
386 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 5, MAY 1999

Hierarchical Discriminant Analysis
for Image Retrieval

Daniel L. Swets, Member, IEEE, and Juyang Weng, Member, IEEE

Abstract—A self-organizing framework for object recognition is described. We describe a hierarchical database structure for image
retrieval. The Self-Organizing Hierarchical Optimal Subspace Learning and Inference Framework (SHOSLIF) system uses the
theories of optimal linear projection for automatic optimal feature derivation and a hierarchical structure to achieve a logarithmic
retrieval complexity. A Space-Tessellation Tree is automatically generated using the Most Expressive Features (MEFs) and the Most
Discriminating Features (MDFs) at each level of the tree. The major characteristics of the proposed hierarchical discriminant
analysis include: 1) avoiding the limitation of global linear features (hyperplanes as separators) by deriving a recursively better-fitted
set of features for each of the recursively subdivided sets of training samples; 2) generating a smaller tree whose cell boundaries
separate the samples along the class boundaries better than the principal component analysis, thereby giving a better
generalization capability (i.e., better recognition rate in a disjoint test); 3) accelerating the retrieval using a tree structure for data
pruning, utilizing a different set of discriminant features at each level of the tree. We allow for perturbations in the size and position
of objects in the images through learning. We demonstrate the technique on a large image database of widely varying real-world
objects taken in natural settings, and show the applicability of the approach for variability in position, size, and 3D orientation. This
paper concentrates on the hierarchical partitioning of the feature spaces.

Index Terms—Principal component analysis, discriminant analysis, hierarchical image database, image retrieval, tessellation,
partitioning, object recognition, face recognition, complexity with large image databases.

——————————���F���——————————

1 INTRODUCTION

CENTRAL task in computer vision module is the recog-
nition of objects from various images of the environ-

ment where the machine is found [1].
Model-based object recognition is the domain where a

model exists for every object in the recognition system’s
universe of discourse. The research emphasis in this para-
digm has historically been on the design of efficient
matching algorithms from a manually designed feature set
with hand-crafted shape rules [2], [3], [4], [5].

Manually designing a feature set is appealing because
such a feature set is very efficient. When designed properly,
a very small number of parameters for each of the objects is
sufficient to capture the distinguishing characteristics
among the objects to be recognized. This premeditated effi-
ciency is bitter sweet, however, in that generalization of the
features to objects other than those for which they were
designed is usually impossible. For example, parameters
painstakingly tuned to efficiently discriminate between
persons based on intereye distance will be useless in differ-
entiating a car from a fire hydrant.

An alternative to hand-crafting features is the self-
organizing approach, in which the machine will automati-
cally derive what features to use and how to organize the
knowledge structure such as the work of the Cresceptron

[6] and eigenfaces [7] for view-based recognition. In this
framework, the recognition phase of the system is preceded
by a learning phase. The learning phase focuses on the
methods by which the system can automatically organize
itself for the task of object recognition, giving it a wide
range of generality [8], [9]. Self-organizing object recogni-
tion systems are open-ended, allowing them to learn and
improve continuously [10]. A large amount of work has
been published in the domain of adaptation and learning
using networks (e.g., [11], [12]).

Allowing the system to organize itself, however, raises
some important efficiency issues. The first one is the feature
selection issue. If the sample distribution is known, adding
more features always produces better results (or at least not
worse results) if the Bayesian estimation is used. However,
typically these distributions are not known or too compu-
tationally expensive to estimate adequately. The result is the
“curse of dimensionality”—more features do not necessar-
ily imply a better classification success rate. For example,
the principal component analysis (LPA), also known as the
Karhunen-Loève projection and “eigenfeatures,” has been
used for face recognition [13], [7] and lip reading [14]
among others. An eigenfeature, however, may represent
aspects of the imaging process which are unrelated to rec-
ognition (for example, the illumination direction). An in-
crease or decrease in the number of eigenfeatures that are
used does not necessarily lead to an improved success rate.

The second issue is how the system should organize it-
self. Given a k-dimensional feature space with n objects, a
linear search is impractical since each recognition probe
requires O(n) computations.

0162-8828/99/$10.00 © 1999 IEEE

²²²²²²²²²²²²²²²²

�� D. Swets is with the Computer Science Department, Augustana College,
2001 S. Summit Ave., Sioux Falls, SD 57197. E-mail: swets@inst.augie.edu.

�� J. Weng is with the Computer Science Department, Michigan State Uni-
versity, East Lansing, MI 48824. E-mail: weng@cse.msu.edu.

Manuscript received 26 Feb. 1996; revised 9 Nov. 1998. Recommended for accep-
tance by R. Picard.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 107701.

A

SWETS AND WENG: HIERARCHICAL DISCRIMINANT ANALYSIS FOR IMAGE RETRIEVAL 387

So how does a self-organizing system automatically find
the most useful features in the images? How can this be
done without restricting the domain to which the system
will be applicable? How can the system learn and recognize
a huge number of objects (say a few million) without
slowing the process down to a crawl? The work described
here addresses these crucial issues. We discuss how to
automatically find the most discriminating features for ob-
ject recognition and how a hierarchy can be utilized to
achieve a very low computational complexity in the re-
trieval phase. Our goals in this regard include the hierarchi-
cal decomposition of a large, complex problem into smaller,
simpler problems. From a feature space tessellation stand-
point, this involves the decomposition of a highly complex
problem with nonlinear boundaries into simpler, smaller,
lineally separable problems. At the same time, this hierar-
chical organization provides for an efficient retrieval
mechanism, and produces approximately an O(log n) algo-
rithm for image retrieval. To find a class to which a test
probe belongs is typically a linear algorithm in the number
of database items. The SHOSLIF-O uses the hierarchy that
decomposes the problem into manageable pieces to provide
approximately an O(log n) time complexity for an image
retrieval from a database of n objects.

The SHOSLIF tree shares many common characteristics
with the well known tree classifiers and the regression trees
in the mathematics community [15], the hierarchical clus-
tering techniques in the pattern recognition community
[16], [17] and the decision trees or induction trees in the
machine learning community [18]. The major differences
between the SHOSLIF tree and those traditional trees are
the automatic derivation of features and the direct compu-
tation of the most discriminating features at each internal
node. SHOSLIF automatically derives features directly from
training images,1 while all the traditional trees work on a
human pre-selected set of features. This point is very cru-
cial for the completeness of our representation. In addition,
the traditional trees either search for a partition of the cor-
responding samples to minimize a cost function at each
internal node (e.g., ID3 [18] and clustering trees [17]), or
simply select one of the remaining unused features as the
splitter (e.g., the k – d tree) [19]. The first option results in an
exponential complexity that is far too computationally ex-
pensive for learning from high-dimensional input like im-
ages. The second option implies selecting each pixel as a
feature, which simply does not work for image inputs (in
the statistics literature, it generates what is called a dishon-
est tree [15]). The SHOSLIF directly computes the most dis-
criminating features (MDF), using the Fisher’s multiclass,
multidimensional linear discriminant analysis [20], [21],
[22], for recursive space partitioning at each internal node.

The SHOSLIF uses a tree structure to organize search hi-
erarchically. The publications on decision trees is extremely
rich. The reader is referred to some survey articles [23], [24],
[25]. Decision trees have been traditionally used for making

1. We do not use the term feature selection here because it means to select
from several predetermined feature types, such as edges or area. Also, the
term feature extraction has been used for computation of selected feature
type from a given image. Feature derivation, on the other hand, means auto-
matic derivation of the actual features (e.g., eigenfeatures) to be used based
on learning samples.

decisions in a vector space of a relatively low dimensional-
ity, where each dimension corresponds to a human-defined
feature [26]. Univariate trees (where each decision node
uses only one feature component) have been used most
frequently. However, oblique trees (where each decision
node uses a linear combination of feature components)
have been proposed quite early [27], [28]. In the work pre-
sented here, we apply a new hierarchical statistical partition
scheme directly to samples in the image space, resulting in
an oblique tree structure. In so doing, we face new prob-
lems that are not present in classical pattern recognition
methods. These problems are caused by the high dimen-
sionality of the image space and the number of samples,
which is typically much smaller than the dimensionality. In
this paper. we will present how SHOSLIF automatically
finds desired hierarchical subspaces from such a high-
dimensional image space.

In this work, we require “well-framed” images as input
for training and query-by-example test probes, as in [13],
[29]. By well-framed images we mean that only a small
variation in the size, position, and orientation of the objects
in the images is allowed. The automatic selection of well-
framed images is an unsolved problem in general. Tech-
niques have been proposed to produce these types of im-
ages, using, for example, pixel-to-pixel search [7], hierarchi-
cal coarse-to-fine search [6], or genetic algorithm search
[30]. This reliance on well-framed images is a limitation of
the work; however, there are application domains where
this limitation is not overly intrusive. In image databases,
for example, the human operator will preprocess the image
data for objects to store in the database.

Furthermore, the method is view-based to deal with im-
ages directly rather than using other sensing modalities of
limited applicability (such as range scanners). And al-
though the system can handle multifarious variations with-
out system modification, these variations must be covered
in the training phase; many views are required as training
input for nontrivial problems. Although image retrieval
issues are fundamentally object recognition issues, most
object recognition systems contain a reject option. The sys-
tem described in this paper does not implement such an
option. For image retrieval, it is desirable to present a few
top matches for the human operator to select or reject. For
object recognition, the system could learn a threshold that
defines an acceptable level of response from the database;
such an automatic rejection option has not been investi-
gated in the work reported here.

2 THE SELF-ORGANIZING HIERARCHICAL OPTIMAL
SUBSPACE LEARNING AND INFERENCE
FRAMEWORK (SHOSLIF)

The SHOSLIF uses the theories of optimal linear projection to
generate a hierarchical tessellation of a space defined by the
training images. This space is generated using two projec-
tions: a Karhunen-Loève projection to produce a set of Most
Expressive Features (MEFs), and a subsequent discriminant
analysis projection to produce a set of Most Discriminating
Features (MDFs). The system builds a network that tessellates
these MEF/MDF spaces to provide approximately an O(log n)
complexity for recognizing objects from images.

388 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 5, MAY 1999

2.1 System Overview
The network that is constructed takes the properties of an
abstract tree structure. An example of such a tree is shown
in Fig. 1. It is this Space-Tessellation Tree that provides the
key to the efficient object recognition capability of the sys-
tem described in this work. As the processing moves down
from the root node of the tree, the Space-Tessellation Tree
recursively subdivides the training samples into smaller
problems until a manageable problem size is achieved.
When a test object is presented to a node, a distance meas-
ure from each of the node’s children is computed to deter-
mine the most likely child to which the test object belongs.
At each level of the tree, the node that best captures the
features of the test object is used as the root of the subtree
for further refinement, thereby greatly reducing the search
space for object model matches.

A top-level flow diagram for the processing done in
each of the Space-Tessellation Tree’s processing elements
during the learning phase is given in Fig. 2. In order to
minimize the limitation of our work to “well-framed” im-
ages, we want to allow for some variations in the position,
scale, and orientation of the objects in the training sam-
ples. This can be accomplished either through more image
acquisition, but that is expensive in terms of time, storage,
and cost. The images this system receives provides an at-
tention point and scale to be used to extract a fovea image
of the object of interest. Rather than extracting just a single
fovea image from this attention point and scale, a family
of fovea images are generated by varying the attention
point and scale from the supplied points. This will allow
the system to learn some measure of positional and scale
variation in the training set.

Fig. 1. (a) A sample partitioning of the feature space; (b) The tree structure associated with the tessellation shown. Each cell in the partition does
not need to cover a meaningful class. Each cell operates in a different feature space, and the leaf nodes give a final tessellation. This setup can
approximate virtually any complex decision region, and provides a logarithmic retrieval complexity.

Fig. 2. A top-level flow of the processing performed at each node in the Space-Tessellation Tree during the training phase. A set of training sam-
ples which enter the processing element are extended to allow for learning-based generalization for position, scale, and orientation. These ex-
tended samples are vectorized and used to produce the projection matrices to the MEF and MDF subspaces. The extended samples are pro-
jected to the MDF subspace using these matrices, and a tessellation of the space covered by the node being worked on is produced. The projec-
tion matrices and the space tessellation for each node are produced in the learning phase.

SWETS AND WENG: HIERARCHICAL DISCRIMINANT ANALYSIS FOR IMAGE RETRIEVAL 389

2.2 Background
The SHOSLIF utilizes two derived feature sets: the Most
Expressive Features (MEFs) and the Most Discriminating
Features (MDFs) [31].

2.2.1 The Most Expressive Features (MEF)
Each input subimage can be treated as a high dimensional
feature vector by concatenating the rows of the subimage
together, using each pixel as a single feature.

We can perform Principal Component Analysis on the
set of training images [7], [32], [17]. This Principal Compo-
nent Analysis utilizes the eigenvectors of the sample scatter
matrix associated with the largest eigenvalues. These vec-
tors are in the direction of the major variations in the sam-
ples, and as such can be used as a basis set with which to
describe the image samples. Because they capture the major
variations in the training data, they can express the samples
well and can approximate the samples, where the recon-
struction is very close to the original.

This LPA projection, also called the Karhunen-Loève
projection, has been used to represent (e.g., Kirby and Si-
rovich [33]) and recognize face images (e.g., Pentland et al.
[7], [13]), for planning the illumination of objects for future
recognition tasks (e.g., Murase and Nayar [29]), and in a lip
reading system (e.g., Bregler and Omohundro [14]), among
others. Since the features produced in this projection give
the minimum mean-square error for approximating an im-
age [22], [34], [35] and show good performance in image
reconstruction [33], we call them the Most Expressive Fea-
tures in contrast to the Most Discriminating Features de-
scribed below.

2.2.2 The Most Discriminating Features (MDF)
Although the MEF projection is well-suited to object repre-
sentation, the features produced are not necessarily good
for discriminating among classes defined by the set of sam-
ples. The MEFs describe some major variations in the set of
sample images, such as those due to lighting direction;
these variations may well be irrelevant to how the classes
are divided.

If a labeling scheme is available for the training images,
linear discriminant analysis (LDA) [17] can be performed,
as in [36]. In LDA, the between-class scatter is maximized
while minimizing the within-class scatter. In other words,
the samples for each class are projected to a space where
each class is clustered more tightly together, and the sepa-
ration between the class means is increased. The features
obtained using a LDA projection optimally discriminate
among the classes represented in the training set, in the
sense of linear transform [37], [21]. They are the eigenvec-
tors of W – 1B associated with the largest eigenvalues, where
W and B are the within-class scatter and the between-class
scatter matrices, respectively. Due to their optimality in dis-
crimination among all possible linear features, we call them
the Most Discriminating Features (MDF). For a performance
difference comparison between the MEF and the MDF
spaces, the reader is referred to [38].

The LDA procedure breaks down, however, when the
number of samples is smaller than the dimensionality of the
sample vectors. This problem can be resolved using the

Discriminant Karhunen-Loève projection [38], where the
LDA is performed in the MEF space (i.e., the Karhunen-
Loève space), where the degeneracy does not occur.

2.3 Space Tessellation
We want to exploit the strengths of the MDF feature set
while trying to overcome its limitations. At the same time,
we want to provide an effective and efficient method for
retrieval of images from the database. To effect this, the
SHOSLIF produces a hierarchical space tessellation using
the hyperplanes derived by the MDFs. The feature space of
all possible images is partitioned into cells of differing sizes
as shown in Fig. 1. A cell at level l is subdivided into
smaller cells at level l + 1. The network structure that can
effect this recursive tessellation is a Space-Tessellation Tree
whose nodes represent cells at the corresponding levels as
shown in Fig. 1. The tree is built automatically during the
learning phase; this tree is used in the recognition phase to
find the model in the learned database that best approxi-
mates an unknown image in approximately O(log n) time.

2.3.1 The Hierarchy Decomposes the Problem
The tree structure is able to decompose the problem of LDA
into smaller, tractable problems. At the root node of the
tree, where the entire database of samples are found, the
classes may not be separable using the LDA technique. But
because we do not attempt to completely separate the
classes at a single level, we can successfully solve the prob-
lem in stages by breaking it down into simpler pieces.

The DKL projection does its best in separating classes,
even for the case of many classes. When the database con-
tains many classes, however, they may not be linearly sepa-
rable. The Space-Tessellation Tree provides a mechanism for
dealing with this problem. Children of a particular node
decompose the difficult problem of separating many classes
into several smaller problems. At each node of the tree, the
set of features found in the LDA procedure are specifically
tuned to the set of samples found in the node. So although
the MDF space provides an optimal set of features for class
selection in the sense of linear transform, this optimal set
may be insufficient to separate classes. But even if a node
cannot completely separate the classes, it can make a first
attempt at separation, dividing the samples among its chil-
dren nodes. Then at this child level, since fewer samples
exist, the LDA procedure is more likely to succeed. Since
this is applied recursively, eventually a successful separa-
tion of classes is achieved as shown in Fig. 5.

Fig. 3 shows an example of the difference in the com-
plexity of the class separation problem for the root node
and an internal node of the tree. A child node contains
fewer samples than its parent does, and the MDF vectors
can, therefore, be optimized to the smaller set of samples in
the child node.

2.3.2 Hierarchical Quasi-Voronoi Tessellation
We tessellate the space covered by a node N using a Hierar-
chical Quasi-Voronoi Tessellation, with the resulting tessel-
lated space shown in Fig. 4b for two dimensions. The Voro-
noi Tessellation as shown in Fig. 4a indicates retrieval of the
nearest sample point at a single level. However, the near-
est neighbor is not necessarily the best sample to retrieve

390 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 5, MAY 1999

because the class variation is not taken into account. We
take this class shape into account when partitioning the
space. Fig. 5 shows samples of the hierarchical quasi-
Voronoi tessellation using binary trees.

2.3.3 Automatic Tree Construction
Each level of the tree has an expected radius r(l) of the
space it covers, where l is the level of the node and r(l) < 1 is
a decreasing positive function based on the level. d(X, A) is
the distance measure between node N with center vector A
and a sample vector X.

The expected radius (in the MDF space) is to limit the
size of the cell so that nonlinear boundary of a large region
can be broken into smaller segments. This will ultimately
generate segments which are small enough to be approxi-
mated well by linear boundaries. The expected radius can—
and is even likely—to break a class into different children,
and a part of the class can have very few samples in a node.

However, this just means that the child covers a smaller part
of the class (if the samples are drawn according to the actual
applications). The continued recursive partition should be
able to isolate the small space out for this class lower in the
hierarchy. In order words, locally at one level, the features are
linear and the cell boundary is linear. However, globally, the
composite effect of using linear features recursively is that
the effective decision boundary is nonlinear.

A node N in the tree contains a set of labeled training
images. Every node which contains more than a single
training image computes a projection matrix V that is used
to project the samples to the MEF space as described in
Section 2.2.1. If the training samples contained in N are
drawn from multiple classes, as indicated by the labels as-
sociated with each training sample, then the MEF sample
vectors are used to compute a projection matrix W to proj-
ect the samples to the MDF space as described in Section
2.2.2. Otherwise, the training samples in N are from a single

Fig. 3. An example showing the complexity of the class separation problem at two different levels of the tree. Sample data points that belong in the
space defined by both the root node and an internal tree node are shown. The same samples were used in both cases to demonstrate the fact that
the internal node has an easier time separating the different classes. Since the internal node contains many fewer total samples than the root node,
the MDF vectors can cluster the classes contained in the node well. This figure shows a more effective clustering in (b) than in (a) because the num-
ber of samples and classes in (b) is smaller than in (a).

Fig. 4. (a) The Voronoi Diagram (Dirichlet tessellation). Each cell consists of points that are closer to the sample than to any other sam-
ples. (b) Hierarchical Quasi-Voronoi Tessellation. The space is recursively partitioned. A subset of all the samples in a cell is used as the points to
define the Voronoi Tessellation boundaries within a particular cell; these are then recursively partitioned in like manner. The separation hyper-
planes are not computed; they are realized implicitly in finding the nearest cell-centers.

SWETS AND WENG: HIERARCHICAL DISCRIMINANT ANALYSIS FOR IMAGE RETRIEVAL 391

class, and we organize them into a subtree using MEFs for
efficient image retrieval.

The MEF subtree is used to find the nearest neighbor for
a test probe. Once that nearest neighbor is found, that sam-
ple is projected back to the nearest ancestor node that util-
izes an MDF space. This is done because the center of the
nearest MDF ancestor node may not be very near the test
probe in this MDF space. But it represents a class of objects
that contains a vector that is near the test probe. Therefore,
the MEF subtree is used to find that nearest neighbor in
order to compare the test probe with nearest neighbor sam-
ple using the most specific MDF subspace.

The tree is built one level at a time. The collection of
children nodes represent a tessellation of their parent; this
tessellation must be established before the samples are as-
signed to a child node.

Suppose that we want to add training sample Xi to node
N which is at level l. If the feature vector for Xi is within the
radius covered by one of the children of N, then Xi will be
added as a descendent of that child as we increase the
depth of the tree. If the feature vector for Xi is outside the
expected radius for all the children of N, however, we
would like to add Xi as a new child of N, to contribute to
the tessellation of the space subtended by N. The algorithm
is summarized in Algorithm 1.

Algorithm 1. The Hierarchical Quasi-Voronoi Tessellation
Algorithm.

Input: Node N at level l – 1, list of samples X to add.

Output: A tessellation of N based on the new samples.

1)�Compute the project matrices V and W to the MEF
and MDF subspaces for this node.

2)�For each sample Xi

�� Project Xi to the MEF space to get Yi.
�� Project Yi to the MDF space to get Zi.
�� If d(Zi, Cj) > r(l) for all Cj children of N, add Zi as

the center vector for a new child of N.

3)�For each feature vector Zi, add Zi to the child Cj with
the nearest center vector.

4)�For each child Cj of N, perform the space tessellation.

This algorithm is called the Hierarchical Quasi-Voronoi
Tessellation Algorithm because the space of each node is par-
titioned into a Quasi-Voronoi Tessellation in a hierarchical
manner. A characterization of a sample tree built using this
algorithm is shown in Table 1. The generated tree is too
large to display in detail, so a characterization of the tree
showing the number of nodes produced on each level is
given here.

2.3.4 Properties of the Hierarchical Quasi-Voronoi
Tessellation Algorithm

The Hierarchical Quasi-Voronoi Tessellation Algorithm has
several favorable properties. Theorem 1 uses the fact that
both the dimensionality of the sample vectors and the ex-
pected radius that is used to create a node N’s children are
constants to assert that the maximum number of children
that N can produce is bounded above by a constant k, irre-
spective of the training samples used.

Before explaining the bound on the number of levels, we
must introduce a concept.

DEFINITION 1. Given n samples, a Bounded Unbalanced Tree
with Unbalance Bound 0 < a < 1 (a constant) is a tree
such that for any node N containing n1 + n2 + L + nk

samples, where N has k children with ni samples assigned
to node i and n1 � n2 � L nk, n1 � a (n1 + n2 + L nk).

The MEF and MDF used in the tree-building tend to pro-
duce a balanced tree as much as possible. This is the case

Fig. 5. (a) Binary tree built without class information taken into account, as would be built using the MEF space. (b) Binary tree built optimized to
separate classes, as would be built using the MDF space. The MDF typically yields a smaller tree than the MEF space provides. The MDF is ef-
fective if the samples cover all the within-class variations. The samples of a class are denoted by a single type of character.

TABLE 1
CHARACTERIZATION OF A SAMPLE TREE BUILT USING THE

HIERARCHICAL QUASI-VORONOIS TESSELLATION ALGORITHM

The table lists the number of nodes found on each level of the tree. The tree is
too large to show in detail.

392 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 5, MAY 1999

because the MEF and MDF attempts to partition the samples
in terms of the statistics of the distribution. The above defini-
tion limits the degree of unbalancedness. If Algorithm 1 pro-
duces a Bounded-Unbalanced tree, then Lemma 1 proves
that there are O(log n) levels. Note that there is no proof that
the trees produced by Algorithm 1 must indeed be Bounded-
Unbalanced; however, in our studies we have obtained em-
perical evidence to suggest that they are.

2.4 Image Retrieval
When an unknown image X is presented to the recognition
tree, the general flow shown in Fig. 7 is followed. When a
node N of the tree is activated, X is projected to XY, a vector
in the MEF subspace of node N. XY is then projected to XZ,
a vector in the MDF subspace for node N. XZ is compared
with each of N’s children. The child with the best response
is selected as the path of the tree to be explored.

THEOREM 1. Given a fixed dimensionality d for the samples and a
decreasing positive expected radius function r(l) based on
the level of the tree, the number of children that a node N at
level l - 1 can have is bounded above by a constant k, re-
gardless of the training set.

PROOF. Let N be the center vector for a node and n, n’ be
children of node N. Let P(N) be the hypersphere cen-
tered at N with radius rl-1 + (rl/2). Let q(n) be the hy-
persphere centered at n with radius (rl/2). Then q(n)
> q(n’) = « if n � n’. Otherwise if these hyperspheres
overlap, then one of {n, n’} will be the child of the
other by Algorithm 1. See Fig. 6 for a 2D example of
these hyperspheres. P(N) is the extended space of N,
i.e., the space that N might have to cover. q(n) is the
hypersphere that do not overlap with q(n’�) for any
children n, n’ of N, since d(n, n’) � rl by Algorithm 1.
Note that P(N) contains all q(n), for all children n of N.

Since the volume of a d-dimensional hypersphere
of radius R is (2d-1/d) p Rd, the volume of P(N) is Vp =
(2d-1/d) p � (rl-1 + (rl/2))d. Likewise, the volume of
q(n) is Vq = (2d-1/d) p � (rl/2)d. Since q(n) and q(n’) do
not overlap, and P(N) contains all q(n), then the num-
ber of q(n)s, which is also the number of children of N,
is bounded above by constant

k = =
+

= +- -V
V

r r
r

r
r

p

q

l l

l

l

l

d[
(/)

(/)] []1 12
2 1

2
 . (1)

o

COROLLARY 1. If rl-1 = a rl, a > 1, then the number of children of
any node is not larger than (1 + 2a)d.

In practice, we would like to present a number of top
matches instead of only one. Moreover, a single-path search
will guarantee that an exact match (i.e., when the input is
the same as a sample in the database) can always be found,
but it cannot guarantee that a nearest match in the subspace

Fig. 7. The general flow of each SHOSLI Processing Element.

Fig. 6. Hyperspheres used in Theorem 1 proof.

SWETS AND WENG: HIERARCHICAL DISCRIMINANT ANALYSIS FOR IMAGE RETRIEVAL 393

will always be found. As shown in Fig. 8, the best match for
X may be found in the subtree rooted at G, but a single-path
search will explore only C2 and its subtree. If the nearest
neighbor lies in the subtree rooted at G, it will be missed in
a single-path search.

Therefore, we define a constant k of nodes to be explored
at every level of the tree. Using a constant k at every level
ensures that only a band of the Space-Tessellation tree is
explored, that band surrounding the nearest leaf node
match of a test probe.

The retrieval algorithm is given in more detail by Algo-
rithm 2. Theorem 2 uses the results from Theorem 1 (Fig. 6)
and Lemma 1 to show that this Image Retrieval algorithm
runs in O(log n) time when the tree is Bounded-Unbalanced.

2.5 SHOSLIF-O Options for Automatic Space
Tessellation

The SHOSLIF-O (SHOSLIF for object recognition and
image retrieval) has several options that need to be
specified in order to function. These include the distance
measure to be utilized for the similarity measure, the
number of competing paths explored for each level of the
tree, the expected radius, and the number features to
utilize at every node.

2.5.1 Distance Measure
In the SHOSLIF tree, every node has its own different MEF
and MDF spaces. Given an input, we must compare its
match with all the competitive nodes. To handle this, a dis-
tance measure must be investigated.

LEMMA 1. The number of levels in a Bounded Unbalanced Tree
with n samples is bounded above by log(1/a)n where a is
the Unbalance Bound of the tree.

PROOF. Each node N of the tree is assigned with n1 + n2 + L
+ nk samples, where ni is the number of samples as-
signed to the ith child of N. Rank these ni’s so that n1 �
n2 � L � nk. Because the tree is a Bounded Unbal-
anced Tree, we know that n1 � a(n1 + n2 + L + nk), and
is true for all nodes N of the tree.

a is a constant. Note that a may be large, i.e., 99
percent, but it is still a constant. This means that each
node will not assign a huge portion of samples to a
single child. An extreme example would be where
child 1 receives n - 1 samples and child 2 receives 1
sample. Since the tree is a Bounded Unbalanced Tree,
this is not allowed, and in the worst case, child 1
would receive a n samples and child 2 would receive
(1 - a)n samples. This is a significant constraint.

Each deeper level of the tree will reduce the num-
ber of samples by a factor of at least a. The lth level
down the tree will receive nal samples. At tree height
h, we have just a single sample by Algorithm 1. Then
nah = 1, and ah = (1/n), or (1/a)h = n. Then the height
of the tree h = log(1/a)n = (log n/log(1/a)). o

Distance from Subspace. A simple Euclidean distance in
the feature space is insufficient to handle the hierarchical
sets of features developed to solve the class separation
problem. A test probes that comes into a node would be
compared in the local MDF or MEF subspace for that node.
It is entirely possible that a test probe vector that was miles
away from a particular node’s subspace would project into
that subspace very near to the node’s center vector. This
would cause poor recognition results because test probes
that were not at all similar to the node centers would erro-
neously be considered close.

Fig. 8. A tessellation in which a single-path search may not find a nearest match. Node N at level l will shuttle test proble X to its nearest child C2.
The nearest neighbor for X may well be found in the subteee of G, which is missed in a single-path search.

394 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 5, MAY 1999

Instead, we need to take into account the distance from
the subspace being compared. Each node constructs a differ-
ent set of subspaces based on the samples contained in that
node. The Distance from Subspace (DFS) distance measure
takes into account the distance from the projection space in
addition to the distance of the projection to the node centers.

The DFS distance measure is given by

d X A X VV X VWW V X VWW V At t t t t(,) = - + -
2 2

where X is the test probe, A is the center vector, V is the
projection matrix to the MEF space, and W is the projection

matrix to the MDF space. So the product Y = VtX is the
projection of the test probe X onto the MEF subspace; VY =

VVtX represents this MEF projection in the original image

space. Likewise, Z = WtVtX is the projection of X onto the

MDF subspace, and VWZ = VWWtVtX represents this MDF
projection back in the original image space. Note that

computationally, for Z = WtVtX, AZ = WtVtA, and VW = M,

iMZ - MAZi2 = iM(Z - AZ)i2 = (Z - AZ)tMtM(Z - AZ). Thus,
only a small matrix multiplication need be performed to

effect this distance measure. This MtM matrix can be pre-
computed during the learning phase and stored in each
node so that in the testing phase, the computational com-
plexity of this operation is minimized.

Intuitively, what is being measured can be seen in Fig. 9.
The first term under the radical indicates the distance of the
original vector from the population (i.e., the subspace). The
second term indicates the distance in the subspace from the
center vector of a class. We neglected the component VVtX
- VWWtVtX since it is the component neglected by the
MDFs as unrelated to classification (e.g., lighting). In other
words, we do not want to find the nearest neighbor in the
Euclidean image space; we want to discount components
that are neglected by the linear discriminant analysis. Fig. 5
visually explains why.

Algorithm 2. The Image Retrieval Algorithm

Input. Probe X, level l, and a list of at most constant k nodes
which were explored at level l.

Output: A list of nodes explored at level l + 1.

1)�For each node Ni in the list explored at level l:
If Ni is not a leaf node:

�� Project X to the MDF subspace of node Ni, produc-
ing Z.

�� Compute d(Cj, Z) for all children j of Ni with center
vectors Cj.

�� Transfer at most constant k of the children of Ni to
the output list such that those transferred are the k
nearest neighbors of Z.

2) Truncate the output list to hold at most constant k
nodes to explore at the next level.

THEOREM 2. For the k-competing path case, the number of nodes
visited in a Bounded Unbalanced Tree is bounded above by
kk log(1/a n, where k is the number of competing paths ex-
plored, k is the upper bound on the number of children that
any node can have, a is the Unbalance Bound of the tree,
and n is the number of samples in the database.

PROOF. The proof follows directly from Theorem 1, Lemma
1, and the fact that a constant k nodes are explored for
every level of the Bounded Unbalanced Tree. o

2.5.2 Use of Multiple Competing Paths
As described in Section 2.4, in order to find a nearest
neighbor match in the recognition tree, it may be neces-
sary to explore more than a single path of the tree. This
constant k parallel paths to explore is a parameter that
the system operator must determine. For the data sets
used in this work, unless stated otherwise, we chose k =
10 based on the performance graph given in Fig. 9b.
Based on the data shown in this graph, the performance
of the system levels out at k = 10. We found that k = 10

Fig. 9. (a) Distance from subspace description for 3D. The subspace is shown as the plane, and is defined by the matrix V. Two classes are
shown in this example, and the MDF vector that can separate them is shown. (b) A comparison of the performance for various k competing paths.

SWETS AND WENG: HIERARCHICAL DISCRIMINANT ANALYSIS FOR IMAGE RETRIEVAL 395

gives good runners-up for best matches at a low com-
putational cost.

2.5.3 Expected Radius
Node N uses the expected radius r(l) to determine when it
needs to create a new child to accommodate a training
sample. r(l) indicates the size of the cells that we would like
to achieve at level l. This expected radius is a decreasing
positive function based on the level of the tree. For this
work, we have chosen r(l) = 1.336-l for node N on level l of
the Space-Tessellation Tree. This number was chosen be-
cause at the root node of the tree, i.e., at level l = 0, the ex-
pected radius is 12,646.219. This radius is large enough to
cover all of the samples in the data sets utilized in this work.

The value 1.3 was used as a base because it gave favorable
results in the shape of the tree. A tree that is too wide and fat
produces inefficiencies because many children must be ex-
plored at a high level of the tree; a tree that is too thin and tall
produces inefficiences because many projections must be
done in order to find the nearest neighbor in the database.

3 EXPERIMENTAL RESULTS

In order to verify the proper functionality of the system, we
experimented with a large multifarious set of real-world
objects found in natural scenes. In this section, we demon-
strate the ability of the MDF space to tolerate within-class
variations and to discount such imaging artifacts as lighting
direction, and show how the tree structure provides the
ability for view-based recognition.

The images utilized for these experiments used a stan-
dard fovea size of 88 × 64 pixels. So when vectorized, the
dimensionality of the original input vectors were d = 5,632.
When projected to the MEF space, utilizing 95 percent of
the variance, at the root node, typically between 30 and 60
principal components were utilized. Then when projected
to the MDF space, the number of discriminating vectors
utilized were limited to 5 or 95 percent of the variance for
the samples contained in the node, whichever was less.

3.1 Space Comparison
Since the analysis showed that the MDF space should per-
form better than the MEF space (or the image space di-
rectly), a study was performed to demonstrate this fact.
Furthermore, though the hierarchy described provides effi-
ciency to both the learning and retrieval phases, the recog-
nition performance may suffer somewhat from not exam-
ining all possibilities in the database. Therefore, a study
was also performed to examine the performance difference

between using a “flat” database, in which all images in the
database are examined for possible matches, and the de-
scribed hierarchical database. Finally, the recognition per-
formance will be dependent on whether a single MDF pro-
jection is used, performing the space tessellation in this sin-
gle space; or if a new MDF projection is performed at each
node of the tree. A study examining the performance be-
tween these two modes was also done.

The training images come from a set of real-world ob-
jects in natural settings. At least two training images from
each of 38 object classes were provided for a total of 108
training images; a disjoint set of test images were used in all
of the tests. For each of the tests performed, the identical set
of training images and test images were used.

For those tests where subspaces are used, the Distance
From Subspace (DFS) distance metric was used, and 15
nodes were explored at each level when using the tree
structure.

3.1.1 Effects of the Feature Spaces and the Tree
Hierarchy

The results of the studies are summarized in Table 2.
As expected, the data in Table 2 shows the MEF subspace

tracing the same sorts of responses that the original image
space produces. This is expected because the MEF subspace
is a good representation of the original image space, and can,
therefore, be used as a compact means for storing images.

The data also shows, however, that the MDF subspace
can outperform the MEF subspace. This is also expected,
since the MDF subspace utilizes more information supplied
by the user in the form of the image labels. The MDF per-
formance for a flat database shows the same results as the
MEF performance. This could be due to the fact that there
was not enough within-class variation in the training sam-
ples that were needed to catch the variation present in each
class. But it may be more likely that the classes in a flat da-
tabase were not lineally separable. This is supported by the
data, because when a single projection is done and a space
tessellation tree produced based on that single projection,
the rate drops off a little; when multiple projections are
done throughout the tree, the rate improves significantly.
The data lends credence to this claim that the multiple pro-
jections in the tree do indeed reduce the problem to a
smaller, more manageable size, and can, therefore, success-
fully separate the classes more easily as the processing
moves down the tree. The MDF subspaces generated at the
various nodes of the tree are adaptive in that they optimally
separate the classes for the samples contained in the node

TABLE 2
RESULTS OF SUBSPACE COMPARISON STUDY

For the “flat” databases, only a single level of the tree was creataed. For the single projection databases, the MEF/MDF projection matrices were only computed at the
root node, and the same projection matrices were used throughout the tree. For the multiple projection trees, a new projection was made at ech node of the tree.

396 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 5, MAY 1999

in the sense of linear transform. As the processing moves
along the nodes of the tree, a different set of features tuned
specifically for those samples contained in the node are
utilized for subclass selection.

3.2 Face Database
In order to compare with the results of others in the com-
munity utilizing eigenfeature methods, a test was per-
formed on a database comprised of only faces.

The face database was organized by individual; each
individual had a pool of images from which to draw
training and test data sets. Each individual had at least
two images for training with a change of expression. The
images of 38 individuals (182 images) came from the

Michigan State University Pattern Recognition and Image
Processing laboratory. Images of individuals in this set
were taken under uncontrolled conditions, over several
days, and under different lighting conditions. Classes of
303 (654 images) came from the FERET database. All of
these classes had at least two images of an individual
taken under controlled lighting, with a change of expres-
sion. Twenty-four of these classes had additional images
taken of the subjects on a different day with very poor
contrast. Sixteen classes (144 images) came from the MIT
Media lab under identical lighting conditions (ambient
laboratory light). Twenty-nine classes (174 images) came
from the Weizmann Institute, and are images with three
very controlled lighting conditions for each of two differ-
ent expressions.

In this experiment, when an image that was used for
training was also used as a test probe, such as is done with
Photobook [39], [13], [40] (i.e., resubstitution method), the
SHOSLIF always retrieved the correct image as its first
choice 100 percent of the time. The second image retrieved
on a database of 1,042 face images was a correct match for
98 percent of the test probes using the resubstitution
method, which is comparable to the Photobook [40] re-
sponse rate on a different data set. Table 3 shows a sum-
mary of the results obtained both by resubstituting the
training samples as test probes and by using a disjoint set of
images for testing.

3.3 Combination Database: Faces and Other Objects
We have trained the system on a wide range of scenes, in order
to demonstrate the utility of the hierarchical methodology.

A small sample of images from the classes learned is
given in Fig. 10. Most classes in the database were repre-
sented by two images, and 19 percent of the classes had
three or more images, up to 12 for some objects (e.g., fire
hydrant). Each image consisted of a well-framed object of
interest. The different images from each class were taken
either in a different setting or from a different angle; where
possible a change in the lighting arrangement was used to
provide variation in the training images.

TABLE 3
SUMMARY OF EXPERIMENT ON A FACE DATABASE OF 1,042

IMAGES (384 INDIVIDUALS)

For resubstitution each training image was given as a test probe. For the
disjoint test set, a list of 246 images not found in the training set was used for
testing.

TABLE 4
SUMMARY OF LARGE NATURAL SCENE EXPERIMENT

The training images were drawn at random from the pool of available images,
with the remaining images serving as a disjoint set of test images.

Fig. 10. Representative images from the difference classes.

SWETS AND WENG: HIERARCHICAL DISCRIMINANT ANALYSIS FOR IMAGE RETRIEVAL 397

Following training, the system was tested using a test set
completely disjoint from the training set of images. A sum-
mary of the results are shown in Table 4.

The instances where the retrieval failed were due in large
part to significant differences in object shape and three-
dimensional (3D) rotation.

3.4 Handling 2D Variation
In order to alleviate some of our reliance on well-framed
images, we want to train the system on a set of images
which contains some variations in the position, scale, and
orientation of the objects of interest. This can be accom-
plished by greatly increased image acquisition for points
surrounding the fixation point and scale provided. The in-
crease in image acquisition is expensive in terms of time
and storage space, however, and could instead be accom-
plished by extending the training set for a grid of points
surrounding the extracted fovea image in terms of the po-
sition, scale, and 2D orientation foviation parameters. Each
fovea image comes from some attention mechanism that
specifies a fixation point and a scale. This fixation point can
be overlaid with a grid in both the position and the scale
parameters, and a new fovea image extracted from the
original image at each of these grid points. Thus more varia-
tion due to size and position can be handled by extracting a
set of fovea images to add to the Space-Tessellation tree for
each grid point surrounding the attention point and scale
instead of just extracting a single image.

Fig. 11 demonstrates the variability that the system can
handle by extending the training set in this manner. When
the training set is thus extended, the Space-Tessellation
tree grows in size, but not by the factor of the increased
number of samples. If we assume that the search tree pro-
vides O(log s) levels for s training samples, then the tree
has k log s levels for some constant k. Now if the number of
training samples is expanded by 3 to handle the positional
variation, and by 6 to handle the scale variation, then we
have a total of 36s samples to put into a tree. Then there
will be k log {36s} = k log 3 log 6 log s = k’ log s levels in
the Space-Tessellation Tree, for constant k’, which is still
O(log s) levels in the tree. Typical values for 3 will be 3 = 9

or 25 for a 3 × 3 or a 5 � 5 grid surrounding the attention
point, respectively; 6 will typically be 6 = 3 or 5 to deal with
the various scales. We have tested this approach to handling
positional and scale variation on two different data sets.

3.4.1 Handling Scale
The first data set is the full combination data set that de-
scribed in Section 3.3 with more than 1,300 original training
images. We ran the experiment using P = 1 (i.e., on the atten-
tion mechanism’s attention point alone) and�6 = 3 (i.e., 3 grid
points surrounding the attention mechanism’s scale). For
training, we set the scale span to be 30 percent of the fovea
size. That is, each grid point represented a 15 percent change
in the fovea size, one training image at a 15 percent smaller
scale than the attention mechanism dictated, one at the at-
tention mechanism’s specified scale, and one at 15 percent
larger than the attention mechnism’s specified scale. For
testing purposes, we took the disjoint test set described in 3.3
and genrated a set of test images from this set with a random
scale change in ther ange of [–0, +20] percent of the fovea
size. The characterization and results of this test is shown in
Table 5. The table shows the difference between the
perofrmance when the scaling was built into the training
phase and when it was not. As can be seen from the data, for

Fig. 11. Generalization for size and position of objects. The search probes were synthetically generated from images in a disjoint test set. Each
search probe retrieved an image from the appropriate class. The scaling shown is 50 percent of the fovea size (both positively and negatively);
the position change shows 12 percent negative change in the fixation point for both the row and the column coordinates. (a) Search probes. (b)
Retrieved images. (c) Search probes. (d) Retrieved images.

TABLE 5
SUMMARY OF THE SCALE GENERALIZATION EXPERIMENT ON THE

LARGE COMBINATION FACE AND OTHER OBJECT DATA SET

A disjoint test set was used for testing the retrieval capability; each test probe
was randomly scaled in the range of [–20, +20] percent of the fovea size to test
the ability of the system to generalize over various scales.

398 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 5, MAY 1999

the test probes, either the attention supplier must correspond
to the scaling done in the training phase, or the training set
must be expanded to include those images in the range of
scales that need to be properly retrieved. Fig. 12 shows an
example test probe and the images retrieved when scaling
was enabled for the training phase.

3.4.2 Handling Scale and Position
Utilizing the system on the large combination data set shows
the ability of the system both to operate on large image data-
base sizes and to handle a specified variation in the scale of
the extracted area of interest for an attention point and scale.
To show the positional extension of the training data, a
smaller original training set was used. For the second ex-
periment in the demonstration of the system to handle 2D
parameter changes, the data set described in Section 3.1 was
used. Table 6 shows the data pursuant to this experiment.

3.4.3 Handling Different 3D Views
We want to determine whether the system can handle
variation in 3D orientation. For this experiment, we used
the Weizmann Institute face database. This database was
well-suited to test the handling of 3D rotation because for
each of 29 individuals, five camera viewpoints were avail-
able under identical lighting conditions. A sample of the
available images is shown in Fig. 13.

When the training set contains a representative set of
views of the objects under consideration, the system is able
to successfully find objects from a novel view, as shown in
Fig. 14. The image pool for a particular individual were im-
ages taken from five viewpoints under identical lighting
and expression conditions. A total of four views from each
individual were used for training, the remaining view left
out to form a disjoint test set.

We used a disjoint test set for determining the accuracy
of the learning-based view generalization. The results of
this experiment are summarized in Table 7. Though Table 7
shows favorable results, 100 percent accuracy was not
achieved. The failures occurred where the test probe view-
ing angle did not fall between two training sample viewing
angles, as shown in Fig. 15.

3.4.4 Timing
The hierarchical organization of the database inherent in
the SHOSLIF-O paradigm provides the means for efficient
retrieval of images from the database. The tree structure
provides O(log n) access time for n samples in the database.
For example, on a database of 1,317 images, the system was
built using both the tree mode and a nontree mode. In a

Fig. 12. Example probe and its retrieved images when scaling was enabled on the tree. (a) Test probe. (b) Retrieved images.

Fig. 13. A sample of the Weizmann Institute face data. Each individual for this experiment contained five viewpoints under identical lighting conditions.

TABLE 6
SUMMARY OF THE LEARNING-BASED PARAMETER

GENERALIZATION EXPERIMENT

A disjoint test set was used for testing the retriveal capability.

SWETS AND WENG: HIERARCHICAL DISCRIMINANT ANALYSIS FOR IMAGE RETRIEVAL 399

nontree mode, every test probe required 1,317 comparisons;
in the tree mode with 15 competing paths, only 101 com-
parisons were required on average per test probe, showing
an order of magnitude improvement.

Table 8 is the result quoted from Weng and Chen [41],
which shows how the tree structure speeded up the re-
trieval process. The test was done on a Sun SPARC-20 for
indoor autonomous navigation where each tree leaf node is
associated with a navigation control signal (heading direc-
tion and speed) instead of class label. A total of 2,850 train-
ing images were used in the learning phase. Three schemes
are compared in the table. The flat image space scheme uses
a linear search for the nearest neighbor in the original im-

age space (each pixel is a dimension). The flat MEF space
scheme uses a linear search for the nearest neighbor in the
MEF subspace and the projection time for the input image
is included. The SHOSLIF tree scheme is a real-time version
using a binary tree of the SHOSLIF [41]. The speed-up of
the tree is more drastic when n is larger.

Table 2 has shown that both the tree structure and the
different subspaces for different nodes have improved the
recognition rate. When a flat database was used for the data
set described in Table 4, the retrieval rate fell from 95 per-
cent to 88.9 perecent for the top choice, and from 99 percent
to 96.2 percent for the top 10 choices. Therefore, compared
to a single space (i.e., the image space or a single MEF sub-
space using PCA which approximates the image space), our
experiments have shown that the SHOSLIF method is not
only faster but also that it produces better results.

4 CONCLUSIONS AND DISCUSSION

We have developed an object recognition system that per-
forms automatic feature derivation and extraction, utilizes a
hierarchical database organization to provide efficient re-
trieval of images. The system generalizes an image training
set to handle size and position variations, and handles a
wide variety of objects from natural scenes.

How do we categorize images? Of course, it depends very
much on the application. Categories are objects that seem to
belong together [42]. A class is different from a category in
that it can specify any attributes (e.g., objects that weigh an
even number of grams). Cognitive studies have indicated
that humans often categorize objects into a taxonomy—a

Fig. 14. View-based generalization. When sufficient training images are given for a particular class, the system is able to accurately retrieve images
from the correct class. (a) Test probes. (b) Retrieved images. (c) Test probes. (d) Retrieved images.

Fig. 15. Example failure in the learning-based view generalization experiment. The failures occurred only when the viewing angle of the test probe
did not fall between the viewing angles of two training images. These images are courtesy of the Weizmann Institute. (a) Training images. (b) Test
probe. (c) Retrieved images.

TABLE 7
SUMMARY OF THE LEARNING-BASED VIEW

GENERALIZATION EXPERIMENT

A disjoint test set was used for testing the retrieval capability.

TABLE 8
AVERAGE COMPUTER TIME PER TEST PROBE,

QUOTED FROM WENG AND CHEN [41]

400 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 5, MAY 1999

hierarchy in which successive levels refer to increasingly
more specific objects. There is an intermediate level which is
more likely to be used to encode experience that superordi-
nate or subordinate levels. For example, people use apple to
refer to an experience rather than fruit or McIntosh apple [43].
The method presented here could be used to organize images
based on an intermediate level of category that the users pre-
fer to utilize. Retrieval with other superordinate or subordi-
nate categories as well as other classifications schemes may
be realized using pointers from symbolic attribute tables to
the corresponding leaves of the SHOSLIF tree [44].

The automatic hierarchical discriminant analysis
method used in this work recursively decomposes a
huge, high-dimensional nonlinear problem into smaller,
simpler, tractable problems. The hierarchical Quasi-
Voronoi Tessellation provides a means for dividing the
space into smaller pieces for further analysis. This allows
the DKL projection to produce better local features for
more efficient and tractable subclass separation. The
Space-Tessellation Tree introduced in this work provides
a time complexity of O(log n) for a search for the best
match in a model database of n objects. This low com-
plexity opens the door towards learning a huge database
of objects.

The system described has several inherent strengths and
limitations, which are summarized in Fig. 16. Although the
system might be extended to other sensing modalities, the
current system is view-based: in order to retrieve a correct
image from an image database, the SHOSLIF requires that
the system has been trained on an image taken at a very
similar viewpoint (i.e., within a few degrees), as is demon-
strated by Fig. 15. Object recognition systems typically have
a reject option to indicate that an object was not retrieved
from the database. The SHOSLIF-O could learn a reject
distance threshold value to provide this functionality. In
this work, however, all of the top k candidates were pro-
vided to the user.

ACKNOWLEDGMENTS

This work was supported, in part, by the National Science
Foundation under Grant No. CDA-9724462; NASA Grant
Nos. NGT-40046 and NGT5-40042; the South Dakota Space
Grant Consortuim to Swets; the National Science Founda-
tion Grant Nos. IRI 9410741 and IIS 9815191; and the Office
of Naval Research Grant No. N00014-95-06.

REFERENCES

[1]� K. Ikeuche and T. Kanade, “Automatic Generation of Object
Recognition Programs,” Proc. IEEE, vol. 76, no. 8, pp. 1,016–1,035,
1988.

[2]� W.E.L. Grimson, Object Recognition by Computer: The Role of Geo-
metric Constraints. MIT Press, 1990.

[3]� D.P. Huttenlocher and S. Ullman, “Object Recognition Using
Alignment,” Proc. Int’l Conf. Computer Vision, pp. 102–111, Lon-
don, England, 1987.

[4]� D.J. Kriegman and J. Ponce, “On Recognizing and Positioning
Curved 3-D Objects from Image Contours,” IEEE Trans. Pattern
Anal. Machine Intelligence, vol. 12, no. 12, pp. 1,127–1,137, 1990.

[5]� F. Stein and G. Medioni, “Efficient Two Dimensional Object Rec-
ognition,” Proc. 10th Int’l Conf. Pattern Recognition, Atlantic City,
1990.

[6]� J. Weng, N. Ahuja, and T. S. Huang, “Learning Recognition and
Segmentation Using the Cresceptron,” Proc. Int’l Conf. Computer
Vision, pp. 121–128, Berlin, May 1993.

[7]� M. Turk and A. Pentland, “Eigenfaces for Rcognition,” J. Cognitive
Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[8]� T. Kohonen, “Self-Organized Formation of Topologically Correct
Feature Maps,” Biological Cybernetics, vol. 43, pp. 59–69, 1982.

[9]� T. Kohonen, “Self-Organized Network,” Proc. IEEE, vol. 43, pp.
59–69, 1990.

[10]� T. Poggio and F. Girosi, “Networks for Approximation and
Learning,” Proc. IEEE, vol. 78, pp. 1,481–1,497, 1990.

[11]� E.B. Baum, “When are k-Nearest Neighbor and Back Propagation
Accurate for Feasible Sized Sets of Examples?” Proc. EURASIP
Workshop, Sezimbra, Portugal, L.B. Almedia and C.J. Wellekens,
eds., pp. 2–25. New York: Springer-Verlag, 1990.

[12]� J. Rubner and K. Schulten, “Development of Feature Detectors by
Self-Organization,” Biological Cybernetics., vol. 62, pp. 193–199,
1990.

[13]� A. Pentland, B. Moghaddam, and T. Starner, “View-Based and
Modular Eigenspaces for Face Recognition,” Proc. IEEE Computer
Soc. Conf. Computer Vision and Pattern Recognition, pp. 84–91, Seattle,
Washington, June 994.

Fig. 16. Major strengths and limitations of the described system.

SWETS AND WENG: HIERARCHICAL DISCRIMINANT ANALYSIS FOR IMAGE RETRIEVAL 401

[14]� C. Bregler and S. M. Omohundro, “Nonlinear Manifold Learning
for Visual Speech Recognition,” Proc. Int’l Conf. Computer Vision,
pp. 494–499, 1995.

[15]� L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classifica-
tion and Regression Trees. Chapman & Hall, 1993.

[16]� R. Duda and P. Hart, Pattern Classification and Scene Analysis. New
York: John Wiley & Sons, 1973.

[17]� A.K. Jain and R.C. Dubes, Algorithms for Clustering Data.
Englewood Cliffs, N.J.: Prentice Hall, 1988.

[18]� J. Quinlan, “Induction of Decision Trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

[19]� B.D. Ripley, Pattern Recognition and Neural Networks. New York:
Cambridge Univ. Press, 1996.

[20]� D.J. Hand, Discrimination and Classification. Chichester: John Wiley
& Sons, 1981.

[21]� S.S. Wilks, Math.l Statistics. New York: John Wiley & Sons, 1963.
[22]� K. Fukunaga, Introduction to Statistical Pattern Recognition, second

edition, New York: Academic Press, 1990.
[23]� G.R. Dattatreya and L.N. Kanal, “Decision Tress in Pattern Recog-

nition,” Progress in Pattern Recognition, L. Kanal and A. Rosenfeld,
eds., pp. 189–239, New York: Elsevier Science, 1985.

[24]� S.R. Safavin and D. Landgrebe, “A Survey of Decision Tree Classi-
fier Methodology,” IEEE Trans. Systems, Man and Cybernetics, vol.
21, pp. 660–674, May/June 1991.

[25]� S.K. Murthy, “Automatic Construction of Decision Trees from
Data: A Multidisciplinary Survey,” Data Mining and Knowledge
Discovery, 1998.

[26]� L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. New York: Chapman & Hall, 1993.

[27]� E.G. Henrichon, jr. and K.S. Fu, “A Nonparametric Multivariate
Partitioning Procedure for Pattern Classification,” IEEE Trans.
Computers, vol. 18, pp. 614–624, July 1969.

[28]� J.H. Friedman, “A Recursive Partition Decision Rule for Non-
parametric Classification,” IEEE Trans. Computers, vol. 26, pp.
404–408, Apr. 1977.

[29]� H. Murase and S.K. Nayar, “Illumination Planning for Object
Recognition in Structured Environments,” Proc. IEEE Computer
Soc. Conf. Computer Vision and Pattern Recognition, pp. 31–38, Seat-
tle, Washington, June 1994.

[30]� D.L. Swets, B. Punch, and J.J. Weng, “Genetic Algorithms for Ob-
ject Recognition in a Complex Scene,” Proc., Int’l Conf. Image Proc-
essing, pp. 595–598, Washington, D.C., Oct. 1995.

[31]� D.L. Swets and J.J. Weng, “Using Discriminant Eigenfeatures for
Image Retrieval,”{IEEE Trans. Pattern Analysis Machine Intelligence,
vol. 18, pp. 831–836, Aug. 1996.

[32]� D.L. Swets and J.J. Weng, “Efficient Content-Based Image Re-
trieval Using Automatic Feature Selection,” Proc., Int’l Symp.
Computer Vision, pp. 85–90, Coral Gables, Fla., Nov. 1995.

[33]� M. Kirby and L. Sirovich, “Application of the Karhunen-Loève
procedure for the characterization of human faces,” IEEE Trans.
Pattern Analysis Machine Intelligence, vol. 12, pp. 103–108, Jan.
1990.

[34]� I.T. Jolliffe, Principal Component Analysis. New York: Springer-
Verlag, 1986.

[35]� M.M. Loève, Probability Theory. Princeton, N.J.: Van Nostrand,
1955.

[36]� T. Hastie and R. Tibshirani, “Discriminant Adaptive Nearest
Neighbor Classification,” IEEE Trans. Pattern Analysis Machine In-
telligence, vol. 18, pp. 607–616, June 1996.

[37]� R.A. Fisher, “The Statistical Utilization of Multiple Measure-
ments,” Annals of Eugenics, vol. 8, pp. 376–386, 1938.

[38]� D.L. Swets and J.J. Weng, “SHOSLIF-O: SHOSLIF for Object Rec-
ognition and Image Retrieval (phase II),” Technical Report CPS
95-39, Dept. of Computer Science, Michigan State Univ., East
Lansing, Mich., Oct. 1995.

[39]� A. Pentland, R.W. Picard, and S. Scarloff, “Photobook: Tools for
Content-Based Manipulation of Image Databases,” SPIE Storage
and Retrieval Image and Video Databases II, no. 2,185, San Jose,
Feb. 1994.

[40]� B. Moghaddam and A. Pentland, “Maximum Liklihood Detection
of Faces and Hands,” Int’l Workshop Automatic Face- and Gesture-
Recognition, M. Bichsel, ed., pp. 122–128, 1995.

[41]� J. Weng and S. Chen, “Incremental Learning for Vision-Based
Navigation,” Proc. Int’l Conf. Pattern Recognition, vol. IV, pp. 45–49,
Vienna, Austria, Aug. 1996.

[42]� E.E. Smith, “Categorization,” Thinking, D.N. Osherson and E.E.
Smith, eds., pp. 33–53, MIT Press, 1990.

[43]� E. Rosch, C. Mervis, D. Gray, D. Johnson, and P. Boyes-Braehm,
“Basic Objects in Natural Categories,” Cognitive Psychology, vol. 3,
pp. 382–439, 1976.

[44]� D. L. Swets, Y. Pathak, and J. J. Weng, “An Image Database Sys-
tem for with Support for Traditional Alphanumeric Queries and
Content-Based Queries by Example,” Multimedia Tools and Applica-
tions, vol. 7, no. 3, 1998.

Daniel L. Swets (S’85–M’96) earned his BS
degree in computer science from Calvin Col-
lege, Grand Rapids, Michigan in 1986, and the
MS and PhD degrees in computer science from
Michigan State University in 1991 and 1996,
respectively. From 1986-1987, he was a soft-
ware engineer at Rockwell International,
Downey, California, whre he worked on the
Space Shuttle Orbiter Backup Flight System.
From 1987-1992, he was a software engineer at
Smiths Industries, Grand Rapids, Michigan,

where he worked on software for aerospace applications. Concurrently,
he was an instructor at both Grand Valley State University, Allendale,
Michigan and the Grand Rapids Community College, Grand Rapids,
Michigan. From 1992–1994, he was a teaching and research assistant
at Michigan State University while pursuing his PhD degree, and an
Ameritech fellow at Michigan State University from 1994-1995. In
1995, he joined the teaching staff at Augustana College, Sioux Falls,
South Dakota, where he is now an assistant professor of computer
science. He has been a NASA Space grant fellow from 1996–present.
Concurrent with these activities, he has owned and operated a small
business computer-consultant firm. His current research interests in-
clude parallel processing, algorithms for remote sensing, computer
vision, and pattern recognition. He is a member of the IEEE and the
IEEE Computer Society.

Juyang Weng (S’85–M’88) received his BS
degree from Fudan University, Shanghai, Peo-
ple’s Republic of China, in 1982, and the MS
and PhD degrees from the University of Illinois
at Urbana-Champaign, in 1985 and 1989, re-
spectively, all in computer science. From 1984–
1988, he was a research assistant at the Coor-
dinated Science Laboratory, University of Illinois
at Urbana-Champaign. From 1989–1990, he
was a researcher at Centre de Recherche In-
formatique de Montréal, Quebec, Canada, while

adjunctively with Ecole Polytechnique de Montréal. From 1990–1992,
he held a visiting research assistant professor position at the University
of Illinois at Urbana-Champaign. In 1992, he joined the Department of
Computer Science, Michigan State University, East Lansing, where he
is now an associate professor. He is a coauthor of the book Motion and
Structure from Image Sequences (Springer-Verlag, 1993). His current
research interests include computer vision, human-machine multimo-
dal interface using vision, speech, gesture and actions, autonomous
learning robots, and automatic development of machine intelligence.
He is a member of the IEEE and the IEEE Computer Society.

