original P reference images is O P N M+ 1 2 2a fe j when the

size of the reference images are M M¥ . K is the number of
eigenvectors used for the vector subspace. N is assumed to

be a power of two. Its reduction rate is log2
2 2N M K Pe j ¥ ,

which is the product of the reduction by the Karhunen-
Loeve transform and that by the Fourier transform.

The paper is organized as follows. The vector subspace
and normalized correlation in the vector subspace is ex-
plained in Section 2. In Section 3, the proposed pattern
matching algorithm, which is the normalized correlation in
the vector subspace using the Fourier transform, is pre-
sented, and experimental results are shown in Section 4.

2 NORMALIZED CORRELATION IN THE VECTOR
SUBSPACE

2.1 The Karhunen-Loeve Transform
The Karhunen-Loeve (K-L) transform is a familiar tech-
nique for projecting a large amount of data onto a small
dimensional subspace in pattern recognition and image
compression [4], [5]. The K-L transform gives the orthogo-
nal basis functions as the eigenvectors of the covariance
matrix. This transform is optimal in that it is a canonical
transform minimizing the mean square error between a
truncated representation and the actual data.

Let the set of input data be xi i P, , , ,= 1 2 K ; vectors of

dimension M2 , representing M M¥  square images. The
covariance matrix of the input data is

A i i= - -
=
Â1

1
P

i

P
T

x c x cc hc h                          (1)

where c is the average image vector. The vectors e j  and

scalars l j  are the eigenvectors and eigenvalues of the co-

variance matrix A, respectively.  We obtain the optimal ap-
proximation of the input data by selecting eigenvectors in
decreasing order of magnitude of the eigenvalues and rep-
resenting each datum by a linear combination of major K
eigenvectors as

x c ei ij j
j

K

pª +
=
Â

1

                                  (2)

where p e e e x ci K
T

i= -1 2, , , ,K c h  and mean approximation
error is

e lK
i

i K

Pa f =
= +

-

Â
1

1

.

The  cumulative proportion m Ka f  is useful for deciding the
number of eigenvectors

m l lK
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Pa f +
L
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O
Q
PP
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N
MM

O
Q
PP= =

-

Â Â
1 1

1

                           (3)

2.2 Vector Subspace
When we search an object with unknown distortion, the
straightforward way is to do template matching with a
large set of templates. Each template is the intensity pat-
tern at a different point of view. Reference images with
different points of view differ slightly from each other
and are highly correlated. The image vector subspace re-
quired for effective representation can be defined by a
small number of eigenvectors derived by the K-L trans-
form.  (See Fig. 1.)

The major K  eigenvectors, in addition to the average im-
age vector c, span a (K + 1)-dimensional subspace of all pos-
sible images, and a set of images in the subspace is consid-
ered as a template to be recognized [6]. A set of reference
images in the vector subspace is therefore expressed in terms
of a linear combination of a finite set of orthonormal basis:
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x e=
=
Â pj j
j

K

0

                                      (4)

where

e c e c e0
1 1

= -
F
H
GG

I
K
JJ -

= =
Â Âp pj

c
j

j

K

j
c

j
j

K

is the normalized average image vector from which the
projection into the subspace spanned by the K eigenvectors

is subtracted, and p e e e cc
K

T= 1 2K .

2.3 Normalized Correlation in the Vector Subspace
The input image is evaluated at each location as to how it
fits the template by extracting the region and finding the
pattern most similar in the vector subspace and computing
normalized correlation between them. When we extract a
portion of image y, we normalize it so that the average in-
tensity of the whole pixels is zero, i.e.,

~yi
i

M

=
=
Â 0

1

2

.

M2  is the number of pixels in the reference images. This
normalization makes matching insensitive to the variation
of the background intensity.

The most similar pattern in the vector subspace is the
projection of the normalized extracted region vector ~y  into
the vector subspace (Fig. 2). Its normalized correlation to
the vector ~y  is the largest. The normalized correlation be-
tween the vector ~y  and a reference vector x is given by

C x y
xy

y
, ~

~

~b g = .

Replacing the reference image vector x with the projection

~ ~x = e y ej
T

j

K

je j
=
Â

1

yields

C

j
T

j

K

~ ~

~

~y, x

e y

y
b g

e j
=

=
Â

2

0
                             (5)

The coefficient vector ~p  for the projection ~x  is
~ ~ ~ ~p = e y, e y, , e y0 1

T T
K
T T

K .

The normalized correlation score above is the measure of
similarity considering not only the prestored discrete P ref-
erence images but also their interpolation. This makes the
system robust against the variation of illumination. The
computation cost is greatly reduced compared to the nor-
malized correlation to the original P  reference images.  The
original normalized correlation requires M P2 1+a f  opera-
tions for P reference images, while (5) requires only
M K2 2+a f  operations, where K can be much smaller than P.

3 NORMALIZED CORRELATION USING THE FOURIER
TRANSFORM

It is well known that the Fourier transform of the correla-
tion of the two functions is the product of the Fourier trans-
form of the one function and the complex conjugate of an-
other function [7].

F C x y F x F y,b g = *                               (6)

                                                       (a)

                                                       (b)

Fig. 1. (a) Distribution of reference images. (b) Example of reference
images.

Fig. 2. Template space and the projection of input image.



894 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  8,  AUGUST  1997

The inverse Fourier transform of the product above gives
the values of the correlation at different lags. The computa-
tion using the Fourier transform is much more computa-
tionally efficient than the correlation in spatial domain, es-
pecially in the case of large size images.

3.1 Normalized Correlation in the Vector Subspace
Using the Fourier Transform

Normalized correlation in the vector subspace is computed
as below:

C

j
T

j

K

~ ~

~

~y, x

e y

y
b g

e j
=

=
Â

2

0
                              (7)

We compute eigenvectors el  from normalized reference

images xli
i

M

=
=
Â 0

1

2

. The summation of all pixels in each ei-

genvector is, therefore, zero.

eli
i

M

=
=
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2

                                          (8)

The correlation between the eigenvectors el  and the nor-
malized portion of the input image ~y  is the same as the
correlation between the eigenvectors el  and the portion of
the input image y

e y e yl
T

l i
i

M

l
Te y y
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~ = - =
=
Â c h

1

2

                            (9)

y  is the average of the portion of the input image y. The
correlation above can be computed efficiently using the
Fourier transform as: FFT the two data sets el  and y, multi-
ply the one resulting transform by the complex conjugate of
the other, and inversely transform the product.

The norm of the normalized portion of the image ~y  at lo-
cation (i, j) can also be computed using the Fourier transform:

~y
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where IM  is the matrix of the size M M¥  with all the ele-
ments of unity.

We obtain the normalized correlation (7) by computing
the summation of the correlation between the eigenvectors
el  and the portion of the input image y, computing the
square root of it, and then dividing it by the norm of the
normalized portion of the input image (10).

3.2 Off-Line and On-Line Processing of the
Proposed Pattern Matching

We will show the fast pattern matching algorithm with a

large set of templates to detect the location of the object and
the best matched template which indicates the geometric
distortion parameters of the object. It involves off-line proc-
essing and on-line processing.

In off-line processing, we first gather or generate reference
images of the object with different distortion parameters.

x x x x0 1 2Æ , , ,K p                                  (13)

We compute the average intensity of each reference image
and subtract them from the reference images, and normal-
ize the reference images to unit energy:

xij
i

M

=
=
Â 0

1

2

                                      (14)

x xi
T

i = 1                                       (15)

We compute the average image vector c and the first K ei-
genvectors  by the Karhunen-Loeve transform. We select K
eigenvectors whose corresponding eigenvalues are the
largest. We use a cumulative proportion

m l lK
i

i

K

i
i

Pa f =
L
N
MM

O
Q
PP

L
N
MM

O
Q
PP= =

-

Â Â
1 1

1

for deciding the number of eigenvectors K. This measure-
ment shows well how many eigenvectors contribute to ap-
proximate reference images. We subtract the projection of
the average image vector c into the subspace spanned by
the K eigenvectors from the average image vector c, and
normalize it to unit energy, and call it the No.0 eigenvector
e0 . We then calculate coefficients by projecting reference
images onto the vector subspace spanned by these K + 1a f
eigenvectors. The coefficient vector pi  is the representation
of reference images in the vector subspace corresponding to
distortion parameters.

p e , e e xi K
T

i= 0 1, ,K                             (16)

We compute the Fourier transform of the K + 1a f eigenvec-
tors:

F F F Ke e e0 1, , ,K                                (17)

We generate the matrix of the size M M¥  with all the ele-
ments of unity and compute the Fourier transform of it:

F FIM =
L

N
MMM

O

Q
PPP

L

N

MMM

O

Q

PPP

1 1 1
1 1 1

1
1 1 1

K
K

K K K
K

                          (18)

In on-line processing, we obtain image y, and compute the
squared image

y2 2

ij ijy=                                      (19)

We then compute the complex conjugate of the Fourier trans-

form of the input image y
ij

 and the squared image y2

ij

F F* *y y2,                                    (20)

We have the Fourier transform of the eigenvectors and the
matrix IM  that are precomputed off-line. We calculate the
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correlation between the eigenvectors and input image, the
matrix IM  and the input image, and the matrix IM  and the
squared input image.

e y e yi iF F Fƒ = ∑- *1                           (21)

I y = I yM Mƒ ∑- *F F F1                         (22)

I y = I yM Mƒ ∑- *2 1 2F F F                       (23)

We obtain the correlation between the input image and the
pattern most similar in the vector subspace at each location
in the image by

C
ij j ij

j

K
~, ~y x e yb g = ƒ

=
Â

2

0

                            (24)

The norm of the normalized portion of the input image ~y
at each location is computed:

~y I y I yM Mij ij ij
M= ƒ - ƒFH IK

2
2

2              (25)

The normalized correlation at each location is then obtained:

C
C

ij

ij

ij

~, ~
~, ~

~x y
x y

y
b g

b g
=                             (26)

We obtain the location of the object by searching the lo-
cation with the maximum score.

The vector e y, e y, , e y0 1
T T T~ ~ ~K K

T
 that is already computed in

(21) represents the coefficient vectors ~p  for the projection of
the vector ~y  into the vector subspace. ~x  is represented as

~ ~x e=
=
Â pi i
i

K

0

                                        (27)

while each reference image is represented as

x ei ij j
j

K

p=
=
Â ~

0

                                        (28)

The distance ei  between the coefficient vectors ~p  and the
coefficient vectors of the reference image vectors pi  is com-
puted as:

e p pi ij j
j

K

= -
=
Â ~ ~e j

2

0

                                  (29)

We find the reference image xi  with the minimum distance
and obtain the distortion parameter of the object.

4 EXPERIMENTAL RESULTS

We have conducted experiments to verify the accuracy and
computational efficiency of the proposed algorithm.

The target object in the experiments is a small part on the
printed circuit board shown in Fig. 3a. The size of the image
is 256 � 236. Fig. 3b shows the rotated reference images ob-
tained by rotating the original reference image at the upper-
left corner in Fig.3b. The size of the reference images is 50 � 50,
and the number of reference images is 101 (�50 degrees to
+50 degrees, every one degree). They are normalized so that
the average of pixel intensities is zero and the energy is unit.

Our first step is to compress the reference image sets into
the low-dimensional subspace that captures the most ap-
pearance characteristics of objects by the Karhunen-Loeve
transform. We use K =20 in the experiments. The cumula-
tive proportion of it is 0.85.

   
                                                                    (a)                                                                                              (b)

Fig. 3. (a) Printed circuit board, (b) rotated reference images (12 of 101 are shown).

TABLE 1
ORIENTATION OF THE SMALL PART

orientation(deg) 4.1 8.2 12.3 16.4 20.5 24.6 28.7 32.8 36.9 41.0 45.1
detected orientation (deg) 4 8 12 16 20 25 29 32 37 41 45
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The Fourier transform of the eigenvectors, as well as the
Fourier transform of the matrix IM , are computed and stored
in the file. At the beginning of the on-line operation, those
data are loaded from the file and used for computation.

4.1 Detection of the Rotated Printed Circuit
In the first experiment, we generate rotated images of the
printed circuit board synthetically and use them for input.
We detect the location and orientation of the small part by
the proposed algorithm and compare with the location and
orientation of the small part in the images we generate.

Table 1 shows the rotation angle of the image (which is
the rotation angle of the small part also) and the rotation

angle of the small part detected by the program. The pro-
gram computes the coefficient vector ~p  and the normal-
ized correlation score at each location in the image. The
program then searches the location with the highest score,
which is the location of the small part, and finds the coef-
ficient parameter of the reference image with the mini-
mum distance from the coefficient parameter ~p  at the
location with the highest score. In the experiment, we use
the reference images rotated every one degree. The reso-
lution of the detected rotation angle is one degree. We
could obtain subdegree accuracy by applying a quadratic
fitting function to the correlation score.

                                   

Fig. 4. Normalized correlation at each location.

Fig. 5. (a) Lower resolution images. (b) Normalized correlation at each location.
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Table 1 shows that the proposed algorithm detects the
orientation of the small part reasonably well, considering
that the size of the reference images in the experiment is
50 � 50, and one degree rotation moves each pixel in the
reference images less than one pixel location. The program
works well even if the small part is located to the orienta-
tion between reference images.

4.2 Comparison with the “Coarse-to-Fine” Strategy
The second experiment shows that the proposed algo-
rithm works well for an object with high spatial frequency
components which cause troubles when we use the
“coarse-to-fine” strategy. Fig. 4 shows the normalized
correlation score at each location detected by the pro-
posed algorithm. The reference images are the same as in
the first experiment and the Fourier transform of the ei-
genvectors and the matrix IM  are generated. The input
image is the printed circuit board shown in Fig. 3a. Fig. 4
shows that the small part is well distinguished from oth-
ers. The same type of chips are located horizontally. The
cue to distinguish one location from another is the char-
acters on the chips and the pattern of the printed circuit
that are high spatial frequency components.

Fig. 5 shows that the “coarse-to-fine” search does not
work well for the objects like this. Fig. 5a shows the low
resolution images of the printed board. We generate half
resolution images and reference images just by averaging
four neighborhood pixels. Fig. 5b shows the normalized
correlation results between the printed circuit board im-
age and the reference image at each resolution. The small
part is detected successfully in the half resolution image.
However, it is missed in the one-fourth resolution image.

The computation time for the proposed algorithm in
the experiments is 23.9 seconds on the Sparc 10/30. The
number of reference images P = 101, the number of the
eigenvectors K = 20, the size of the input image is 256 � 236,
and the size of the reference image is 50 � 50. The input
image is extended to 256 � 256 by padding the last 20
rows with zeros. We use Fourier transform to compute
correlation in the proposed algorithm so that the size of
the reference image does not affect the computation time.
The computation time for the normalized correlation be-
tween the printed circuit board image shown in Fig. 3a
and the reference image at the upper-left corner in Fig. 3b
is 218.3 seconds. We need P = 101 times computation for
computing normalized correlation between 101 reference
images, which leads to a computation time of 22,048.3
seconds; 922.5 times the computation time in the case of
using the proposed algorithm.

The search in the one-fourth resolution images requires
1/256 computation. The computation time in the experi-
ment shows that the proposed pattern matching algorithm
reduces computation more than the search in the one-
fourth resolution image and still leads to the correct result.

5 CONCLUSION

We have presented a novel pattern matching technique
with a large set of templates. The object to be recognized is
given as multiple intensity patterns with different distor-

tion parameters such as rotation angle, scaling factor. The
proposed algorithm decomposes the given pattern by the
Karhunen-Loeve transform, and generates the vector sub-
space spanned by the major eigenvectors. The algorithm then
decomposes the input image and the derived eigenvectors by
the Fourier transform, finds the pattern most similar in the
vector subspace, and computes normalized correlation be-
tween the most similar pattern and the input image.

The dominant part of the proposed algorithm in compu-
tation is the Fourier transform. The computation cost of the
proposed pattern matching in the image of the size N N¥  is

O K N N+ 5 2
2

2a fe jlog , while the computation cost of the

normalized correlation with the original P reference images

used for generating the vector subspace is O P N M+ 1 2 2a fe j. K
is the number of eigenvectors. The size of the reference im-
ages is M M¥ . The Karhunen-Loeve transform speeds up
the process by K/P, and the Fourier transform speeds up the

process by log2
2 2N Me j . In the experiment, P = 101, K = 20,

M = 50, N = 256, and the proposed algorithm speeds up the
process by almost 1,000 times.

REFERENCES

[1] A. Rosenfeld and A. Ka, Digital Picture Processing. New York:
Academic Press, 1982.

[2] S. Yoshimura and T. Kanade, “Fast Template Matching Based on
the Normalized Correlation by Using Multiresolution Eigen-
images,” Proc. IROS '94, Munich, Germany, 1994.

[3] O. Amidi, Y. Mesaki, T. Kanade, and M. Uenohara, “Research on
an Autonomous Vision-Guided Helicopter,” Proc. Fifth RI/SME
World Conf. Robotics Research, Cambridge, Mass., 1994.

[4] K. Fukunaga, Introduction to Statistical Pattern Recognition. Boston:
Academic Press, 1990.

[5] H. Murase and S. Nayar, “Visual Learning and Recognition of 3-D
Objects from Appearance,” Int’l J. Computer Vision, vol. 14, no.
1, pp. 5-24, 1995.

[6] M. Uenohara and T. Kanade, “Vision-Based Object Registration
for Real-Time Image Overlay,” Proc. 1995 Conf. Computer Vision,
Virtual Reality, and Robotics in Medicine, Nice, France, 1995.

[7] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C. Cambridge Univ. Press, 1992.

[8] M. Uenohara and T. Kanade, “Vision-Based Object Recognition
for Real-Time Image Overlay,” Int’l J. Computers in Biology and
Medicine, vol. 25, no. 2, pp. 249-260, 1995.

[9] M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cogni-
tive Neuroscience, vol. 3, no. 1, 1991.

Michihiro Uenohara  received the BS degree in
electrical engineering from the University of To-
kyo, Tokyo, Japan, in 1985. He joined Toshiba
R&D Center, Kawasaki, Japan, in 1985, and
currently is a research scientist. He was a visit-
ing research scientist at Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania, from 1993 to
1995. His research areas of interest are computer
vision and robotics. He is a member of the IEEE.



898 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  8,  AUGUST  1997

Takeo Kanade  received his PhD degree in
electrical engineering from Kyoto University,
Japan, in 1974. After holding a faculty position at
the Department of Information Science, Kyoto
University, he joined Carnegie Mellon University
in 1980, where he is currently the U.A. Helen
Whitaker Professor of Computer Science and
director of the Robotics Institute. He was a
founding chairperson of CMU’s robotics PhD
program, probably the first of its kind.

Dr. Kanade has worked in multiple areas of
robotics: vision, manipulators, autonomous mobile robots, and sensors.
He has written more than 200 technical papers and reports in these
areas. He has been the principal investigator of several major vision
and robotics projects at Carnegie Mellon.

Dr. Kanade is a fellow of the IEEE, a founding fellow of the Ameri-
can Association of Artificial Intelligence, and the founding editor of the
International Journal of Computer Vision. Dr. Kanade has been elected
to the National Academy of Engineering as a foreign associate.


