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Shape Evolution with Structural and
Topological Changes using Blending

Douglas DeCarlb and Dimitris Metaxa’s

Abstract smoothevolution of the model. The basic model fitting

is carried out using a physics-based estimation framework
This paper describes a framework for the estimation [af 2]. This framework is augmented with a geometric de-
shape from sparse or incomplete range data. It usesision process that allows parts and holes to be added to
shape representation called blending, which allows for i model.
geometric combination of shapes into a unified model—
selected regions of the component shapes are cut-out and . . .
glued together. Estimation of shape using this represerﬁlzril— Situating blending

tion is realized using a physics-based framework, and af§ignding has three advantages, which we outline here.
includes a process for deciding how to adapt the structgfigs; plending offers a concise and flexible representation
and topology of the model to improve the fit. The blending shape, which facilitates its use in recognition.
representation helps avoid abrupt changes in model 9e0Meonsidering the spectrum of shape estimation work, at
etry during fitting by allowing the smooth evolution of the ho and are models with a small number of parameters
shape, which improves the robustness of the technique. d\gn 55 generalized cylinders [3, 4, 5], geons [6], su-
demonstrate this framework with a series of exPerime’b@rquadrics [7, 8], hyperquadrics [9, 10], and algebraic
showing' its ability to automatical'ly extract structured regy,faces [11]. The small parameter sets make these models
resentations from range data given both structurally ighfy| for recognition applications, but they have a fairly
topologically complex objects. limited shape coverage, and can only represent objects of
fixed topology.

; At the other extreme are representations with many pa-

1 Introduction rameters, such as free-form surfaces [12, 13, 14, 15, 16],

Work on shape estimation exhibits a trade-off betwe@fvancing front techniques [17, 18] and particles [19].

conciseness and expressiveness in representation. e Methods obtain a wide shape coverage at the ex-
ense of the abstraction required for recognition tasks.

choice of shape representations must be made carefully= :
especially given data that represents an object of comp%eqme of these methods allow for the modeling of surfaces

topology, or given data that is sparse or incomplete. In tiiscOMPlex topology [12, 13, 17, 15, 19, 18], but require
paper, a shape representation cabéhdingis described complete and dense data of an object in order to achieve

which allows for the combination of two shapes into a sifi! @cceptable level of robustness. These methods model

gle model. The component shapes are “cut’ apart, and mgological. changes using Ioca! surfgce infor.mation only.
selected pieces are “glued” together. The gluing is realized the middle are models which aim to strike a balance
geometrically using a method of interpolation. A shag¢tween extremes—blending is one of them. We intro-
estimation framework which uses blended shapes is udeged @ simple form of blending in [20, 21] and its general-
to automaticallyfit a surface to a given set of range dati¢ation in [22]. Blending enables the combination of mul-
This range data can be sparse or incomplete, and can p@be globally defined shapes into a single modgl. Selected
resent an object of arbitrary topology. The fitting is madp@rts of the models are connected together using a method

more robust by avoiding any large geometric jumps usi%interpolation. These parts are added on either to increase
the shape coverage of the model, or to add holes through
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ters in [24, 25] capture the rough shape of an object, th@sets using a single surface instead of leaving them as a
methods do not deal with an object consisting of a numlzellection of (perhaps overlapping) pieces.

of distinct parts so elegantly. In addition, these methodsThere is, of course, no single correct answer to part seg-
only deal with surfaces of simple topology. mentation [27]; approaches for the part segmentation of

Enabling smooth shape evolution is the second adv&age data make the best guess from geometric information
tage of blending. The evolution of a shape model descrifd@ne. As [28] has observed, part segmentation algorithms
how it changes over time. From the point of view of ex¢an be classified as to whether models are merged together
traction, the passage of time constitutes the sequencdl@gal-to-global) in a geometrically bottom-up fashion, or
model shapes generated by the estimation process. In@gssplit apart (global-to-local) in order to form the final
case, the time is discretized into a sequence of eventsS@gmentation.
erative fitting processes usually make small improvementdMuch of the existing part segmentation work uses a
to the model from one time-step to the next. This prigcal-to-global approach where numerous small models
ceeds smoothly until a local minimum is reached. At thise mergedtogether into a few larger models. These
point, large changes to the model are applied, which dgasthods can use surface patches [29] or shape primitives
be representational, geometric, or topological. For exal®0, 31, 32, 33]. Other local-to-global approaches use ge-
ple, a representation capable of producing a similar clasgetric analysis methods in an attempt to find the bound-
of shapes to blending was introduced in [14]; this represetiies between the parts [34, 35, 36]. Some of these anal-
tation instead usese&ier surfaces to connect the parts ty'sis methods are formalized in terms of differential ge-
gether. This system permits topological changes during egetry [26]. The local-to-global methods do not perform
timation; however, the model changes are abrupt—in onell given incomplete or sparse data, with the exception of
step, a boolean (CSG) shape operation will add on a p&3€), 31], which use a minimum description length (MDL)
or cut a hole though the shape. While this abrupt actiefiteria for merging.
often leads to the desired global minimum, it can also beBlending is one of the few approaches that fit and seg-
the source of a lack of robustness. ment by splitting in a global-to-local fashion, where a

In most cases, the metric used to judge the quality rgpdel is repeatedlgplit until a desired accuracy in the
a particular solution is geometric in nature. These méft.is achieved [22, 37, 14, 8]. A combination of both ap-
rics also tend to be only locally effective for comparison-roaches is used in [28], where a local-to-global surface
the most meaningful comparison between two modelsSRgmentation process is used to guide a global-to-local vol-
for those that differ geometrically by only a small amouriMetric primitive extraction process.
Therefore, a good goal is to minimize (or eliminate) the
abrupt geometric alteration during large changes in U_ﬂ_ez Outline
model. Blending achieves this goal by producing geomet-
rically smooth transformations for both structural changgse work presented here is a more thorough and detailed
to the model (such as the addition of a part), and the gkatment of the work on shape blending introduced in
teration of the model topology. In [22], an additional pa[2]. Additional experiments have also been performed
or hole appears gradually in shape evolution. Changestiat demonstrate the robustness and stability of the results.
representation or topology are not a problem. This is a keyafter some preliminaries in Section 2, blended shapes
motivation in the design of the blending representation fgfe introduced in Section 3 followed by a description of
use in shape estimation. smooth shape evolution in Section 4, and its relationship

Third, blending facilitates the extraction of&ructured to blending. Section 5 explains how blending and evolu-
representation of shape. A structured representation is dgon are applied to shape reconstruction, some examples of
structed by breaking down a shape into primitive compwehich are presented in Section 6.
nents that have meaning in terms of the geometric struc-
ture of the object. Blending can specify the composition
of component shapes in this way. There is thus an over2p Preliminaries
between shape estimation techniques which extract a struc-
tured representation, and methods for part segmentatiien concerned with topology of surfaces, there is some
The main distinction is that in shape estimation there is tesminology that needs to be defined. To simplify this dis-
strict definition of what constitutes a “part”, as is often thaussion, all surfaces described here are three-dimensional
case in part segmentation work [26]. A further distinctiossurfaces, such as the sphere in Figure 1(b). In particular,
is that most shape estimation techniques combine attactiey are two-dimensional manifolds—this means that any
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small patch of the surface looks (topologically) like asmal  Blended shapes

patch ofR?.
In the following section, blending will be described using

The topologyof a shape is specified by the connectithe physical analogies of “cutting” surfaces apart and “glu-
ity of its surface on a global level. For example, a spheirgy” them together. This surface “surgery” can be used to
and torus have different surface topologies. There areanstruct shapes of a particular topology as well as widen
number of ways of quantifying the topology of a surfacéhe representational coverage of a shape model. In later
One of the most common is tlgenusof a surface, which sections, it will be explained how blending is used as an
specifies the number of holes (or handles) that a surfag@gral part of the smooth evolution of a model, and how
contains—a sphere is genus 0, while a torus is genus 1. Asurface reconstruction process can perform this surface
other method of topological classification is whether a s@iirgery automatically in order to extract a surface from
face isorientable which is the case only if the surface hagata.

a notion of an “inside” and “outside”. A single-sided sur- In reading this section, it will help to remember that the
face, such as a Klein bottle, is non-orientable. key feature of the representation is to permit smooth shape
evolution. There will be points where the fitting algorithm
decides on changes in representation (see Section 5.4). The
model must have parameters that minimize the immediate
geometric effects of these changes in representation. The
blending representation therefore includes a parameter that
seems redundant considering only shape coverage, but is
important for describing the continuous change between
(@) (b) shapes (this is the parametedescribed in Section 3.4).

Figure 1: Example shape mappisgQ — R3

A topological spac€, as in Figure 1(a), is endowed
with only connectivity information—no geometry. In this
paper, topological spaces such@sre drawn abstractly
for illustrative purposes (and are not necessarily flat disks).
The geometry of the shape is specified by associating a
point in R® with each point inQ. This association is of-
ten performed by a mapping, such as vgih Figure 1, in
which caseQ is thedomainof the shape. I§is continuous
and invertible, it is called homeomorphismand preserves . .
topology under mapping. So if the mappis@n Figure 1  Figure 2: Underlying shapes: Q1 — R3; 51 Qo — R?
is a homeomorphism, thed must be topologically equiv-
alent to a sphere. Blending starts with twainderlying shapes; and s,

shown in Figure 2. The shapssands, are mappings into

The surface parameterization of a shape can hav&3ahat are defined over domaify andQ,, respectively.
coordinate system imposed over its domain for the plirxamples of such shapes include spheres, superquadric el-
pose of identifying points and directions on the surfad@soids, or B-spline surfaces.

Sometimes, these parameterizations can have singularitie€ombinings; ands, to form a blended shape involves
For example, a latitude-longitude parameterization ofttee specification of the retained parts of these shapes (cut-
sphere has singularities at each pole—points where lortgig), as well as how overlapping parts are connected to-
tude doesn’t matter. A latitude-longitude parameterizatigether (gluing). The retained parts of these shapes are
of a torus is singularity-free. A surface can have a globdgfined by subsets of the shape domahsc Q; and
parameterization, meaning that there is a single coordin@gec Q,, and are shown in gray on the left of Figure 2.
system for the entire domain, or it can have a local paraiiie gray portions on the right of Figure 2 are called the
eterization, meaning that the domain is broken down irtitending componentsf s; ands,. One restriction on the

a set of (possibly disjoint) regions which cover the entitBending components ands; is that they must be homeo-
domain, each of which has a parameterization defined. morphisms when the domains ®fands;, are restricted to
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Q1 andQ, respectively. This will be useful in Section 3.2nd geometrically. The formulation of the domain over-
when surface parameterizations are constructed. lap is described in Section 3.2, and the geometric overlap
(interpolation) is described in Section 3.4.

Figure 3: Blended shape Q* — R3

Figure 3 shows the blended shapehich is formed us-
ing the blending components of ands, showing how
certain parts ok resemble each of its components. Th
continuous join between the components is formed usi
interpolation, details of which are provided in Section 3.4.

The blended shapsis defined over a domai2*, whichis  The process of gluing requires a correspondence be-
the result of topologically mergin@, andQo. tweenw; andwy,, which is specified using the homeomor-

The addition of a hole works by removing two diskehismp: w; — wy. Figure 6 illustrates the correspondence
from the shape, and gluing a hole (a tube) in its place,@8ppingP, which is used to plac&; andk; into corre-
in Figure 4. Holes can be added between any two log&@ondence, and match up the discarded boundaoy, of
tions on a shape, with the only restriction being the twéth the retained boundary of, (and vice versa). Imple-
discarded regions (such as thoseQpin Figure 4) must mentation details for the correspondence mapfingre
be disjoint. Adding a hole to a model in a non-abrupt wagjven in Appendix A.1.
requires more care, and will be discussed in Section 4.2.

E' ure 5: Component shapss Q; — R3; s: Qo — R3

Q, (retained)

V;J (discarded)

(discarded)

Figure 6: Annulus-shaped regions with correspondghce

Figure 4: Adding a hole For simple cutting and gluingp; andw, are annulus-
shaped (ring-shaped) regions, such as in Figures 5 and 6.
The next few sections give the details on the cutting aliisome cases, a correspondence is also established be-
gluing necessary to perform blending. tweenall of Q,, and the discarded portion @21, as in
Figure 7 (so thaf2, = wy). This will allow the contribu-
tion of the discarded portion d®; to the overall shape to

3.1 Surface surgery be smoothly blended away (more on this in Section 4).

Continuing with the example given above, Figure 5 pro-
vides a more detailed look at the cutting and gluing. The =
curves along which the shapes are eyt Q; andk, C
Q,, are shown as dark lines in Figure 5. The faded re-
gions of the shapes in Figure 5 indicate the portion that is
discarded by the cutting.

The neighborhoods around these curugsc Q; and
wy C Q, which are the light gray domain regions in Fig- ] ] ]
ure 5, are used to glue the pieces together. Once glued/9ure 7: Disk-shaped regions with correspondefice

these strips will overlap both topologically (in the domain)

(retained)

(discarded)
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3.2 Domain gluing 3.3 Mesh representation

The mappingp is used to glue the component domainhe surfaces described here are realized using a polygon
together overoy and wy,. Using the union of the do-mesh. The domains of each blended component shape are
mainsQ1 |J Q, as the domain afproduces doubly coveredtriangulated separately. The cutting and gluing operations
points byw; andwy. described here present the problem of forming a unified
The component domains are properly glued togethermgsh for the entire blended shape. For the shape estima-
applying a notion from topology known as a quotient spatien applications here, however, a single component poly-
[38]. A quotient space is produced when points in a topgen mesh for the entire shape is not necessary.
logical space are identified (glued) using an equivalence reThe component meshes are constructed by simply omit-
lation. As an example, consider a topological space whidhg the polygonal faces of the original mesh that are com-
is a line segment; an equivalence relation where only tpletely contained within the discarded portion of the do-
two endpoints of the segment are equal produces a quoti®ain. This produces a shape made up of spatially overlap-
space which is topologically a closed loop. ping polygon meshes. Should a single mesh be required,
An appropriate equivalence relation that glues the d#esh clipping and merging methods can be employed [41].
mainsw; andwy, together is the one induced By

3.4 Surface interpolation

Uy ~ Uy <= B(u1) =uzxandu; € wy,Us € 1
LT Pluz) ? ' ? @) At this point, the geometry of the gluing process is all that

The domain for the blended Shape is Written as: iS needed to deﬁne: Q* — RS. When forming a blended
shape, the retained portions of the surface outside of the
o — (Qlqu) / ~ ) blending regionQ;\w; and Q,\wy, are not altered. In

Figure 3, these regions correspond to the shape areas below

and above the dotted lines. The connection between these

two pieces is created using linear interpolation, which uses

This method of gluing can be used for the constructi@hb_lehrlqmg fur;]ctlona: o1 ? Lo’ 1] to form _thteljowT\ht_)y_ .

of a parameterization over the entire blended shape. YVig!ghting €ach component shape appropriately. 1his join
(1)%_the region in between the dotted lines on the surface in

not a global parameterization, however, but instead CF 3 The f lation f blended sh . ol
sists of two overlapping parameterizations. The region opUre . € formulation for a biended shape IS as 1ol-

overlap between the component domains, along with solr%‘gS:

where the merged component domains are diviggdy
the relation~, defined by (1).

bookkeeping operations, is as flexible as a global parame- s1(u) ueQ\w
terization for the entire surface (at least for the applications

_J=(Uu ue Qo\wp
here). In [22], a version of blending is presented which in- S(u) = slguicx(u) 2\ (3)

_stead establlshesj a gIopa_nI parameterliza'tlon (V\(hlch pgrhaps +5(B(U)) (L—a(u)) ueuw
includes some singularities). In a similar spirit, Grimm
and Hughes [39] have described a method for modeliRgfinings or a for pointsu € wx, is possible, but it is un-
surfaces by gluing together overlapping B-spline patchedecessary and redundant, due to the quotientinQ*oih
This gluing avoids problems associated with global su?)-
face parameterizations. A two-dimensional coordinateThe blending functiorr has the value 1 where the sur-
system which is placed over a surface of arbitrary gerf@§e is retained, and 0 where the surface is discarded. For
contains a number of singularities, the number of whichd§ annulus-shaped region, such as in Figure 6, the blend-
related to the genus of the surface. This is known coli®d functiona ranges from 0O to 1 from where the surface
quially as the “hairy ball” theorem [40], which states tha$ discarded to where it is retained, as in Figure 8(a).
a combed hairy ball must have a bald spot, and is a consd=0r disk-shaped blending regiores,incorporates a pa-
quence of the PoincesHopf theorem [38]. rameter determining the degree to which the second com-
These singularities would make the specification of sigonent shape is expressed. (This parameter allows smooth
face curves such as particularly difficult (from an im- evolution of shape).a is therefore defined in terms of a
plementation point of view). Only a disk, open tube, dase blending functioop and a parametér € [0, 1]:
torus can be parameterized without singularity. Hence, _
each blending component must be constructed from one a(u) = ao(u)(I =) +h uew @
of these for it to have a singularity-free two-dimensiondlhe parameteh maps the blending function range from
parameterization. [0,1] to [h, 1] so that wherh = 0, a(u) = ap(u), and when



h=1,a(u) = 1. In a disk-shaped blending region, such &6 Hierarchy of blending
in Figure 7,0p has the value 1 throughout the interior of

the disk, as in Figure 8(b). Using a blended shape as one of the underlying shapes of
another blend produces a hierarchy of blending. If viewed
as a directed acyclic graph (dag), its leaves are primitive
shapes while the internal nodes of the graph are blended
shapes. Note that the dag is not necessarily a tree, based
on how holes are added. This dag also provides higher-
level topological information about a blended shape, such
S = as part-adjacency information. Such an abstract represen-
(@) (b) tation has potential uses in model comparison and object
recognition. Section 6 contains experiments demonstrat-
Figure 8: Blending functiom values for different region ing the stability in the extraction of such a hierarchy.

types Using a hierarchy, it is possible to construct any ori-
entable surface. We know from the classification theorem
A value ofh is specified for each blending region, bubr compact surfaces [42] that the operation of gluing is
for annular blending regions, such as that in Figure 8(a)yery powerful, since any orientable surface can be obtained
is always 0 andt = do. by gluing together flat disks.

From a shape coverage standpoint, hierarchical blending

and CSG produce the same class of shapes. The number of
3.5 Spatial alignment of components parameters required for a blended shape exceeds that of a

CSG model, however, since blending requires the explicit
The relative position and orientation sfands, has a sig- specification of blending region boundaries, while CSG
nificant effect on the geometry of the join between thet#ses object interpenetration. However, it is this explicit
Figure 9 shows the effect on the blended result of rigiggpecification of where to cut and glue that makes blend-
translating and rotating, using the example from Fig-ing useful for shape estimation, which will become clear
ures 2 and 3, which can be accomplishesbihas param- in the next few sections. The next section describes how
eters for rigid translation and rotation. Figure 9(a) showsch a hierarchy might be formed by repeated application
the original blended shape, the shape in (b) $asans- of blending through the process of evolution. After this,
lated vertically upward, and the blended shape in (c) Hagction 5 describes how blending and evolution are used
both a translation and a rotation applied. together for shape estimation.

4 Shape evolution

Blending can be used to cut two surfaces apart, and glue
selected parts together. Performing these operations on a
shape model can be very abrupt—both geometrically and
topologically. Shape evolution is concerned with how a
shape model changes over time (over the course of fitting).

Large discrepancies in the translation or rotation shodltiese changes to a shape model include geometric changes
be avoided, since they are likely to produce bad joins (suslich as a deformation) and representational changes (such
as an interpenetration). However, in most cases, the loagsblending the current shape with a second shape). Our
generated b, (K1) ands;(k2) have roughly the same ori-goal is to have the changes that occur over time to be geo-
entation, and are not spatially separated by a large amoumgtrically continuous, to achieve greater stability in fitting.
Moreover, it is not difficult to maintain a good join duringsiven that topology is a discrete concept, however, it is not
estimation by putting loose constraints on the rigid motiguossible to produce continuous changes in topology. The
parameters (which are initially the identity, and produce next sections describe how parts and holes can be added to
discrepancy). the model using evolution.

(b)

Figure 9: Various spatial alignments ®f



4.1 Part evolution an annular region, as in Figure 8(a). Afterwards, however,
the value ot will be restricted to O.

As an example, consider the earlier blending example - seemingly complex process can be automated in a

Figures 2 and 3. Supp.ose the shape modgl |s'|n|t|ally ts'l?aightforward manner. Section 5.4 describes how the de-
sphere (at the top of Figure 2), and the cylindrical part Is . . . . .
. . cision to split the model is made. Once the model is split,
being added. Instead of abruptly cutting out part of the, . = . . .
. : h{which is one of the shape parameters being estimated)
sphere and gluing-in part of the cylinder, the structure g o
. . iS set to 1. Over the course of fittingdecreases to 0 (pro-
the shape isvolvedand produces a transformation such Jitled the splitting decision was reasonable), and is then
that in Figure 10. The blending described in Section 3 can PIting '

. eld constant. No part of this gradual blending sequence
be used to produce such a transformation. There are P g g seq

0 : : . :
: . caused a discontinuous jump in the geometry of the shape,
operations that can be applied to produce the model tranﬁ-. g jump geometry P
R which satisfies our goal of smooth evolution.
formation in Figure 10 that are useful for smooth model
evolution—splitting and gradual blending Splitting is a

method for adding parts and detail to a model, while gra-2 Hole evolution

ual blending is used to add a hole or to combine differgfhe evolution involves a topological change to the model,
primitives. such as the addition of a hole in Figure 11, additional
topological surgery must be performed to ensure a smooth
transformation. When adding a hole, the key idea is to
ensure the shape deforms throughimtermediate shape
which permits a topological change that does not require a
geometric change as well. The idea of using intermediate
shapes for smooth evolution of shape has also been used
for surface metamorphosis [43].

Figure 10: Part evolution example

Given an initial model with shapg; splitting a model
involves creating another shape= s;, and replacing the
model with a blended shagformed froms; ands,. The

blending regions ok replace the removed portion of (a) (b) (c)
with its corresponding region &. Hence, the new model _ _
is identical in shape to the initial model, and no geometric Figure 11: Hole evolution example

discontinuity has occurred during this model transforma- o ) ) )
tion. If s; is a sphere, the result of a spliting operation "€ Shape in Figure 11(b) is an intermediate shape be-

could be the shape in Figure 10(a). At this point, the &N a sphere and torus, sometimes called a “pinched
mainder of the transformation in Figure 10(b) and (c) ¥Phere” [44]. From a geometric standpoint, one cannot
produced by deforming, into a cylinder. determine if the shape is a torus with a closed hole or a

When the component shapes are not equal, the sh&fff@rmed sphere with two points pushed inward until they
are gradually blendedtogether. Given an initial modelMet. Figure 12 shows how a pinched sphere is constructed

with shapes; (a sphere), and another shame(a cylin- by blending a _sphere with tyvo disks removed, with Fhe
der): gradually blending-is, involves the specification ofSNaP€ on the right. Topologically, the shape on the right
a correspondence between the retained portios,aind Ccould be two disks or a tube.

the discarded portion &. This is specified using a corre-
spondence maf and a disk-shaped blending region such
as in Figure 7. Changing the value of the blending param-
eterh from (4) will alter the contribution thad, has in the
blended resuls. Initially, in Figure 10(a),h = 1 so that

0o =1 ands= s;; S has no contribution to the blended re-
sult. The contribution o§; in the resulting blended shape
increases ahb decreases from 1 to O; Figure 10(b) shows Figure 12: Pinched sphere construction

the result forh = % Whenh = 0, the resulting blended

shape has; fully contributed, as in Figure 10(c). Itis now Adding a hole requires cutting out two piecesspf as
possible to replace the disk-shaped blending region witthFigure 4. Gluing-in two disks produces a sphere, while
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gluing-in a hole, as in Figure 4, produces a torus. Rolution, in order to allow the hole to gradually become
choosings, carefully, a geometrically smooth transitioxpressed. Ondereaches 0 (as before), the hole-size pa-
from disks to a hole can be produced. rameters are allowed to vary, which permits the hole to
open.

Koenderink [44] provides numerous examples of “mor-
phological scripts” which qualitatively classify shapes
based on their formation by evolution. A blending hier-
archy (described in Section 3.6) that is formed by evolu-
tion provides the same type of information. The process
of reconstruction is the subject of the next section, and de-
scribes how evolution is realized in this framework.

Figure 13: Domains for a “closed” hole

The topological surgery required for this transformation
is accomplished by having two domains used to represgnt Shape reconstruction
Q,—one for producing a hole, and one for producing disks.
The connection between the two is the intermediate shaplee previous section describes how shape evolution is used
which is when the same geometry is produced by eitheiconcert with a blended shape representation to smoothly
domain. Figure 13 shows a domdly used to produce alter the geometry of a shape over time. The driving force
a hole, and a domaif?,, used to produce two disks. Thdor this evolution is a shape reconstruction process.
shape in Figure 13 is the retained portionssfused to  The shape reconstruction is realized using the physics-
produce the intermediate shape in Figure 4. Details on tiased framework of Metaxas and Terzopoulos [1]. This
construction of, andQ), are given in Appendix B.2. Theframework is augmented with a decision process that au-
domainQy, is produced by cuttin§, along the dotted line tomatically determines if a shape model should be split, as
(into two pieces), and collapsing each dotted path into twell as if a hole could be added.
center point of a disk. When mapped$yboth the dotted  Starting from a sphere, the model representation and ge-
path in Q, and the disk center points i, map to the ometry evolves until a shape that sufficiently represents the
pinch-point of the retained portion &f (shown as a smalldata is reached. The lack of any geometric discontinuity
dot on the shape). The hole-adding transformation at®eer the course of fitting makes the fitting process more
requires that the shape is parameterized in a way thatobust, since any decision that is made to alter the model
allows the hole to open, as in Figure 14. representation does not need to consider the effects of a

geometric change on the model.

5.1 Deformable model dynamics

Deformable models are parameterized shapes that deform
based on a physical model due to forces. For vision appli-
cations, deformable models can be used in a physics-based
estimation framework [1]. Forces are determined from vi-

Using this, a smooth transformation from her . . :
9 aspnere tosﬁ‘al cues such as edges in an image or from geometric

torus can be produced in three steps. First, two parts g fdrmation such as range data points. Physics provides

sphere'are removed, such as on the'left of Figure 12. T, Wiitional mathematical tools and is a useful analogy for
shape is gradually blended with a pinched sphere, shg lications such as shape estimation

on the right side of Figure 12, using the two-disk domai The following gives a brief overview of the dynamic

Q;. Second, once the pinched sphere is fully expressggﬁmaﬁon framework from [1]. A shape modeln this
the tube domain of); is used in place of2,, (this causes ﬁramework is given by:

a topological change, but no geometric change). Fina
the torus hole is opened using a deformation such as that x(u) = c+ Rs(u) (5)
in Figure 14.

As with part evolution, this process is also easily awherec andR are the global translation and rotation of the
tomated. Determining the location on the shape, and thedel, ands(u) is a blended shape wheuds taken from
time during fitting to apply hole evolution is the subject dhe domainQ. For the applications here, superguadric
Section 5.4. Once the location of the hole blends are geimitives [45] are used as the component shapes of the
termined, the parametéris used the same way as for patilended shape due to their good shape coverage properties

Figure 14: Hole-opening deformation
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(although other parameterized primitives could have beéei2 Blended deformable models

used). - . .
. . Blended shapes are easily incorporated into this frame-
The deformable shape model is parameterized by a vec- . . o .
T T T : work. The incorporation of evolution involves adding a
tor of valuesq = (q¢ ,dg,0s ) ', Whereqc = cis the trans-

lation, andqg is the quaternion that specifies the ro'[atiogleCiSion process, and is described in Section 5.4,
' do q P The parameters for the blended shapee given by:

matrix R. gs contains the parameters for the blended shape
s, and is described in Section 5.2. Os = (0g,,Usy, O ) 9)

Estimation of the parameters of the model is based \ﬁﬂereqsl and gs, are the parameters of the component
first o_r_der Lagr_angian dynamics. As _the shape chang&%ﬂp(;}$1 andsy, andgp are the parameters necessary to
velocities of points on the model are given by: specify how these component shapes are blended together

. . (details are given in Appendix A.3).
X(u)=L(u)q ( The computation of the model Jacobiarfrom (3) re-

i i _quires the Jacobian for a blended shape (a block matrix):
whereL = 0x/0q is the model Jacobian [1]. The matrix
(1-a)La) | Lofw)| 0

L converts the parameter velocities into three-dimensiongl ;) — [a(u)le(u)
model velocities.

As is often the case in a deformable model frameworkwhere L, and L, are the Jacobians of the component
avision application, a simplified version of the Lagrangiashapes; ands,, andL, is the Jacobian of the parameters

dynamic equations of motion of the model [1] are used. URed to specify the blending operation:
this case, the resulting equations of motion are: da(u)

Lp(u) = a—qb(si(U) —sp(u)) (11)

q=f (7
‘ The computation oda(u)/dq, depends on the implemen-

wherefq are the parameter forces, which are determinion of the blending functiors, and is given in Ap-
from the three-dimensional forcdsthat are determinedPendix A.4.
from the data:

5.3 Initialization

fq = /Q L (u)"f(u)du (8) The model is initialized to the best-fit ellipsoid of the data.
This places the model with. at the centroid of the data,

In this case, the matrik converts the three-dimensionajnd with bothgg and the axis-length parameters deter-
data forced into forces which directly affect the paramemined using a linear regression technique such as the ma-
ters of the model. For estimation applications using rangix of central moments [8].
data, the data forces are determined by applying a forcerhe initial blended model is topologically a sphere.
from each data point to the current closest point on t#ven the restriction of having a singularity-free surface
model [1]. parameterization from Section 3.2, a sphere can be pro-

The estimation process involves numerically integratin@iced by gluing together two disks. This is accomplished
the dynamic equations of motion (7) over time. Upon eagbing blending, where the component shapes are the “top”
iteration, the data forces deform the model. After maayd “bottom” halves of an ellipsoid. The model in Fig-
iterations, the model comes to rest (the forces either vane 10(a) illustrates a model formed using this construction
ish or equilibrate) in a state that closely approximates t{ah actual example is shown in Figure 30(b)).
data. This solution is the best fitting solution (locally in The model should still be treated as a single primitive,
the parameter space). The quality of the particular sohowever. The component shapes are unified abstractly,
tion is affected by the model initialization (described iwith qs, = gs,, and the blending parameteysused to con-
Section 5.3), and the scheduling order of parameters duset the two halves are treated as constants for the model,
ing the estimation [20, 5]. since this blend is only used to connect the two halves to-

The solution also can be affected on a more global levgéther. This construction produces a shape that is func-
such as in cases where the data is incomplete (when a diassilly the same as a single ellipsoid (i.e.—it has the same
of shapes fit the data equally well, but vary where the datet of parameters), but has a singularity-free surface pa-
is missing). Methods here include biasing the model tameterization. Details on the construction of the surface
have a more symmetric shape [46], as well as adding teqpasameterizations of each half of the ellipsoid are given in
that minimize the volume of the resulting model [20, 8]. Appendix B.
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5.4 Model splitting 1

Evolution involves discrete changes to the representation
of the model. The estimation framework of Metaxas and

Terzopoulos [1] does not change the model representa-
tion, but rather updates the parameters of the current model (a) (b)

until a steady state solution is reached—when all forces

equilibrate or vanish. In our new framework, locations  Figure 15: Model forces during equilibration
where to split the model (for part evolution) are determined

through an'aIyS|s of the force dIS'[I’.It')utIOI’l once the r_nodg l)lended model that can better represent the data. The fol-
reaches this steady state. In addition, the surface is c@

tantly tested f i imit that tential U\?ing is a description of how the splitting boundaries are
stantly tested for sefi-proximity, S that any potential S letermined, once the forces have reached a steady state.
intersection can become a site for hole evolution. Over t

S ©r'he boundaries are found using a process analogous to

course of estimation, the model shape deforms smoothly. L .

: : : region-growing in images. Instead of images, however, the

as it evolves and fits to the data; this process produces . . .

. . oundary growing process is performed in the shape do-
hierarchical blended shape.

main Q. The connectivity information (instead of pixel

Part evolution is used to split the model to obtain a b%ta'acency) is provided by the topology @fand the con-

ter fit, once t_he moc_lel reaches a steady state._ The IOC&H8 tivity of the polygon mesh used to represent the shape.
of the blending region on the current model is all that Is

needed to specify the model split. After this, the model -

splits into two identical shapes, one on each side of the

blending region boundary. The blending region descrip- ‘A‘

tion does not need to be exact, initially, since the blending & | — 9 —
region boundary will improve as a result of the estimation. '

What is needed here, is a method to initialize the blending
region location to an approximate location of a “part” of
the data that is not well represented by the shape model. (a) (b) (©)
Liao and Medioni [47] describe a method which in-
volves fitting a separate model to the “residual data points”

(those not being accurately fit by the current model) andThe shape domaif is split into regions based on the di-
isolated parts of the surface (where there are no data poi

. . . . rggion of the applied forces. At a particular domain point

nearby). This decision technique appears to require com- . . .
. € Q, the applied forcé(u) is dotted with the correspond-

plete and fairly dense range data. The separate mode S rface norma (u), as in:

then added to or subtracted from the model using cd¥ ' '

techniques. ' . ' . F(u) = f(u) - A(u) (12)

Our approach involves analysis of the forces in regions
of the shape_where the forces have equilibratgd (put Fp{plte growing is performed using the valuBgu) for all
vanished). Figure 15(a) shows a model (an ellipsoid) fif- Q, based on the following classification:

ting to a set of data points, showing the correspondencess F(u) > ¢ (positive; outward pulling forces)
between the data points and particular locations on the sur-o F(u) < —er (negative; inward pulling forces)

face. Figure 15(b) shows the net forces that result from the o |F(u)| < &r (near zero; equilibrated forces)
force assignments in (a). Notice how some of the forces ¢ No forces applied (or assigned) o
pull outward on the model and some pull inward (mark&thereer is a tolerance value related to the amount of noise
+ and— respectively). As in this particular example, thpresent in the data. An example domain which has been
outward and inward pulling forces tend to cluster togethe#gmented into regions based on the above categorization
in regions on the surface (marked as a grey or black surf&e&shown in Figure 16(a). The maximum extent of the re-
region in Figure 15(b)). gions is then computed (if some of the shape is unaffected
A good initial guess for a blending region is along one bfy forces) by expanding the boundaries of the positive,
the boundaries separating the outward and inward foraesgative and zero regions, as in Figure 16(b). Finally, the
By splitting the model along such a boundary using tlzero regions are excluded by expanding the positive and
part splitting described in Section 4.1, one blended conegative regions, as in Figure 16(c). The resulting regions
ponent is pulled outward and the other inward, resultingfiorm a partition ofQ and are each denotédl.

Figure 16: Force regions in the model domain
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Pushing the boundaries of the positive and negative ater the distance between the indentations drops below
gions allows the merging of nearby regions of the sardg, Often, these indentations are later removed from the
class, as well as the growing of the current regions into unedel since they are no longer being expressed in the final
affected regions of the shape, which tends to maximize fiteed shape (the blending region of the hole increases in
extent of a component part (a reasonable approach gisae to include the blending region of the indentation part).
the presence of incomplete data). This method of adding holes requires that there is sufficient

Given the example in Figure 16(c), it is reasonable data taken from the inside of the hole to “pull” the surface
split the model along the positive/negative boundary, ubrough. The experiments presented in the next section
ing it as the boundary for a blending region. The problemake use of the decision procedures described here, and
now has been reduced to deciding along which particufaovide examples of both part splitting and the addition of
boundary curve to split the shape, since there can be hnies to the model.
number of regions, and regions can consist of any humber
of boundary curves. . . .

Each region is labeled with the amount of total inwar% EXpe”mentS and discussion

or outward force that is applied to the region, as in: A number of experiments have been performed using our

fi= [ F(u)du (13) fully automatic technique for shape estimation from range
o data. For each experiment, the original set of range data
The quantityf; for regionQ' is positive for regions pulledis displayed (sometimes from multiple views to indicate
outward, and negative for regions pulled inward. If the afie extent to which the data is incomplete). For some ex-
plied forces are viewed as a continuous 3D vector fiepgriments, the range data is taken from the MSU PRIP
then f; is equal to the flux through the surface patch catatabase [48] or scanned using an available scanner. Other
responding tQ'. Each boundary curve separates two rexperiments use data generated by a CAD utility which
gionsQ' andQ!. The particular boundary curve used fosimulates the scanning process on a polygon mesh. Be-
splitting is the one that has the greatest difference—tides showing the model over the course of estimation, the
maximum value of f; — f;j|. final blending hierarchy is displayed in tree form. Each
The addition of a hole to the model requires graduaiaf in the tree corresponds to a particular part that is ex-
blending, and cannot be accomplished using the part sgliacted from the data; the names given to these parts were
ting mentioned above. The gradual blend of a hole igenerated manually, however. During estimation, newly
volves the inspection of the model after each fitting itekdded blending components are first displayed with a white
ation, in order to determine if anyon-adjacenitopolog- boundary (for clarity).
ically) locations of the model are within a distancedaf, ~ The first four examples are simple fitting experiments,
from each other. In other words, if the surface is aboutwdth the results tabulated in Figure 18. Included in this
self-intersect. When these locations are also being pultablle are the number of parameters in the final extracted
toward each other, as in Figure 17(a), the neighborhoddsdel (the dimension af), the number of iterations taken,
of the closest points are replaced with a hole blend, asaind error measures of the fit. On average, the iterations

Figure 17(b). took just under one second on a 200 MHz SGil Indigo 2,
resulting in fitting times on the order of at most a few min-
T T >< utes. The relative RMS error is computed relative to the
0 }dsep 4 size of the best fit ellipsoid (the initial fit) of the data
/\ /-\

points. The distance is measured between a particular data
€Y (b) (© pointp;, and its corresponding point on the surfate,, ).

This measurement is taken relative to the three vedqgrs

d> andds in each principal direction of the best fit ellip-

Proceeding with fitting at this point may result in th&!d @1 having the magnitude of the largest diametgy,

“pinched sphere” shown in Figure 17(c), and is caused'ﬂ‘? smallest). For a particular principal directigin
a change in the parameterlf this is the case, the topology
of the shape is changed using the method described in Seg- 1 N 2 .

tion 4.2, and the added hole can be opened. Holes WhicEMSj ~ Ndj]] \/i;(dj (Pimstp))” =123 (4
have depth exceedindsep are added in stages. First, one

or two part splitting operations are performed, allowing in- These experiments are followed by a series of exper-
dentations to be formed. Then, the hole blend is added ointents that demonstrate how the extracted models vary

Figure 17: Fitting for hole evolution
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given different range scanner viewpoints, and given smsdription length [30, 31] of the extracted shape.
changes in the scanned shape.

Data Param| Iter | RMS; (j =1,2,3)
box/cylinder 30 75 | 0.9%,1.3%,1.8%
mug 69 171 1.2%,1.4%,2.0%

mannequin 180 | 476 | 1.5%,2.2%,3.9%
two-holed box| 84 291 | 1.0%,1.4%,2.1%

Figure 18: Experiment data and statistics

The first experiment, shown in Figure 19, shows the fit-
ting of a block and cylinder—a simple part splitting exam-
ple. The range data, shown from two viewpoints in (a), is
from the MSU database. The initial ellipsoid fit is shown
in Figure 19(b) with the first model split shown in (c);
the greyed region on the model indicates the newly adde
component. After the split, the fit immediately starts im-
proving, and after a number of iterations, the model in (d)%
is extracted. The fitting reaches equilibrium at the final
model shown in Figure 19(e); the blending hierarchy cor-
responding to this final model is displayed in (f).

Figure 20: Fitting of a mug

Figure 21 shows the fitting of a fairly complex object; a
wooden mannequin. The range data was scanned using an
available scanner over a 90 degree wide field-of-view, so
that the data is only present on the front of the mannequin.
The estimation of the model is shown in (b) through (i);
each step shows the newly added blending region, and the
fitting of the previous split. The initial ellipsoid fit is shown
in Figure 21(b), followed by the results obtained after the

0 first part split in (c) that captures the left arm. Also dis-
played in (c) is the start of a blend that fits the right arm in

Figure 19: Fitting of a block and cylinder (d). This continues showing the fitting of the left leg in (e),

the lower and upper parts of the right arm in (f), the right

Figure 20 shows the fitting of range data of a mug, tak&g and head in (g), the chest in (h), and the lower-torso in
from the MSU database. Two views of the data are sho@h The final fit (front and side views) is displayed in (j),
in (a), and the initial ellipsoid fit is shown in (b). The panvith the parts clearly shown in (k). The blending hierar-
split in Figure 20(c) leads to a better fit of the mug handiy in Figure 21(l) shows how each of the added parts are
in (d) and (e). The close proximity of either side of thelended onto the body (the original ellipsoid); the structure
handle in (e) leads to the hole blend added in (f). Aftef the tree also contains information which specifies the or-
a number of iterations, the hole opens, and results in tf in which the blends took place. It is worth noting that
final extracted mug shape in Figure 20(g), with the blendhile the fitted shape matches the data very well, the actual
ing hierarchy shown in (h). The final shape correctly eghape is somewhat different from the actual shape of the
tends beyond the right of the data (from this viewpoint) ilannequin; especially in the legs. The blending compo-
order to match the curvature of the mug. Its extension tents for the legs are not add-on extremities like the arms,
low the bottom of the data, however, is an artifact of tHiit are raised areas on the torso and body components.
shape estimation process. Without any means of controlGenerated data for a two-holed box (from a single view)
ling the volume of the extracted shape, it can grow beyoisdshown in Figure 22(a), with the initial ellipsoid fit shown
the bounds of the data. To remedy this, heuristics canibgb). The model is split in (c), which allows an indenta-
applied which minimize either the volume [20, 8] or deion to be formed in (d); once this indentation becomes
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Figure 21: Fitting of a mannequin

deep enough, a hole blend is added in (e), as well as an
indentation for the other hole. After more fitting, the hole
opens in Figure 22(f), and the other hole indentation deep-
ens. After another hole blend and more fitting, the final
model in (g) with the blending hierarchy in (h) is extracted.
In the final result, the indentations are no longer expressed
in the resulting shape, and were automatically removed.

These four experiments have shown how our framework
automatically extracts structured representations of range
data using blending. This data can be taken from objects
consisting of a number of parts, or taken from objects that
have complex topologies.

Figure 23 shows a series of experiments using three sets ¢
of data, which were generated using the same object as in s
Figure 22, but have the scanner in a different position each ™S
time. The experiment in Figure 23(a) is the same as in Fig-
ure 22. The second experiment in (b) finds a similar shape
except the holes were added to the model in the other orde
(which produces a different blending hierarchy). In Fig-
ure 23(c), the scanner viewpoint did not permit very much
data from the hole interiors to be gathered, resulting in ¢
model with a single indentation (and no holes).

From the above set of experiments, it is clear that vary-
ing the sensor viewpoint can produce a different extracted
structure. Figures 23(a) and (b) produce nearly identical
shapes, but the order of the extraction had the holes re
versed, with the smaller hole extracted first in (b). This
results in the blending hierarchies in (a) and (b) with the
big and small holes switched; a simple permutation of the

Figure 22: Fitting of a two holed object
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resulting hierarchies. Changing the view can also chartgdons will be extracted given the techniques here. Given
the structure, as in the extracted shape in Figure 23(c). Be& same part breakdown, however, a similar extracted
cause the data did not include information from the haéructure is guaranteed—the main difference will be permu-
interiors, only a single indentation formed, instead of amgtions in the graph structure of the blending hierarchy.
holes. In practice, small changes in viewpoint will often
lead to the same qualitative structure being extracted. Of
course, there will be some small changes which have large
effects. Further investigation of this point is seen in the
next set of experiments.

Box Indentation pve W
(b) (© (©)
Figure 23: Various 3D range scanner views of two holed heyl

object aaaaaaaaaaaaaaaaaaa@®
aaaaaaaaaaaaaaaaaaaa
adaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
Figure 24 shows results from a series of 400 fitting ex- aaaaaaaaaaaaaaaaaaaa
periments using generated data of an object consisting of Aaaaaannnnaaaaananaaaa
. . . . P aacaaaaaaaababaaaaaa
a box with a hole, and a variable sized cylinder. Fitting caaaababbaaaadaaaaaaa
. . . a-ca-c/aabbbbabaabbaaaa
results from three of these experiments are shown in Fig- ccoaaababababbbbaaaa
ure 24(a-c), each showing the generated data set, the final B b 'Obbbbbbatataa
fit, and the blending hierarchy. Out of all 400 experiments, Sec®chbbbbbbbbbbbaah
only three distinct blending hierarchies resulted. Given the Sect i hbbbbhbbbaaba
ccccbcecbecbbbbbbbbbbaa

fact that the same parts were extracted across all exper- oyl

iments, and that the “hole” must appear after the “box”,
these are the only three possibilities, and are exemplified (d)
by the blending hierarchies in Figure 24(a-c). The graglibure 24:
in Figure 24(d) indicates the particular blending hierarchy-
extracted in each experiment, given variation in the height

(heyr) and radius () of the cylinder. The lettera, b and

c in (d) indicate the particular hierarchy from Figure 24(a-

c), with the circled entries being those particular expeil- Conclusions and future work

ments shown in (a-c).

The results from this large set of experiments sugge¥is have developed and presented a framework based on
that our estimation technique is locally stable: a smahape blending which is used for the shape estimation of
change in the data is not likely to produce a significantigcomplete range data for objects of arbitrary topology.
different extracted shape. This is evident based on ffee use of this framework has been demonstrated on a va-
presence of moderately fuzzy boundaries between the sgktly of examples, which show how a structured represen-
colored regions in Figure 24(d). The segmentation of ttegion is extracted in a reasonably stable way. This concise
parts of the objects in Figure 24 is relatively simple. Giveand structured object description allows for use in recogni-
more complex objects, it is possible that different segmeion applications.

Various cylinder sizes in box/cylinder/hole ob-
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Blended shapes along with the process of shape e®] |. Biederman, “Recognition-by-components: a the-
lution facilitated the realization of a smoothly changing
model throughout the process of estimation. A more ro-
bust system is obtained by avoiding abrupt changes in t?%]
model geometry.

Of course, important work remains. The current deci-
sion technique used for the adaptation of the model struc-
ture and topology is not based on any notion of the “partg}]
of the model. It would be worthwhile to incorporate work
from part segmentation, which may result in more stable
estimation output.

Finally, the topological adaptation of the model could be
made more flexible by providing another method for holé®]
evolution. Holes can be added or removed using a “fission”
process called torus strangulation [44], where the interme-
diate shape resembles a croissant. This would allow thg;
framework to back out of a hole decision that seemed rea-
sonable upon its application (in its current form, the frame-
work cannot remove a hole).

[11]
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A Blending implementation
This particular function produces a smod@f join be-
This appendix contains details for the implementation gfeen blending components given the definition of blend-
shape blending, such as the representation of blendingifig-in (3).
gions, the construction of the glumg mapplﬁgand eval- Using the coordinate Systerﬁ&l onw, andcm2 on wy,
uation of the blending function. the mapping, which specifies the topological information
for the gluing, is constructed as:
A.1 Blending region parameterization

The mappindg3 as shown in Figure 6 is constructed by im- B(Cwl(d’e)) = Cu(—0,8) 6 €[0,2m) (16)

posing coordinate systems on and wp, such asC, in
Figure 25(a) applied to the arbitrary sttip This mapping matches up the discarded boundary of one
The coordinate systef@,(d,8): [~1,1] x [0,2m) — w shape with the retained boundary of the other. The ori-
hasd measured perpendicular to the curieand® mea- entation of the boundary of the blending components is
sured parallel ta. With the surface cut along, and the specified by the direction th& increases, shown by the
retained portion shown as a dark gray area in Figure 25@yows in Figure 25(a). In order to produce orientable sur-
d = —1 on the boundary ofo where the surface is dis-faces,p should preserve the orientation, which should be
carded,d = 0 alongk, andd = 1 on the boundary ofo chosen by some consistent labeling rule (such as a right-
where the surface is retained. hand rule used to point outside the surface). Not doing this
can produce closed non-orientable surfaces—a property an
estimated shape is not likely to have! The next section de-

L scribes a method of how such a coordinate system can be
=0 placed on a shape.
d

A.2 Blending region representation

_ _ ) _ ~ A'scheme for representing the blending regions is required
Figure 25: (a) Strip coordinatés;, (b) Blending function o gefining the cutting and gluing operations described in
do Section 3 (the blending curvesand stripsw). It is also

needed for computing the blending functiarand corre-

A disk-shaped coordinate system used for gradu@londence map. This is accomplished by establishing a
blending, such as that in Figure 7, is specified in a singyordinate system on the blending regions which can be
lar way. The only difference being that the coordinate sygsed to identify specific points.
tem is imposed over a disk-shaped region (which requiressigyre 26 shows the curveinside of a domair®. K is

choosing a disk center point) instead of over an annulugepresented in a piecewise manner, consistindlogec-
Once the coordinate syste@, is in place, its coordi- tions, numbered using the index set
nates are used to evaluate the blending functiplr to

construct the correspondence nfaprhe implementation lx =Z/N¢Z =[0,...,N¢ — 1] 17)
details on how this coordinate system is constructed are
given in Appendix A.2. which produces a numbering of the pieces that wraps

Given a pointu € w with strip coordinategd, 8) so that around at both endgmod N) to accommodate the loop
u = Cy(d,8), d is needed to compute the blending funstructure ofk. The sections ok are:
tion value (for the applications here, the blending function
does not depend 08). A blending function “steepness” {Ki(i+1) i€} (18)
parametew € (0, 1] controls the extent of the 0 to 1 transi-

tion in do, as in Figure 25(b). The base blending functio-ﬁhese segments are specified in terms of some points and

scalar values:

is defined as:
{kirpeQlielk} {melolliel} (19
d< —w
a0(Cold,8)) = 1 d>w (15) From this information, additional points can be computed:
(d+w)?(2w—d) herwi ]

17



This definition ofnj;,1) produces control polygons that

are “parallel” to the one used to defirg;, ;). The use of

(22) suggests a natural way of imposing a coordinate sys-

tem on the strip surroundingi.1), seen in Figure 27(b).
The coordinate syste@y,, : [-1,1] x [0,1] — w41

is imposed using the control polygon given by (22) with

as the interpolation parameter:

Figure 26: Blending region points

The definition of an arbitrary section is shown in Fig- Coyiy (dyy) = (K +dni) (1—y)2
ure 27(a), which shows how the curve segmeqt y) is + (Kiiry) +dnizy) 2v(1—-y)  (24)
determined given pointk;, ki1, andk:. 1, as given in
(19) and (20?. Thege thtfeeKSgiﬂts form(lt+hle)z contgr]ol polygon + (Kiey +dng) 4
for a quadratic Bzier curve [49]. The curve has endpoints Determining the(d,y) coordinates within a blending re-
ki andk1), where the curve is also tangent to the segion segment from a given domain points w requires
ments of its control polygon, and is given by (in terms &blving ford andyin (24). This involves finding the clos-

Bernstein polynomials): est point ork;j,.1) to u to computey, after whichd can be
Kigen) (V) = k(1—Y)? found using:
+kan2v(1-y) ye[0l (21 4= lu=Kiarn W]l (25)
+Kiy1)Y r

The stripay; 1 that surrounds the curveiy 1) is also whgr_e thg magnitudg is_ a dire'cted'(signed)' 'distance—the
shown in Figure 27(a), and is determined using normalgP@sitive side ofkji1) is in the direction specified by the
the curvexj(i;q). ni andn(i,1) are the normals to the curvéormals. _ _
segment at its endpoints, each with magnitudend point ~ The coordinate systen,(d,6) is constructed from
in the direction of the retained portion of the surfacés those for each blending region section. Thealue re-

a parameter which specifies the width of the blending stfijins unchanged, while tigevalue can be computed once
w, as seen in Figure 27(a). For the applications here, tifevalue is defined at each of thewith:
blending region has a width ofalong its entire length. (6 €[0,2m) |i € I} (26)

so that the coordinates can be computed as:

_ 0 — 6
Cw(d,B) = CC%H) (d’ m)

forg <6< 6(i+1)

(27)

Figure 27: Blending region detail and segment coordinaf¥i the appropriate segment has been identified to deter-

mine i. Because of the convex hull property okBér
The stripwyi, 1) is defined as the area covered by tturves [49], the particular segment that contains the pa-
Bézier curves defined by the family of control polygons:rameterization for a domain pointe w can be found by
K & dn: checking ifu is inside any of the control polygons in (22).
! This amounts to checking if is in the convex hull of the
Ki(i+1) +dnji1) o whered € [-1,1]  (22) extremal control polygons whete= +1.

Kis1) +dNngigy
Figure 27(a) shows the control polygons where 0 and A-2-1 Blending region crossings

d =1 as dotted paths. The vectuy;, y is defined as:  The plending hierarchy described in Section 3.6 leaves

the possibility thatQ might be formed by gluing compo-
n; if N =Nty nent domains together using (2). The coordinate system
Nigi+1) =3 T (Bi+ Biva)) therwi (23) de.scrib'ed above requ?res finding |'oat.hs betwee.n different

m otherwise points in Q. A potential difficulty is illustrated in Fig-
(i+1) ure 28(a), where the path of the blending region crosses the

wherep; = kii+1) —k andpiir1) = Kig+1) —Kita) boundary formed by some other blending regiaer.
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Koy Kigen ever. The shape of the blending region is specified by com-
lﬁ -------- lfsikq”ﬂ putingk;;.1) andy in terms of other values.

. ) kiy 7 ) ke For example, an ellipse-shaped blending region can
7k O K ,:"éomha be defined as in Figure 29(a) in terms of a center point
Koaper Kother (eu, &) € Q, axis lengths; ande,, and a rotatioreg.

(@) (b) Using the6; values from (26), the control poinks and
ki(i+1) are computed from the ellipse parameters, as in Fig-
Figure 28: Region crossing example ure 29(b). Hence, an ellipse-shaped blending region would

have the following parameters:
For the case in Figure 28(a), finding the line that con- b = (eu,8y,€1,6,69,W,h) " (29)

nectsk;,.1) andki, 1) first requires finding the intersection

point of this line withkmer. While this could be performedwhich contains 7 scalar parameters. Quadrilateral-shaped
with a simple iterative scheme, it is still a moderately eklending regions were used in [22].

pensive operation. Any computation involving the coor-

dinate system in (24) (which are very frequent) would be Kisy
very inefficient. K
Instead, by subdividingj;., 1) so that each part lies com- D )

pletely inside of one of the component domains, the coor-
dinate system computations are now efficient. The overlap () (b)
between the two component domains allows a margin of
tolerance of the location of the subdivision point, and also Figure 29: Ellipse-shaped blending regions
simplifies the construction of the subdivided blending re-
gion strip.

This subdivision process is shown in Figure 28(b), a4 Blended shape Jacobian computation

involves performing one iteration of the de Casteljau algo- . _ _ _ _
rithm [49] to split the control p0|ygor{kiaki(i+1)ak(i+1)} Section 5.1 contains equations which require the computa-

into {kks,ks} and {ks, ks(i+1)ak(i+1)} (which does not tion of Jacobians of blended shapes, such as (10) which re-

change the shape of the cumg, 1)). A suitable subdivi- quires computing Jacobiahs, andL s, scaled by a blend-

sion is found by performing a binary search on the interpl§9 function term. It also requires the computatiorl.gf
lating parametey € [0, 1] using the de Casteljau algorithn{? (11), which uses the terd(u)/9qp. This can be com-
to computelis, ks 1) andks (by linear interpolation). The puted using the chain rule from (4), (15), and (25) as:
search terminates whéqis insideuyther. da da ddg ad

While some of interpolations performed during the com- ﬁ = d0o od. a—qb (30)
putation ofks are expensive (they involve computing a line
that bridges two domains), they are infrequent. The subthe blending region shape has been parameterized, as
division is precomputed for any domain operations, aitiFigure 29, thedd/dqp will involve an additional chain
is re-evaluated only when the segment changes shapeutsrwhich takes the dependency of #g, 1) andy; on the
whenkother MoOves a substantial amount (so tkatmoves region shape parameters.
outside the overlap regiyner).

B Shape primitives
A.3 Blending parameters
This appendix contains a description of the shape primi-
The parameters of a blended shape given in (9) include ggks chosen for use here. It contains details of how the
ditional parameters required to specify the blended shapg@ipsoid surface parameterization was formed, as well as
the construction of a hole suitable for shape evolution.
qb:(ki(i+l)7M7W’h)T|i S (28)
which contains Bl 4+ 2 scalar parameters. This numbeI%'1 Ellipsoid parameterization
can be reduced, however, by further parameterizationTdfe ellipsoid (and superquadric ellipsoid [45]) primitives
the shape of the blending regions. The definition of tised as the component shapes here use the standard param-
blending regions given in Appendix A.2 is still used, howeterization, as in:
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parameterized toroid primitive:

a; cosucosv
Sellipse(U, V) = | apcosusinv

azsinu 31)
domainu € [—11/2,11/2],v € [0, 2m)

parametersa;,az,az > 0

ay (a4 + cosu) cosv
Sorus(U,V) = | a2(as+ cosu) sinv
agsinu (32)

domainu € [0,2m),V € [0, 2m)
parametersa;,ag,az > 0; ag,a5 > 1

The tessellation of these primitives is somewhat dfgiven the parameterization in Figure 31, the section of the
ferent from what is normally used (which is a latitudd®rus in (32) that contains the hole (the blending compo-
longitude style tessellation). Figure 30(a) shows the t8&Nt Ofsz in Figure 4) is given by:

sellation, which is based on a subdivided octahedron. This
is to accommodate the singularity free parameterization re-

Storus((1+ %) ‘T e) re [_15 1]a e € [OaZT[) (33)

striction. The construction of such an ellipsoid (using Whis primitive also produces the hole-opening deforma-
halves) as shown in Figure 30(b) was described in S§gt, seen in Figure 14 by increasirg andas. A simi-

tion 5.3.

lar parameterization can be performed with a superquadric

- toroid primitive [45] to allow cylindrical and square holes.

V=312

(@) (b)

Figure 30: Split superellipsoid and half of its domain

B.2 Pinched sphere mapping

Section 4.2 discussed the smooth evolution of a hole using
gradual blending. The gradual blending of a hole requires
the construction of two domains of a pinched sphere, as
described in Section 4.2. Figure 31(a) shows the domain
used to produce a hole, and (b) shows the domain that pro-
duces two disks. At the lowest level, switching between
domains amounts to reconnecting mesh nodes [20]. In this
case, the nodes alomg= 0 in the tube in Figure 31(a) are
merged together, and then duplicated (and cut apart). This
produces the two disks seen in Figure 31(b).

(@) (b)

Figure 31: Pinched sphere domains

The desired shape geometry can be produced by using a
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