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Abstract

A new method for analyzing the intrinsic dimensionality (ID) of
low dimensional manifolds in high dimensional feature spaces is pre-
sented. The basic idea is to first extract a low-dimensional represen-
tation that captures the intrinsic topological structure of the input
data and then to analyze this representation, i.e. estimate the intrin-
sic dimensionality. More specifically, the representation we extract
is an optimally topology preserving feature map (OTPM) which is an
undirected parametrized graph with a pointer in the input space as-
sociated with each node. Estimation of the intrinsic dimensionality is
based on local PCA of the pointers of the nodes in the OTPM and
their direct neighbors. The method has a number of important ad-
vantages compared with previous approaches: First, it can be shown
to have only linear time complexity w.r.t. the dimensionality of the
input space, in contrast to conventional PCA based approaches which
have cubic complexity and hence become computational impractica-
ble for high dimensional input spaces. Second, it is less sensitive to
noise than former approaches, and, finally, the extracted representa-
tion can be directly used for further data processing tasks including
auto-association and classification.

Experiments include ID estimation of synthetic data for illustration
as well as ID estimation of a sequence of full scale images.

*This work has been submitted to the IEEE for possible publication. Copyright may
be transferred without notice, after which this version may no longer be accessible



1 Introduction

The intrinsic, or topological, dimensionality of NV patterns in an n-dimensional
space refers to the minimum number of “free” parameters needed to gener-
ate the patterns', [3]. It essentially determines whether the n-dimensional
patterns can be described adequately in a subspace (submanifold) of dimen-
sionality m < n. Knowledge of the intrinsic dimensionaliy is important in
order to determine the number of features necessary to represent the data,
to decide whether a reasonable 2d or 3d representation exists or to estimate
the effectiveness of algorithms depending on the intrinsic dimensionaliy, as
e.g. methods for constructing classifiers or training neural networks. It can
be greatly helpful in problems like pattern recognition, industrial or medical
diagnosis and data compression [4].

Adopting the classification in [3], there are two primary approaches for
estimating the intrinsic dimensionality. The first one is the global approach
in which the swarm of patterns is unfolded or flattened in the d-dimensional
space. Benett’s algorithm [5] and its successors as well as variants of MD-
SCAL [6] for intrinsic dimensionality estimation belong to this category. The
second approach is a local one and tries to estimate the intrinsic dimen-
sionality directly from information in the neighborhood of patterns without
generating configurations of points or projecting the pattterns to a lower di-
mensional space. Pettis’ [7], Fukunaga and Olsen’s [8] as well as Trunk’s [9]
and Verveer and Duin’s method [10] belong to this category.

Our approach belongs to the second category as well and is based on local
principal component analysis (PCA) using a number of evenly distributed
pointers in the manifold. The denser these pointers the more accurate the
local estimate provided by the PCA, i.e. the number of eigenvalues which
approximates the intrinsic dimensionality at this point. However, given the
covariance matrix of some distribution in an n-dimensional vector space, PCA
of this covariance matrix takes time O(n®). Hence the computational cost

'Tt has long been noticed that this 19th century notion of dimensionality is unprecise
and fraught with problems, see e.g. [1] for a short review. Yet there exists a precise
definition of the topological dimensionality, given by Blouwer in 1913, [2]. Tt is this type
of dimensionality we try to estimate, as opposed to the fractal or Hausdorff dimension.
In spite of its insufficiencies the intuitive definition of dimensionality as the number of
continuous parameters needed to describe a set of points has prevailed throughout the
pattern recognition literature. And because it is so intuitive we will stick to it as well.



becomes prohibitive for higher dimensions. This problem is circumvened in
the following way: After distributing the pointers in the manifold M we first
extract a low dimensional representation of M by constructing an optimally
topology preserving map (OTPM). In an OTPM two nodes are connected
if their associated pointers are neighbored in M. Due to this definition the
OTPM does only depend on the intrinsic structure of the manifold and is
independent of the dimensionality of the embedding input space. Since the
number of neighbors m; of a node in an OTFM is small for low dimensional
submanifolds and because of the independence of n, it will usually be much
smaller than n for high dimensional input spaces. Using a well-known trick
one can now perform PCA for m points in an n-dimensional space in time
O(m?), independent of n. The calculation of the covariance matrix for these
m points takes time O(m?*n), and hence the time complexity of the procedure
grows only linearly with the dimension of the input space.

Real data is always noisy and hence samples stemming from some low
dimensional hypersurface will always contain noise orthogonal to the surface.
By using a statistical clustering procedure to distribute the pointers prior
to construction of the OT PM the pointers nevertheless can be expected
to be placed on the surface in spite of the noise. In this situation of a
pointer and its topological neighbors all lying on the surface, local PCA of
the neighboring points will not detect any variance orthogonal to the surface
(except the contribution of curvature). On the contrary, simple PCA of
the data distribution in the Voronoi cell of a pointer would always contain
the variance of the noise. Hence, besides being impractical, the eigenvalues
produced by straight forward PCA are less suited for discrimination between
the noise and the surface.

The rest of this paper is organized as follows: In section 2 we will have
a closer look at OT'PMs, the representation underlying our intrinsic dimen-
sionality estimation method, describe a trick for efficient PCA for m < n
points, the method we use for analysing the representation and finally com-
ment on the problem of estimating the ID by local PCA in general. We will
then state our algorithm more precisely in section 3 including a brief discus-
sion on the issue of vector quantisation. Experimental results are given in
section 4, related work is discussed in 5 and we give some closing remarks in

6.



2 Foundations

In this section we want to make the reader familiar with the basic ingredi-
ents of our algorithm for ID estimation to be presented in the next section.
We fist introduce OT'PMs, the underlying representation, and then turn to
efficient PCA for m < n points, the underlying method used for analyzing
the OT'PM, and finally comment on the problem of estimating the ID by
local PCA, the general approach of our algorithm.

2.1 Constructing Optimally Topollogy Preserving Maps

Optimally Topology Preserving Maps (OT P Ms) are closely related to Mar-
tinetz’ Perfectly Topology Preserving Maps (PTPMs) [11] and are constructed
in just the same way. The only reason to introduce them separatly is that
in order to form a PTFM the pointers must be “dense” in the manifold M.
Without prior knowledge this assumption cannot be checked, and in practice
it will rarely be valid. OTPMs emerge if just the construction method
for PTFMs is applied without checking for the density condition. Only
in favourable cases one will obtain a PTFM (probably without noticing).
OT PMs are nevertheless optimal in the sense of the topographic function
introduced by Villmann in [12]: In order to measure the degree of topology
preservation of a graph G with an associated set of pointers S, Villmann ef-
fectively constructs the OT' PM of S and compares G with the OT PM. By
construction, the topographic function just indicates the highest (optimal)
degree of topology preservation if GG is an OT P M.

Definition 1 (OTPM) Let p(x) be a probability distribution on the input
space R, M = {x € R"|p(x) # 0} a manifold of feature vectors, T C M
a training set of feature vectors and S = {¢; € M|i = 1,...,N} a set of
pointers in M.

We call the undirected graph G = (V, E), |V| = N, an optimally topology
preserving map of S given the training set 7', OT' PMr(S), if
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Corolary 1 IfT = M and if S is dense in M then OT PMy(S) is a PTPM.



Note that the definition of the OT'PM is constructive: For calculating
OTPMqp(S) simply pick « € T according pr(z), calculate the best and sec-
ond best matching pointers, ¢, and ¢y, and connect bmu with smu. If
repeated infinitely often, G will converge to OT P My(S) w.p.o.. This proce-
dure is just the essence of Martinetz” Hebbian learning rule.

For use in intrinsic dimensionality estimation and elsewhere, OT P Mr(.S)
has two important properties. First, it does indeed only depend on the
intrinsic dimensionality of 7', i.e. is independent of the dimensionality of the
input space. Embedding T into some higher dimensional space does not alter
the graph. Second, it is invariant against scaling and rigid transformations
(translations and rotations). Just by definition it is the representation that
optimally reflects the intrinsic (topological) structure of the data.

Since we will compute a PCA of the covariance matrix of all the m;
neighbors of a node v € OT PMr(S) and the cost of this computation will
be O(m?) (section 2.2) it would be nice to have some estimate of the num-
ber of neighbors in OT PMr(S) as a function of the intrinsic dimensionality
d of the structure, the number of pointers ¢ and the density function p(x).
While experience shows that for low dimensional submanifolds and a lim-
ited number of pointers m; is relatively small, theoretically little is known.
Of course, the number of pointers ¢ is an upper bound on m;, and in de-
generated cases (pointer lie on a circle) this bound can be reached. A lower
bound can be derived by looking at the simplest polyhedron in d-dimensional
space, the hypertetrahedron. It has d + 1 corners, hence nodes representing
a d-dimensional manifold must have at least d neighbors. For a very large
number of pointers Frisone et al. [4] hypothesize that the problem bears some
resemblance to the problem of the maximum kissing number in SPP (sphere
packing problem). The problem here is to find a packing of d-dimensional
spheres of equal size so that the number 7 of spheres touching (kissing) each
other is maximal [13]. Kiss-SPP has only been solved for d = 1,2,3,8,24
(1 = 2,6, 12, 240, 196560) and there exist optimal solutions for lattices of
spheres for d = 4,5,6,7 (7 = 24, 40, 72, 126) [13]. The basic assumptions be-
hind this analogy are that first the pointers have been optimally distributed
in the manifold (in the sense of the lowest quantization error), second this
optimal distribution is a lattice quantizer and third the problem of finding
the best lattice quantizer is dual to finding the lattice with highest kissing
number. While there is some evidence that the latter two assumptions hold
at least for small d, [13], the basic problem with this estimate is the necessity



of a huge number of pointers (and even huger number of samples in 7' ) and
their optimal distribution.

Finally, with respect to the construction time of OT P M's Martinetz, [14],
has shown that for a uniform density function on average O(|F|log(|E|))
sample presentations are necessary, if the pointer distribution is uniform as
well. For highly nonuniform pointer distributions serial time complexity will
reach O(|E|?). Of course, for a finite training set T' the OT PMy(S) can be
constructed in time O(|T'|), simply by calculating the best and second best
matching pointer for each z € T'.

2.2 Efficient PCA for fewer points than dimensions

We now want to draw the reader’s attention to a basic trick from linear
algebra which allows to calculate the PCA of the covariance matrix of a set
of points S = {¢; € R*|i = 1,...,N} in time O(N?*n 4+ N?). This trick
is useful whenever N < n, i.e. there are fewer points than dimensions, a
situation characteristic for OT P Ms of low dimensional submanifolds in high
dimensional input spaces and frequently encountered in image analysis.

Let AT = [¢,...,en]. The trick is just to calculate the PCA of Y =
%AAT instead of a PCA of the original covariance matrix ¥ = %ATA.
The eigenvalues of ¥, py,...,un, are then identical to the eigenvalues of
vi,...,vy of 3 and the eigenvectors of X, uy, ..., uy, can be calculated from
the eigenvectors vy,...,vn of 3 by setting u; = ATv;. This can be simply
checked by

A

Yo, = v & AATY, = v, & ATAA Y, = ATy, & Z(ATUZ') = v, AT,

Since the PCA of the N x N matrix ¥ can be calculated in O(N?), [15],
and ¥ = ﬁAAT clearly can be computed in time O(N?n), it takes indeed
time O(NQn + N3) to calculate the PCA of the covariance matrix of 5. A
brief summary of fast PCA algorithms can be found in [16].

2.3 On the problem of ID estimation with local PCA

Following an analysis similar to that of [8] and [10] we assume the data points
x € T to be noisy samples of a vector valued function f: R — R”

r=f(k)+n (1)
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where k& = [ky,...,k,] is an r-dimensional parameter vector and 1 denotes
the noise. Using the Taylor expansion of f and neglecting higher order terms
2 f can be approximated by a linear function for small parameter variations

Ak around kg

Af = flko+ Ak) = f(ko) = AkT (ko) with [U(ko)];; = aggo) @)

Both the functional form of f and the number of parameters r are unknown
and we are only given the noisy samples. Local PCA of the matrix

€ = B{AFASTY = B{(x — o)(x — 20)"} (3)

i.e. the 7covariance“-matrix obtained for observed samples & of f in the
vicinity of g = f(ko) taken as the "mean*, yields the K eigenvalues y; and
orthonormal eigenvectors u; of C with

Cui:/,ciui izl,...,[X7 (4)

These eigenvectors may serve as an alternative basis for the linear ap-
proximation of f and we can write

Af=ARTO with O = [uy,...,uk], (5)

where Ak and WU are related to Al and © by a linear but unknown transfor-
mation.

Since Af is spanned by r or less linearly independent vectors the number
K of eigenvalues should be at most r, i.e. K < r. However, because the data
is noisy and the region for taking the samples is not infinitely small, one will
usually obtain up to n eigenvalues. Yet if the region and the noise are small
enough and if the linear approximation holds, r or less eigenvalues should
dominate, and this is the motivation behind using local PCA for intrinsic
dimensionality estimation.

As pointed out in [10], we can imagine the effect of noise to render the r-
dimensional surface S defined by f not infinitely thin. In any local region we
have r vectors s; spanning the surface and n — r vectors n; perpendicular to

?In general, there is no guarantee that the first-order term dominates the Taylor se-
ries. However, our own as well as the experiments of [8] confirm the workability of this
assumption for local ID estimation.



S. Within a small region the linear approximation is only valid if the largest
variance in direction perpendicular to S is much smaller than the smallest
variance in direction of 5, i.e.

min; Var(s;) > 1. (6)

max; Var(n;)
Here, Var(s;), the intra-surface variance, depends on the size of the local
region and Var(n;) depends on the variance caused by the noise and the
fact that S cannot be exactly represented as a linear surface. This leads to
a basic dilemma for any ID estimation algorithm based on local PCA: If the
region is too large, Var(n;) might be high due to the non-linear nature of S.
If, on the other hand, the region is too small, the noise is still there and will
eventually dominate Var(s;). The solution is to search for the region size
that gives the best compromise®.

Closely related to the problem of noise is the problem of having available
only a limited set of data. In order to make local PCA approaches work, the
data set has to be large enough to represent the non-linearities and to allow
for filtering out the noise.

3 Dimensionality Analysis with OT PMs

The basic procedure tpca for intrinsic dimensionality analysis with OT P M
is summarized in figure 1. To find a set S of N pointers which reflects
the distribution of T' the procedure first employs a clustering algorithm for
T whose output are N cluster centers. Then it calculates the graph G as
the optimal topology preserving map of S given T'. The final step is to
perform for each node v; a principal component analysis of the correlation
matrix of the difference vectors ¢; — ¢; of the pointers ¢; associated with the
nodes v; adjacent to v; in . The result of this analysis, i.e. eigenvalues and
vectors for each node, is the output of the procedure and subjected to further
analysis. Provided the complexity of the clustering algorithm is independent
of the intrinsic dimensionality d the serial time complexity of tpca is O(n +

3Different to [10] and [8] in our ID estimation procedure noise is largely reduced by the
additional clustering stage (see below). Thus for the same local region size we will usually
obtain much higher values for the expression in (6) and can better discriminate between
the noise and the surface. Yet the basic dilemma remains.



m(d, T, S)*), where m(d,T,S) is the maximum number of direct neighbors
of a node in the OT'PM as depending on the intrinsic dimensionality, the
training set T and the set of pointers 5. As already discussed, bounds on
m(d, T, S) or even a functional form are hard to derive, yet m stays constant
for constant ID, is independent of the input dimension n and experiments
confirm that it is indeed small for small IDs.

In the rest of this section we will first comment on the use of clustering
algorithms for ¢pca and then extend the procedure to derive our actual 1D
estimation method.

input training set 7' C M C R", number of pointers N

procedure tpca(T,N) {
S = Cluster(T,N)
G = OTPMrp(S)
for_all nodes (v; € G){
Qi = {(¢cj —ci)lei, ¢j € 55 (vi,v5) € Egl
output PCA( cor(@Q))
}
}

Figure 1: tpca: Topology aided Principal Component Analysis

3.1 Clustering in TPCA

The reason for clustering the data prior to construction of the OT' P M and not
just drawing N pointers randomly from 7' is twofold: First the distribution
of the pointers should reflect the underlying distribution pr(x) as accurately
as possible and second we would like to eliminate noise on the data. Any
vector quantization algorithm which aims at minimizing the (normalized)
quantization error

T= =30 [ e el e, g
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where V; denotes the Voronoi cell of ¢;, is a good choice since by minimizing
the total variance it will preferably place the pointers within the manifold M
and filter out orthogonal noise. This holds because as long as criterion (6)
is fulfilled placing pointers within the surface and hence reducing the intra-
surface variance causes the largest decrease in J. It also produces a distribu-
tion of pointers which reflects the probability density. More specifically, for
a quantizer minimizing J it holds that (for large numbers of pointers) the
density of pointers P(x) is related to the input probability density p(x) via

Plz) = pla)’ (8)

with g = n/(n+2) the magnification factor *. Hence for a uniform probabil-
ity distribution or high dimensional input spaces minimization of J performs
very well in reproducing the underlying density. Probably the most common
vector quantization algorithm for minimization of J is the LBG algorithm
[18], [19]. Alternatively, the calculation of the centroids s; can be formulated
as a stochastic on-line process, [20]. Closely related to stochastic minimiza-
tion of J and hence appropriate for use as clustering algorithms as well are
the various types of self organizing maps. For the original SOM of Kohonen,
[21], no energy function exists. Ritter et. al. [22], however, have shown that
under certain assumptions the distribution of pointers can be described by
a magnification factor of ¢ = 2/3. On behalf of his Neural Gas algorithm,
Martinetz [14] was able to find an energy function closely related to J and to
derive the magnification factor of y = n/(n+2), identical to that obtained by
minimization of J. The advantage of using the neural type of clustering algo-
rithms is that due to neighborhood cooperation they usually converge much
faster than their stochastic counterparts without neighborhood cooperation.
A further advantage of stochastic quantizers with neighborhood cooperation
is the possibility to actually control the magnification factor as suggested in

[23].
3.2 An ID estimation procedure

In order to use tpca for ID estimation we must eventually decide how many
dominant eigenvalues exist in each local region, i.e. what size an eigenvalue

4This follows from the more general result in [17] stating that the reconstruction error
E = [, |t — ¢;[Pdx is minimized by pointer distribution with p = raws
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as obtained by each local PCA must exceed to indicate an associated intra-
surface eigenvector. This amounts to determining a threshold. We adopted
the Da criterion from Fukunaga et. al. [8] which regards an eigenvalue p; as
significant if

S %, (9)
max; /L
If no prior knowledge is available, different values of o have to be tested.
Otherwise, knowledge of the largest noise component can be used to calculate
a.

A second problem is that due to the noise/non-linearity dilemma men-
tioned in section 2.3 we do not know the optimal local region sizes in advance
and, in particular, do not know the optimal number of pointers N as required
by procedure tpca. Monitoring the development of the local eigenvalues for
a growing number of pointers (N = 1,...) and searching for characteristic
transitions is the most natural way to proceed. In this case, one does not
want to cluster all the NV + 1 pointers from scratch but rather would like to
incrementally build on the existing NV clusters, i.e. just add one new cluster
and modify the existing ones if necessary.

Using the LBG vector quantization algorithm, [18], we start with N =1
and add a new pointer by first searching the cluster with highest intra cluster
variance, 1.e.

1 1
T2 el le—al® ¥I<k£i<N, (10
; k

v xeV; z€V)

where d; denotes the current local ID-estimate at pointer ¢; °. In this cluster
we then search for the training sample x with the highest quantization error,
add a new pointer at x, take this configuration of N + 1 pointers as the new
starting configuration for the LBG algorithm and run ¢pca for the N + 1th
round. This procedure of first searching for the worst quantized cluster helps
to alleviate problems with outliers which could lead to multiple insertions at
the same point if only the worst quantized example was considered.

Finally, if we have reason to believe that the data set has constant intrinsic
dimensionality (i.e. has been generated by one function and not by a mixture

>We normalize by the local ID-estimate to avoid J being dominated by the quantization
error of samples in regions of high intrinsic dimensionality. Of course, if the data set is
known to have constant ID this normalization is not necessary.
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of functions) our estimate of the intrinsic dimensionality will be the average of
all local ID estimates together with its standard deviation. The ID estimate
and its standard deviation is then plotted versus the number of pointers
N, with different plots resulting from different choices of a. In the next
section we will demonstrate that these plots actually do give very fine and
characteristic hints on the ID of the data set. Our estimation procedure is
interactive because the user has to choose a set of thresholds a and the final
decision on the ID depends on his inspection of the ID plots. Yet for reasons
already indicated and further illustrated in the next section, without prior
knowledge a fully automated procedure based on local PCA which outputs
the ID estimate given the data set does not make sense.

4 Experimental Results

In this section we investigate the ID estimation procedure on an experimen-
tal basis and also demonstrate it workability for high dimensional real world
image data. In the first experiment we apply the procedure to a mixture of
noisy data sets of different intrinsic structure and dimensionality. In a second
experiment with data stemming from a rectangular surface we will have a
closer look at the influence of noise. Further experiments deal with ID esti-
mation of noisy and noise-free surfaces of hyperspheres and Lissajous figures
in different dimensions. With respect to ID estimation of high dimensional
image data we analyze two image sequences obtained by letting a robot arm
turn a) a symmetrical grey ramp and b) a bottle of beer in front of a camera.

4.1 First experiment

Our first experiment is to give a first impression of the characteristics of our
ID estimation procedure by applying it to a mixture of noisy data sets of
different intrinsic structure and dimensionality. The 3d data set, as illus-
trated in figure 2, consists of 5000 random dots within a circle, a line and a
square in the xy-plane with uniform noise® in the z-direction. The circle has
a diameter of 6 , the line a length of 6 and the square an area of 6 x 6 units.

5The particular distribution of the noise, e.g. Gaussian or uniform, does only play a
minor role because it is averaged out by the clustering procedure. Important is its variance.
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The noise has an amplitude of +0.5 units (and hence variance of 1/12). The
data density is approximately uniform over the data set.

Figure 2: Two views of the Square-Line-Circle data set. Left: View on the xy-
plane, Right: Rotation of 60° around x-axis

Figure 3 shows the ID estimation procedure in progress for a growing
number of pointers on the D10 level. From top to bottom, left to right
with 5, 10, 20, 35, 45, and 70 nodes in the OT' PM. Dark circles indicate a
local ID estimate of one, medium dark circles an estimate of two and light
circles of three (D10 criterion). For only five nodes the OT'PM indicates a
one dimensional connection structure for the circle and the line and a two
dimensional one for the square, identical to the ID estimates (by local PCA
of the OT'PM). For 10 nodes the OT' PM has already grasped the intrinsic
structure of the data set. For 20 nodes we also get the correct local 1D
estimates for the line-data and the square but the ID estimate of the circle
data is still two instead of one. This is due to the curvature (non-linearity)
of the circle. From 35 to 45 nodes even the true ID of the circle is revealed
because the number of pointers has now become large enough for a linear
approximation of the circle on the D10 level. For even higher numbers of
pointers the distribution of pointers as obtained by the LBG algorithm will
eventually approximate the noise, i.e. leave the surface. From now on (see
figure 3 for 70 nodes) the ID will be overestimated.

We want to remark that the mean squared quantization error

| N
mse = mz Z |z —c | (11)

=1 z€V;

for e.g. N =45 nodes is 0.29 which is only about three times the variance of
the noise. Subtracting the noise variance, only two times the noise variance
remains for the average local intra-surface variance. Clearly, a simple local
PCA approach as e.g. that of Fukunaga et al. (taking the unfiltered data as

13



input to the local PCA) would not yield the correct local ID estimates on a
D10 level for that local region size but would detect the noise variance as a
second or third most significant eigenvalue on any level. This is what we refer
to as the increased robustness against noise and the increased discrimination

v S A
NS ’

ability of our procedure.

Figure 3: Local ID estimation for the Square-Line-Circle data set for a growing
number of pointers (nodes in the OT' PM) on the D10 level. From top to bottom,
left to right: 5, 10, 20, 35, 45, 70 nodes. Dark circles indicate a local ID estimate of
one, medium dark circles an estimate of two and light circles of three dimensions.

4.2 Second Experiment

We now want to take a closer look at how the LBG vector quantization stage
distributes the pointers in the manifold and the ID estimation procedure
copes with noise. As a data set we choose 5000 noisy data originating from
a rectangular surface of 18 x 3 units in the xy plane. The amplitude of the
uniform noise is +0.5 in z-direction (variance of 1/12). The data density is
uniform over the data set. The data set is illustrated in figure 4.
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Figure 4: Two views of the rectangular data set. Left: View on the data set in
xy-plane, Right: Side view on the noise (Rotation of 90° around x-axis)

Figure 5 shows the local ID estimation for the rectangular data set for
a growing number of nodes in the OTPM on the D01 (left) and D10 level
(right). From top to bottom: 4, 10, 20, 40, 60, 70 nodes. Again, dark circles
indicate a local ID estimate of one, medium dark circles an estimate of two
and light circles of three.

The figures nicely illustrate how the incremental LBG clustering stage
minimizes the quantization error by placing the pointers along the principal
axis of the noisy surface in order of decreasing variance along the axis. The
first four nodes are placed along the first principal axis and the OT' P M as well
as the ID estimates indicate a one dimensional line. For 10 and 20 nodes we
see how the pointers are also placed along the second principal axis and the
connection structure as well as the ID estimates indicate a two dimensional
surface. For 40 nodes (D01 level) respectively 60 nodes and more (D10 level)
the distribution of pointers begins to approximate the noise and hence the
ID estimate drifting to three. This is also indicated in figure 6 showing a
first phase of 1D estimation one, a phase transition to ID estimation of two
and a final transition to ID estimation of three. As expected, the ID-1 and
ID-2 periods last longer on D10 level than on D01 level.

The data set unequivocally demonstrates that it does not make sense to
speak of the intrinsic dimensionality of a noisy data set and to attempt to
design a non-interactive algorithm just returning this number. Whether the
data set has ID one, two or three cannot be decided on basis of the data
alone. All three interpretations are perfectly correct. We need additional
information, i.e. the scale or resolution to look at the data. Our ID estimation
procedure starts on the coarsest resolution and constantly refines it. It is the
users task to select the appropriate scale and the final ID estimate based on
prior knowledge or his subjective bias.

Taking a closer look at the influence of noise, the OT PM of 60 nodes
and associated pointers has a mean squared quantization error of 0.23. With
similar arguments as for the previous example we note that discrimination

15
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Figure 5: Local ID estimation for the rectangular data set for a growing number
of pointers (nodes in the OTPM) on the D01 (left column) and D10 level (right
column). From top to bottom: 4, 10, 20, 40, 60, 70 nodes. Dark circles indicate a
local ID estimate of one, medium dark circles an estimate of two and light circles

of three dimensions.

between the second intra-surface eigenvector and the noise component would
be impossible for this local region size with the usual local PCA approach.

4.3 Further Demonstrations

In order to get a further impression of how the ID-estimation procedure copes
with non-linearities we here give an example of ID-estimation for data stem-
ming from surfaces of d-dimensional hyperspheres. Each data set consists
of 5000 uniformly distributed samples on the surface of the d-dimensional
spheres in the first “octant”. In case of noisy data uniform noise with an
amplitude of as much as half the radius was added perpendicular to the
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Figure 6: ID plot for the rectangular data set. Left: On D01 level, Right: On
D10 level

surface.

Figure 7 shows the 1D estimation procedure in progress for data from a
3d-hypersphere surface. For the noise-free case (left) estimation on the D05
and D10 level reveals the correct ID. The curvature is too high to give a
clear hint on the D01 level. With noisy data (right) estimation on the D05
level gives no clear hint. On D10 level, however, an ID of two is correctly
indicated from four to twenty nodes.

Figure 8 shows ID estimation for a 6d hypersphere surface. Correct es-
timates for the noise-free case (left) are indicated on the D05 and D10 level
whereas estimation of the true ID on the D01 level would be difficult. For
the noisy data set (right) ID estimation works perfectly well on both the D05
and D10 level. That actually we obtain better results in this case than for the
noisy data of the 3d hypersphere surface is due to the increased surface area
in 6 dimensions. Since the variance of the noise remains constant the ratio of
intra-surface variance to noise variance increases and hence the incremental
LBG stage placing more nodes in the surface.

As a final example involving artificial data let us regard some Lissajous
figures in d dimensions generated by the vector valued function f: R* — R"
with

filk) =3 xsin(2rk +4) with ¢=1,...,n—1 (12)

and k randomly distributed in the interval [0,1]. For noise-free data we had
fa(k) = const, else f,(k) = u with u denoting uniform noise with ampli-
tude +0.5 (variance 1/12). Hence data lie on a closed 1-d surface (ID = 1)
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Figure 7: 1D plots for the surface of a 3d hypersphere. Left: noise free data

on D01, D05 and D10 level; Right: noisy data on D05 and D10 level including

errorbars for the D10 level

embedded into an n-dimensional input space.

Figure 9 depicts the ID-estimation for noise-free 3-, 100- and 2500- di-
mensional data sets on the D10 level (left) and noisy 3- and 100-dimensional
data sets on the D10 level (right). On this level the correct ID can be deferred
for all noise-free data sets (left) but the plot is less conclusive for the noisy
3-d Lissajous figure (right). For both the noise-free and the noisy data sets,
ID estimation appears to become easier with increasing dimension. This
can again be explained with an increasing length of the line with growing
dimensions. In the noise-free case it has the effect of decreasing the non-
linearity and hence enabling ID-estimation with fewer pointers (larger local
region sizes). In the noisy case the increased length of the line again causes
a higher ratio of intra-surface variance and noise variance, hence diminishing
the effect of noise.

4.4 1D estimation of image sequences

The experiment with the Lissajous figures paved the way for the application
of our ID-estimator to image sequences. The sequences under investigation
have been generated with one degree of freedom and hence they lie on a one
dimensional trajectory in image space. The experiment with the Lissajous
figures demonstrated that the task to estimate the ID from such a data set
embedded in a very high dimensional input space does not pose a principal
problem.
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Figure 8: ID plots for the surface of a 6d hypersphere. Left: noise free data
on D01, D05 and D10 level; Right: noisy data on D05 and D10 level including
errorbars for the D10 level

4.4.1 Rotating grey ramp

The image sequence under investigation in this example has been generated
by taking 180 snapshots (every 2°) with a resolution of 256 x 256 pixels of
a robot rotating a cylinder around its z-axis (from 0° to 360°). Since the
background remained constant, the images lie on a closed 1-dimensional tra-
jectory in image space. In order to generate a smooth transition from image
to image we wrapped a symmetrical grey ramp (256 grey values) around the
cylinder. This grey ramp as well as three snapshots from the sequence are dis-
played in figure 10. The noise in the measurement process is approximately
Gaussian with a standard deviation of 1.75 grey values per pixel.
[D-estimation on the D05 level (figure 11, left) indicates that the ID is
at most 2 7. Estimation on the D10 level indicates an ID between 1 and 2
whereas estimation on the D20 level speaks for an intrinsic dimensionality of
1, the true ID. It is interesting to notice that in spite of the 65536-dimensional
input space the ID-estimate never exceeds 2 on all three levels. The explana-
tion, revealed by an analysis of the OT P Ms for each number of nodes, is that
the edges in the OT'PM actually form a (one dimensional) circle, i.e. the
intrinsic structure (topology) is correctly represented by a one dimensional

"The reader should bear in mind that in this and the following experiment we do not
try to estimate any properties of the objects in the scene, e.g. the shape of the cylinder,
but the number of free parameters that generated the image sequence. Fach image is just
treated as one point in 656536d image space.
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Figure 9: 1D plots for Lissajous figures on D10 level. Left: noise free data of
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b i

Figure 10: Grey ramp under different rotations. From left to right: Original
(symmetric) grey ramp, grey ramp wrapped around a bottle with part of the
robot arm in the background under 0°, 45°, 90° rotation

graph. Due to noise and the non-linearity of the trajectory, however, the lo-
cal PCA taking the two difference vectors of a pointer and its two topological
neighbors as input, does not indicate a one dimensional local structure on
each level.

We have also performed ID estimation for the same sequence of images
on a reduced image resolution of 64 x 64 pixels, obtained from the origi-
nal one by averaging over a local neighborhood of 4 x 4 pixels. The result
(figure 11, right) is similar to that of the full scale sequence except that we
get slightly better estimates on D10 level. We attribute this to the noise
reduction property of averaging over the 4 x 4 windows.
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Figure 11: 1D plots for rotating grey ramp. Left: For full scale 256 x 256 image
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reduced scale 64 x 64 image sequence on D10 and D20 level with errorbars for the
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4.4.2 Rotating bottle

As a last test we applied the ID estimation procedure to an image sequence
of 180 images with a resolution of 64 x 64 pixels obtained by rotating a bottle
of beer by 360° and taking a picture every 2° (see figure 12).

Figure 12: Beer bottle under different rotations with robot arm in the background.
From left to right: Under 0°, 45°, 90° and 135° rotation

[D-estimation (figure 13) reveals similar results for all three levels (D05,
D10 and D20) and indicates an ID of two. This again is quite impressive
taking into account the 4096d input space. However, it is one more than
the true ID. The answer is revealed by analyzing the OT PMs. Similar to
the experiment with the rotating grey ramp, the edges in the OT PM form a
circle and hence have grasped the intrinsic one-dimensional structure of the
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data ®. However, in spite of successive pointers being neighbors with respect
to the Euclidean metric, each two successive difference vectors which serve as
input to the local PCA are highly uncorrelated. This can be understood by
considering a rotating black/white bar. Three images (p1, p2, ps) taken under
successive rotations are neighbored w.r.t. the L, norm but the two difference
images (p; —py and p3 —py) are completely uncorrelated ((py —p2)? (p3s—p2) =
0) ?. Since they have about the same amplitude, local PCA will always detect
two significant eigenvalues.

Our method is not the only ID estimation technique suffering from dif-
ficulties with non-continuous jumps in the data (as revealed by sequences
of b/w images). They actually represent an ill-posed problem for any ID-
estimator. The problem can be coped with by smoothing. In the case of
our rotating bottle image sequence low pass filtering of the images would in-
crease the correlation between neighbored pixels and thus between successive
images and lead to the correct 1D estimate.

5 Related Work

In this section we want to relate our approach to previous work limiting our
discussion to the most closely related local approaches. For an introduction
to global ID estimation methods see e.g. [3], for a critical evaluation of
different 1D estimation algorithms see [24].

The algorithm most closely related to ours is that of Fukunaga and Olsen,
[8]. It is based on local PCAs in local regions (overlapping hyperspheres) of
varying size and uses the same significance criterion Da as we do (eq. 9).
Instead of plotting the ID-estimate over the local region size the results for
different region sizes and values of a are summarized in histograms. The
algorithm does not attempt to extract a representation capturing the intrinsic
structure (topology) of the data set. By using straight forward PCA it has
cubic complexity in the input dimensionality and application to ID estimation
of e.g. full-scale images is clearly out of range. Also, by performinglocal PCA
directly on the data, the influence of noise is much more severe than in our I1D-
estimation procedure which attempts to filter out the noise by a clustering

8With just a simpe test (check, if a node has only two neighbors and these neigbors
are not connected) local ID estimation could stop here with output “1”.
9This effect is known as the whitening effect of the difference operation.
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Figure 13: ID plots for rotating beer bottle on D05, D10 and D20 level with
errorbars for the D10 level. The D05 and D10 plots coincide

stage and takes the cluster centers as input to the local PCA. We have
demonstrated this increased discrimination ability of our method in sections
4.1 and 4.2. In their comparative study on ID estimation algorithms, [24],
Wyse et al. found Fukunaga and Olsen’s algorithm to perform “reasonably
well” on a variety of data sets and to be one of the most reliable and easy to
use methods. We conjecture that our ID-estimation procedure which from
a users point of view can be regarded as an enhanced version of Fukunaga
and Olsen’s algorithm in terms of speed, accuracy and usability would at
least have got the same predicate. In a more recent study,[10], Verveer and
Duin compared slightly modified versions of Fukunaga and Olsen’s algorithm
and Pettis local ID estimator,[7]. Both algorithms performed well, the main
drawback of Pettis algorithm being its trend to underestimate and suffering
from "edge effects® and the main drawback Fukunaga and Olsen’s algorithm
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being an increased sensitivity to noise and quickly increasing computing time
with dimensionality of input space - just the problems we have “fixed” in this
paper.

The idea of using OTPMs for ID estimation is not entirely new but
has been used before by Frisone et al., [4]. They tried to directly use the
OTPM for ID estimation by relating the number of edges emanating from
the nodes in the OT'PM to the kissing number. As discussed in section 2.1
this approach suffers from both practical and theoretical pitfalls. On the
practical side, the approach needs very large data sets and heavily relies on
near optimal placement by a potentially slow clustering procedure. On the
theoretical side, just too little is known about quantizers and corresponding
kissing numbers. However, the idea of directly using the OT'PM for 1D
estimation (without additional PCA) is surely worth further pursuit. In case
of the turning beer bottle image sequence, for instance, the OT' PM had
grasped the correct topological structure but local PCA failed to reveal it.

Kambathatla and Leen, [25], have developed an algorithm for fast non-
linear dimension reduction. Although not primarily intended for ID estima-
tion it works similar to our procedure in that it builds a local linear model of
the data by merging local PCA with clustering. Data is first clustered into N
clusters, then local PCA is used in each Voronoi cell to obtain m; eigenvec-
tors. Together with the centroid of the corresponding cells the eigenvectors
are then used for linear approximation of the data set. Obviously, their pro-
cedure could benefit from ideas presented in this paper, i.e. the additional
construction of an OT' PM and using it for efficient local PCA in the same
way we do. As in our case, this would lead to only a linear complexity of
the local PCAs. Vice versa, the work of Kambathatla and Leen shows the
straight forward way to use the representation we extract in course of 1D
estimation (cluster centers and eigenvectors) for auto association and vector
quantization (by means of a linear approximation of the data set). Since
Kambathatla and Leen’s results are quite encouraging we conjecture that
the results obtainable by the extended ID-estimation procedure will be as
well.
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6 Conclusion

We have presented an algorithm for estimating the intrinsic dimensionality of
low dimensional submanifolds embedded in high dimensional feature spaces.
The algorithm belongs to the category of local ID-estimation procedures, is
based on local PCA and directly extends and improves its predecessor, the
algorithm of Fukunaga and Olsen, [§], in terms of computational complexity
and noise sensitivity. The main ideas are first to cluster the data, second to
construct an OT PM and third to use the OT' PM and not the data itself for
local PCA.

Clustering is responsible for an even distribution of the cluster centers
and for noise reduction, i.e. placing the centers in the manifold. The local
PCA taking difference vectors of centers as an input benefits from the noise
reduction property of the clustering stage. Its output, the eigenvalues, give
a better hint at the local ID than those of straight forward local PCA on the
data itself always including the full variance of the noise.

Constructing the OT'PM for the cluster centers provides a low dimen-
sional representation of the data which optimally reflects the intrinsic (topo-
logical) structure of the data. Independent of the dimension of the input
space and invariant w.r.t. scaling and rigid transformations it provides an
ideal basis for ID estimation. Exploiting the OT' PM for local PCA, our 1D
estimation procedure has only linear time complexity in the dimension of
the input space and the invariance properties directly transfer to the esti-
mate. We conjecture that more direct use of the OT P M offers a possibility
to improve the ID-estimates. For instance it is trivial to decide whether an
OTPM (a graph) has one dimensional structure or not.

Besides tests on a variety of illustrative artificial data sets the procedure
was applied to ID-estimation of image sequences with image resolutions of
up to 256 x 256 pixels. Such application is out of reach for conventional 1D-
estimation procedures based on local PCA and to the best of our knowledge
has not been tackled before.

OT PMs together with eigenvectors and eigenvalues returned by local
PCA are not only useful for ID estimation but can be used for linear approx-
imation of the data and construction of auto-associators in quite an obvious
way. Such associators will work by projecting new data to the local subspaces
spanned by the eigenvectors, i.e. by projecting to the linear approximation
of the manifold. Extension to the construction of hetero-associators working
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on basis of the same principal needs only one more little step (using e.g.

generalized radial basis functions). Application to visual learning and recog-
nition of objects from appearance as pioneered by Murase and Nayar, [16],
appears to be straight forward as well and closes this brief summary of our
near-future work.
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