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AbstractÐThis paper describes a hidden Markov model-based approach

designed to recognize off-line unconstrained handwritten words for large

vocabularies. After preprocessing, a word image is segmented into letters or

pseudoletters and represented by two feature sequences of equal length, each

consisting of an alternating sequence of shape-symbols and segmentation-

symbols, which are both explicitly modeled. The word model is made up of the

concatenation of appropriate letter models consisting of elementary HMMs and an

HMM-based interpolation technique is used to optimally combine the two feature

sets. Two rejection mechanisms are considered depending on whether or not the

word image is guaranteed to belong to the lexicon. Experiments carried out on

real-life data show that the proposed approach can be successfully used for

handwritten word recognition.
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1 INTRODUCTION

HANDWRITING is one of the easiest and most natural ways of
communication between humans and computers. However, early
investigations in automatic handwriting recognition were limited
by the memory and power of the computers available at that time
which did not permit the design of real-time systems. Thanks to
the recent progress in electronics and to the latest generation of
computers, these problems have been overcome; therefore, since
the beginning of the 1980s, there has been a dramatic increase of
research in this field. According to the way handwriting data are
generated, two classes are distinguished: If the data provided to
the system correspond to the pixels of a static image obtained with
a scanner or a CCD camera after the writing is completed, then we
are in the off-line recognition case. If the data correspond to the
sequence of pixels (defined by their coordinates) drawn by the user
on a digitized tablet and transmitted to the system during the
writing, then we are in the on-line recognition case. Off-line and
on-line systems are also distinguished by the applications they are
devoted to. The former are dedicated to bank check processing,
mail sorting, commercial forms-reading, etc., while the latter are

mainly dedicated to pen computing industry and security domains
such as signature verification and author authentication. Off-line
handwriting recognition is a more difficult task, because the
temporal information, such as the number and the order of the
strokes and the pressure, is not available as in the on-line case. On
the other hand, off-line systems can achieve huge economic
benefits even with low recognition rates, while on-line systems
must achieve high recognition rates to be used in a commercial
system. In the remainder of this paper, we shall talk about off-line
handwriting recognition.

Despite the impressive progress achieved in handwriting
recognition, the results are still far from human performance. This
is a reason why researchers have limited their studies to particular
problems and applications. In this context, isolated character
recognition can be seen as a less complicated task where
satisfactory solutions are already available. In word recognition
tasks, the application specifies the lexicon of possible words. For
small lexicons, as in bank check processing, most approaches are
global, where a word is considered as an indivisible entity [1], [2],
[3]. For large lexicons, as in postal applications [4], [5], [6], the
segmentation of words into basic units such as letters is required.
Owing to the difficulty of this operation, most successful
approaches are segmentation-recognition methods in which words
are first loosely segmented into letters or pieces of letters, and a
dynamic programming technique is used in recognition to choose the
definitive segmentation [7], [8]. Although these methods are less
robust when the segmentation process fails to split a pair of letters
(or more), they have many advantages over global ones. Indeed,
for a given learning database, it is more reliable to train a small set
of letters than whole words. Furthermore, unlike analytic
approaches, global approaches are possible only for lexicon-driven
problems and do not satisfy the portability criterion since, for each
new application, the set of the lexicon words must be trained.

During the last decade, hidden Markov models (HMMs), which
can be thought of as a generalization of dynamic programming
techniques [9], have become the predominant approach to
automatic speech recognition [9], [10], [11]. These stochastic
models have been shown to be well-adapted to summarize
variability phenomena involved in time-varying signals. The
success of HMMs in speech recognition has recently led many
researchers to apply them to handwriting recognition by repre-
senting each word image as a sequence of observations. According
to the way this representation is carried out, two approaches can be
distinguished: implicit segmentation [4], [12], which leads to a
speech-like representation of the handwritten word image, and
explicit segmentation [5], [6], which requires a segmentation
algorithm to split words into letters or pseudoletters.

In this paper, we propose an explicit segmentation-based HMM
approach to recognize unconstrained handwritten words (upper-
case, cursive and mixed). This system uses three sets of features: The
first two are related to the shape of the segmented units, while the
features of the third set describe segmentation points between
these units. The first set is based on global features, such as loops,
ascenders, and descenders, and the second set is based on features
obtained by the analysis of the bidimensional contour transition
histogram of each segment. Finally, segmentation features corre-
spond to either spaces, possibly occurring between letters or
words, or the vertical position of segmentation points that split
connected letters. Given that the two sets of shape-features are
separately extracted from the image, we represent each word by
two feature sequences of equal length, each consisting of an
alternating sequence of shape-symbols and segmentation-symbols.
In the problem we are dealing with, we consider a vocabulary
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which is large but dynamically limited. For example, in city name
recognition, the contextual knowledge brought by the postal code
identity can be used to reduce the lexicon of possible city names to
a small size. Since the entire vocabulary of words is large, it is more
realistic to model basic units, such as letters, rather than whole
words. Indeed, this modeling needs only a reasonable number of
models to train (and to store). Then, each word (or word sequence)
model can be dynamically built by concatenating letter models.
This modeling is also more appropriate for available learning
databases, which often do not contain all the possible words to be
recognized. Our system also contains a mechanism to reject
unreliable decisions.

This paper is organized as follows. Section 2 describes the
fundamentals of hidden Markov models. Section 3 details the steps
of preprocessing, segmentation, and feature extraction. Section 4
deals with the application of HMMs to handwritten word
recognition in a dynamic vocabulary. Section 5 presents the
experiments performed to validate the approach. Section 6
concerns the rejection mechanism considered by our system.
Finally, Section 7 gives some concluding remarks and perspectives.

2 HIDDEN MARKOV MODELS

Hidden Markov models have been applied in several areas during
the last 15 years, including speech recognition [9], [10], [11],
language modeling [13], handwriting recognition [4], [5], [6], on-
line signature verification [14], etc. A hidden Markov model is a
doubly stochastic process, with an underlying stochastic process
that is not observable (hence the word hidden), but can be
observed through another stochastic process that produces the
sequence of observations [11]. The hidden process consists of a set
of states connected to each other by transitions with probabilities,
while the observed process consists of a set of outputs or
observations, each of which may be emitted by each state
according to some probability density function (pdf). Depending
on the nature of this pdf, several HMM classes can be
distinguished. If the observations are naturally discrete or
quantized using vector quantization [15], and drawn from an
alphabet or a codebook, the HMM is said to be discrete [10], [11]. If
these observations are continuous, we are dealing with a
continuous HMM [11], [16], with a continuous pdf usually
approximated by a mixture of normal distributions. Another
family of HMMs, a compromise between discrete and continuous
HMMs, are semi-continuous HMMs [17] that mutually optimize
the vector quantized codebook and HMM parameters under a
unified probabilistic framework. Although HMMs have some
limitations such as the assumption of conditional independence of
observations given the state sequence, these limitations are behind
the well-defined theoretical foundations of HMMs and the
existence of powerful algorithms for decoding and training.
Particularly, a procedure called the Baum-Welch algorithm [11]
can iteratively and automatically adjust HMM parameters given a

training set of observation sequences. This algorithm, which is an
implementation of the EM (expectation-maximization) algorithm
[18] in the HMM case, guarantees that the model converges to a
local maximum of the probability of observation of the training set
according to the maximum likelihood estimation (MLE) criterion.
The local maximum depends on the initial HMM parameters.

In some applications, it is useful to allow transitions with no
output in order to model for instance a missing event in a given
stochastic process, e.g., the absence of an expected character in a
word due to undersegmentation or misspelling. It has been shown,
in this case, it is more convenient to produce observations by
transitions rather than by states [10]. To accommodate these
changes, we have to define an additional HMM parameter a0ij
which stands for the probability of null transition between states i
and j, i.e., that produces no output, aij being the conventional
nonnull transition between these two states. We also define, for
discrete HMMs, for instance, bij�k� as the probability of observing
the symbol k given the transition between states i and j. In this
case, the stochastic constraints, for an N-state discrete HMM with
an alphabet of size M, become:

XN
j�1

�aij � a0ij� � 1 and
XM
k�1

bij�k� � 1: �1�

Taking this into account, slight changes occur in the classical
Baum-Welch and Viterbi [19] algorithms for which the various
forward and backward recursions still hold.

3 REPRESENTATION OF WORD IMAGES

Markovian modeling assumes that a word image is represented by
a sequence of observations. These observations should be
statistically independent once the underlying hidden state se-
quence is known. Therefore, we first preprocess each input image
to get rid of information that is not meaningful to recognition and
that may lead to dependence between observations (character
slant, etc.). Then, segmentation and feature extraction processes are
carried out to transform the image into an ordered sequence of
symbols.

3.1 Preprocessing

The goal of preprocessing is to reduce irrelevant information such
as noise and intraclass variability (e.g., character slant) that causes
high writer-sensitivity in classification, therefore increasing the
task complexity in a writer-independent recognizer. In our system,
the preprocessing stage consists of four steps [20]: baseline slant
normalization, lower case letter area (upper-baseline) normalization
when dealing with cursive words, character skew correction, and,
finally, smoothing (Fig. 1). The first two attempt to ensure a robust
extraction of our first feature set, mainly ascenders and descenders,
while the third step is required since the second feature set shows a
significant sensitivity to character slant.
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Fig. 1. Preprocessing steps: (a) original image, (b) and (c) baseline slant normalization, (d) character slant normalization, (e) lower-case letter area normalization,
(f) definitive image after smoothing.



Baseline slant normalization is performed by aligning the
minima of the lower contour after having filtered those corre-
sponding to descenders. Upper-baseline normalization is similar
and consists of aligning the maxima of the upper contour after
having filtered those corresponding to ascenders or upper-case
letters. However, the transformation here is nonlinear since it must
keep the normalized lower-baseline horizontal. The ratio of the
number of filtered maxima over the total number of maxima is
used as an a priori selector of the writing style: cursive or upper-
case (in which case no normalization is done). Character skew is
estimated as the average slant of elementary segments obtained by
sampling the word image contour, without taking into account
horizontal and pseudohorizontal segments. Finally, we apply
smoothing to eliminate the noise appearing at the borders of the
word image due to the normalizations mentioned above.

3.2 Segmentation of Words into Characters

In speech recognition, the basic units correspond to phonetic
events, for instance, phonemes. As it is hard to achieve an a priori
explicit segmentation of words into those units, the techniques
employed consist of sampling the speech signal into successive
frames with a sufficiently high frequency. This representation is
suitable because such a frequency allows a slow description of the
speech signal in such a way that the different phonetic events can
more or less be separately detected using minimal supervised
learning techniques [9], [10]. When dealing with handwritten words,
the basic units are naturally the alphabet letters. The employed
segmentation techniques are numerous, but can be categorized
into either implicit or explicit methods. Implicit methods are
inspired by those considered in speech recognition and can either
work at the pixel column level [4], [12] or realize an a priori
scanning of the image with sliding windows [21]. Explicit
methods, by contrast, use some characteristic points, such as
upper (or lower) contour minima, intersection points, or spaces, to
propose possible segmentation points (SPs). Due to the bidimen-
sional character of off-line handwritten word images and to the
overlap between letters, implicit methods are less efficient here
than in speech recognition or on-line handwriting recognition.
Indeed, vertical sampling loses the sequential aspect of the strokes,
which is better represented by explicit methods. Moreover, in
implicit methods, SPs have to be learned also. Nevertheless,
implicit methods complement explicit ones and are particularly
efficient in dealing with discrete touching characters. On the other
hand, because of the ambiguity encountered in handwritten
words, it is impossible to correctly segment a word into characters
without resorting to the recognition phase. Indeed, the same pixel
representation may have several interpretations, according to
context. In Fig. 2, for instance, the group of letters at the right of
e could be interpretedÐin the absence of contextÐby many
combinations of letters i, m, n, r, u, v, or w.

We choose an explicit segmentation algorithm that deliberately
proposes a high number of SPs, offering in this way several
segmentation options, the best one to be validated during
recognition. This algorithm is based on the following two
hypotheses: 1) There exists natural SPs corresponding to discon-
nected letters; 2) the physical SPs between connected letters are

located at the neighborhood of the image upper contour minima.
To segment a word, we make use of the upper and lower contours,
loops, and upper contour minima. Then, each minimum satisfying
some empirical rules gives rise to an SP. Mainly, we look in the
neighborhood of this minimum for the upper contour point that
permits a vertical transition from the upper contour to the lower
one without crossing any loop, while minimizing the vertical
transition histogram of the word image. If the crossing of a loop is
unavoidable, no SP is produced. This strategy may produce
correctly segmented, undersegmented, or oversegmented letters,
as shown in Fig. 3, for example.

3.3 Feature Extraction

The goal of the feature extraction phase is to extract, in an ordered
way (suitable to Markovian modeling), a set of relevant features
that reduce redundancy in the word image while preserving the
discriminative information for recognition. Our main philosophy
in this step is that, unlike isolated character recognition, lexicon-
driven word recognition approaches do not require features to be
very discriminative at the character or pseudo character level
because other information, such as context (particular letter
ordering in lexicon words), word length, etc., are available and
permit high discrimination of words. Thus, we consider features at
the segment level with the aim of clustering letters into classes. In
our system, the sequence of segments obtained by the segmenta-
tion process is transformed into a sequence of symbols by
considering two sets of features.

The first feature set is based on global features, namely loops,
ascenders, and descenders. Ascenders (descenders) are encoded in
two ways according to their relative size compared to the height of
the upper (lower) writing zone. Loops are encoded in various ways
according to their membership in each of the three writing zones
and their relative size compared to the sizes of these zones. The
horizontal order of the median loop and the ascender (or
descender) within a segment are also taken into account to ensure
a better discrimination between letters such as b and d or p and q.1

Each combination of these features within a segment is encoded by
a distinct symbol, leading in this way to an alphabet of 27 symbols.
For example, in Fig. 3, the first segment is encoded by the symbol
L, reflecting the existence of a large ascender and a loop located
above the core region. The second segment is encoded by the
symbol o, indicating the presence of a small loop within the body
of the writing. The third segment is represented by the symbol -,
which encodes shapes without any interesting feature, etc.

The second feature set is based on the analysis of the
bidimensional contour transition histogram of each segment in
the horizontal and vertical directions. After a filtering phase
consisting of averaging each column (row) histogram value over a
five pixels-wide window centered in this column (row) and
rounding the result, the histogram values may be equal to 2, 4, or 6.
In each histogram, we focus only on the median part, representing
the stable area of the segment, and we determine the dominant
transition number defined as the value k (2, 4, or 6) for which the
number of columns (rows) with a histogram value equal to k is
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1. Henceforth, alphanumeric characters will be designated by courier

format and feature symbols with italic style.

Fig. 2. Ambiguity in handwritten words, here the French word Chemin. Fig. 3. Segmentation of words into letters or pseudoletters.



maximum. Each different pair of dominant transition numbers is
then encoded by a different symbol or class. After having created
some further subclasses by a finer analysis of the segments, this
coding leads to a set of 14 symbols. For instance, in Fig. 4, Letters B,
C, and O, for which the pairs of dominant transition numbers are
(6, 2), (4, 2), and (4, 4), are encoded by symbols called B, C, and O,
respectively, but this, of course, is not always the case.

We also use five segmentation features that try to reflect the
way segments are linked together. For connected segments, two
configurations are distinguished: If the space width is less than a
third of the average segment width (ASW), we consider that there
is no space, and encode this configuration by the symbol n.
Otherwise, we validate the space and encode it in two ways,
depending on whether the space width is smaller (symbol @) or
larger (symbol #) than ASW. If the two segments are connected, the
considered feature is the segmentation point vertical position
which is encoded in two ways (symbols s or u) depending on
whether the segmentation point is close to or far from the writing
baseline. Finally, given an input word image, the output of the
feature extraction process is a pair of symbolic descriptions of
equal length, each consisting of an alternating sequence of segment
shape symbols and associated segmentation point symbols (Fig. 5).

4 MARKOVIAN MODELING OF HANDWRITTEN WORDS

This section presents the application of HMMs in handwritten
word recognition. After briefly describing some related works in
this field, we give the justifications behind the design of the model
we propose and we detail the steps of learning and recognition as
used in our system.

4.1 Use of HMMs in Handwritten Word Recognition

Recently, HMMs have been applied to several areas in hand-
writing recognition, including character recognition [22], on-line
word recognition [23], [24] and off-line word recognition. In the
latter application, Gillies [4] was one of the first to use an implicit
segmentation-based HMM for cursive word recognition. First, a
label is given to each pixel in the image according to its
membership in strokes, holes, and concavities. Then, the image is
transformed into a sequence of symbols which result from the
vector quantization of each pixel column. Each letter is character-
ized using a different discrete HMM, the parameters of which are
estimated on hand-segmented data. The Viterbi algorithm is used
in recognition and allows an implicit segmentation of words into
letters as a by-product of the word matching process. Magdi and
Gader [12] use a similar technique in which the observations are
based on the location of black-white and white-black transitions on
each image column and a 12-state left-to-right HMM is designed
for each character. Cho et al. [21] also use an implicit segmentation
technique in which a cursive word image is first split into a
sequence of overlapping vertical gray-scale bitmap frames, which
are then encoded into discrete symbols using principal component

analysis and vector quantization. A word is modeled as an

interconnection network of character and ligature HMMs. To
improve the recognition strategy, several combinations of Forward

and Backward Viterbi procedures were investigated. Chen et al. [6]
use an explicit segmentation-based continuous density variable
duration HMM where the observations are based on geometrical

and topological features, pixel distributions, etc. Each letter is
identified with a state which can account for up to four segments

per letter. The parameters of the HMM are estimated using the
lexicon and the manually labeled training data. A modified Viterbi

algorithm is applied to provide several outputs, which are
postprocessed using a general string editing method. Finally,

Bunke et al. [25] propose an HMM approach to recognize cursive
words produced by cooperative writers. The features used in their
scheme are based on the edges of the skeleton graph of a word. A

semicontinuous HMM (the Isadora system [26]) is considered for
each character and the number of Gaussians was defined by

manual inspection of the data set. Recognition is performed using
a beam search-driven Viterbi algorithm.

4.2 The Proposed Model

As shown above, several HMM architectures can be considered for

handwritten word recognition. This stems from the fact that
handwriting is certainly not a Markovian process and, even if it

were so, the correct HMM architecture is actually not known. The
usual solution to overcome this problem is to first make structural

assumptions and then use parameter estimation to improve the
probability of generating the training data by the models. In our

case, the assumptions to be made are related to the behavior of the
segmentation process. As our segmentation process may produce
either a correct segmentation of a letter, a letter omission, or an

oversegmentation of a letter into two or three segments, we built
an eight-state HMM having three paths to take into account these

configurations (Fig. 6). In this model, observations are emitted
along transitions. Transition t07, emitting the null symbol �,
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Fig. 4. Transition histograms of segmented shapes.

Fig. 5. Pair of feature sequences representing a word (word sequence) image.



models the letter omission case. Transition t06 emits a symbol
encoding a correctly segmented letter shape, while transition t67

emits a symbol encoding the nature of the segmentation point
associated with this shape. Null transition t36 models the case of
oversegmentation into only two segments. Transitions t01, t23, and
t56 are associated with the shapes of the first, second, and third
parts of an oversegmented letter, while t12 and t45 model the nature
of the segmentation points that gave rise to this oversegmentation.
Note that the rare occurrence of splitting a letter into three pieces
makes the associated parameters likely not to be reliably estimated.
The solution to this problem is to share the transitions involved in
this phenomenon (t34, t36, t45, t56) over all character models, by
calling for the tied states principle. Nevertheless, this procedure is
not carried out for letters M, W, m, or w for which the probability of
segmentation into three pieces is high and, therefore, there are
enough examples to separately train the third segment parameters
for each of these letters. Finally, a refinement of the character
model consisted of considering context-dependent models for
upper-case letters depending on their position in the word: first
position, whether in an upper-case or cursive word, or any
different position in an upper-case word. The motivation behind
this is that features extracted from these two categories of letters
can be very different since they are based on global features, such
as ascenders, which strongly depend on the writing style.

Our model architecture is somewhat similar to that of other
approaches, such as [2], [27], but with some differences. Here, the
first segment presented to a character model is produced by two
different transitions depending on whether it corresponds to the
entire shape of a correctly segmented character (t06) or to the first
part of an oversegmented character (t01), while in [2], [27], for
example, the same transition is shared between these two
configurations. Our architecture allows the transitions in the
model to be fed by homogeneous data sources, leading to less
variability and higher accuracy (e.g., the first part of an over-
segmented d and a correctly segmented d, which are very
different, would be presented to different kinds of transitions, t06

and t01, respectively). In other words, the variability coming from
the inhomogeneity in the source data, since it is known a priori, is
eliminated by separate modeling of the two data sources. In
addition, we have a special model for interword space, in the case
where the input image contains more than one word. This model
simply consists of two states linked by two transitions, modeling a
space (in which case only the symbols corresponding to spaces @
or # can be emitted) or no space between a pair of words (Fig. 7).

4.3 The Learning Phase

Since the exact orthographic transcription (labeling) of each
training word image is available, the word model is made up of
the concatenation of the appropriate letter models, the final state of
an HMM becoming the initial state of the next one, and so on
(Fig. 8).

Note that, here, we use an embedded Baum-Welch training
algorithm for which the segments produced by the segmentation
algorithm need not be manually labeled. This is an important

consideration for two reasons: First, manually segmenting a
database is a very expensive process and is therefore not desirable;
second, assuming we have a sufficient learning database,
embedded Baum-Welch training allows the recognizer to capture
contextual effects and permits the segmentation of the feature
sequence into letters and the reestimation of the associated
transitions so as to optimize the likelihood of the training database.
Thus, the recognizer decides for itself what the optimal segmenta-
tion might be, rather than being heavily constrained by a priori
knowledge based on human intervention [9]. This is particularly
true if we bear in mind the inherent incorrect assumptions made
about the HMM structure. From an implementation point of view,
given a word composed of L letters, a new parameter correspond-
ing to the index of the currently processed letter is added to the
probabilities involved in the Baum-Welch algorithm. Then, the
results of the final forward (initial backward) probabilities at the
last (initial) state of the elementary HMM associated with a letter
are moved forward (backward) to become the initial forward (final
backward) probabilities at the initial (last) state of the elementary
HMM associated with the following (previous) letter. If �lt�i� (�lt�i�)
denotes the forward (backward) probability associated with the
letter of index l, then this process is carried out according to the
following equations:

�l�1
t �0� � �lt�N ÿ 1� l � 0; . . . ; Lÿ 2 t � 0; 1; . . . ; T ÿ 1 �2�

�l�1
t �0� � �lt�N ÿ 1� l � 0; . . . ; Lÿ 2 t � 0; 1; . . . ; T ÿ 1; �3�

where 0 and N ÿ 1 are the initial and final states of elementary
letter HMMs and t is time index. In addition to the learning set, we
use a validation set on which the reestimated model is tested after
each training iteration. The training stops when the likelihood of
the training set becomes sufficiently small or, more formally, when
the following inequality becomes true:

�t � P
T
� ÿ PT

�ÿ1

PT
� � PT

�ÿ1

< ": �4�

Here, PT
� is the likelihood of the training set at iteration � , �t is the

normalized increase of PT
� and " is a sufficiently small threshold,

typically 10ÿ3, 10ÿ4, etc. Once the training phase is over, the stored
optimal model parameters are those corresponding to the iteration
maximizing the likelihood of the validation set (and not the last
iteration). This strategy allows the model to acquire a better
generalization over unknown samples.

4.4 The Recognition Phase

The recognition process consists of determining the word
maximizing the a posteriori probability that a word w has generated
an unknown observation sequence O,

Pr�ŵjO� � max
w

Pr�wjO�: �5�

Applying Bayes' rule, we obtain the fundamental equation of
pattern recognition,

Pr�wjO� � Pr�Ojw�Pr�w�
Pr�O� : �6�
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Fig. 6. The character model.

Fig. 7. The interword space model.



Since Pr�O� does not depend on w, recognition becomes equivalent
to maximizing the joint probability,

Pr�w;O� � Pr�Ojw�Pr�w�: �7�
Pr�w� is the a priori probability of the word w and is related to the
language of the considered task. The estimation of Pr�Ojw�
requires a probabilistic model that accounts for the shape
variations O of the word w. We assume that such a model consists
of a global Markov model created by concatenating letter HMMs.
The model architecture remains basically the same as in training;
however, as the writing style is unknown in recognition, a letter
model here actually consists of two models in parallel, associated
with the upper and lower case modes of writing a letter (Fig. 9). As
a result, two consecutive letter models are now linked by four
transitions associated with the various ways two consecutive
letters may be written: uppercase-uppercase (UU), uppercase-
lowercase (UL), lowercase-uppercase (LU), and lowercase-lower-
case (LL). The probabilities of these transitions, as well as those of
starting a word with an upper-case (0U) or lower-case (0L) letter,
are estimated by their occurrence frequency in the learning
database.

This architecture is more complete than usually adopted
methods which generate a priori two or three possible ASCII
configurations of words (fully upper-case, fully lower-case, or
lower-case word beginning with an upper-case letter). Indeed,
these methods quickly become tedious and time-consuming when
dealing with a sequence of words rather than a single word,
besides the fact that they cannot handle the problem of mixed
handwritten words. The proposed model elegantly avoids these
problems, allowing an implicit detection of the writing style
during recognition owing to the Viterbi algorithm.

4.5 Combination of Feature Sets in a Unifying HMM
Architecture

As mentioned earlier, the extraction of two feature types from
segments led us to represent each word image by two feature
sequences. An obvious solution to handle the two sequences is to
use two independent word recognition engines and combine their

outputs in a subsequent stage. This strategy, however, would be

computationally heavy, and also less accurate, since the redun-

dancy between the two feature sets is dropped in this case.

Therefore, we should wonder how to optimally use these two sets

while keeping in mind the number of parameters which must be

trained. In this perspective, we were inspired by an HMM-based

interpolation technique proposed in [10]. The idea is to build two

HMMs, one in which no simplification assumptions are made and

the other, analogous to the first (with the same structure) but with

fewer parameters using the tied states principle [10]. The first

model is more accurate but has a relatively large number of

parameters, while the second is less accurate but has a relatively

small number of parameters and, hence, is more reliably trained.

The second step is to combine the two HMMs with a linear

interpolation, the parameters of which are estimated by a third

HMM. In our case, instead of using the tied states principle, the

design of the two models is obtained by considering the way the

two feature sequences are fed to the HMMs. Indeed, for each

transition emitting shape symbols, two hypotheses can be made:

First, the two symbols corresponding to the two feature sets, say o1
k

and o2
k, are jointly emitted by the transition and, in this case, we

have to estimate probabilities of the form p1�o1
k; o

2
kjtij�. This is the

same thing as the consideration of a new alphabet, the elements of

which are all the possible combinations of the symbols of the two

alphabets; second, this time the two symbols are supposed to be

independently emitted by the transition and, in this case, we have

to estimate probabilities of the form p2�o1
kjtij� and p3�o2

kjtij�. It is

easy to see then, that the number of parameters is proportional to

N1 �N2 and N1 �N2, respectively, for the first and second

assumptions, where N1 and N2 are the sizes, respectively, of the

first and second alphabets. Hence, we obtain two HMMs, say M1

and M2, with complementary merits and drawbacks as mentioned

above. The last step is to take, as final estimation of p�o1
k; o

2
kjtij�, a

linear combination of p1 and p2 � p3 given by:

Pr O1
k; O

2
kjtij

ÿ � � �i � p1 O1
k; O

2
kjtij

ÿ �� 1ÿ �i� �
� p2 O1

kjtij
ÿ �� p3 O2

kjtij
ÿ �� � �8�
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Fig. 8. Training model for the French word Sete.

Fig. 9. Global recognition model for lexicon word SETE.



with �i varying between 0 and 1. This equation can be interpreted
as an associated Markov source in which each state is replaced by
three states. However, since, in our model (Fig. 6), the problem of
reliable parameter estimation solely deals with transitions emitting
a shape observation, only transitions t01, t06, t23, and t56 are
involved in the duplication process (Fig. 10).

In the resulting HMM, say M3, p1 and p2 are assumed to be
known and are given by trained models M1 and M2. Therefore,
only parameters �i must be trained. For more details on this
section, see [28].

5 EXPERIMENTS

Experiments were carried out on unconstrained handwritten
French city name images manually localized on real mail
envelopes which were scanned at a resolution of 200 dpi. The
sizes of the learning, validation and test sets were 11,410, 3,724,
and 4,313, respectively. To simulate the address recognition task,
we assume that the city names in competition are independent for
a given list of corresponding postal code hypotheses. This is only
partly true, since confusable codes may belong to the same
geographic area and, in some cases, the cities in a given area tend
to share a common element (e.g., BOULOGNE SUR SEINE, postal
code 92100, and NEUILLY SUR SEINE, postal code 92200).
Nevertheless, under this assumption, for each image in the test
set, we choose N ÿ 1 city names from a vocabulary of 9,313 city
names. The prior probabilities were assumed to be equal so that
the average perplexity was maximum and equal to N . Indeed, for
large vocabularies, Pr�w� is very difficult to estimate due to the
lack of sufficient training samples. Moreover, we cannot rely on
bigram or trigram statistics in this case because there is no reason
for the size of a city to be correlated to its ASCII name. For
example, PARIS is a big city, but PALIS is not. The best way for a
reliable estimation of Pr�w� is, actually, to use city information,
such as the population size, the postal code (in France, a zip code
ending with 000 corresponds to a big city), the economic power,
etc. To simulate the case where one, two, or three digits in the
postal code are ambiguous (one, two, or three ambiguous digits
give rise to 10, 100, or 1,000 possible postal codes), the values
chosen for N were 10, 100, and 1,000. Recognition was carried out
using the logarithmic version of the Viterbi algorithm, while, for

training, we used the Baum-Welch algorithm. Since segment data

were not labeled, the model parameters were initialized with

random values. Training experiments carried out with uniform

and various random starts showed essentially the same perfor-

mances. The recognition rates obtained using the models M1, M2,

and M3 (defined in Section 4.5) are reported in Table 1 and some

well-recognized French city name examples are given in Fig. 11.
From the above results, it is clear that HMMs enable the system

to achieve good performance even though the features used are not

very discriminative at the grapheme level (a grapheme consists of a

letter, left part, or right part of a letter) for which the recognition

rate is only around 23 percent. Actually, it is the redundancy

brought by the ordered association of features to describe a word

that is discriminative and this discrimination is as high as the word

length. The use of the segmentation features and preprocessing has

also significantly contributed to recognition accuracy [20]. The

similarity of the results obtained with models M1 and M2 is not

surprising since the advantages of M1 are the drawbacks of M2 and

vice versa (Section 4.5). The interpolation technique yielded a

significant improvement, especially if we keep in mind that only

the models associated with nonfrequent characters in the training

set took advantage from it. Confusions in our system come from

many sources, mainly from words with several overlapping

characters (Fig. 12a), poor images (Fig. 12b), images with underline

or with noise or remnant strokes above them (Fig. 12c), or the lack

of examples to reliably estimate some model parameters.

6 REJECTION

So far, system performances were expressed in terms of recognition

rates. In real applications, however, systems are required to have

confusion rates (CR) lower than some threshold based on economic-

al criteria. A typical value of accepted CR in mail sorting is

1 percent. Therefore, it is necessary to consider in our approach a

rejection criterion. In this perspective, we must go back to the

Bayes' formula in (6) to compute Pr�O�. When O is known to

belong to the lexicon, as in our previous experiments, Pr�O� is

obtained by:

Pr�O� �
X
w

Pr�Ojw� � Pr�w�: �9�

Then, rejection can be established by requiring Pr�wjO� to be

greater than a given threshold. Fig. 13 shows the evolution of the

recognition rate, the confusion rate, and reliability (defined as the

proportion of correct answers among the accepted images) as a

function of the rejection rate (by varying the threshold value) when

the correct answer is guaranteed to belong to a lexicon of size

N � 100 or 1; 000. The test for a lexicon of size 10 has been dropped

since the error rate is already sufficiently small in this case.
In real applications, however, the processed word image is not

guaranteed to belong to the lexicon since it can be the result of a

city name mislocation or a wrong dynamic generation of the

lexicon (due to an important error in postal code recognition). To

simulate this problem, we have generated random lexicons, half of
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Fig. 10. The duplication process to generate the interpolated HMM.

TABLE 1
Recognition Rates Obtained with Models M1, M2, and M3



which do not contain the correct answers. In this case, Bayes'

probability becomes [5]:

Pr�wjO� � Pin � Pr�Ojw� � Pr�w�
Pin �

P
w Pr�Ojw� � Pr�w� � pout � Pr�Ojout� ; �10�

where pin � 0:5 is the a priori probability that w belongs to the

lexicon and pout is its complement; pout � 1ÿ pin. Note that a more

realistic value for pin would have been chosen, in the case of city

name recognition, by an estimation based on the knowledge of the

accuracy of the recognition postal code and the automatic location

of the city name. We approximated the term Pr�Ojout�) by the

output of an ergodic HMM trained on the same set used to train

the character models, although a more accurate set should also

have included words that do not correspond to city names. The

number of states of this HMM was set to 14 after several trials.

Fig. 14 shows the evolution of the recognition rate, confusion rate,

and reliability as a function of the rejection rate when the correct

answer is not guaranteed to belong to a lexicon of size N � 10, 100,

or 1; 000. Note that, in this experiment, the recognition rate cannot

exceed 50 percent, given that pin was set at 0.5.

7 CONCLUSION

In this paper, we presented a complete system for recognizing
unconstrained handwritten words. We consider that our approach
achieves good performance given that the data correspond to real
word images and were not filtered; however, it is hard to compare
with other approaches since we are not using the same databases.
The main strength of the proposed system lies in its training phase,
which does not require any manual segmentation of the data to
train the character models. We used character HMMs to model
explicitly both segmented shapes and associated segmentation
points, leading to a better discrimination between characters. By
building the word model as a sequence of character models, each
consisting of a pair of associated upper-case and lower-case
HMMs, the writing style is implicitly detected during recognition.
We proved also that rejection can be efficiently implemented using
HMMs. We believe that our system can still be improved, mainly
in feature extraction and recognition phases. As mentioned in
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Fig. 11. Some examples of well-recognized images of French city names.

Fig. 12. Some examples of misrecognized images.

Fig. 13. Recognition rate (RR), confusion rate (CR) and reliability (RL) as a function of rejection rate when the correct answer is guaranteed to belong to the lexicon.

Fig. 14. Recognition rate (RR), confusion rate (CR) and reliability (RL) as a function of rejection rate when the probability that the word image belongs to the lexicon is
Pin � 0:5.



Section 3.3, we use simple features to describe the segments and

we rely on the context to discriminate the words. This may not be

sufficient for small words which only differ in one or two letters

(e.g., Reims versus Rennes, Nantes versus Mantes, etc.). In this

case, low-level features describing the pixel distributions in the

segments are necessary to eliminate the ambiguity between such

words. An elegant method could be a hierarchical data representa-

tion which provides more details as the feature sequence length

gets smaller and the ambiguity between the dynamic lexicon

candidates (to be computed dynamically) gets higher. This could

be an optimal compromise between performance and speed

requirements in commercial systems. Markovian modeling could

be improved by replacing discrete HMMs by semicontinuous

HMMs in order to avoid the inherent loss of information when

producing our feature sets, particularly histogram-based and

segmentation-based features; or by considering hybrid Marko-

vian/neural models to overcome the lack of discrimination power

in conventional HMMs. Finally, our model architecture could be

optimized by adding in the character model (Fig. 6) a null

transition from state 6 to state 4 (t64), generating in this way a loop

that can model the oversegmentation of a letter into any number of

graphemes. This would be particularly interesting for the design of

generic models that can accommodate an important writing style

change possibly occurring with the use of new sources of

handwriting data.
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