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Task-Oriented Generation of Visual Sensing
Strategies in Assembly Tasks
Jun Miura, Member, IEEE, and Katsushi Ikeuchi, Fellow, IEEE

Abstract —This paper describes a method of systematically generating visual sensing strategies based on knowledge of the
assembly task to be performed. Since visual sensing is usually performed with limited resources, visual sensing strategies should be
planned so that only necessary information is obtained efficiently. The generation of the appropriate visual sensing strategy entails
knowing what information to extract, where to get it, and how to get it. This is facilitated by the knowledge of the task, which
describes what objects are involved in the operation, and how they are assembled. In the proposed method, using the task analysis
based on face contact relations between objects, necessary information for the current operation is first extracted. Then, visual
features to be observed are determined using the knowledge of the sensor, which describes the relationship between a visual
feature and information to be obtained. Finally, feasible visual sensing strategies are evaluated based on the predicted success
probability, and the best strategy is selected. Our method has been implemented using a laser range finder as the sensor.
Experimental results show the feasibility of the method, and point out the importance of task-oriented evaluation of visual sensing
strategies.

Index Terms —Task-oriented vision, sensing planning, active vision, CAD-based vision, vision-based assembly.

——————————   ✦   ——————————

1 INTRODUCTION

N vision-guided robotic operations, vision is used for
extracting necessary information for proper task execu-

tion. Since visual sensing is usually performed with limited
resources, visual sensing strategies should be planned so
that only necessary information is obtained efficiently. To
determine an efficient visual sensing strategy, knowledge of
the task is necessary. Without knowledge of the task, it is
often difficult to select the appropriate visual features to be
observed. In addition, resources may be wasted in tracking
uninformative features.

From this standpoint, research on task-oriented vision, ac-
tive vision, or purposive vision has been actively investigated
[1], [2], [4], [5], [13]. By using knowledge of the task, the
vision system can be designed to be fast and robust. How-
ever, the designing process tends to be task-specific and
requires a significant amount of effort. Thus, it is desirable
to develop a systematic method which can generate task-
oriented visual sensing strategies automatically, namely a
method that optimizes each visual sensing strategy ac-
cording to a given task.

The generation of task-oriented sensing strategy is de-
composed into the following three subproblems to be
solved successively:

• determine what visual information is necessary for
the current task;

• determine which visual features carry such necessary
information; and

• determine how to get necessary information with the
sensors used.

The first two subproblems are concerned with focusing the
attention to informative visual features; the last problem is
concerned with evaluation of sensing strategies.

The ability of focusing attention is important to realize
efficient visual sensing strategies [28]. There have been sev-
eral approaches to this problem.

Hutchinson and Kak [12] dealt with the problem of re-
solving the ambiguity of sensor information. They used
Dempster-Shafer theory to represent uncertainties of hy-
potheses in object identification. An entropy of a set of hy-
potheses was used as a utility function; a sensor placement
was selected which minimizes the entropy.

Rimey [22] presented a framework of task-oriented vi-
sion which can solve high-level vision problems such as
determining which object to search for next to answer a
query. The knowledge of the task is represented by a Baye-
sian network, and the sensing action is selected which has
the highest expected utility. The utility function is defined
as the combination of the predicted information value and
the sensing cost.

Birnbaum et al. [6] presented a vision system which can
explain a scene of blocks world in terms of stability of block
structures. Using the rules derived from causal knowledge
of naive physics, the focus of attention is moved to look for
evidence that explains the situation.

These works are concerned with exploratory visual
sensing tasks under uncertainty of the knowledge of the
scene. The visual feature set, from which the observed fea-
tures are selected, is given in advance; it is not automati-
cally derived from the task description.
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Kuniyoshi and Inoue [17] proposed a framework of
qualitatively recognizing ongoing human action. Using a
hierarchical action model, which is given in advance, possi-
ble upcoming events are predicted, and visual features to
observe are selected based on that prediction.

Horswill [10] proposed a concept of specialization for
constructing task-specific robot vision systems. By ana-
lyzing the property of the task, including the environment
in which the robot operates, a simple but robust vision
algorithm is organized from a set of given small vision
processes.

These works are concerned with the usage of the task, in-
cluding the constraints on the environment, for concentrating
the visual processing to only the necessary portion of image.
This allows visual recognition to be fast and robust. These
approaches are, however, highly task-specific and are based
on the careful a priori examination of the task.

For sensor planning in inspection tasks, several methods
have been proposed which generate a set of features to be
observed. Features are indicated directly in the inspection
specification [25] or are selected from the specification of
entities to be measured through given knowledge of the
mapping from measurable entities of an object to features
to be observed [30]. In sensor planning for inspection, deri-
vation of the feature set to be observed is relatively easy,
because the purpose of the task itself is visual recognition.

Automatic generation of recognition programs can be
viewed as sensing strategy planning. Ikeuchi has been de-
veloping Vision Algorithm Compiler (VAC) [8], [14], which
can generate object recognition programs using explicit
models of both objects and sensors. A VAC analyzes the
appearances of objects using the models, and generates ob-
ject recognition programs, usually in the form of decision
trees.

The third subproblem (i.e., how to get necessary infor-
mation) is decomposed further into two more specific
problems of determining a set of feasible sensing strategies
and subsequently selecting the most appropriate one
among them. The goal of the former is to determine sensing
condition which satisfies several requirements on imaging
such as resolution, field of view, focus, and visibility [7],
[23], [26], [27]. The ability to solve such a problem would be
necessary for any sensor planners as a subroutine of auto-
matically determining feasible sensing conditions.

As mentioned above, the second more specific problem
is to determine the best sensing strategy which maximizes
some “goodness” function. The minimum uncertainty crite-
rion has often been used [16], [29], [31]; some measure of
uncertainty, such as the determinant of the covariance ma-
trix of the parameter vector to be estimated, is used for se-
lecting the best strategy. In certain types of tasks, however,
this criterion may not be appropriate; some part of infor-
mation may need to be more accurate than the rest for a
specific task, for example. A weighted sum of uncertainty
parameters is one way to deal with such a case. It is, how-
ever, difficult to determine appropriate weights for a given
task. Thus, some appropriate function should be automati-
cally designed for each task which can measure how each
sensing strategy contributes to the proper execution of the
current task.

This paper proposes a novel method of systematically
generating visual sensing strategies based on knowledge of
the task to be performed. We deal with visual sensing strat-
egy generation in assembly tasks, in which the environment
is known, that is, the shape, the size, and the approximate
location of every object is known to the system. In this
situation, the role of visual sensors is to determine the posi-
tion of the currently assembled object with sufficient accu-
racy so that the object can be, with a high degree of cer-
tainty, mated with other objects. The proposed method
generates optimal sensing strategies by solving the three
subproblems mentioned above.

We have been developing a novel robot programming
system, the APO (Assembly Plan from Observation) system
[15]. The system generates the description of an assembly
task by observing human performance of the task. The task
description is then mapped into an actual robot to perform
the same task. Although the APO system cannot provide
direct sensing strategy from observing human actions, use-
ful information for generating visual sensing strategies is
automatically obtained from analysis of the observed tasks.

In assembly operations, DOFs of assembled objects are
gradually constrained. Thus, specific DOFs (critical dimen-
sion) of the objects need to be observed in each assembly
operation. Section 2 briefly explains the face contact analy-
sis of assembly operations in the APO system [15] and then
describes the method of deciding, based on the face contact
analysis, whether the visual feedback is necessary for the
current assembly operation. This analysis also provides the
critical dimensions to be observed (what information to ex-
tract). Section 3 presents a method to determine necessary
features to be observed through the analysis of CAD mod-
els and the critical dimensions (which features to observe).
Section 4 provides the optimal sensing strategy to observe
such features (how to observe the features), and Section 5 de-
scribes an implementation of the sensing strategies and
their performance evaluations using a line laser range
finder. Section 6 summarizes the paper and discusses an
extension of our approach to more general visual sensing
strategy generation.

2 DETERMINING WHAT INFORMATION IS NECESSARY

This paper assumes that a robot has the capability to per-
form passive compliant motions [19], which are the motions
to keep the current physical contacts between objects using
force information. Under this assumption, this section ex-
amines which assembly operations really require visual
feedback, and which operations can be performed only
with passive compliant motions. The analysis is based on
face contact relation transitions between the manipulated
and the environmental objects. First, we describe the analy-
sis results for polyhedral objects with three translational
motions [15]; then, we extend the analysis to include cylin-
drical objects with four dimensional motions: three transla-
tional motions and one rotational motion.

2.1 Face Contact Relations
We assume that each assembly operation involves one ma-
nipulated object and several stationary environmental objects



128 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  2,  FEBRUARY  1998

that have face contacts with the manipulated object. Face
contact relations are defined between the manipulated and
the environmental objects.

Let us suppose a face of the manipulated object has a
face contact to a face of an environmental object (see Fig. 1).
Each face contact pair constrains the possible translation
motions of the manipulated object: N ◊ DT ≥ 0, where DT
denotes possible translational vectors of the manipulated
object, and N denotes the normal of the contact face.

We use points on the Gaussian sphere to specify both a
constraint vector and all possible motion vectors. Each mo-
tion unit vector is translated so that its start point is located
at the center of the Gaussian sphere and its end point exists
at some point on the surface of the Gaussian sphere. We use
this end point to denote the vector.

The constraint given by a contact face pair defines sev-
eral regions in the Gaussian sphere. We refer to the plane
perpendicular to the normal, N, as the constraint plane; this
plane divides the Gaussian sphere into two hemispheres.
Without loss of generality, assuming that the normal points
to the north pole of the Gaussian sphere, the northern
hemisphere corresponds to possible translational motion
directions; the southern hemisphere corresponds to pro-
hibited motion directions toward which the manipulated
object cannot move.

In Fig. 1, motion directions corresponding to the bound-
ary between the hemispheres (the equator) maintain the
current face contact between the manipulated and envi-
ronmental objects. Those directions and those DOFs are
referred to as the maintaining directions and the maintain-
ing DOF, respectively. In this example, maintaining DOFs
are two. Motions of the directions corresponding to the in-
side of the detaching hemisphere break the face contact,
and are referred to as detaching motions. In this example, a
pure detaching motion, which does not contain any main-
taining motion component, is toward the north pole; it has
one DOF (detaching DOF).

When several surface patches of different orientations
make contact, possible motion directions are constrained
through simultaneous linear inequalities. These constraints
are represented as a combined region in the Gaussian
sphere.

Fig. 2 shows the case where two normal vectors of envi-
ronmental objects have the opposite directions. The possi-
ble motion directions of the manipulated object can be rep-
resented as the entire great circle perpendicular to the axis
connecting the two poles. These motions have two DOFs
and are maintaining motions. There are no detaching mo-
tions; the detaching DOF is zero. The direction along the
surface normal is completely constrained; the DOFs of the

constraint directions (constraining DOF) is one. Note that
the sum of the maintaining DOF, the detaching DOF, and
the constraining DOF is three, the entire DOF of three-
dimensional translational motions.

We can specify face contact relations by using a triplet of
maintaining, detaching, and constraining DOFs. For exam-
ple, using this triplet, the relations of Fig. 1 and Fig. 2 are
represented as (2, 1, 0) and (2, 0, 1), respectively.

In general, possible contact relations are classified into 10
contact relations as shown in Fig. 3, [15]. The triplet of
DOFs for each relation is also indicated in the figure.

Each assembly step causes a transition from one face
contact relation to another. Extracting the admissible tran-
sitions results in the contact state transition graph as shown
in Fig. 4. Note that it was early assumed that there was only
one manipulated object and several stationary objects, and
that there can thus be no transition to or from state I:(0 0 3).

Fig. 2. A bidirectional constraint.

Fig. 3. Ten contact states [15]. The white areas in the Gaussian sphere
denote possible motion vectors. Each state has a label. The three
digits denote maintaining DOF, detaching DOF, and constraining DOF,
respectively.

Fig. 1. Constraint inequality depicted on the Gaussian sphere.
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Fig. 4. Contact state transitions represented as a directional graph [15].

Fig. 5. Three typical cases of increase of constraint on a degree of
freedom. Type and transition of the triplet is as follows: (a): maintaining
Æ detaching ((3,0,0) Æ (2,1,0)). (b): detaching Æ constraining ((2,1,0)
Æ (2,0,1)). (c): maintaining Æ constraining ((3,0,0) Æ (2,0,1)).

2.2 DOF Transitions and Necessary Visual
Information

An assembly operation (i.e., a transition of a face contact
state) always increases constraints on some DOFs of the
manipulated object. This increment is classified into three
classes: from maintaining DOF to detaching DOF; from
detaching DOF to constraining DOF; and from maintaining
DOF to constraining DOF. Fig. 5 shows typical examples of
the three classes.

Let us examine the type of the DOF transition in exam-
ples in Fig. 5. In Fig. 5a, the horizontal operation translates
the maintaining DOF (horizontal freedom) into the de-
taching DOF. The approaching direction of the block is
parallel to the direction of the pure detaching motion at
the goal relation A, i.e., the normal vector against the
wall. This class of operations can be performed by a com-

pliant motion without visual feedback, such as a move-to-
contact operation.

In Fig. 5b, the vertical operation translates the detaching
DOF of the horizontal direction to the constraining DOF. A
compliant motion maintains the contact between the block
and the right wall and achieves the desired horizontal po-
sition. The final constraining DOF is automatically achieved
by this compliant motion, e.g., move-with-maintaining-
contact, without visual feedback.

In Fig. 5c, the vertical operation translates the maintain-
ing DOF of the horizontal direction to the constraining
DOF. The horizontal position of the block needs to be ad-
justed before mating, so that both the left and the right face
contacts are achieved simultaneously. Before this operation,
along the horizontal maintaining degree, a manipulated
object has no physical contact; after this operation, the con-
straining degree from both walls occurs simultaneously.
Thus, simple compliant motion cannot achieve such trans-
lation. This operation needs visual feedback; this degree,
which is referred to as critical dimension, should be observed
by visual feedback.

We can summarize the above arguments into the fol-
lowing criteria:

1) maintaining DOF to detaching DOF: no visual feed-
back is necessary.

2) detaching DOF to constraining DOF: no visual feed-
back is necessary.

3) maintaining DOF to constraining DOF: visual feed-
back is necessary.

Applying these criteria to 13 admissible transitions in
Fig. 4 provides four transitions that require visual feedback
(S-to-B, S-to-E, A-to-E, and B-to-E) indicated with bold lines
in Fig. 6.

2.3 Extension of Face Contact State
So far, the analysis covers only three-dimensional transla-
tion motions with planar face contacts. We will extend the
analysis to include one additional rotational motion about

Fig. 6. Classification of state transitions. Bold lines indicate the transi-
tions that require visual information. Thin lines indicate the transitions
that do not require visual information.
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the z axis. This extended analysis denotes face contact rela-
tions with a sextuplet of DOFs: one triplet for translational
DOFs and another triplet for rotational DOFs.

We also include cylindrical objects for the analysis. We
define the three classes of contact relations between cylin-
drical surfaces as shown in Fig. 7. No contact, half contact,
and full contact in Fig. 7 correspond, respectively, to main-
taining DOF, detaching DOF, and constraining DOF with
respect to the translational motion perpendicular to the axis
of rotation. Since this paper deals only with face contact
relations, we do not consider cylindrical-planar contacts.

Fig. 7. The object considered in the contact state analysis.

This extension allows the system to handle a large class
of realistic operations with industrial parts, including gears
mating and bolt-nut operations, as shown by experiments
later. It is also true that our Robotworld testbed has these
four DOFs. Extension to point and/or line contact cases, or
to general six DOF cases, will be discussed in Section 6.

Fig. 8 summarizes the analysis result. Here, the possible
face contact relations are arranged according to their sextu-
plets of DOFs.

Fig. 8. Summary of extended contact state analysis.

We enumerate possible transitions between contact rela-
tions. Eighty-five admissible transitions are extracted, as
shown in Fig. 9, by applying the selection criteria for ad-
missible transitions to all possible transitions. Labels in the
figure (e.g., A1) are defined in Fig. 8.

If the number of allowable states increases, the transi-
tion graph is expected to be more complicated and to re-
quire more efforts to generate. Once the graph is gener-
ated, however, the complexity of the graph is not a seri-
ous problem, because the graph is used not for generating
a sequence of assembly operations, but for detecting state
transitions that require visual feedback, or for recognizing
human operations by matching the recognition result with
the graph [15].

We consider an infinitesimal rotation. Such an infini-
tesimal rotational motion is equivalent to an infinitesimal
translational motion in terms of face contact relation transi-
tion. We can use the same criteria for selecting assembly
operations that require visual feedback in this four-
dimensional case.

By examining the sextuplet transitions in 85 cases, 19
transitions are selected as those that require visual feed-
back. These selected transitions are as shown with bold
solid and bold broken arcs in Fig. 9. We can group these 19
cases into six groups with respect to the DOFs necessary to
be observed. Fig. 10 shows the representative examples of
these six groups.

3 FEATURE SELECTION

This section describes how to select a set of features that
carries sufficient dimensional information for executing the

Fig. 9. Transition graph for extended analysis.
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operation with visual feedback resulting in the transition
from maintaining DOF to constraining DOF.

3.1 Sensing Primitive
A sensing primitive describes the relationship between an
observable feature, such as edges or planar faces, and its
DOFs obtainable by observing it. Examples of sensing
primitives are shown in Fig. 11. For example, by observing
a straight line in 3D space, all the translation freedoms ex-
cept those along the straight line are constrained. This con-
strained area, Ai

T , given by this primitive feature is denoted
as the shaded area on the Gaussian sphere. All the rotations
except that about the line are also constrained; the entire
sphere except for a pair of points is constrained (see Ai

R  in
Fig. 11).

3.2 Feature Selection Process
The analysis of face contact relation transition by the cur-
rent task provides constraining DOF added by this task. A
set of observable features is obtained by examining the cur-
rent CAD-based internal-world model. By consulting pre-
pared sensing primitives with the observable features, a set
of features required to be observed is obtained.

As an example of this process, let us consider case (a)
peg-in-hole operation shown in Fig. 12. For the sake of sim-
plicity, we will consider the case (a)’s translation opera-
tions. Before the insertion operation, the manipulated object
has a full three-dimensional maintaining DOF. After this
operation, the manipulated object has an equator of con-
straining DOF. Thus, the (a) insertion operation translates
two-dimensional maintaining DOF perpendicular to the
insertion direction to two-dimensional constraining DOF,
referred to as critical DOF to be monitored with visual

feedback. Fig. 12a depicts the full equator on the Gaussian
sphere to depict these DOF.

Before case (b) operation, the manipulated object has a
two-dimensional maintaining DOF as an equator perpen-
dicular to the normal of the contact face. The constraining
DOF after the operation is the same as in the (a) operation.
Thus, the (b) operation translates one-dimensional main-
taining DOF along the x axis to one-dimensional con-
straining DOF, which is indicated as a pair of points on the
equator in Fig. 12b. The visual feedback is necessary along
the x axis, but is not necessary along the y axis.

Fig. 13 shows two sensing primitives. By observing edge
e1, all the translation motions, except those along the y axis
are constrained. Edge e2 also provides similar constraints. In
order to cover the full circle of the critical DOF in case (a) in
Fig. 12, both e1 and e2 are necessary to be observed. On the
other hand, only e1 is sufficient for case (b) to cover the pair
of points of the critical DOF.

This procedure can be formalized as follows: Since con-
straints for translational operations and that for rotational
operations can be considered separately, we take two Gaus-
sian spheres, GT and GR, and use points on each sphere to

Fig. 10. Transition groups which need visual information. Thick arrows
indicate the direction of movement. Thin arrows indicate degrees of
freedom to be adjusted by use of visual information. The transition of
sextuplet for each case is as follows: (a): (3,0,0;1,0,0) Æ (1,0,2;0,0,1).
(b): (2,1,0;0,0,1) Æ (1,0,2;0,0,1). (c): (3,0,0;1,0,0) Æ (2,0,1;0,0,1).
(d): (3,0,0;1,0,0) Æ (1,0,2;1,0,0). (e): (1,0,2;1,0,0) Æ (1,0,2;0,0,1).
(f): (1,0,2;1,0,0) Æ (0,0,3;1,0,0).

Fig. 11. Example sensing primitives represented by the Gaussian
spheres.

                         (a)                                           (b)

Fig. 12. Two insertion operations and dimensions to be monitored.
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represent constraints on translations (on GT) or on rotations
(on GR). Let us denote:

• A Acritical
T

critical
R4 9  as a set of points on GT (GR) to be

translated from maintaining DOF to constraining
DOF (critical DOF).

• A Ai
T

i
R4 9 as a set of points on GT (GR) which represents

constraints given by the observation of the ith sensing
primitive.

By observing n different sensing primitives, the follow-
ing two resultant point sets, Aconstrained

T  and Aconstrained
R , are

obtained:

A Aconstrained
T

i
T

i

n

=
=1
� ,

A Aconstrained
R

i
R

i

n

=
=1
� .

In order that this set of features provides sufficient con-
straints, the resultant area should cover the critical DOF.
Namely, the following condition must be satisfied:

A Acritical
T

constrained
TÕ

and

A Acritical
R

constrained
RÕ .

The equality signs indicate that exactly the required in-
formation is provided by observation, whereas Acritical Ã
Aconstrained indicates there is more information than required.

4 EVALUATION OF SENSING STRATEGIES

Once a set of features to be observed is selected, a set of
possible sensor positions, from which all of the selected
features are observable, is enumerated [7], [23], [26]. We
determine the optimum sensing position among those
possible sensing positions by evaluating them with re-
spect to accuracy of the estimated object position. Evalua-
tion methods based on covariance matrix are relatively
common in unconstrained environments such as navigation
application [3], [29]. Such covariance methods are not so
satisfactory to reflect the relative importance of sensing
dimensions given by the relationship between faces of
manipulated and environmental objects. Thus, we de-
cided to develop our novel method based on an opera-
tion’s success probability.

4.1 Predicted Success Probability
A poor positional estimation of a manipulated object pro-
vides poor operational performance; an accurate estimation
provides high performance. Thus, the predicted success
probability of a current operation provides a measure of
accuracy of the sensing strategy.

The success probability is determined by three steps. The
first step calculates a success region, the subspace of the
positional parameters in critical DOF such that if the un-
certainty is inside the space, the current operation succeeds.
The rectangular area in Fig. 14 is an example of the success
region. The relative tolerance of the manipulated and envi-
ronmental objects along the critical dimensions, given by
the analysis of CAD models, provides the area. The second
step calculates the uncertainty distribution of the measure-
ments given by the current sensing strategy (the ellipse area
in Fig. 14). The final step obtains the predicted success
probability by the intersection between the success region
and the uncertainty distribution of the measurements. This
success probability is numerically calculated by quantizing
the space of the positional parameters.

The predicted success probability is a general criterion
for ranking sensing strategies, and is applicable to any sen-
sors as long as the probabilistic model of uncertainty is
provided; in addition, the uncertainty does not necessarily
need to be modeled with Gaussian.

After calculating the success probabilities for all feasible
sensing strategies, the one with the highest probability is
selected as the optimal sensing strategy.

4.2 Success Region
A success region is formed in a space of critical DOF, those
translated from maintaining to constraining DOF, in each
operation. For example, the (a) peg-in-hole operation in
Fig. 12 has three DOFs of critical DOF, two translational on
the plane perpendicular to the insertion direction and one
rotational around the insertion direction. A success region
is a representation of the clearance of the operation in the
critical DOF from the CAD models of objects; it can be cal-
culated as a free area in the configuration space [18].

Since the current system consists of the assembly opera-
tions with planar or cylindrical surfaces, the following three
cases are sufficient for consideration:

1) insertion of a polygonal cross-section peg with a hole
(in Fig. 10a and Fig. 10b);

2) insertion of a peg with a polygonal cross-section into
a parallel gap (in Fig. 10c, Fig. 10e, and Fig. 10f); and

Fig. 13. Constraints obtained by observing one of the edges. Fig. 14. Calculation of the predicted success probability. This figure
shows the case where the position parameter of the object is two-
dimensional, (X, Y).
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3) insertion of a peg with a circular cross-section into a
hole (in Fig. 10d).

If there are some constraints before the operation (e.g., in
Fig. 10b), the actual success region is given as a cross-
section of the general success region cut by fixed parameter
values under the constraints.

Here, as an example, we derive the success region for the
peg-in-hole operation shown in Fig. 15. Edges of the hole
are aligned to the X and the Y axes. Let WX and WY be the
widths of the peg in the X and Y axes, respectively. Also, let
k denote the clearance ratio of the hole. These values come
from the CAD model. We need to adjust the position and
the orientation of the peg, (X, Y, q).

We calculated the actual success regions for two sets of
geometric values. Fig. 16 shows the resultant success regions.

As shown in the figure, the tolerance in DX in case (b) is
larger than that in case (a), while the tolerance in Dq is
smaller. If the uncertainty distribution of the position pa-
rameter is the same in both cases, the resultant success
probabilities should differ from each other because of dif-
ferent success regions. Thus, the effect of the uncertainty in
the parameter vector to the task execution needs to be
evaluated by considering the success region.

5 EXPERIMENTS

5.1 Laser Range Finder
The proposed sensing method has been implemented using
a Toyota line laser range finder (LRF) as the sensor (see
Fig. 17) [20]. The LRF emits a slit laser, detects the high-
lighted portion of the object with a TV camera, and obtains
a line of 3D measurements. The LRF is attached to one of
the arms in the RobotWorld [24]. All the arms have four
DOFs: three DOFs for translation and one DOF for rotation
about the vertical axis (the z axis).

All assembly operations that require visual feedback
belong to the “peg-in-hole” class operation. The location
of a peg is measured by observing its side faces; the loca-
tion of the hole is measured by observing several points
(currently, five points) on its edges. Thus, we prepare
sensing primitives for the following four geometric fea-
tures: a straight edge, a circular edge, a planar face, and a
cylindrical surface.

We use a general sensing strategy that measures by
moving the LRF in parallel with the insertion direction
(see Fig. 18); the relative displacement on the plane per-
pendicular to the insertion direction is important for the
operation. We also control the position of the range finger
so that each measured point is within a certain area of the
slit laser; the uncertainty of the measurement with the
LRF is considered to be constant in this area. Thus, the
only parameter that specifies the position of the range
finder is the angle between the direction of the laser and
some axis of the plane perpendicular to the insertion di-
rection (see Fig. 19).

The actual assembly operations with visual feedback are
implemented to perform in a “stop and sense” mode. First,
a peg is moved by a manipulator to the position just before
a hole. Then, the LRF is placed in the planned position and
measures the position of the hole and the peg. If the error in
the relative position between the peg and the hole is within

Fig. 15. Top view of rectangular peg-in-hole operation.

Fig. 16. Example success regions.

Fig. 17. Laser range finder.
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the success region, the peg is inserted. Otherwise, the peg
position is adjusted and the peg is observed again. This
final step is repeated until the relative position becomes
satisfactory, and then the peg is inserted.

For evaluation of the proposed method, we conducted
three operations: a peg-in-hole operation, an operation that
consisted of putting the tip of a screwdriver into the slot of
a screw head, and a gear-mating operation. We then com-
pared the success probability predicted by the object mod-
els and sensor models, with the actual success ratio, ob-
tained through 50 trials of the operation by the robot arm
and the sensor.

5.2 Uncertainty Model
Our laser range finder provides measurements with accu-
racy better than 0.1 [mm] in depth and better than 0.3 [mm]
in the horizontal position. The depth and the horizontal
position are measured on the laser plane. The purpose of
this paper is, however, not to construct an uncertainty
model of our laser range finder, but to demonstrate that our
method can generate the optimal sensing strategy if the
uncertainty model of the sensor is given. Thus, we artifi-
cially added a relatively large Gaussian noise to the meas-
urement; we added a Gaussian noise with a standard de-
viation 0.12 [mm] to the depth measurement, and a Gaus-
sian noise with a standard deviation 0.30 [mm] to the hori-
zontal position measurement; these two Gaussian noises
are set to be independent of each other.

5.3 A Peg-in-Hole Operation
5.3.1 Face Contact Analysis
The peg-in-hole operation inserts a rectangular-cross-
sectional peg into a hole of the same shape. This operation
belongs to group (a) in Fig. 10; the state transition is from
(3,0,0; 1,0,0) to (1,0,2; 0,0,1). The critical DOF consists of two
translational and one rotational degree. These dimensions
will be monitored through visual feedback.

Let us consider the case in Fig. 20. This insertion op-
eration establishes the following face contact: f f1 1- ¢2 7 ,

f f2 2- ¢2 7 , f f3 3- ¢2 7 , and f f4 4- ¢2 7. The candidate features for

observation include f1, f2, f3, and f4 for the peg, and ¢e1 , ¢e2 , ¢e3 ,
and ¢e4 for the hole. The sensing primitive analysis indicates

that observing two neighboring faces, such as f1 and f2, and
edges, such as ¢e1  and ¢e2 , provides sufficient information.

Considering the conditions that five points are com-
pletely observed on an edge, and that the LRF does not
collide with the robot manipulating the peg, the possible
position of LRF is on the circle. The circle’s center is lo-
cated at the vertex at the intersection of the two neigh-
boring edges. The laser plane is pointing toward the ver-
tex. The position of the sensor is measured as the angle (f)
from one of the edge. Fig. 21 shows a successful peg-in-
hole operation.

5.3.2 Verifying the Accuracy of the Predicted Success
Probability

We verify the accuracy of the predicted success probability
using the actual success ratio in the following two sets of
the objects:

Case (a): The cross-section of the peg is a square of 19.05
[mm] ¥ 19.05 [mm]. The clearance ratio of the hole is 0.043.
The success region of this operation is depicted in Fig. 16a.
Case (b): The cross-section of the peg is a rectangle of 38.1
[mm] ¥ 19.05 [mm]. The clearance ratio of the hole is 0.043.
The success region of this operation is depicted in Fig. 16b.

In each case, the observation angle, f, is sampled every
10 degrees; at each angle, the insertion operations were per-
formed 50 times to obtain the ratio between success and
failure.

Fig. 20. Face contact analysis of the rectangular peg-in-hole operation.
The sextuplet of DOFs (see Section 2 to Section 2.3) changes from
(3,0,0; 1,0,0) to (1,0,2; 0,0,1).

Fig. 18. A strategy for observing a peg and a hole.

Fig. 19. Candidate positions.
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Fig. 22 shows the verification results; in both cases, the
results given by actual performances (dots) coincide with
the predicted success probability (solid curves).

5.4 Putting Screwdriver on Screw
This example considers the insertion of a screwdriver
into the slot on a screw head as shown in Fig. 23. This op-
eration belongs to group (c) in Fig. 10. During this opera-
tion, the critical DOF are one DOF for translation and one
DOF for rotation. The face contacts to be achieved are

f f1 1- ¢2 7  and f f2 2- ¢2 7 . The candidates for observed fea-

tures are f1, f2, f3, and f4 for the screwdriver, and ¢e1  and ¢e2

for the hole.
Due to the geometric constraints between arms for the

screwdriver and for the LRF, the screwdriver and the screw
could not be observed at once. Thus, the LRF observed only
the screw because the positional uncertainty of the screw
was much larger than that of the screwdriver. Edges ¢e1  and

Fig. 21. A successful peg-in-hole operation.

Case (a)

Case (b)
Fig. 22. Comparison of the predicted success probability with the ac-
tual success ratio in the peg-in-hole operation.

Fig. 23. Contact state analysis of putting a screwdriver on a screw.

Fig. 24. The screwdriver was successfully inserted into the slot of the
screw head.

Fig. 25. Comparison of the predicted success probability with the ac-
tual success ratio in the screwdriver-bolt operation. The angle f indi-
cates the difference of the directions of the LRF and the slot.
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¢e2  of the screw were observed. Fig. 24 shows a successful
operation of putting a screwdriver on a screw.

Fig. 25 shows the verification result of the predicted
success probability with the actual success ratio. The pre-
dicted success probability coincides with the actual suc-
cess ratio.

5.5 Gear Mating
A gear-mating operation, shown in Fig. 26, belongs to
group (e) in Fig. 10. In this operation, a priori knowledge
about how gears are mated is necessary because there are
many potential matches between gear teeth. First, two vir-
tual edges e1 and ¢e1  are generated; one edge is placed on the
center of the nearest tooth to the line connecting two gear
centers; another edge is placed on the center of the nearest
gap to the line. Then, the orientation of the inserted gear is
adjusted so that these two virtual edges are aligned.

The position of a virtual edge is calculated from the po-
sition of the edges on the tooth (or gap) on which the vir-
tual edge is set (see Fig. 27). Assuming that the shape of the
tooth is almost rectangular, the virtual edge is obtained by
fitting a line to the center points of the edge point pairs.

Fig. 28 shows a successful gear-mating operation. Fig. 29
shows the comparison of the predicted success probability
with the actual success ratio. The predicted success prob-
ability is consistent with the actual success ratio.

6 CONCLUDING REMARKS

We have described a method of systematically generating
visual sensing strategies using the knowledge of the task
to be performed. The analysis of face contact transitions
decides

1) whether the current operation requires visual feed-
back and

2) which, if any, DOFs (critical DOF) is required to moni-
tor during the operation through visual feedback.

Then, sensing primitives convert the critical DOF and the
CAD models into a set of visual features to be observed.
The final sensing strategy selected is the one with the high-
est predicted success probability among possible sensing
strategies that observe the set of visual features. The pro-
posed method is implemented using a line laser range finder
as the sensor. The experiments are conducted to verify our
evaluation method for choice of the optimal sensing strategy.

The features of the proposed method are summarized as
follows:

1) the necessary visual information and the visual fea-
ture set to extract such information, which have been
given in the previous works, are derived automati-
cally from the task description;

2) the criterion using the predicted success probability to
rank the set of sensing strategies is a general one and

Fig. 26. Contact state analysis of gear mating.

Fig. 27. Measuring the tooth position from edge positions.

Fig. 28. The gears were successfully mated.

Fig. 29. Comparison of the predicted success probability with the ac-
tual success ratio in the gear-mating operation. The angle f indicates
the difference of the directions of the LRF and the line connecting two
gear centers.
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is effective regardless of the shape of objects and the
uncertainty models of the sensors used.

This paper has dealt with the assembly operations in
which only face contacts are allowed among possible con-
tacts between objects. Assembly tasks that require full six
DOF motions cannot be analyzed using only surface nor-
mals. Thus, we are now reformulating the contact-state
analysis using the theory of polyhedral convex cones [21];
the new analysis covers face, point, and line contacts and
can, in principle, handle general six DOF motions. The ar-
guments on necessary visual information in Section 2.2
could be applied to the result of this new analysis.

If point contacts and/or line contacts are allowed, most
assembly operations can be achieved with only force infor-
mation [9]. Even in such a case, visual information will be
useful in, for example, reducing the number of motion steps
[11]. A future work is to develop a method of coordinating
vision and force information for robust and efficient assem-
bly task execution.

Another future work is to apply the proposed method to
other sensors such as stereo vision.
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